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Abstract—In modern industrial production fast and easily
reconfigurable transportation systems are necessary. A viable bio-
inspired approach to this is throwing and catching of transporta-
tion goods. In order to catch a thrown object the catching device
has to be moved to the right position on time. This requires a
fast and accurate acquisition of flight position and a prediction
system for the interception point. The main topic of this paper
is the development and comparison of two prediction models
for the flight trajectory of a thrown tennis ball. The position
acquisition, that is the base for the prediction, is based on a
binocular vision system similar to two-eyed humans. The impact
of the vision systems frame rate on the error of the prediction is
reviewed as well. Future prediction is planned to be done based
on a bio-inspired approach using a small set of reference throws.

I. INTRODUCTION

Throwing and catching is a fast and flexible approach to
transportation . Accurate throwing and very accurate catching
is required to enable this approach. External influences on a
thrown objects trajectory like wind or a changing objects ori-
entation boost demands on the catching instance. An accurate
object tracking system is required [1] [2]. Findings on humans
with normal and weak stereopsis emphasize the need for high
quality tracking [3]. This tracking information has to be used
for predicting the interception position. A model of the flight
has to be developed and fitted into the measured positions
of the object. Based on this model the interception position
can be predicted. If the prediction is more accurate than the
coverage of the catching device the object will be caught.
Similar to most work regarding the topic of catching [1] [4]
also this approach is dealing with a tennis ball as thrown
object. Approaches based on a monocular vision system [4]
and based on binocular vision system [1] [5] have already been
done. In this context usage of binocular vision systems equal
a bio-inspired approach as most predators in nature feature
two eyes. Prior research based on binocular vision systems
differs in the distances the object is actually thrown. Generally
this distance has been orders of magnitudes smaller than the
throwing distance of 3 m used for the experiments presented.
In contrast to small scale catching [1] [5] no gripper is used to
verify the quality of the prediction system. An impact position
verification system (compare [4] and [6]) based on a touch-kit
is used to continuously meter the quality of the prediction.
This systems detects the position of the tennis ball in the

interception plane enabling better evaluation of the prediction
quality than the binary result of a successful/unsuccessful
catch.

II. APPLICATION

Individualization of products has put focus on flexible
production systems and their reconfiguration. In order to save
cost the time of reconfiguration has to be minimized. One
main aspect of this procedure is the reconfiguration of the
transportation system. Conveyors have to be disassembled
and reassembled which takes a long time. A very fast
reconfigurable transport approach is to throw and catch
objects [7]. Reconfiguration of such a system is limited
to assigning a new target to the throwing instance and a
new object origin to the catching instance. No mechanical
reconfiguration is necessary. An individual sequence of
production steps for each part is possible which also enables
dynamic load balancing in the production facilities in case of
an erroneous machine.

III. MODELING THE FLIGHT

Flight properties of a thrown object depend mainly on the
shape and surface of the object. A tennis ball is used for the
work presented. The symmetric properties of the ball simplify
throwing and modeling the flight of the ball. Effects of slow
rotation of the object, in case of a ball also called spin, are
minor for highly symmetrical objects like a ball. In contrast
aerodynamic effects on rotating non-symmetrical objects are
influencing the flight to a large degree. In case of high speed
spin of highly symmetrical objects the Magnus effect has to
be considered [8]. Neglecting all forces influencing the flight
other than gravity and drag, the flight of a ball can be described
by

~v(t+ ∆t) = ~v(t) + ~a(t) ∗∆t

~a(t) = − ~v(t)
|~v(t)|

∗ k ∗ |~v(t)|2

k =
ρ ∗ cW ∗A

2
Where ~v(t) is the velocity at the instant t, ~a(t) equals the
acceleration at the instant t, ∆t is the timely granularity of the
calculation and k is the aerodynamic factor which is calculated
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based on the air density ρ, the air drag coefficient cW and the
cross section surface of the object A. Calculation of the flight
trajectory can only be done iteratively based on the initial
velocity v(t = 0) as the influence of the air drag is nonlinear.
The factor k depends on the object and air density, varies from
tennis ball to tennis ball and also depends on the spin of the
ball [8]. In order to predict the objects trajectory based on
measured positions the requirement for iterative calculation is
a big challenge. Different sets of initial velocity v(t = 0)
and k need to be tested and the best combination can be
used to predict the future flight. Real-time requirements and
accurateness within pre-specified bounds can not be obliged.
These essential limitations can be avoided by using other
models than the on presented above.

A. Polynomial Model

The most simple approach to fit functions to the measured
positions of the object is using polynomial functions. Subse-
quently predicting the future trajectory is enabled based on the
fitted functions. The order n of the polynomial function can be
derived from the goodness of the fit. A higher order provides
better goodness but the sensitivity to measurement errors of
the acquired positions demands a lower order. For this reason a
suitable compromise has to be found. The function describing
the position p of the object in the i-th (x, y, z) spatial direction
is estimated as following

pi = p0 + p1 ∗ t+ p2 ∗ t2 + ...pn ∗ tn

Weighting the importance of the individual measured positions
enables to incorporate accuracy variation depending on the
objects distance to the camera set.

B. Spatial separated physical Model

A more refined model of the flight is a spatial separated
simplification of the model presented in the introduction of
this chapter. Separating the movement in the spatial directions
introduces an error due to the nonlinear property of the air
drag [8]. This error depends on the ratio of the velocity in
the spatial directions. If the movement mainly occurs in one
direction the error introduced is negligible. The movement in
each direction, according to this model, can be described by
the differential equations

ax = v̇x = −k ∗ v2
x

ay = v̇y = −k ∗ v2
y + g

az = v̇z = −k ∗ v2
z

if the y-direction is aligned with the direction of gravity.
Symbols used are acceleration a, velocity v, aerodynamic
factor k and gravity g. Solving these equations for the positions
along the spatial directions results in

x = x0 +
1
k
∗ ln (1 + k ∗ t ∗ vx,0)

y = y0 + ln(
cosh(

√
g ∗ k ∗ (t− t0))

cosh(
√
g ∗ k ∗ t0)

)

Fig. 1. Simple throwing device based on a leg spring

TABLE I
DST TOUCH KIT PROPERTIES

Input Method Finger and stylus input

Accuracy 1.0%

Active Area 727.15 mm × 408.05 mm

Resolution (h x v) 16k ×16 k (maximum resolution)

Response Time 20 ms for tap input

Minimum Touch Impact 50 mN · s

Glass Thickness 2.2 mm (±0.2 mm)

z = z0 +
1
k
∗ ln (1 + k ∗ t ∗ vz,0)

For evaluation of both models the functions are fit to the
measured positions of the tennis ball in the early flight phase.
Linear Least Squares are used for fitting the polynomial model
while Nonlinear Least Squares are used for fitting the spatial
separated model to the data. Subsequently for both models
presented above the the equation

z(t) = −32.2

is solved for t. This equals calculating the time of the impact
of the tennis ball, that has a diameter of 64.4 mm, on a plane in
the z = 0 plane. The position of the ball in x- and y-directions
at that instant is the predicted impact position.

IV. EXPERIMENTAL SETUP

The setup used in this work consists of a throwing device,
an impact position verification system and the binocular vision
system with a PC workstation. Based on a pre-streched leg
spring the throwing device (Figure 1) accelerates the tennis
ball to a velocity of roughly 10 m/s. The distance between
the initial position of the tennis ball and the plane of the
position verification system is 3 m. This results in an flight
time of ≈ 300 ms. The throwing device is mounted onto
a table with an inclination of 7◦ from the horizontal. A
ball is thrown towards the plane where the impact position
verification system is mounted. This systems consists of a
Dispersive Signal Technology (DST) touch-kit. This touch-kit
is used to detect the tennis balls position within a plane. Main
properties of the DST touch kit are presented in Table I.
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Fig. 2. DST touch-kit mounted into aluminum profiles

Fig. 3. Visual field and ball recognition in original image (top: right, bottom:
left image

Figure 2 shows the DST touch-kit and the mounting in
aluminum profiles. The interpretation of the DST touch-kit is
done via mapping of the touch-kit to a screen with a resolution
of 1600 × 1200 pixel. Calibration of the touch kit and the
stereo vision system are done concurrent in one process. The
calibration is based on 67 different images of the calibration
sheet. For ten of those 67 calibration sheets the relation to
the DST touch kit is known and this information is used
to extract the position of the cameras to the touch kit. The
vision system consists of two IDS Eye-1220-C gray scale
cameras. Cameras are installed in a convergent setup and their
visual field is ranging from the origin of the ball trajectory
(throwing device) to approximately 50 cm from the impact
plane (compare Figure 3 and Figure 2).

Main properties of the used cameras are shown in Table
II. Both cameras are triggered synchronous by hardware via
a microcontroller. Additional light is provided by four 500

TABLE II
µEYE-1220-M-GL PROPERTIES

Interface USB 2.0

Resolution 752× 480 pixel

Sensor size 1/3 ”

Maximum frame rate 87 fps

Exposure time 415 µs

Focal length 6 mm

Fig. 4. Sample Hough transformation accumulator

W halogen floodlights (Figure 2). Video data is saved on
the workstation and analyzed via Matlab and the AVI read
interface dx avi [9]. The ball is segmented via a background
subtraction and the center of the ball in the image is found via
a modified hough transformation [10]. Laplacian of Gaussian
edge filtering is used to extract the edge image. A window of
7×7 pixels (enlarged by 3 pixels around each central point of
the edge) is used to determine the potential radial direction of
the arc. Both extreme ends of the line in the window are used
to estimate the tangential direction in the central point of the
window. Voting for the resulting radial lines of all edge points
in the accumulator space enables extraction of the tennis balls
center. A sample accumulator result is shown in Figure 4. The
area inside the red square in Figure 4 is shown Figure 5 in
detail. Also the extracted edge line from Figure 4 is drawn

Fig. 5. Histogram of Hough transformation accumulator

into the histogram around the knoll. In the center of the knoll
multiple spikes are visible. Filtering the accumulator with a
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filter of the size 7× 7 pixels results in an individual maxima
in the center of the knoll which is considered as the center
of the tennis ball in the image. Based on this information
the position of the ball in space is calculated through stereo
triangulation based on the parameters acquired during the
calibration using the stereo camera calibration toolbox [11]. In
order to increase accuracy, stereo triangulation considers the
lens distortion which is known from the camera calibration
process, too.

V. PREDICTION RESULTS AND COMPARISON

The impact position is predicted in a row of experiments
for 20 throws using both models presented in III-A and
III-B with a camera frame rate of 60 fps. The polynomial
model is used up to the second order (n = 2) in order to
give a good compromise between stability and sensitivity.
The prediction error is presented in Figure 6 and Figure 7.
Both components of the deviation from the impact position
are shown. Comparing Figure 6 and Figure 7 shows that
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Fig. 6. Histogram of prediction errors based on the polynomial model
(horizontal: ∆x, vertical: ∆y)
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Fig. 7. Histogram of prediction errors based on the physical separated model
(horizontal: ∆x, vertical: ∆y)

especially the vertical prediction of both models differs a
lot. The polynomial models average deviation is 8.2 mm
while the physical models average deviation is −3.9 mm. The
corresponding numbers in horizontal direction are −2.8 mm

and 2.0 mm for both models.
The histograms of the overall prediction error (distance be-
tween the predicted interception point and the actual impact
position of the tennis ball on the plane ∆r) is shown in Figure
8. The average deviation for both models presented is ≈ 10
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Fig. 8. Comparison of overall prediction errors

mm for the polynomial and ≈ 8 mm for the physical model.
Using Rayleigh distribution to model this errors deviation the
prediction accuracy can be metered by the distance within
99.5 % of the throws are predicted. These numbers are 33.5
mm and 28.1 mm for both models. With other words: out of
200 throws in one case the prediction deviation is greater than
33.5/28.1 mm.

VI. FRAME RATE AND RESOLUTION SCALING

Besides the camera resolution the frame rate of the vision
setup is one main parameter of the prediction accuracy. Higher
frame rate and higher resolution equals higher cost for the
vision setup. Also the processing requirements rise with the
resulting increased data rate. Besides the standard resolution
and frame rate used for the prediction results presented in the
previous section the cameras allow to downscale the resolution
from 752×480 to 376×240. This also reduces the bandwidth
on the camera interface which is limiting the camera from
operating at higher frame rates in general. As a result the
achievable frame rates in the reduced resolution mode can be
doubled.
Comparison of the 99.5 % prediction radii (Rayleigh dis-
tribution, compare last paragraph of previous section) for
the three modes reduced resolution/standard frame rate, full
resolution/standard frame rate and reduced resolution/doubled
framerate is done in Table III for both models presented.
While both models prediction increases as the resolution

TABLE III
SCALING ANALYSIS

376× 240, 60 fps 752× 480, 60 fps 376× 240, 120 fps

∆r (mm) ∆r (mm) ∆r (mm)

pol. 40.0 33.5 36.2

phy. 30.0 28.0 24.9
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increases the combination of a increased frame rate with
a reduced resolution shows different results. In case of the
polynomial model the prediction accuracy decreases while it
improves for the polynomial model. This behavior can be
explained by the nature of the two models. While the higher
number of measured positions, caused by the higher frame
rate, offers measurement error rejection for the physical model
the polynomial model is not able to follow the real trajectory
of the object due to its missing relation to the physics of the
flight.

VII. CONCLUSION

Both models presented are viable for the task of predicting
the impact position of tennis ball on a plane. The physical
model shows a higher accuracy over all reviewed frame rates
than the polynomial model. This behavior was expected. When
taking a close look at the horizontal deviations presented in
Figures 6 and 7 it is interesting to note that the physical
model has a higher bias error than the polynomial model when
suppressing the outliner in the polynomial model. A possible
reason for this behavior lies in neglecting the spin of the tennis
ball in the physics based model. Analyzing the video data a
spin of ≈ 1000 min−1 occurs. The influence of spin in this
magnitude can not be neglected at such low throwing velocities
(compare [8]).
The temporal development of the prediction during the flight
has been left out of scope. In order to minimize the amount
of energy necessary to position the catching device on time
the prediction is required to be accurate also with only the
information about the first ball positions used to fit the model
in.
Additional research regarding higher frame rates with de-
creased image resolution (due to bandwidth restrictions) seems
to be reasonable. Also non equal weighting of the positions
calculated might lead to better prediction results as the accu-
racy of the position detection improves as the ball moves closer
to the vision system due to the higher relative resolution.
Prediction so far has not been done at real time. For practical
usage of this transportation approach real time requirements
arise. Calculation of the prediction has not been optimized for
calculation-time so far. Achieving a performance that fulfills
the real-time requirements seems to be possible for this brute
force approach. Another approach for solving the task of

prediction is to use a set of reference throws and their
corresponding impact position and to map the actual flight
to this library and predict the interception point based on the
memory of the prediction system. This scenario-based predic-
tion, that is similar to the way humans and animals evaluate
movements, is set as the goal for future research. In this
context also analysis of more complex thrown objects has to
be mentioned. Considering the rising calculation demands due
to the relevance of the objects orientation and their prediction
throughout the flight emphasizes the need of alternative and
more efficient approaches to solve the task of prediction. Once
more, nature can deal as a model.
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