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Abstract—To observe and analyze person’s daily 
activities, and build the activities model is an important task 
in an intelligent environment.  

In an Ambient Assisted Living (AAL) project we get 
sensor data from a motion detector. At first we translate and 
reduce the raw data to state data. Secondly using hidden 
Markov model, forward algorithm, and Viterbi Algorithm to 
analyze the data and build the person’s daily activity model.    

Comparing individual observation with the build model 
to find out best and worst (abnormal) activities.  

 
Keywords: Intelligent environment, hidden Markov model 

(HMM), forward algorithm, Viterbi algorithm. 
 

I. INTRODUCTION 

There are many papers about Markov chain and hidden 
Markov model: in paper [1] the author introduces the 
basic definition of Markov chain and the hidden Markov 
model, furthermore the applications of HMM. The authors 
in paper [2] describe a technique to learning the number of 
states and the topology of hidden Markov model from 
examples. Here the Bayesian posterior probability was 
used to choose the states for merging and for the stopping 
criterion. In paper [3] the author describes the EM 
Algorithm and parameter estimation for hidden Markov 
model.  In paper [4] the authors give an introduction to the 
theory of hidden Markov model and illustrate how the 
hidden Markov model has been applied to problems in 
speech recognition. A factorial hidden Markov model is 
introduced in paper [5], that the method has advantage 
over unconstrained HMM in capturing data statistical 
structure. Hidden Markov model is used to allow for 
unequal and unknown evolutionary rates at different sites 
in molecular sequences in paper [6], here hidden Markov 
model allows for rates to differ between sites and for 
correlations between the rates of neighboring sites. In 
paper [7] for estimation the joint likelihood that between 
the observation data and the Markov state sequences a 
segmental k-means algorithm is used as objective function. 
In bioinformatics the author in paper [8] uses profile 
hidden Markov model to analyze the large-scale sequence 
in protein domains. Using the hidden Markov model to 
analyze the motion detector data, to learn the behavior of 
the user is expressed in paper [9] and [10].  

A. AAL and ATTEND Project 
Ambient Assisted Living (AAL) is a new search field, 

with the help from modern technology the life quality of 
the elderly improved and the independent living in their 
own home prolonged. But because of aging the elderly 
have their own problems, such as action obstacles, 
memory disorder … how can the elderly use the modern 
technology system?  

The project ATTEND (AdapTive scenario recogniTion 
for Emergency and Need Detection) focus on developing 
a system that increases the independent living of elderly. 
In the living environment of user an intelligent, adaptive 
network of sensors are installed, in order to thoroughly 
observe the user’s activities and behavior. In a time period 
the user’s activities and behavior model will be learned by 
the system. 

For example a user has activities at the living room. A 
motion detector installed at a corner of the living room 
and it records the daily activities. Then the activities 
model of the user will be build by hidden Markov model, 
forward algorithm, and Viterbi algorithm. In case of some 
abnormal activities happened, for example in the living 
room there are without activities  in the morning – this 
kind of situation never happened before – so the system 
should according the build model  to send an aware or 
alarm signal to user, neighbor, or care giver.  

B. Basic Parameters 
In the living room a motion detector installed, the 

motion detector sends the value “1” to the controller if 
there are activities from the person. Otherwise the motion 
detector sends the value “0” to the controller. For 
continuous activities or stillness the sensor value keeps on 
“1” or “0”. This is the basic function from the motion 
detector.  

Figure 1 from top to bottom shows the gathered sensor 
raw data (there are 694 values all), the filtered sensor 
value, and the histogram of the same data from one day. 
The x-axis is time. From the top of the figure we know 
that between 15 to 19 o’clock and close to 24 o’clock 
there are really quiet. At the other time there are activities 
but the activities density is different. The middle of the 
figure is the filtered sensor value from the raw data.  



 
Fig 1. The data from one motion sensor in one day. 

 
The filtering method is that at first segments the daily 

time into smaller time interval, for example 30 minutes, so 
there will be 48 time intervals in a day. Then the activities 
of the sensor summed together in each time interval. If the 
whole value bigger than a predefined threshold value, so 
this time interval will be treated as activities value “1”, 
others are value “0”. Here the predefined threshold value 
and the time interval play an important role.  

From the middle of figure 1 we can see that between 1 
to 6 o’clock there are without activities. It is not 
corresponding with the top of the figure 1. This is because 
of the “noise” value (for example the elderly rolls body in 
sleeping) be filtered. On the other hand if there are many 
activities such as between 0 and 1 o’clock (perhaps the 
user has sleeping disorder and difficult into sleeping), 
these activities will be translated to value “1” in the time 
interval. 

In bottom of the figure 1 we use the histogram to 
comparison and validation the filtered sensor data with the 
original data. It is clearly that between 1 and 6 o’clock, 
and between 15 to 19 o’clock there are seldom activities 
than the other time interval. It corresponds with the 
middle of the figure 1. 

If we gather some day’s data together we will get a 
general intuition of the user’s activity. In figure 2 there are 
15 days filtered data. From figure 2 we know that between 
0 to 5 o’clock the elderly has a few activities, between 5 to 
10 there are a little more activities, from 10 to 15 there are 
most activities and after 15 the activities reduced and 
around 20 there are again more activities.  

Till now we reduced the data account, send the value 
(activities) to each time interval. Using hidden Markov 
model, forward algorithm, and Viterbi algorithm we can 
get an activities model of the user. 

 

Fig 2. Filtered sensor value in 15 days 

II. MARKOV CHAIN AND HIDDEN MORKOV MODEL 
 
From above we get the activities from the user. If we 

chose Tinterval as 30 minutes, so there should be 48 values 
one day, for example Qinterval, ix = { Qinterval,1 = 0, Qinterval,2 = 
0, Qinterval,3 = 1, …, Qinterval, m = 0, …, Qinterval,46 = 1, 
Qinterval,47 = 0, Qinterval,48 = 0}. Here 1 <= m <= 48. If we 
treat each interval activity value (0 or 1) as “state”, so 
there should be 48 states each day.  

A. Markov chain 
There are some papers [1], [2] give the definition about 

the Markov chain. For us the discrete time first-order 
Markov chain is the most important. P (Qt+1 = qt+1 | Qt = qt, 
Qt-1 = qt-1… Q0 = q0) = P (Qt+1 = qt+1 | Qt = qt). Here Qt is a 
random variable from a countable state space at time t, qt 
is the taken variable in a countable set at time t. 

B. Hidden Markov model 
The definition of HMM given in paper [1] and [2]. 

Briefly, an HMM consists of states and transitions like a 
Markov chain [2]. In the ATTEND project we connect 
hidden Markov model definition and the real application 
together. At first we build a hidden Markov model 
according the daily activities and then using the model to 
explain the observed sequence of daily activities. The first 
question we have to deal with is how to build a hidden 
Markov model. It needs some basic definitions and 
algorithm. 

C. Basic parameters of hidden Markov model 
There are some parameters characterize hidden Markov 

model, for a better understanding, on the following we 
will consult the real application to explain these 
parameters. 

 The number of states N 
Here we have 48 states in each day. 
 The number of each state output distinct 

observation symbols M 
Here we have output {0, 1}, so M = 2.  
 The state transition probability distribution 

matrix A = {pi j}.  
pi j = p {ܳ௧ାଵ = j | ܳ௧ = i}.                                           (1) 
0 <= pi j <= 1 and  ∑ ௜௝݌

ே
௝ୀଵ  = 1, 1<= i, j <= N. 

Here ܳ௧ is the current state at time t.  
 The state emission probability distribution matrix 

B = {ܾ௜௞}. 
ܾ௜௞ = p (ܱ௧ = k | ܳ௧ = i), 1 <= i <= N, 0 <= k <= M.  (2) 
Here ܱ௧ is the output symbol at time t.  
 The initial state distribution ߨ ൌ ሼߨ௜ሽ. 
 ௜ = p {ܳ௢ = i}.                                                          (3)ߨ
For example there are 2 initial states ߨଵ  and ଶߨ   ଵߨ ,

include 4 values, all are “0” and ߨଶ include 6 values, all 
are “1”, so ߨ}  = ߨଵ, ଶሽߨ ൌ ሼ0.4, 0.6}. 

As we predefined above (Tinterval chosen as 30 minutes), 
so there should be 48 values one day. If we treat each 
value as a state there should be 48 states, but because of 



merging different states the states count will be reduced. 
There are two different situations that the states can be 
merged together.  

The first situation is that merging the identical states: 
 For example in some time intervals in one day the 

activity value of the user keep on “1”, Q = {… 1, 1, 1, 1, 
1,…}, because the state transition probability value 
between state t and state t+1 keep on 100% and the state 
emission probability value keep on the same, so these 
states can be merged in to one state. In the merged state 
there are 2 parameters: P (ܳ௜௜) and P (ܳ௜௝).  

P (ܳ௜௜) = Nmerged / (Nmerged+1)                                      (4) 
P (ܳ௜௝) = 1 / (Nmerged+1)                                              (5) 
Here P (ܳ௜௜) is the “self-transition” probability, P (ܳ௜௝) 

is the transition probability, and Nmerged is the number that 
is merged states. P (ܳ௜௜) + P (ܳ௜௝) = 1. In this situation ܾ௜௞ 
= 1. 

The second situation is that merging the consecutive 
states and these states has different alternately states value: 

For example in some time intervals on one day the 
activity value of the user is Q = {… 0, 1, 0, 1, 0, 1…}, the 
value “0” and “1” appear alternately. It has the 100% state 
transition probability value between state t and state t+1 
and the emission transition probability with increased 
states count closer to 0.5. All these states could merge into 
one state. The parameters P (ܳ௜௜) and P (ܳ௜௝) computed as 
above but the emission transition probability is different.  

ܾ௜଴ = N0 / Nmerged                                                         (6) 
ܾ௜ଵ = N1 / Nmerged                                                         (7) 
Here N0 is the count that all the states have value “0” 

and N1 is the count that all the states have value “1”. It is 
clearly N0 + N1 = Nmerged and ܾ௜଴ + ܾ௜ଵ =1. 

We have discussed the transition probability 
distribution in the merging situation above. Another 
situation is the split situation: from time interval t to the 
next time interval t+1 there is more than one state 
connected with the same state ܳ௧. For example in state ܳ௧ 
there are 10 values, all these values are “1”. In the next 
time interval t+1 there has a state that has 3 values and all 
the 3 values keeping “1” and another state has 7 values 
and all the 7 values are “0”. So the state transition 
probabilities are 0.3 and 0.7 separately. 

 
III. THE FORWARD ALGORITHM AND THE 

VITERBI ALGORITHM 
 
Given a hidden Markov model that means the 

parameter (ߨ  , A, B) are known, how we can find the 
probability of an observed sequence Q (t) = {q1, q2,…, qt}? 
Here each of the q is one of the observable set. The 
forward algorithm is used. 

 Get the first transition probability a1 for t = 1. 
a1 (j) = ߨ (j) * bjt                                                          (8) 
Here j is the observation count of each observation set 

and ∑ߨ (j) = 1. 
 For t  >= 2 get the transition probability a t+1 (j) 

     a t+1 (j) = ∑௜ୀଵ
௡  (a t (i)*a ij)*b jt                                     (9) 

 For t <= T repeat (9). 
 Here T is the length of the sequence.  
 Most of the time we are not only need the probability 

of an observed sequence but also need to find out the best 
interpretation of the observation. In this situation the 
Viterbi algorithm will be used. The essence point of the 
algorithm is to find the maximum value of each step.  

 For t = 1 
a1 =argmaxj (ߨ (j) * bjt)                                              (10) 
 For t >= 2 
at =argmaxj (at-1 * bjt)                                                 (11) 

IV. RESULT AND CONCLUSION 

A. Result 
The basic data come from a motion detector installed in 

a living room. We gathered the data for 15 days and 
translate these data to 48 states (30 minutes as one state 
interval) for each day. Figure 2 is the activities value for 
each state in all 15 days. For avoiding the state sequences 
crossing of different days’ we sort these days at first and 
then merge the identical states and the states with 
alternately value from left to right. Figure 3 shows the 
result. 

In figure 3 each small circle means a state with the 
activities value is “0” or “1”. From figure 2 we know that 
at the first time interval there are two different values “0” 
and “1” in all 15 days (on first day, eleventh day and 
fourteenth day there are activity value “1” at the first time 
interval). So we split the data at the first state, in figure 3 
the last three states sequences indicated the daily 
sequences with initial interval value “1”, others are the 
daily sequences with initial value “0”.  

Compare figure 3 with figure 2 it is clearly that the 
states count reduced.  

Till now the hidden Markov model with parameter λ = 
(A, B, π) are build. With the model we can calculate the 
probability of the observation sequences, find out the best 
“explains” of the observation, with Viterbi algorithm to 
find out the best parameters in each step. 

 

Fig 3. States after merging in days 

Figure 4 shows the logarithm value for a chosen 
observation sequences in the 15 days. That means 
comparing a chosen day (from the 15 days) with each of 
the 15 days step by step. X-axis is the states for each day 
(or the sequences number on each day); y-axis is the 
logarithm value of the transition probability. In figure 4 
the sequences with cyan circle is the best day that adapt to 
the chosen day. It has a logarithm value -19.56 after 48 



states. In fact they are the same days. On the other hand 
the sequence with magenta star is the worst day that 
adapts to the observation sequences. It has a logarithm 
value -115.3 after 48 states. Because the parameters in A, 
B matrix all smaller (or equal to) than 1, so the logarithm 
value reduced step by step.  

 

 Fig 4. Compare the logarithm with chosen observation sequences in 
15 days 

It is often that in some steps there are without states 
value adapt to the observation sequence value, for 
example in step “s” the observation sequences has value 
“1”, but in the same step the state has value “0”, that 
means the state sequences cannot adapt to the observation 
sequences. In generally the state sequences should be 
defined “not adapt” to the observation sequences, and the 
comparing should be stop at once. The observation 
sequences should be comparing with other new state 
sequences. But in the real application what we meet is 
that: perhaps there just a few steps did not adapt to the 
observation sequences, and then the state sequences adapt 
to the observation sequences again. So in such situation 
we send a probability 1% to the transition matrix A in the 
step, to allow the comparing continues on. In figure 4 the 
logarithm value with steep drop connections are this kind 
of situations.  

Figure 5 shows the logarithm value for a random 
observation sequences comparing with the 15 days. 
Because it is a random observation sequences there are 
many steps not adapt to the hidden Markov model, so the 
logarithm value reduced generally. The result is the best 
sequences adapt to the observation sequences has a 
logarithm value -129.1 and the worst logarithm value is -
170.7. 

 

Fig 5. Compare the logarithm with random observation sequences 

 

From figure 5 we know that in the best adapt sequences 
(the sequences with cyan circle) there are not each step 
has the maximum logarithm value. Using the Viterbi 
algorithm we can get the best sequences that adapts to the 
observation sequences. The result showed in figure 6. In 
figure 6 the sequences with green triangle is the best 
sequences adapt to the observation sequences. It comes 
from different states sequences.  

 
Fig 6. Compare the logarithm with random observation sequences 

and find the best value in each state 
 

From above we explain the hidden Markov model, 
forward algorithm, and the Viterbi algorithm with real 
data. The next question is how we can find out the “best 
standard” daily sequences? That means, for example, we 
should find out a day from the 15 days that can typically 
represent the living activity model of the user.  

We have sorted the 15 days (in figure 2) according the 
activities value and the new order is: 2, 10, 3, 12, 13, 9, 8, 
7, 5, 4, 6, 15, 14, 11, and 1. Now we according the new 
order compare each day with the whole 15 days. The 
result shows in figure 7. 

 

 Fig 7. Compare each day to all the 15 days 

The top of figure 7 is the index that which days are the 
best and the worst day to the compare day. X-axis is the 
sorted days with new order from 1 to 15. Y-axis is the 
index according the new order. The blue points and the 
line are the best corresponding day’s indexes that in 
keeping with the comparing days. The green star and line 
are the worst corresponding day’s indexes. It is clearly 
that the same day compare with itself will get the best 
result, so the blue points are connected to a line. Contrary 
the green points are different, the points connection are 



not a line and especially the day’s index number “5” (it 
indicated the 13th day in figure 2) is mostly worst day to 
each comparing days. If we collate the index number “5” 
to the order, so we could find that the thirteenth day of the 
figure 2 is the worst day of all the 15 days. But this is just 
a rough judgement, we need proof with parameters.  

The middle of figure 7 is the logarithm value for the 
comparing. The best day’s value focus on -15 to -30 and 
the worst day’s value concentrates in -100 to -130. 

The bottom of the figure 7 is the sum of logarithm 
value from each comparing. For example a chosen day 
compare with all the 15 days and there should be 15 
values, these values indicated the divation between the 
chosen day to all the 15 days. Then add all the 15 value 
together, the sum directly denotes the divation between 
the chosen day to all the other days. In such a way we can 
get the best standard day and the worst day in all the days. 

From the bottom of the figure 7 we see that the day 
with index “1” is the best day with logarithm value -931.8 
and the day with index “5” is the worst day with logarithm 
value -1631. Through collating the index order we will 
find that the 2th day of the figure 2 is the best day and the 
13th day of the figure 2 is the worst day. Again the “best 
day” means a day has the maximum likelihood to all the 
15 days and the “worst day” is a day has the minimum 
likelihood to all the 15 days. 

 
Fig 8. Mean and std logarithm value all the 15 days 

 
Figure 8 shows the mean and std (standard divation) 

value of all the 15 days. From the top of the figure we can 
see that the day with index “1” has a mean vaule -62.12 
and the day with index “5”  has a value -108.7. It indicats 
again that the day with index “1” has a better similarity to 
all the 15 days but the day with index “5” is more far 
away. The bottom of the figure shows that the day with 
index “1” has a std value 23.33 and the the day with index 
“5” has a std value 26.83. It illustrates again that the day 
with index “1” has more similarity to all the 15 days than 
the day with index “5”. 

Furthermore according the deviation of logarithm value 
between the “best standard” sequence and the observation 
sequence we can judge if the observation sequences 
normal or abnormal. For example in figure 8 we get the 
best logarithm mean value -62.12 as a standard value, and 
think of the standard deviation value 23.33, so there 

should be a logarithm value range from -38.79 to -85.45. 
Then comparing the observation sequences to the standard 
sequences, if the logarithm value in the range, so it is a 
normal sequences, else the observation sequences is 
abnormal sequences. It indicates an abnormal daily 
activity.  

B. Conclusion 
Hidden Markov model, the forward and Viterbi 

algorithm is a powerful tool for unsupervised learning and 
very useful in real-world applications.  

For the application of AAL the stable life style of the 
user is the basic of a useful learning result.  

 
V. OUTLOOK 

 
In the future some more robust learning algorithms 

should be developed and tested. For example backward 
algorithm will be used together with forward algorithm to 
reduce the states further more. 
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