
Data Analyzing and Daily Activity Learning with Hidden Markov Model

GuoQing Yin and Dietmar Bruckner

Institute of Computer Technology
Vienna University of Technology, Austria, Europe

{yin, bruckner}@ict.tuwien.ac.at

Abstract—To observe and analyze person’s daily
activities, and build the activities model is an important task
in an intelligent environment.

In an Ambient Assisted Living (AAL) project we get
sensor data from a motion detector. At first we translate and
reduce the raw data to state data. Secondly using hidden
Markov model, forward algorithm, and Viterbi Algorithm to
analyze the data and build the person’s daily activity model.

Comparing individual observation with the build model
to find out best and worst (abnormal) activities.

Keywords: Intelligent environment, hidden Markov model

(HMM), forward algorithm, Viterbi algorithm.

I. INTRODUCTION

There are many papers about Markov chain and hidden
Markov model: in paper [1] the author introduces the
basic definition of Markov chain and the hidden Markov
model, furthermore the applications of HMM. The authors
in paper [2] describe a technique to learning the number of
states and the topology of hidden Markov model from
examples. Here the Bayesian posterior probability was
used to choose the states for merging and for the stopping
criterion. In paper [3] the author describes the EM
Algorithm and parameter estimation for hidden Markov
model. In paper [4] the authors give an introduction to the
theory of hidden Markov model and illustrate how the
hidden Markov model has been applied to problems in
speech recognition. A factorial hidden Markov model is
introduced in paper [5], that the method has advantage
over unconstrained HMM in capturing data statistical
structure. Hidden Markov model is used to allow for
unequal and unknown evolutionary rates at different sites
in molecular sequences in paper [6], here hidden Markov
model allows for rates to differ between sites and for
correlations between the rates of neighboring sites. In
paper [7] for estimation the joint likelihood that between
the observation data and the Markov state sequences a
segmental k-means algorithm is used as objective function.
In bioinformatics the author in paper [8] uses profile
hidden Markov model to analyze the large-scale sequence
in protein domains. Using the hidden Markov model to
analyze the motion detector data, to learn the behavior of
the user is expressed in paper [9] and [10].

A. AAL and ATTEND Project
Ambient Assisted Living (AAL) is a new search field,

with the help from modern technology the life quality of
the elderly improved and the independent living in their
own home prolonged. But because of aging the elderly
have their own problems, such as action obstacles,
memory disorder … how can the elderly use the modern
technology system?

The project ATTEND (AdapTive scenario recogniTion
for Emergency and Need Detection) focus on developing
a system that increases the independent living of elderly.
In the living environment of user an intelligent, adaptive
network of sensors are installed, in order to thoroughly
observe the user’s activities and behavior. In a time period
the user’s activities and behavior model will be learned by
the system.

For example a user has activities at the living room. A
motion detector installed at a corner of the living room
and it records the daily activities. Then the activities
model of the user will be build by hidden Markov model,
forward algorithm, and Viterbi algorithm. In case of some
abnormal activities happened, for example in the living
room there are without activities in the morning – this
kind of situation never happened before – so the system
should according the build model to send an aware or
alarm signal to user, neighbor, or care giver.

B. Basic Parameters
In the living room a motion detector installed, the

motion detector sends the value “1” to the controller if
there are activities from the person. Otherwise the motion
detector sends the value “0” to the controller. For
continuous activities or stillness the sensor value keeps on
“1” or “0”. This is the basic function from the motion
detector.

Figure 1 from top to bottom shows the gathered sensor
raw data (there are 694 values all), the filtered sensor
value, and the histogram of the same data from one day.
The x-axis is time. From the top of the figure we know
that between 15 to 19 o’clock and close to 24 o’clock
there are really quiet. At the other time there are activities
but the activities density is different. The middle of the
figure is the filtered sensor value from the raw data.

Fig 1. The data from one motion sensor in one day.

The filtering method is that at first segments the daily

time into smaller time interval, for example 30 minutes, so
there will be 48 time intervals in a day. Then the activities
of the sensor summed together in each time interval. If the
whole value bigger than a predefined threshold value, so
this time interval will be treated as activities value “1”,
others are value “0”. Here the predefined threshold value
and the time interval play an important role.

From the middle of figure 1 we can see that between 1
to 6 o’clock there are without activities. It is not
corresponding with the top of the figure 1. This is because
of the “noise” value (for example the elderly rolls body in
sleeping) be filtered. On the other hand if there are many
activities such as between 0 and 1 o’clock (perhaps the
user has sleeping disorder and difficult into sleeping),
these activities will be translated to value “1” in the time
interval.

In bottom of the figure 1 we use the histogram to
comparison and validation the filtered sensor data with the
original data. It is clearly that between 1 and 6 o’clock,
and between 15 to 19 o’clock there are seldom activities
than the other time interval. It corresponds with the
middle of the figure 1.

If we gather some day’s data together we will get a
general intuition of the user’s activity. In figure 2 there are
15 days filtered data. From figure 2 we know that between
0 to 5 o’clock the elderly has a few activities, between 5 to
10 there are a little more activities, from 10 to 15 there are
most activities and after 15 the activities reduced and
around 20 there are again more activities.

Till now we reduced the data account, send the value
(activities) to each time interval. Using hidden Markov
model, forward algorithm, and Viterbi algorithm we can
get an activities model of the user.

Fig 2. Filtered sensor value in 15 days

II. MARKOV CHAIN AND HIDDEN MORKOV MODEL

From above we get the activities from the user. If we

chose Tinterval as 30 minutes, so there should be 48 values
one day, for example Qinterval, ix = { Qinterval,1 = 0, Qinterval,2 =
0, Qinterval,3 = 1, …, Qinterval, m = 0, …, Qinterval,46 = 1,
Qinterval,47 = 0, Qinterval,48 = 0}. Here 1 <= m <= 48. If we
treat each interval activity value (0 or 1) as “state”, so
there should be 48 states each day.

A. Markov chain
There are some papers [1], [2] give the definition about

the Markov chain. For us the discrete time first-order
Markov chain is the most important. P (Qt+1 = qt+1 | Qt = qt,
Qt-1 = qt-1… Q0 = q0) = P (Qt+1 = qt+1 | Qt = qt). Here Qt is a
random variable from a countable state space at time t, qt
is the taken variable in a countable set at time t.

B. Hidden Markov model
The definition of HMM given in paper [1] and [2].

Briefly, an HMM consists of states and transitions like a
Markov chain [2]. In the ATTEND project we connect
hidden Markov model definition and the real application
together. At first we build a hidden Markov model
according the daily activities and then using the model to
explain the observed sequence of daily activities. The first
question we have to deal with is how to build a hidden
Markov model. It needs some basic definitions and
algorithm.

C. Basic parameters of hidden Markov model
There are some parameters characterize hidden Markov

model, for a better understanding, on the following we
will consult the real application to explain these
parameters.

 The number of states N
Here we have 48 states in each day.
 The number of each state output distinct

observation symbols M
Here we have output {0, 1}, so M = 2.
 The state transition probability distribution

matrix A = {pi j}.
pi j = p {ܳ௧ାଵ = j | ܳ௧ = i}. (1)
0 <= pi j <= 1 and ∑ ௜௝݌

ே
௝ୀଵ = 1, 1<= i, j <= N.

Here ܳ௧ is the current state at time t.
 The state emission probability distribution matrix

B = {ܾ௜௞}.
ܾ௜௞ = p (ܱ௧ = k | ܳ௧ = i), 1 <= i <= N, 0 <= k <= M. (2)
Here ܱ௧ is the output symbol at time t.
 The initial state distribution ߨ ൌ ሼߨ௜ሽ.
 ௜ = p {ܳ௢ = i}. (3)ߨ
For example there are 2 initial states ߨଵ and ଶߨ ଵߨ ,

include 4 values, all are “0” and ߨଶ include 6 values, all
are “1”, so ߨ} = ߨଵ, ଶሽߨ ൌ ሼ0.4, 0.6}.

As we predefined above (Tinterval chosen as 30 minutes),
so there should be 48 values one day. If we treat each
value as a state there should be 48 states, but because of

merging different states the states count will be reduced.
There are two different situations that the states can be
merged together.

The first situation is that merging the identical states:
 For example in some time intervals in one day the

activity value of the user keep on “1”, Q = {… 1, 1, 1, 1,
1,…}, because the state transition probability value
between state t and state t+1 keep on 100% and the state
emission probability value keep on the same, so these
states can be merged in to one state. In the merged state
there are 2 parameters: P (ܳ௜௜) and P (ܳ௜௝).

P (ܳ௜௜) = Nmerged / (Nmerged+1) (4)
P (ܳ௜௝) = 1 / (Nmerged+1) (5)
Here P (ܳ௜௜) is the “self-transition” probability, P (ܳ௜௝)

is the transition probability, and Nmerged is the number that
is merged states. P (ܳ௜௜) + P (ܳ௜௝) = 1. In this situation ܾ௜௞
= 1.

The second situation is that merging the consecutive
states and these states has different alternately states value:

For example in some time intervals on one day the
activity value of the user is Q = {… 0, 1, 0, 1, 0, 1…}, the
value “0” and “1” appear alternately. It has the 100% state
transition probability value between state t and state t+1
and the emission transition probability with increased
states count closer to 0.5. All these states could merge into
one state. The parameters P (ܳ௜௜) and P (ܳ௜௝) computed as
above but the emission transition probability is different.

ܾ௜଴ = N0 / Nmerged (6)
ܾ௜ଵ = N1 / Nmerged (7)
Here N0 is the count that all the states have value “0”

and N1 is the count that all the states have value “1”. It is
clearly N0 + N1 = Nmerged and ܾ௜଴ + ܾ௜ଵ =1.

We have discussed the transition probability
distribution in the merging situation above. Another
situation is the split situation: from time interval t to the
next time interval t+1 there is more than one state
connected with the same state ܳ௧. For example in state ܳ௧
there are 10 values, all these values are “1”. In the next
time interval t+1 there has a state that has 3 values and all
the 3 values keeping “1” and another state has 7 values
and all the 7 values are “0”. So the state transition
probabilities are 0.3 and 0.7 separately.

III. THE FORWARD ALGORITHM AND THE

VITERBI ALGORITHM

Given a hidden Markov model that means the

parameter (ߨ , A, B) are known, how we can find the
probability of an observed sequence Q (t) = {q1, q2,…, qt}?
Here each of the q is one of the observable set. The
forward algorithm is used.

 Get the first transition probability a1 for t = 1.
a1 (j) = ߨ (j) * bjt (8)
Here j is the observation count of each observation set

and ∑ߨ (j) = 1.
 For t >= 2 get the transition probability a t+1 (j)

 a t+1 (j) = ∑௜ୀଵ
௡ (a t (i)*a ij)*b jt (9)

 For t <= T repeat (9).
 Here T is the length of the sequence.
 Most of the time we are not only need the probability

of an observed sequence but also need to find out the best
interpretation of the observation. In this situation the
Viterbi algorithm will be used. The essence point of the
algorithm is to find the maximum value of each step.

 For t = 1
a1 =argmaxj (ߨ (j) * bjt) (10)
 For t >= 2
at =argmaxj (at-1 * bjt) (11)

IV. RESULT AND CONCLUSION

A. Result
The basic data come from a motion detector installed in

a living room. We gathered the data for 15 days and
translate these data to 48 states (30 minutes as one state
interval) for each day. Figure 2 is the activities value for
each state in all 15 days. For avoiding the state sequences
crossing of different days’ we sort these days at first and
then merge the identical states and the states with
alternately value from left to right. Figure 3 shows the
result.

In figure 3 each small circle means a state with the
activities value is “0” or “1”. From figure 2 we know that
at the first time interval there are two different values “0”
and “1” in all 15 days (on first day, eleventh day and
fourteenth day there are activity value “1” at the first time
interval). So we split the data at the first state, in figure 3
the last three states sequences indicated the daily
sequences with initial interval value “1”, others are the
daily sequences with initial value “0”.

Compare figure 3 with figure 2 it is clearly that the
states count reduced.

Till now the hidden Markov model with parameter λ =
(A, B, π) are build. With the model we can calculate the
probability of the observation sequences, find out the best
“explains” of the observation, with Viterbi algorithm to
find out the best parameters in each step.

Fig 3. States after merging in days

Figure 4 shows the logarithm value for a chosen
observation sequences in the 15 days. That means
comparing a chosen day (from the 15 days) with each of
the 15 days step by step. X-axis is the states for each day
(or the sequences number on each day); y-axis is the
logarithm value of the transition probability. In figure 4
the sequences with cyan circle is the best day that adapt to
the chosen day. It has a logarithm value -19.56 after 48

states. In fact they are the same days. On the other hand
the sequence with magenta star is the worst day that
adapts to the observation sequences. It has a logarithm
value -115.3 after 48 states. Because the parameters in A,
B matrix all smaller (or equal to) than 1, so the logarithm
value reduced step by step.

 Fig 4. Compare the logarithm with chosen observation sequences in
15 days

It is often that in some steps there are without states
value adapt to the observation sequence value, for
example in step “s” the observation sequences has value
“1”, but in the same step the state has value “0”, that
means the state sequences cannot adapt to the observation
sequences. In generally the state sequences should be
defined “not adapt” to the observation sequences, and the
comparing should be stop at once. The observation
sequences should be comparing with other new state
sequences. But in the real application what we meet is
that: perhaps there just a few steps did not adapt to the
observation sequences, and then the state sequences adapt
to the observation sequences again. So in such situation
we send a probability 1% to the transition matrix A in the
step, to allow the comparing continues on. In figure 4 the
logarithm value with steep drop connections are this kind
of situations.

Figure 5 shows the logarithm value for a random
observation sequences comparing with the 15 days.
Because it is a random observation sequences there are
many steps not adapt to the hidden Markov model, so the
logarithm value reduced generally. The result is the best
sequences adapt to the observation sequences has a
logarithm value -129.1 and the worst logarithm value is -
170.7.

Fig 5. Compare the logarithm with random observation sequences

From figure 5 we know that in the best adapt sequences
(the sequences with cyan circle) there are not each step
has the maximum logarithm value. Using the Viterbi
algorithm we can get the best sequences that adapts to the
observation sequences. The result showed in figure 6. In
figure 6 the sequences with green triangle is the best
sequences adapt to the observation sequences. It comes
from different states sequences.

Fig 6. Compare the logarithm with random observation sequences

and find the best value in each state

From above we explain the hidden Markov model,
forward algorithm, and the Viterbi algorithm with real
data. The next question is how we can find out the “best
standard” daily sequences? That means, for example, we
should find out a day from the 15 days that can typically
represent the living activity model of the user.

We have sorted the 15 days (in figure 2) according the
activities value and the new order is: 2, 10, 3, 12, 13, 9, 8,
7, 5, 4, 6, 15, 14, 11, and 1. Now we according the new
order compare each day with the whole 15 days. The
result shows in figure 7.

 Fig 7. Compare each day to all the 15 days

The top of figure 7 is the index that which days are the
best and the worst day to the compare day. X-axis is the
sorted days with new order from 1 to 15. Y-axis is the
index according the new order. The blue points and the
line are the best corresponding day’s indexes that in
keeping with the comparing days. The green star and line
are the worst corresponding day’s indexes. It is clearly
that the same day compare with itself will get the best
result, so the blue points are connected to a line. Contrary
the green points are different, the points connection are

not a line and especially the day’s index number “5” (it
indicated the 13th day in figure 2) is mostly worst day to
each comparing days. If we collate the index number “5”
to the order, so we could find that the thirteenth day of the
figure 2 is the worst day of all the 15 days. But this is just
a rough judgement, we need proof with parameters.

The middle of figure 7 is the logarithm value for the
comparing. The best day’s value focus on -15 to -30 and
the worst day’s value concentrates in -100 to -130.

The bottom of the figure 7 is the sum of logarithm
value from each comparing. For example a chosen day
compare with all the 15 days and there should be 15
values, these values indicated the divation between the
chosen day to all the 15 days. Then add all the 15 value
together, the sum directly denotes the divation between
the chosen day to all the other days. In such a way we can
get the best standard day and the worst day in all the days.

From the bottom of the figure 7 we see that the day
with index “1” is the best day with logarithm value -931.8
and the day with index “5” is the worst day with logarithm
value -1631. Through collating the index order we will
find that the 2th day of the figure 2 is the best day and the
13th day of the figure 2 is the worst day. Again the “best
day” means a day has the maximum likelihood to all the
15 days and the “worst day” is a day has the minimum
likelihood to all the 15 days.

Fig 8. Mean and std logarithm value all the 15 days

Figure 8 shows the mean and std (standard divation)

value of all the 15 days. From the top of the figure we can
see that the day with index “1” has a mean vaule -62.12
and the day with index “5” has a value -108.7. It indicats
again that the day with index “1” has a better similarity to
all the 15 days but the day with index “5” is more far
away. The bottom of the figure shows that the day with
index “1” has a std value 23.33 and the the day with index
“5” has a std value 26.83. It illustrates again that the day
with index “1” has more similarity to all the 15 days than
the day with index “5”.

Furthermore according the deviation of logarithm value
between the “best standard” sequence and the observation
sequence we can judge if the observation sequences
normal or abnormal. For example in figure 8 we get the
best logarithm mean value -62.12 as a standard value, and
think of the standard deviation value 23.33, so there

should be a logarithm value range from -38.79 to -85.45.
Then comparing the observation sequences to the standard
sequences, if the logarithm value in the range, so it is a
normal sequences, else the observation sequences is
abnormal sequences. It indicates an abnormal daily
activity.

B. Conclusion
Hidden Markov model, the forward and Viterbi

algorithm is a powerful tool for unsupervised learning and
very useful in real-world applications.

For the application of AAL the stable life style of the
user is the basic of a useful learning result.

V. OUTLOOK

In the future some more robust learning algorithms

should be developed and tested. For example backward
algorithm will be used together with forward algorithm to
reduce the states further more.

REFERENCES

[1] Jeff Bilmes (2002). “What HMMs Can do”, UWEE

Technical Report, Number UWEETR-2002-0003, January
2002.

[2] Andreas Stolcke and Stephen Omohundro, “Hidden
Markov Model Induction by Bayesian Model Merging”,
Berkeley CA 94704, advances in Neural Information
Processing System5, San Mateo, CA, Morgan Kaufman,
1993.

[3] Jeff A. Bilmes, “A Gentle Tutorial of the EM Algorithm
and its application to Parameter Estimation for Gaussian
Mixture and hidden Markov Models”, international
computer science institute, Berkeley CA, 94704, April
1998.

[4] L. R. Rabiner and B. H. Juang, “An Introduction to Hidden
Markov Models”, IEEE ASSP MAGAZINE, JANUARY
1986.

[5] ZOUBIN GHAHRAMANI and MICHAEL I.
JORDAN,“Factorial Hidden Markov Models”, Machine
Learning, 29, 245-273 (1997).

[6] Joseph Felsenstein and Gary A. Churchill, “A Hidden
Markov Model Approach to Variation Among Sites in
Rate of Evolution”, 1996 by the Society for Molecular
Biology and Evolution. ISSN: 0737-4038.

[7] BIING-HWANG JUANG and L. R. RABINER, “The
Segmental K-Means Algorithm for Estimating Parameters
of Hidden Markov Models”, IEEE TRANSACTIONS ON
ACOUSTICS, SPEECH, AND SINGAL PROCESSING.
VOL 38, NO 9, SEPTEMBER 1990.

[8] Sean R. Eddy, “Profile hidden Markov models”,
Bioinformatics review, Vol. 14 no. 9 1998, Pages 755-763.

[9] Dietmar Bruckner, Brian Sallans, and Gerhard Russ,
“Probability Construction of Symbols in Building
Automation Systems”, in: Proceedings of 2006 IEEE
International Conference of Industrial Informatics INDIN’
06, S. 6, Singapore, 2006.

[10] Dietmar Bruckner, Brian Sallans, and Roland Lang,
“Behavior Learning via State Chains from Motion
Detector Sensors”, Biometrics ’07 December 10-13, 2007,
Budapest, Hungary.

