
Conflict Resolution in Model Versioning?

Petra Brosch, Konrad Wieland, and Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

Abstract. Optimistic version control systems enable globally distributed
teams of developers to work together asynchronously. Every developer
works on a local copy and consequently, no developer is ever detracted
from working by waiting for a resource. The price for this flexibility is
payed at the moment when conflicting modifications must be integrated
into one consolidated version.
In this paper, we discuss conflicts and their need for resolution in the
context of model versioning and provide the basic concepts necessary
to build a model versioning system which guides modelers through the
critical consolidation phase by recommending suitable patterns.

1 Introduction

When multiple developers concurrently work on the same artifact, conflicting
modifications are very likely to be performed. Merging the different versions
manually poses a very time-intensive, repetitive challenge in order to obtain a
consistent artifact which meaningfully integrates the work of all involved devel-
opers. Approaches for automating the merge process include the calculation of
all possible combinations of parallel performed operations leading to a valid ver-
sion and merge policies to privilege specific operations or operations of specific
users (cf. [4] for a survey). These approaches only ask for user input in unde-
cidable cases and reduce the manual resolution effort to a minimum. However,
they neither consider resolution strategies that go beyond a recombination of
conflicting changes, nor the need for temporarily tolerating conflicts [2]. In some
situations conflicts may be resolved more reasonable by providing a completely
new version or by including conflicting changes in the model for resolving them
collaboratively in further iterations.

To support the merging process of software models, we present a recom-
mender system which suggests automatically executable conflict resolution pat-
terns derived from the resolution of similar conflict situations already occurred.
The Resolution Recommender is integrated into the adaptable model versioning
system AMOR [1], which reports not only conflicts resulting from overlapping
atomic changes, but also conflicts related to composite operations like refactor-
ings which imply a multitude of possible resolution approaches.

? This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation, and Technology and the Austrian Research Promotion Agency under
grant FIT-IT-819584 and by the fFORTE WIT Program of the Vienna University
of Technology and the Austrian Federal Ministry of Science and Research.



2 Conflict Resolution in Model Versioning

A prerequisite for the recommendation of conflict resolution patterns is the pre-
cise description of the conflict situation. A conflict is composed by the involved
model elements, the performed changes as well as the violated constraints. These
constraints are either preconditions of a change or conformance rules defined in
the metamodel of a modeling language. The Resolution Recommender looks up
the Resolution Pattern Storage for suitable resolution patterns, matching the con-
flict description of the current situation. The resolution patterns in this reposi-
tory are either defined manually or are automatically mined as described in [3].
If no resolution patterns were found, a manual resolution has to be performed,
which acts in turn as input for the Resolution Recommender to infer new res-
olution patterns. Whenever resolution recommendations are at hand, they are
ranked by relevance and presented to the user. The proposed resolution pat-
terns may be previewed, rolled back, and manually refined. In both, manual and
semi-automatic conflict resolution, a special Conflict Diagram View is created.
This view provides an integrated prospect of the model’s evolution by applying
non-conflicting changes, marking pending conflicting changes, and annotating all
involved elements with special stereotypes defined in the Conflict Profile, avail-
able on our project website1. Despite including conflicts, the Conflict Diagram
View ensures a valid model, which may be displayed in any UML editor or may
be committed to the model versioning system to postpone conflict resolution.

Next Steps. We are currently working on similarity measures of metamodel ele-
ments to identify conflict resolution candidates not exactly fitting the situation
in place. In order to expand the applicability of inferred resolution patterns to
similar situations, we elaborate higher-order transformations [5] to adapt resolu-
tion patterns. An orthogonal approach we are working on, includes establishing
a collaborative setting for the resolution of deferred conflicts.

References

1. P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M. Wimmer, and H. Kargl.
Adaptable Model Versioning in Action. In Modellierung 2010, pages 221–236, 2010.

2. P. Brosch, P. Langer, M. Seidl, K. Wieland, and M. Wimmer. Concurrent Mod-
eling in Early Phases of the Software Development Life Cycle. In 16th Conf. on
Collaboration and Technology, 2010, to appear.

3. P. Brosch, M. Seidl, and M. Wimmer. Mining of Model Repositories for Decision
Support in Model Versioning. In Proc. of the Europ. MDTPI Workshop, pages
25–33. CTIT Workshop Proceedings, 2009.

4. T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

5. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-
Order Model Transformations. In Proc. of the 5th Europ. Conf. on Model Driven
Architecture-Foundations and Applications, pages 18—33. Springer, 2009.

1 http://www.modelversioning.org/conflict-profile




