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Abstract 

Increasing the RES share in order to meet the European target (Directive 2009/28/EC) of 20% RES by 
2020 is currently high on the agenda of European policy makers. This implies effective and efficient 
policy support measures whereas efficiency is determined by the real generation costs of renewable 
energy technologies versus the eligible total level of income from selling the produced energy. Hence, 
it is the final aim of this research to invent a support scheme of RES taking into account besides the 
technological learning effect also the influence of raw material prices in order to set the right incentives 
to potential investors. 

A necessary step towards a more efficient RES support scheme is a more precise tool for calculating 
future forecasts of RES investment costs development. In this respect, this paper focus on various 
novel approaches of technological learning as well as the associated boundary conditions and related 
efforts need to be taken in order to integrate these approaches to the existing simulation tool Green-X. 

Introduction 

As observed in several countries worldwide, energy policy is the main driver for the enhanced 
renewable energy deployment. Now, to the first time in Europe, binding targets for renewable energy 
sources (RES), regardless the energy sector, have been set – 20% RES up to 2020 indicates a huge 
future challenge for upcoming years. Despite, efforts have to be taken in all three energy sectors, 
Member States are free to decide their sectoral contribution. Since the national targets are allocated 
uneven, accordingly to their RES share in 2005 and a flat rate approach, new RES Directive 
2009/28/EC foresees different flexibility. However, efficient and effective support measures have to be 
implemented in order to accompany a strong increase in the RES share with low transfer costs for the 
society. 

An important parameter for efficient RES support schemes is the incorporation of expected evolution 
of generation costs of RES technologies. Since this development is influenced by several different 
input factors, showing a volatile historic development, this paper put special emphasis on the 
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approach of determining the future development of overall RES investment costs. In this respect, 
mainly technological learning effects and the impact of volatile energy and raw-material prices is 
addressed. It is the task of this analysis of the development of future RES investment costs, to 
contribute to the further integration of such methodological approaches to the existing RES simulation 
tool GREEN-X. This aims to allow a reshaping of support instruments of future RES installations. 

Methodology and Status Quo 

The model Green-X has been developed by the Energy Economics Group (EEG) at Vienna University 
of Technology in the research project “Green-X – Deriving optimal promotion strategies for increasing 
the share of RES-E in a dynamic European electricity market”, a joint European research project 
funded within the 5th framework program of the European Commission, DG Research (Contract No. 
ENG2-CT-2002-00607). Initially focused on the electricity sector, this tool and its database on RES 
potentials and costs have been extended within follow-up activities to incorporate renewable energy 
technologies within all energy sectors and up to the time horizon of 2030. 

Green-X covers geographically the EU-27, and allows to investigate the future deployment of RES as 
well as accompanying cost – comprising capital expenditures, additional generation cost (of RES 
compared to conventional options), consumer expenditures due to applied supporting policies, etc. – 
and benefits – i.e. contribution to supply security (avoidance of fossil fuels) and corresponding carbon 
emission avoidance. Thereby, results are derived at country- and technology-level on a yearly basis. 
The time-horizon allows for in-depth assessments up to 2020, accompanied by concise out-looks for 
the period beyond 2020 (up to 2030). 

Within the model, the most important RES-Electricity (i.e. biogas, biomass, biowaste, wind on- & 
offshore, hydropower large- & small-scale, solar thermal electricity, photovoltaics, tidal stream & wave 
power, geothermal electricity), RES-Heat technologies (i.e. biomass – subdivided into log wood, wood 
chips, pellets, grid-connected heat -, geothermal (grid-connected) heat, heat pumps and solar thermal 
heat) and RES-Transport options (e.g. first generation biofuels (biodiesel and bioethanol), second 
generation biofuels (lignocellulotic bioethanol, BtL) as well as the impact of biofuel imports) are 
described for each investigated country by means of dynamic cost-resource curves. This allows 
besides the formal description of potentials and costs a detailed representation of dynamic aspects 
such as technological learning and technology diffusion.  

The simulation tool Green-X is based on a dynamic cost approach, taking into account future cost 
reductions to the enhanced development of RES technologies. These technology specific costs 
declines are mainly driven on the one hand by technological learning effects and on the other hand by 
the impact of raw material prices. Currently, the model considers a one factor learning curve which 
implies a cost reduction of a certain percentage with each doubling of energy generated (see 
Junginger et al, 2009). Hereby, for novel technologies like Photovoltaic or tidal and wave energy, 
typically higher learning rates than mature technologies like wind onshore energy or even large scale 
hydro power are expected. As mentioned above the overall technological learning effect depends on 
apart from the learning rate on the amount of energy generation on global scale, since most 
technological learning takes place globally. With respect to renewable energy generation these figures 
are calculated endogenously in the simulation tool Green-X whereas with respect to the overall 
generation abroad the EU27 it is based on the IEA WEO 2008. Additionally, the influence of energy 
and raw material prices on the investment costs of RES technologies, as recently strongly observed 
for the influence of the steel price on wind turbines, is currently still considered only by exogenous 
adjustment based on empirical records. In this context, the impact of increasing raw-material prices 
might compensate the effect of technological learning partly or even completely. Figure 1, below, 
indicates the resulting prediction of RES technology cost evolution in the electricity sector exemplarily 
according to a policy scenario. On the one hand, the mentioned impact of increasing steel prices on 
the wind energy converters is depicted in the figure and on the other hand, the rapid decrease of 
investment cost of novel RES technologies in the solar sector is noticed. 
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Figure 1 Expected cost development of RES technologies in the electricity sector up to the year 
2030, taking into account technological learning effects and volatile energy and raw 
material prices; Source: Green-X database, 2009 

Theory of learning approaches and the impact of energy and 
raw material prices 

Current investment costs of energy technologies, especially renewable and hence partly mature 
technologies, are considered to decrease over time mainly due to technological learning effects. In this 
context, already early studies (see Wright, 1936 and BCG 1968) developed a mathematical 
description of the cost reduction per unit depending on the cumulative production based on 
technological learning effects. Herein a constant decrease of investment costs was observed with 
each doubling of cumulated production. 
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In Eq(1)  is the cumulative production, respectively the cumulated generation,  represents 

the costs per unit of production or generation at and stands for a positive learning parameter. 

Additionally, and  are indicating the cumulative production and the associated costs at an 

arbitrating starting point of the investigations. The resulting learning rate is then calculated by the term  
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Thus, on a double logarithmic plot the cost reduction assumed due to technological learning appears 
then as a linear function of cumulative production, respectively generation. Empirical research has 
shown that average learning rates of energy technologies are in the level of about 19% with a 
statistically test R2 of 0.76 (see Ferioli et al, 2009). 

Based on empirically determined technology learning rates for certain energy technologies the overall 
required investment in order to achieve the market competiveness of the technology can be derived by 
calculating the surface between the predicted investment cost line of the technology and the market 
reference price where the technology is integrated. Hence, the usage of historically determined 
learning rates for future forecasts of investment costs is very sensitive to the resulting learning 



investment. Additionally, calculating learning rates based on historic observation only over a short 
period of production or respectively generation might lead to an overestimation of the learning effect, 
since the more novel a technology is the stronger is the technology learning impact. This fact leads to 
wrong forecast of future cost evolution of energy technologies which is the relevant parameter for the 
energy technology installations considered in conducted energy scenarios. Moreover, as already 
indicated by the Club of Rome (1972) technological learning, especially in the energy sector, cannot 
be unlimited applied due to the technical restriction of the overall needed capacity in the energy 
sector. 

In this context, historic records of investment cost evolutions of different energy technologies as 
presented by Junginger 2005, show different cost developments for certain periods which is not in line 
with the overall theory of a constant cost decrease with each doubling of cumulative installation or 
generation. Hence, this fact might indicate that either the determination of the overall learning rate was 
based on wrong data input or there are other influencing factors for the investment cost development.  

Historic experience curves for electricity supply technologies
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Figure 2 Learning curves of various electricity generation technologies in dependence on the 
global installed capacity versus the historic records of investment price evolutions 
(Junginger et al, 2005) 

Above, Figure 2 depicts a constant decrease of investment prices for various electricity generation 
technologies over some orders of magnitude of cumulated capacity but especially for renewable 
electricity generation technologies as well an increase of investment prices beyond 2002. Since it is 
not assumed that technology learning will slow down or even turn in forgetting within this short time 
frame, it became obvious that a simple one factor learning curve based on learning by doing cost 
reduction does not seem to be appropriate for more precise investment cost forecasts of energy 
technologies. Therefore, other parameters as the influence of energy and raw-material prices as well 
as the demand increase for certain technologies should be considered as well as the in literature often 
mentioned learning by searching effect (see Berglund & Söderholm (2006)). Generally, the overall 
development of the future demand of certain energy technologies did historical have an important 
impact on development of energy technology investment prices but is very difficult to predict, and 
hence model emphasis within this paper is put on the impact of volatile energy and raw material prices 
as well as advanced concepts for the description of the technological learning effects. 



Splitting the overall learning effects in learning by doing, based on cumulative production, and learning 
by searching, referring to accumulated knowledge leads to a more precise approximation of 
investment cost evolution of energy technologies.  
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In Eq(3) the same abbreviations are used as in Eq(1) above whereas additional the learning by 

searching effect is considered in  representing the R&D based knowledge stock and  stands 

for the associated positive learning parameter of R&D based knowledge.  

KS LS

Equation Eq(3) indicates that the two-factor learning curve approach addresses the fact that the 
investment cost evolutions of energy technologies are explicitly and directly related to both, the 
cumulated production (which is an indicator for experience) as well as to the cumulated R&D efforts. 

Regarding the R&D based knowledge stock  as a first approximation the cumulative R&D 

expenses directed towards a specific technology can be considered. In a more detailed approximation 

the delay of spent R&D expenditures must be taken into account by determining the factor , 

addressing the fact that knowledge tends to depreciate in the sense that the impact of past R&D 
expenses gradually decreases. 
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However, recent observations have shown strong correlation of the evolution of investment costs for, 
almost all energy technologies to the development of commodity prices like steel, silicon or concrete. 
Figure 3 depicts the development of wind turbine prices compared to the real evolution the steel price 
in the same time period. Although steel as well as wind turbine prices only peaked beyond the time 
period of the figure, the correlation of two cost developments equals 0.89. 

 

Figure 3 Historic development of steel price compared to the average list price of wind turbines 
from 1980 to 2005 in real Euro of 2005; Source: Floz et al, 2008 



Hence, in order to more precisely approximate the overall learning development in the past and 
calculate cost evolutions forecast for the future the following approach of learning effects will be 
investigated. 

    LCP

b

t
t CP

x

x
xcxc 












0
0        Eq(4) 

Again, Eq(4) uses the same abbreviations as Eq(1) whereas in the additional term stands for 

Commodity price and the positive parameter represents the impact factor of the commodity 

price on the overall investment cost evolution of the energy technology. Thus, a positive  

indicates an increase of the investment costs for the certain technology due to increasing commodity 

prices and hence compensates the technological learning effect whereas a negative even 

supports the technological learning effect and accelerates the overall investment cost reduction. 
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Considering the price development of the most relevant commodities for PV installations, silicon and 
silver, as shown in Figure 4, show a tremendous price decrease based on several circumstance in the 
early stage and hence contributed significantly to the overall cost drop of PV installations in this time 
period, illustrated in Figure 2. In contrast, the price increase of these commodities beyond 2002 
compensated the technological learning effect completely and led to an overall stabilization of PV 
investment costs, as depicted in Figure 2. Thus, when calculating investment cost forecasts for energy 
technologies it is crucial to consider both, the technological learning effect and the influence of 
commodity price instead of either or. 
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Figure 4 Development of silicon price and silver price between 1976 and 2006;  
Source: Yu et al, 2010) 

Finally, as discussed in (Ferioli et al, 2009), the simultaneously technological learning of some 
components of an energy technology are applied in different energy technologies, is important to be 
taken into account by identifying the learning effect. This becomes of special relevance for more 
mature technologies when the overall learning effect is limited due to very hardly any opportunity for 
future doubling of the overall capacity but several small components within the technology might have 
this potential for a future doubling of the capacity caused by simultaneously use in various energy 
technologies. Hence the overall cost development equals the sum of the cost development of the 
components depicted in the formula Eq (5) below using the same abbreviations as Eq(4). 
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Practical implementation approach and assumptions 

Building on the current status of the simulation tool Green-X, modeling the impact of policy options on 
the renewable energy development, it is the objective of this paper to discuss the concept of refining 
the approach of technological learning and taking into account the impact of energy and raw material 
prices on the investment costs of renewable energy technologies. 

Principally as discussed in prior, currently the model considers a one factor learning curve which 
implies a cost reduction of a certain percentage with each doubling of energy generated. Hereby, 
novel technologies like Photovoltaic or tide and wave energy, faces higher learning rates than mature 
technologies like wind onshore energy or even large scale hydro power. As mentioned above the 
overall technological learning effect depends on apart from the learning rate on the amount of energy 
generation on global scale, since most technological learning takes place globally. With respect to 
renewable energy generation this figures are calculated endogenously in the simulation tool Green-X 
whereas with respect to the overall generation abroad the EU27 it is based on the IEA WEO 2008.  

Based on the status quo, the following new approaches will be implemented in the modeling tool: 

Learning by doing accompanied by learning by searching: 

Separating the technological learning effect in learning by doing and learning by searching derives 
very important insights for policy decision making since the direct impact of (public) R&D expenditures 
can be quantified. However, these results are very sensitive to the input data of R&D expenditures. 
Moreover, this methodology contains more degrees of freedom resulting in more unknowns than the 
standard experience curve, thus potentially increasing the error. In this context, on the one hand data 
gathering for R&D-related information is very difficult, especially of business R&D expenditures, since 
these data is mostly treated confidentially. On the other hand, it might as well be difficult to allocate 
public R&D expenditures to the individual energy technologies. 

Consequently, separating the influence of learning by doing and learning by searching will not be 
considered for all energy technologies, respectively their components in the model. However, due to 
the policy relevance this approach will be pursued for a mature renewable energy technology (i.e. wind 
energy) apart from the integration to the simulation model. In order to ensure confidence of the 
achieved results, the impact of separate learning by doing and learning by searching needs to be 
statistically tested and compared to overall technological learning effects found in literature. As 
elaborated by Folz, 2008 first results in this context indicate that learning-by-searching has a strong 
effect on the cost reduction of wind turbines. It could even be higher than the effect of learning-by-
doing but due to the small sample size and the uncertainties in the data, however, the results should 
be interpreted carefully. 

Component learning for mature RES technologies: 

In consequence of above mentioned limits of learning effects for total energy technology installations, 
the component learning approach will be implemented for more mature technologies like hydro power, 
wind energy, and biomass energy converters. It is envisaged to cluster several components for which 
a technology learning rate will be determined based on empirical studies. In this respect, the 
development of one technology cluster in other than the renewable energy sector has to be 
considered as well, as for instance turbines applied in biomass plants as well as in gas-fired power 
plants. 



In order to determine the different component clusters of an energy technology the total share of costs 
of the certain component of the total plant has to be indentified. This allocation will be based on 
empirical studies conducted for instances by Schumacher (2010). In this approach, the share of each 
component of the total energy technology is an exogenous parameter for the model. Consequently, 
any potential shift of the certain components shares, caused by i.e. material substitution has to be 
adjusted manually in the model. Figure 5 illustrates the share of investment cost for a wind onshore 
and wind offshore energy converter according to its components. 
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Figure 5 Share of investment cost of a wind energy converter according to its components. 
Blue (left) bar represents an onshore converter & red bar (right) an offshore converter; 
Source: Schumacher et al, 2010 

A major task with respect to the component learning approach is the data gathering process required 
to identify the certain technological learning effects. On the one hand learning rates for each 
component have to be derived from historical observations and on the other hand the overall installed 
capacities need to be identified. For the latter, the installed capacities within the EU 27 Member States 
are calculated endogenously but for the rest of the world, international statistics have to be taken into 
account. Since not of all of these data will be available in the current reference, the IEA WEO, other 
statistics will be considered, whereas the consistency of data is a precondition. Additionally, the status 
quo of each cluster in terms of costs per unit as well as globally installed capacities needs to be 
identified in order to form the starting point of the technological learning effect of each component 
cluster. Due to the huge amount of data required for this approach, not more than three component 
clusters per technology are envisaged to be investigated. As far as possible these technologies will be 
separated to component clusters according to combustor, turbine and construction. 

Although this approach allows a more precise determination of the overall technological learning 
forecasts under the consideration of the limits, certain boundaries have to be taken as well. In this 
respect, in the literature it is argued that only considering the technological learning effect of each 
component clusters, and then adding up these figures to the overall future investment cost evolution 
for each technology, neglects the learning of mounting all components to one energy technology as it 
is then integrated to market. 

Two factor learning curve, considering the impact of energy and raw material prices: 

Finally, the current approach with respect to technological learning effects of the simulation tool 
Green-X, based on a one factor learning curve will be extended to a two factor learning curve, 
considering additionally the influence of raw material prices. In this context, the most crucial raw 



materials for renewable energy technologies have been identified as steel, silicon and concrete as well 
as copper, silver and aluminum. Depending on the specific energy technology, the most important 
materials will be considered in the model for determining the future cost development of the energy 
technology itself. Since the definition of the specific raw material price is an exogenous parameter for 
the simulation model the reference source has to be decided very carefully, especially caused by the 
fact that recent observation have shown very volatile energy and raw material prices. Exemplarily, 
Figure 6 highlights the historic development of the real steel price in Euro/ton of 2000 for the last ten 
years showing a big peak in 2008. 
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Figure 6 Global steel price index development between 1999 and 2009, Source: CRU Group, 
2009; Source: Schumacher et al, 2010 

On the one hand, arguments exist to link the development of the raw material prices to the 
development of the oil price, which showed a high correlation in the recent past, but on the other hand 
the increase of the real steel price, in Figure 6, was mainly driven by the tremendous demand increase 
in China and India and only to a minor extend influenced by the oil price. However, the global 
development of supply and demand of each relevant raw material is far beyond the scope of the 
simulation model Green-X and hence, cannot be taken into account here. Therefore, an opportunity to 
incorporate the influence of raw material prices best could be to consider two raw material price 
scenarios, one with a moderate development and the other with a strong increase of raw material 
prices showing very volatile dynamics. 

Moreover, the impact of a specific raw material price on the overall investment costs of energy 
technology has to be indentified. This share is determined based on empirical studies and forms an 
exogenous parameter for the model. However, these shares have to be defined according to the 
components structure presented above. Hence, a huge amount of data needs to be collected 
whereas, at least the share of raw material influence is in most cases treated confidentially and 
therefore forms a barrier for a high resolution. In addition, in a dynamic modeling approach not only 
the impact of raw material prices on total investment cost of renewable energy technologies is 
important but also the total share of raw materials on the energy technology in quantitative terms. 
Strong increase of raw material prices might lead to material substitutions in the development of the 
energy technology and consequently reduces the impact of the material price. Since material 
substitutions based on R&D experience are impossible to model, the material substitution caused by 
material price increases will be considered by setting thresholds where a material substitution is very 
likely to take place. Again such material substitution can only be considered between two already now 
competing materials which are already established on the market.  



Expected results 

The simulation tool Green-X models the impact of policy support options on the future development of 
renewable energy source within the EU in quantitative terms as well as in terms of investments 
needed and the related policy costs for the society. In this context, the investment cost forecast is a 
crucial part since it determines the long-run marginal costs of each energy technology and 
consequently the decision process which technologies are being installed according to the scenario 
objective. Due to recent observation of increased investment costs of certain energy technologies 
deviations from the real cost development to the forecast based on a one factor learning curve are 
being noticed. Thus, a two factor learning curve, considering the impact of volatile energy and raw 
material prices results in a much better fit, since technological learning effects and raw material 
influences are addressed in a common manner as shown by Yu et at. (2010) in Figure 7. 

 

Figure 7 Development of historic PV module price in doted line compared to approximations 
based on a one factor learning curve (red line) and a two factor learning curve 
considering the silicon price as well (black line); Source: Yu et al, 2010 

The additional separation of component clusters for each renewable energy technology allows for a 
more precise consideration of technological learning effects. The relevance of the component learning 
approach is highly seen in more mature energy technologies, where the overall learning effect is 
limited by non-economic issues, i.e. no doubling of installed capacity feasible.  

 

Finally, increasing the RES share in order to meet the European target (Directive 2009/28/EC) of 20% 
RES by 2020 implies effective and efficient policy support measures. In this context, the efficiency of 
RES support schemes is determined by the real generation costs of renewable energy technologies 
versus the eligible total level of income from selling the produced energy. Hence, it is the final aim of 
this research to invent a support scheme of RES taking into account besides the technological 
learning effect also the influence of raw material prices in order to set the right incentives to potential 
investors. In this respect, the level of support can be adjusted according to the current market 
situation. Consequently, this will allow to increase the efficiency of the support scheme by reducing the 



level of support in times of low raw material prices but increasing the support level again in times of 
high raw material prices in order to attract investors and enable a constant growth of RES in the future.  
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