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Abstract: To meet the increasing requirements with the initial design of large power transformers,
a novel analytical approach for determining the stray field of low and high voltage as well as tapping
windings is presented. The algorithm solves for the 3D Laplacian equation of the 3D magnetic vector
potential by using series expansions according to the orthogonal Eigenfunctions of the related Eigenvalue
problem. The main interest lies on a very fast calculation method which can be used as a criteria for the
selection of winding arrangement and tank wall geometry with the initial design.
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1. Introduction

To maintain quality, performance and competiveness, an improvement of the calculation methods used
with the initial design will meet the increasing requirements and challenges in the design of large power
transformers. Short-term customer deadlines and individual customer demands require high levels of
precision and reliability of those calculation results. The main focus of such enhanced design tools lies
on a very fast calculation method which can be used as a criteria for the selection of winding arrangement
and tank wall geometry in the initial design.

Former basic analytical calculations, eg. [1]-[3], use many simplifications which are not suitable for the
purpose given above. On the other hand, fully numerical approaches, such as [4]-[6], cannot overcome
the drawbacks of 3D numerical analysis methods when concerning the details of the winding structures
of modern large power transformers. Due to their high efforts with modelling and simulation, they are
not applicable for the initial design.

Therefore, a novel analytic method for determining the stray field of large power transformers is
presented which takes into account for the detailed configuration of both low and high voltage windings
as well as tapping windings. The algorithm solves for the 3D Laplacian equation of the 3D magnetic
vector potential by using series expansions according to the orthogonal Eigenfunctions of the related
Eigenvalue problem. The effects of the high permeable laminated iron core are represented by appropriate
boundary conditions for the 3D magnetic vector potential at the boundaries of the iron core. In order
to fulfil these boundary conditions, fictious surface currents at the iron core boundaries are introduced.
In summary, the 3D magnetic vector potential will be obtained from one main part generated by the
currents of the windings and another main part produced from the surface currents representing the iron
core boundaries.

2. Governing Equations

Starting from the Maxwell equations and their interface conditions [7], [8]

crlH=J , nx[H]=K, (1)
divB=0 , n-[B}j=0, (2)

a gauged magnetic vector potential will be introduced,

B=cuwlA , divA=0. (3)



Based on the cartesian coordinate system of the arrangement 0 <z <z, 0 <y <o, 0< 2 < zp as shown
in Fig. 1, the vector Laplacian equation outside of the core regions reads as

—@KA(%?J, Z) = /1'0'](:1:, Y, Z) (4)
and the components of the magnetic vector potential are separated using the scalar Laplacian operator,
—AAD (z,y,2) = po SNz, y,2) , i=2,y,2 . (5)

Consequently, these equations can be solved for each component of the magnetic vector potential inde-
pendently.

Table 1:
Boundary Conditions at the Tank Wall Planes.

non-conductive tank wall: n x B =0

A (nxA)=0
n-A=0

conductive tank wall: n- B =0

nxA=0
%(n-A):O

Fig. 1: Schematic of a three leg transformer
inside the tank wall planes.

As listed in Table 1, two sets of boundary conditions are considered on the tank wall planes. First, the
magnetic flux density has only a normal component at the tank wall planes representing non-conductive
infinite high permeable tank wall planes. Secondly, conductive infinite high permeable tank wall planes
generate surface current densities which yield only a tangential magnetic flux density at the tank wall

planes.

Corresponding to these two limiting cases, the components of the magnetic vector potential will fulfil
either homogeneous Dirichlet or Neumann boundary conditions on the tank wall planes. In particular,
at least one Dirichlet boundary condition exists for each component of the magnetic vector potential.

3. Eigenvalue Problem

The Eigenvalue problem [9] for the cube 0 <z <z, 0 <y <1y, 0< 2z < 2 formed by the tank wall
planes is given by

- Au(z,y,2) = Au(z,y,2) . (6)

According to the boundary conditions listed in Table 1, for k,I,m = 0, 1,2, ... the general Eigenvalues

Akl = <1€—7£>2 + (lﬂ)z -+ (m)Q >0 (7)

Zo Yo 20

define the general normalized Eigenfunctions

Ukim (2, Y, 2) = up(z) ur(y) um(2) (8)
with

2—94 . kmx 2 -9 T 2—9 . mmz
ug(z) = Tkot“g;)— , w(y):\/y—omtngy—f , Um(2) =4 ZO’"O tig=— =, (9




where trig = sin with Dirichlet boundary conditions and trig = cos with Neumann boundary conditions.

Hence, the general Eigenvalues (7) and the general Eigenfunctions (8) related to the boundary condi-
tions listed in Table 1 yield the Green’s functions

GW(x, ¢) = Z ul(cil)7n($7y7 )“kzm(ﬁ,%() (10)

A
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separated for each component of the magnetic vector potential A®). These Green’s functions allow for
the calculation of the components of the magnetic vector potential from

A9 (x / GO,€) 0T V(€) kg + § GO, € oK (€) e (11)

r

which fulfil the boundary conditions listed in Table 1.

4. Setup of the General Solution

As shown with (11) for each component, the total magnetic vector potential and subsequently the
magnetic field strength can be constructed from two parts,

Ax)=Ay(x) + Ak(x) , (12)
H(X) = H](X) +Hg(x) . (13)

The first parts A j(x),H;(x) encounter for any source current flow related to the various windings on
the three legs of the power transformer. The second parts A (x),Hy (x) take into account any surface
current densities on the boundaries. This fact can be used to encounter for the effects caused by the high
permeable laminated iron core where the tangential components of magnetic flux density and magnetic
field strength vanishes.

A. Source Field Terms

Let us first consider the calculation for one arbi-
trary winding on one of the three legs as depicted
in Fig. 2. The single winding carries the total cur-
rent I; uniformly in circumferential direction. The
respective source current region 2 is described by
the local coordinates

ri<r<ry , —w<e<nw , (14)
Az z
B

y and the local coordinate transformation

z(r,p) =xr +rcose , (15a)
y(r,p) = yr +rsing . (15b)

Fig. 2: Arrangement of one arbitrary winding
on one of the three legs.

The corresponding part of the magnetic vector potential reads as

A1) =14 > kim u,% (@,9,2) , o, = ’;f / TO(E,n, O ul (€10 d%me - (16)
k,l m 2



Using the Eigenfunctions (8) and the Bessel functions of integer order J,,(z), the source field part of one
winding carrying the total current Iy is represented by

[T vV Ak;l() JO (7’\/ Aklo) —_ 2 Z J2n+1 (’I‘ )\klo):l r=r9
a® —9r,0® (mulAzy — v r=ry
him = 2710 Uy, (Z1, Y1, 21) Sl( 229 > (ra —71) Akto (17)

Due to the current flow in circumferential direction only, the component ASZ) of the magnetic vector
potential vanishes for this winding type. On the other hand, in the case of helical windings with low
voltage tapping windings the source field part A ;(x) of the magnetic vector potential consists of all three
components.

In summary, the source field part A j(x) of the magnetic vector potential is obtained corresponding
to all winding currents I;, the winding schemata and the geometry data on the three legs as given by

AP () =30 AP (i 1) - (18)

B. Boundary Field Terms

In the second step, the boundary condition for magnetic flux density and magnetic field strength along
the boundaries I'c of the laminated iron core as shown in Fig. 3 will be satisfied. Due to the very high
permeability, the tangential component of the total magnetic field strength vanishes at the iron core
boundaries,

nxH(x)| =nx (HJ(X) + HK(X)) | =0 (19)

Tc

Te

In general, the source field term generates a tan-
gential component of the magnetic field strength at
the iron core boundaries,

n x Hj(x)

L 7O (20)

According to (1), this portion can be interpreted as
a surface current density excitation

K(x) ’ — —n x Hy(x) ] (1)
T'c Te
for the second part of the vector potential A x(x) in
the sense that the total magnetic field strength as
the sum of both parts has only a normal component
Fig. 3: Iron core boundary surfaces for the surface on the iron core boundaries.
currents.

Consequently, the second part A (x) of the magnetic vector potential can be calculated from the
surface integration of (11). Due to the fact that the iron core boundaries do not comply with the
Eigenfunctions obtained from the Eigenvalue equation (6), the calculation of the second part Ax(x)
cannot be done in a straightforward way. The surface current excitations at the iron core boundaries
themselves generate portions of the magnetic field strength along the iron core boundaries. Therefore,
the detailed distribution of the fictious surface currents K(x) is completely unknown and has to be
determined according to the source field part caused by the winding currents.

In order to evaluate the unknown distribution of the fictious surface currents K(x), an edge based
approximation of this distribution will be introduced at the iron core boundary surfaces. Each iron core
boundary surface is discretized with a uniform mesh with constant mesh divisions Azps,Aynr,Azpr and



in case of the cylindrical surfaces on the legs additionally with Apps where m/Awpr € N. Along these
surface discretizations, the surface current distribution will be approximated by uniform surface current

components sta) along the single edges and an appropriate interpolation between the edges.

Fig. 4: Interpolation of the surface currents K ®)(z,y) (left part) and K@) (z,y) (left part) along z=zz.

As shown with Fig. 4 for a yoke surface with n=e,, the edges I'g of the surface current region are
described by the local coordinates

—A;M<:z:—:rE<-AxTM , Y=YE , Z=ZEg (22)
for the z-direction and
r=2zp , —ég—]\i<y—yg<é% , 2=2E (23)
for the y-direction. The two interpolations along the appropriate edges
K®(z,y) = K (1 + Y= yE) , (242)
Ayum
KW (z,y) = KW (1 + ij;E ) (24b)

guanrantee a divergence free distribution of the surface currents.

The corresponding part of the magnetic vector potential for each single edge I' is obtained from

AR (s K) = K3 37 ,\klm U (@,9,2) , b, = (z) / KD (&, n,¢)uf),(&n,) dlec - (25)
k,lm

Using the Eigenfunctions (8), the surface field part of one single edge carrying the surface current Kg)
at z=zp can be represented by

z (kTAz o /lmA
bl(cl'r)n = o u,(cl,)n(:rE,yE,zE) A.Z‘M AyM Sl( 2.’[:0M) S12( 2yyoM) (26)
for the z-direction and
o/ kTAzx rlmA
b, = nouh (5, ym, 25) Azar Ayss 812( 5 xoM) Sl( 5 ;(/)M ) (27)

for the y-direction. The portions of the surface currents at the other iron core boundaries of the yokes
and the three legs as shown in Fig. 3 are obtained from similar calculations.

In summary, the surface field part Ax(x) of the magnetic vector potential is obtained corresponding

to all surface currents ng and their geometry data along all edges at the iron core boundaries as given
by

ARx) =Y AP KS) . (28)

Ji



C. Source and Boundary Field Terms

Due to the linearity of our problem in terms of both source and surface currents, the surface current
distribution is strongly related to the total source current field of all windings. In summary, the complete
vector potential A(x) and the complete magnetic field strength H(x) of all windings read as

ADG) =3 AP 1) + Y AR (s KS) (29)
J Ji

HOG) =Y HY (1)) + Y HP( KY) . (30)
J Ji

Finally, (19) has to be fulfilled along all edges T' £; at the iron core surface boundaries yielding an algebraic
system of linear equations for the unknown fictious surface current components ng) at the edges at the
iron core surface boundaries. Since the describing matrix is singular, this algebraic system will be solved
by an iterative method where the gauging condition for the magnetic vector potential will guarantee a
unique solution for the distribution of the unknown surface currents.

5. Conclusion

The paper will discuss the evaluation of the stray field caused by each winding of large power trans-
formers by using an analytical calculation method. The 3D magnetic vector potential is constructed
from series expansions with regard to the Eigenvalue solutions of the 3D Laplacian equation within the
region formed by the tank wall planes.

Thereby, the 3D magnetic vector potential consists of two portions. The first part represents the
portion regarding the source current regions of the windings on the three legs. The second part encounters
for the effects of the high permeable laminated iron core by assuming fictious surface currents to represent
the appropriate boundary condition of the magnetic field on the iron core boundaries. Since this second
part does not comply with the boundary conditions of the Eigenfunctions, an iterative method has to
be used to finally obtain this second part of the complete 3D magnetic vector potential.
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