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1. Introduction 
 
The rapid increase in computational power and speed of integrated circuits is 
supported by the incessant downscaling of semiconductor devices.  Thanks to 
constantly introduced innovative changes in the technological processes, the 
miniaturization of MOSFETs epitomized by Moore's Law successfully continues.  
The recently introduced 32 nm technology1 involves improved high-κ gate stack 
dielectrics integrated with metal gates.  These advances, first introduced for the 45 
nm MOSFET process technology by Intel,2 represent some of the major changes in 
the technological processing since the invention of MOSFETs.  Although 
alternative channel materials with mobility higher than in silicon have already been 
investigated,3,4 it is believed that silicon will remain the main channel material for 
MOSFETs beyond the 32 nm technology node.  

With scaling apparently approaching its fundamental limits, the semiconductor 
industry is facing critical challenges.  New engineering solutions and innovative 
techniques are required to improve CMOS device performance.  Strain-induced 
mobility enhancement, first introduced for the 90 nm technology node, is now 
routinely used to increase the device performance.  With the 4th generation of 
stressors employed in the 32nm node,1 strain technology will certainly maintain its 
key position among engineering solutions for future technology generations.  In 
addition, new device architectures based on multi-gate structures with better 
electrostatic channel control and reduced short-channel effects are attracting 
increased attention.  A multi-gate MOSFET architecture is expected to be 
introduced for the 22 nm technology node.  Combined with a high-κ dielectric/ 
metal gate technology and strain engineering, a multi-gate MOSFET appears to be 
the ultimate device for high-speed operation with excellent channel control, 
reduced leakage currents, and low power budget.  Confining carriers within a thin 
film reduces the channel dimension in the transverse direction, which further 
improves gate channel control.  

At the same time the search for post-CMOS device concepts has accelerated.  
In principle, quantum computation promises to open new horizons to approach 
large-scale computations.  Quantum-mechanical properties used in the data 
structure architecture are speculated to lead to substantial advantages over classical 
approaches.  Although the concept is very attractive, thus far quantum calculations 
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have been demonstrated on a small number of qubits only.  Several extremely 
challenging problems prevent the building of a large quantum computer, and more 
research is needed.  One particular problem is how to increase the quantum state 
coherence within qubits so that the quantum information is not lost before an 
acceptable number of operations is performed.  

Spin as a degree of freedom is promising for future nanoelectronic and 
spintronic applications.  A recently proposed concept of a racetrack memory5 is 
based on the controlled domain wall motion by spin-polarized current in magnetic 
nanowires.  Nonvolatile spin-torque based memory elements combined with gate-
all-around MOSFETs are a sound option for a future computer architecture with 
reduced heat generation.6  

Silicon, the main element of microelectronics, possesses several properties 
attractive for spintronic applications.  Silicon is composed of nuclei with 
predominantly zero spin, which greatly reduces fluctuations of local magnetic 
fields and increases the spin coherence time.  Silicon is also characterized by a 
small spin-orbit coupling.  In a recent groundbreaking experiment, coherent spin 
propagation was demonstrated through an undoped silicon wafer of 350 µm 
thickness.7  The experiment was made possible by a unique injection and detection 
technique of polarized spins delivered through thin ferromagnetic films.  Coherent 
propagation of spins over such long distances makes the fabrication of spin-based 
switching devices likely already in the near future.  

Spin-controlled qubits may be thought of as a basis for upcoming logic gates.  
However, the conduction band of silicon contains six equivalent valleys, which is 
potentially a source of increased decoherence.8  Since the valleys in bulk silicon are 
degenerate, their quantum numbers are directly competing with the spin quantum 
numbers.  Thus, for successful applications one should be able to lift the valley 
degeneracy by independently modifying their energies in a controllable way, so 
that the valley separation can be made larger than the spin Zeeman splitting.  

Due to size quantization in (001) oriented Si/SiGe heterostructures, the valley 
degeneracy is partly lifted.  The four valleys with light quantization mass are 
characterized by higher subband energies, while the two valleys with heavy 
quantization mass yield the unprimed subband ladder.  Yet, within the effective 
mass approximation usually employed to describe the conduction band, the 
unprimed subband ladder is doubly degenerate.  In reality, this degeneracy is 
removed due to a slightly non-parabolic dispersion of the conduction band.  The 
actual value of the valley, or, to be more precise, the unprimed subband splitting, is 
a source of controversy, because it seems to vary significantly depending on the 
experimental setup.  For instance, Shubnikov-de-Haas measurements in an electron 
system of a thin silicon film grown on a SiGe substrate reveal that the valley 
splitting is on the order of tens of microvolts.9  At the same time, recent 
experiments on the conductivity measurements of point contacts created by 
confining a quasi-two-dimensional electron system in lateral direction with the 
help of additional gates deposited on the top of the silicon film, demonstrate a 
splitting between equivalent valleys larger than the spin splitting.9 
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In this chapter, we will try to resolve this inconsistency with an accurate k⋅p-
based model for the conduction band in silicon.  We demonstrate that the parabolic 
band approximation usually employed for subband structure calculations of 
confined electrons in silicon inversion layers is not sufficient for ultrathin films. 
The k⋅p model includes strain and is shown to be accurate up to energies of 0.5 eV. 
This model can therefore be used to describe the subband structure in thin silicon 
films, where the subband quantization energy may reach a hundred meV.  

We first describe the subband structure in a thin unstrained silicon film and we 
demonstrate that the peculiarities of the subband dispersion obtained within the 
two-band k⋅p model result in a linear dependence of the valley splitting on the 
magnetic field.  Furthermore, we show that a large valley splitting is observed in 
experiments on conduction quantization through a quantum point contact in the 
[110] direction, but the splitting is suppressed in [100] point contacts. Finally, we 
demonstrate that the valley splitting is considerably enhanced in films strained in 
[110] direction. 

Our main result can be summarized as follows: a large valley splitting in the 
confined electron system can be induced by a shear strain component applied to the 
system.  Since strain is routinely used by the semiconductor industry to enhance 
MOSFET performance, it opens a way to introduce a splitting between the 
unprimed subbands in a controllable way at little additional cost.  By a direct 
analogy to the magnetic field that controls the spin splitting, shear strain allows one 
to tune the valley splitting independently and efficiently, thus making silicon 
attractive to spintronic and "valleytronic"10 applications. 
 
 
2. Accurate model for the conduction band in silicon 
 
To describe the conduction band of silicon close to the minimum located at k0 = 
0.15(2π/a) away from the X-point, we follow the classic approach of Refs. 11 and 
12.   The two conduction bands Δ1 and Δ2 are degenerate at the X-point and must be 
included on an equal footing to describe the dispersion close to the X-point 
minimum.  More distant bands separated by larger gaps are treated with the second 
order k⋅p perturbation theory,12 which results in the following two-band k⋅p 
Hamiltonian: 
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where σx and σz are the Pauli matrixes, I is the 2x2 unity matrix, mt and ml are the 
transverse and longitudinal effective masses respectively, εxy denotes the shear 
strain component, M-1 ≈ mt

-1 – m0
-1, and D = 14 eV is the shear strain deformation 

potential.9  This is the only form of the Hamiltonian in the vicinity of the X-point 
allowed by symmetry considerations.12  The two-band Hamiltonian (1) results in 
the following dispersion relations:  
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where the negative sign corresponds to the lowest conduction band, and 
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We point out that the energy E and kz are counted from the X-point.  
The k⋅p model accurately describes the dispersion relation up to energies of 

about 0.5 eV.13  It also reproduces correctly the conduction band dispersion under 
shear strain.14  Therefore, the k⋅p Hamiltonian (1) can be used to describe the 
subband structure in thin silicon films and inversion layers.  
 
 
3. Subband dispersion from the k⋅p theory 
 
For (001) silicon films, the confinement potential gives an additional contribution 
U(z)I to the Hamiltonian (1).  In the effective mass approximation described by (1) 
with the coefficient in front of σx set to zero, the confining potential U(z) is known 
to quantize the six equivalent valleys of the conduction band of bulk silicon into 
the four-fold degenerate primed and the two-fold degenerate unprimed subband 
ladders.  In ultrathin films, the unprimed ladder is predominantly occupied and 
hence the more important.  The term with σx in (1) couples the two lowest 
conduction bands and lifts the two-fold degeneracy of the unprimed subband 
ladder.  The additional unprimed subband splitting, or the valley splitting, can be 
extracted from the Shubnikov-de-Haas oscillations and is typically in the order of a 
few tens µeV.9  However, the valley splitting is significantly enhanced in a laterally 
confined two-dimensional electron gas (2DEG).9  The valley splitting is usually 
addressed by introducing a phenomenological intervalley coupling coefficient at 
the silicon interface.15  Here we investigate the valley splitting based on the two-
band k⋅p model (1) without introducing any additional parameters. 

We approximate the confining potential of an ultra-thin silicon film by a 
square well potential with infinite potential walls.  This is sufficient for the purpose 
of analyzing the valley splitting in a quasi-2DEG due to interband coupling.  The 
generalization to include a self-consistent potential is straightforward, though 
numerically involved.16  Because of the two-band Hamiltonian, the wavefunction  
Ψ is a spinor with the two components |0> and |1>.  For a wavefunction with a 
spatial dependence of the form exp(ikzz), the coefficients A0 and A1 and of the 
spinor components are related via the Schrödinger equation HΨ = E(kz)Ψ.  For a 
particular energy E there exist four solutions κi (i = 1, …, 4) for kz of the dispersion 
relation (2), whereas the spatial dependence of a spinor component α is in the form 
∑ Aα

iexp(iκi z).  The four coefficients are determined by the boundary conditions 
that both spinor components are zero at the two film interfaces.  This leads to the 
following equations for k1,2 = κ1,2/k0: 
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becomes imaginary at high η values.  Then the trigonometric functions in (3) have 
to be replaced by the hyperbolic ones. Special care must be taken to choose the 
correct branch of (k1

2 + η2)1/2 in (4): the sign of (k1
2 + η2)1/2 must be alternated after 

the argument becomes zero.  
For arbitrary parameters, Eq. (3) can only be solved numerically.  We present 

results of the numerical solution in the next section.  However, to gain an insight 
into the results it is sufficient to analyze the solutions for small strain. 

Introducing yn = (k1 – k2)/2, Eq. (3) can be written in the form:17  
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Applying a perturbation approach to Eq. (5) with η as the small parameter, we 
obtain the following dispersion relation for the unprimed subbands n:  
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Equation (6) demonstrates that the unprimed subbands are not necessarily 
degenerate and degeneracy is preserved only when the shear strain is zero and 
either kx = 0 or ky = 0.  

 
 

4. Splitting of unprimed subbands in magnetic field 
 

For zero shear strain the Landau levels in an orthogonal magnetic field B are found 
from Eq. (6) by using the Bohr-Sommerfeld quantization conditions: 
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where        
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and ωC = eB/(m1m2)1/2c is the cyclotron frequency, e is the electron charge, and c is 
the speed of light.  According to (7), the difference |Em

(1) – Em
(2)| varies linearly 

with the magnetic field.  
In Shubnikov-de-Haas experiments there will now occur two sets of resistance 

oscillations with slightly different periods.  Because of the small difference 
between the masses, the difference in periods will also be small.  However, at the 
Fermi level, the quantum number m, which is proportional to the ratio of the Fermi 
energy to the cyclotron frequency, is typically very large and may lead to a 
splitting of several hundred µeV.  The difference in the periods can be interpreted 
as an appearance of an additional energy shift between the equivalent unprimed 
valleys.  Most importantly, the shift is linear in the magnetic field.  The linear 
dependence of the intervalley splitting on the magnetic field will be also observed 
in the presence of a small intrinsic constant valley splitting, as long as this splitting 
is much smaller than the Fermi energy.  This splitting is possible due to a 
remaining shear strain and/or conduction band nonparabolicity, which is not 
accounted for in the two-band k⋅p theory and which is usually several tens of µeV, 
thus much smaller than the Fermi energy.  For a 10 nm thick silicon film grown on 
SiGe it follows from (7) and (8) that the valley splitting can be several tens of µeV 
in a magnetic field of 1 T, which is consistent with the experimental observations.9   

 
 

5. Splitting between the unprimed subbands in a point contact 
 

Now let us consider a point contact in [110] direction realized by confining an 
electron system of a thin silicon film laterally by depleting the area under 
additional gates.  Without strain, the low-energy effective Hamiltonian in the point 
contact can be written as: 

 ,                          (9) 

where the primed variables are along the [1, 1, 0] and [1, –1, 0] axes, the effective 
masses are determined by (8), κ is the spring constant of the point contact 
confinement potential V(x') = κx'2/2 in [1, –1, 0] direction, and VB is a gate voltage 
dependent conduction band shift in the point contact.18  The dispersion relation of 
propagating modes within the point contact can be written as: 

 ,                           (10) 

where ω1,2
2 = κ/m1,2.  Since the energy minima of any two propagating modes with 

the same p are separated, they are resolved in a conductance measurement through 
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the point contact as two distinct steps.  The valley splitting is ΔEp = |ω1 – ω2|.  The 
difference in the effective masses (8) and, correspondingly, the valley splitting can 
be significantly enhanced by reducing the effective thickness t of the quasi-2DEG, 
which is usually the case in a gated electron system, when the inversion layer is 
formed.  

In a [100] oriented point contact without strain, the effective Hamiltonian is 
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Due to the symmetry with respect to ky the subband minima in a point contact are 
always degenerate. For this reason the valley splitting in [100] oriented point 
contacts is considerably reduced.  

 
 

6. Strain-enhanced valley splitting 
 
It follows from (6) that shear strain induces a valley splitting linear in strain for 
small shear strain values:17 
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The subband splitting is inversely proportional to the film thickness to the third 
power, and thus can be quite large in thin films. 

One can also evaluate the maximum subband splitting in the η → ∞ limit.  
Here, it follows from (2) that the band dispersion becomes parabolic again around 
the minimum located exactly at the X-point.  The subband quantization energies are 
determined by the usual quantization conditions, which results in the subband 
splitting 
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For practically relevant intermediate strain values a numerical solution of Eq. (3) is 
required. 

 
 

7. Numerical results 
 
In order to analyze the subband structure in (001) oriented thin silicon films we 
first approximate the film potential by the square well potential with infinite 
potential walls.  Although not exact, this is a good approximation for thin films.  
To obtain the values for the subband splitting and effective masses for an arbitrary 
strain value, Eq. (3) can be solved numerically.  Alternatively, the eigenvalues can 
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be found by solving the equations obtained by discretizing the Hamiltonian (1) 
with the added confinement potential  IU(z) and replacing kz by –i∂/∂z.  The latter 
method is more general, because it allows the inclusion of a confinement potential 
of arbitrary form, making self-consistent calculations possible. 

We implemented both numerical routines and obtained equivalent results for a 
square well potential with infinite walls. 

The splitting between the unprimed subbands with the same quantum number n 
normalized to the ground subband energy in unstrained films for a film of thickness 
t = 3.2 nm is shown in Fig. 1 as function of shear strain.  The dependence is not 
monotonic and strongly depends on the subband number.  Even for the ground 
subbands with n = 1, the splitting is comparable to the subband energy at large strain 
values.  The subband splitting increases rapidly as the film thickness is decreased, as 
demonstrated in Fig. 2.  For ultrathin body films the splitting can reach a value 
comparable to kBT already at moderate strain values.  

Results shown in Fig. 2 demonstrate that the valley splitting can be effectively 
controlled by adjusting the shear strain and modifying the effective thickness t of 
the electron system.  Uniaxial stress along [110] channel direction, which induces 
shear strain, is already used by industry to enhance MOSFET performance. 
Therefore, its application to control valley splitting does not require expensive 
technological modifications.  

 

 

Figure 1.  Calculated energies of unprimed subbands in a 3.2 nm thick silicon film 
as a function of shear strain.  The subband energies values are normalized to the 
energy of the ground subband in an unstrained film.  In the unstrained film, the 
subbands are two-fold degenerate. Strain induces the splitting between the 
subbands with the same quantum number (shown by solid and dashed lines).  The 
value of the splitting may change sign. The value η = 1 corresponds to the shear 
strain value ε = 0.016.    
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Figure 2.  Shear strain-induced splitting of the ground subbands for several film 
thicknesses.  In ultrathin films the splitting exceeds kBT already for moderate stress. 

 
 
8. Conclusions 

 
We have analyzed the structure of the unprimed subbands in (001) silicon thin 
films by using an appropriate k⋅p model and demonstrated that the two-fold 
degeneracy of the unprimed subbands can be lifted, leading to the so-called valley 
splitting.  In an external magnetic field, the model predicts the value of splitting to 
be proportional to the field.  Furthermore, the model predicts that the valley 
splitting in a <110>-oriented point contact can be larger than the splitting due to 
the magnetic field because of stronger lateral confinement in a point contact. 
Finally, the valley splitting can be successfully controlled by shear strain.  This 
makes silicon promising for spintronic and "valleytronic" applications.  
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