

Neutronics Analysis of TRIGA Mark II Research Reactor

R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute 23-03-2010

- TRIGA Mark II reactor
- MCNP radiation transport code
- MCNP model of first core
- Validation through local experiments
- Burn-up calculations & its applications to MCNP model
- MCNP model of the current core
- Verification of current core model
- Conclusion and outlook
- References

TRIGA Mark II, Vienna

- Operation since 7th March 1962
- Max. $P_{Th} = 250 \text{ kW}$
- Max.(Ø)_{th} = 1x10¹³ n/cm²-s¹
- Fuel Mat. U-ZrH
- Mixed core (3-types of fuel)
- Current Core Loading = 83 FE(s)
- Peak P_{Th} = 250 MW
- Irradiation channels in the core
- Experimental facilities outside reactor core
 - Thermal column
 - Radiographic collimator
 - 4 beam tubes

MCNP Transport Code

- MCNP Monte Carlo based neutronics behaviour simulating code with continuous energy and generalized 3D geometry capabilities
- General purpose radiation transport code (criticality, neutronics and radiation shielding calculations.)
- It simulates neutron, photon, electron independently and also their coupled behaviours
- Energy range
 - For neutrons: 10⁻¹¹ MeV to 20 MeV
 - For photon and electron: 1keV to 1 GeV
- Powerful source cards
- Surface Source Writing (SSW) capability
- 7- tallies (mesh tally- 3D regions of space) output results
- ENDF/B-VI and JEFF3.1 nuclear data libraries

Al Top and Fbdura

E

V Bottom and Flatura

5

MCNP Model (1st core)

Inside the core

- 57 FE(s)
- 3 CR(s)
- 1 CIR
- 1 (Sb-Be) SE
- 27 GE (s)
- 2 pneumatic transfer sys.

Outside the core

- Annular gr. ref.
- Th. Column
- Thermalizing col.
- 4 beam tubes

Rustam Khan

Model Validation (1st core)

First Criticality Experiment (7th March 1962)

FE Position	MCNP (K-eff)	Exp. (K-eff)
56 th FE	0.99788	Sub-critical
57 th FE	1.00183	1.00114

GA also confirm this model

Rustam Khan

7

Model Validation (1st core)

Reactivity Distribution Experiment (12-12-1963)				
FE No.	Reactivity MCNP (¢)	Reactivity Exp. (¢)	%-diff	
GE (F01)	11.9	10.5	8.4	
FE (2058)	53.6	56	4.3	
FE(2141)	73.4	65	12.9	
FE(2164)	102	80	22.5	
FE(2172)	153	143	6.9	

Rustam Khan

Model Validation (1st core)

Burn-up Calculations (From 07-03-1962 to 30-06-2009)

- i. ORIGEN2 calculations & gamma spectroscopic experiments
- ii. Effective material composition applied to the MCNP model

Current Core Model (current core)

- i. Addition of new FE(s), over the history of reactor operation (20% SS clad, 70% FLIP)
- ii. Incorporation of effective burned fuel composition
- iii. Burn up group approximation
- iv. SE (F06 to F28)
- v. Only one graphite element left
- vi. Change of one pneumatic transfer system from F21 to F08.

Rustam Khan

Model Validation(current core)

Rustam Khan

Model Validation (current core)

Rustam Khan

Model Validation (Current core)

Flux mapping experiment 01-07-2009

Rustam Khan

Conclusion & Outlook

The initial core MCNP model was developed incorporating all geometrical and material information collected from various sources (TRIGA manual, GA, different users and shipment documents). The model was confirmed at both i.e. global and local levels. The developed model was modified to the current core model employing current core conditions. The current core model was completely verified by three different experiments performed in June-July 2009.

The current core model has been extended to biological shielding including the thermal column, radiographic collimator and 4 beam tubes (BT) and confirmed in the thermal column and BT region.

Rustam Khan

References

- General Atomic (GA), March 1964. TRIGA Mark II Reactor General Specifications and Description. General Atomic Company, U.S.A.
- Shipment documents from GA, USA.
- Log books of TRIGA Mark II reactor at Atominstitue (from 1962 to 2009)
- Monte Carlo Team, "MCNP5", LA-UR-03-1987, LANL, April 24, 2003.
- A.G. Croff, 1999. A user's manual for the ORIGEN2 computer code. OAK RIDGE National Laboratory, USA.
- Robert Jeraj, Tomaz Zagar, Matiaz Ravnik, "Monte Carlo Simulation of the TRIGA Mark II Bench Mark Experiment with Burned Fuel", Nuclear technology, Vol. 137, September 2001.
- R. Khan, S. Karimzadeh, H. Boeck, TRIGA fuel Burn-up calculations. RRFM 2009, Vienna, Austria.
- R. Khan, S. Karimzadeh, H. Böck, M. Villa. Modelling of TRIGA Mark II biological shielding using MCNP5, Nuclear Energy for new Europe 2009, Sep. 2009.
- R, the environment for statistical computing and graphics <u>http://www.r-project.org/</u>

Extended MCNP Model

KR1

KR1 Khan Rustam; 03.09.2009

Extended Model Validation

Positions	Exp. flux	Cal. flux	Cal/exp.
(2,2)	1.6932E+07	2.0755E+07	1.226
(2,6)	1.9255E+07	3.7084E+07	1.926
(2,10)	1.5848E+07	2.0693E+07	1.306
(4,3)	4.5127E+07	5.0593E+07	1.121
(4,8)	5.6064E+07	6.0810E+07	1.085
(6,2)	2.9609E+07	4.4650E+07	1.508
(6,6)	8.3050E+07	8.3050E+07	1.000
(6,10)	4.5768E+07	4.4126E+07	0.964
(8,3)	4.4985E+07	5.2957E+07	1.177
(8,9)	4.4196E+07	6.3907E+07	1.446
(10,2)	2.0561E+07	2.2168E+07	1.078
(10,6)	3.2400E+07	4.2623E+07	1.315
(10,10)	1.6723E+07	2.2406E+07	1.340

Rustam Khan

Extended Model Validation

Exp. diffusion length= 10.77 cmMCNP diffusion length= 9.36 cmDifference= 13 %

Effective Material Composition

Nuclide	3% Burnup (pcm)	10% Burnup (pcm)	20% Burnup (pcm)	94-Pu-240 42-Mo-95 36-Kr-83 62-Sm-150 44-Ru-101	5 5 3 3 3	57 17 11 13 9	216 36 24 30 19
54-Xe-135 62-Sm-149 62-Sm-151 94-Pu-239 60-Nd-143 92-U-236 61-Pm-147 45-Rh-103 54-Xe-131 55-Cs-133 43-Tc-99 60-Nd-145 63-Eu-155 pseudo FP 62-Sm-152	850 620 101 -95 51 25 24 20 16 14 11 7 6 6 6 6	899 638 222 -357 178 84 65 82 56 50 38 26 14 21 26	973 645 284 	55-Cs-135 63-Eu-153 46-Pd-105 62-Sm-147 93-Np-239 93-Np-237 47-Ag-109 44-Ru-103 53-I-127 55-Cs-134 46-Pd-107 46-Pd-108 95-Am-241 62-Sm-148 64-Gd-156 94-Pu-241 54-Xe-134 54-Xe-136			$ \begin{array}{r} 17 \\ 20 \\ 8 \\ 31 \\ 1 \\ 12 \\ 3 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ -17 \\ -1 \\ -1 \end{array} $

*The burnups are 3% (approximately experimental burnup), 10%, and 20%. Contributions to the total reactivity ($\Delta k/k$) are shown in relative values as calculated by the WIMSD4 program. Boldfaced numbers represent isotopes that contribute >90% of the total burnup reactivity change.

Rustam Khan

2072 AL 8 0 255			
1198 ST8 0.464	Group No. 6	Group No. 7	Group No. 8
9200 ST8 0 499	2127 AL8 5.162	2152 AL8 6.000	4305 ST8 7 222
1197 ST8 0 965	2172 AL8 5.190	2163 AL8 6.032	4303 510 7.222
	2145 AL8 5.687	2166 AL8 6.053	4304 316 7.366
Group No. 2	2138 AL8 5.556	2157 AL8 6.085	
2106 1 8 1 660	2202 AL8 5.558	2182 AL8 6.144	
2190 ALO 1.009	2169 AL8 5.588	2199 AL8 6.154	7302 FLIP 8.130
1011 ST9 1 021	2174 AL8 5.592	2158 AL8 6.155	7306 FLIP 8.140
1044 516 1.951	2168 AL8 5.630	2140 AL8 6.156	7309 FLIP 8.337
1045 516 1.400	2160 AL8 5.669	2132 AL8 6.213	7308 FLIP 8.648
1190 318 1.151	2133 AL8 5.690	5128 ST8 6.214	
	2176 AL8 5.260	2164 AL8 6.244	Group No. 10
	2131 AL8 5.263	2175 AL8 6.248	7307 FLIP 9.677
2177 AL8 2.463	5284 ST8 5.372	2130 AL8 6.298	7305 FLIP 9.795
1043 518 2.499	2139 AL8 5.378	2187 AL8 6.305	
	3456 ST8 5.399	2141 AL8 6.336	Group No. 11
	2184 AL8 5.406	2151 AL8 6.353	7304 FLIP 10.408
1077 ST8 3.959	2173 AL8 5.446	2134 AL8 6.436	
1076 ST8 3.631	2136 AL8 5.447	2074 AL8 6.446	Group No. 12
8257 \$18 3.311	2135 AL8 5.497	2171 AL8 6.451	7303 FLIP 11.826
3457 \$18 3.831	2103 AL8 5.797	2108 AL8 6.451	7301 FLIP 11.903
2071 AL8 3.067	2233 ST8 5.798	2155 AL8 6.733	
2085 AL8 3.059	2118 AL8 5.804	5127 ST8 6.878	
2117 AL8 3.226	2201 AL 8 5 811	2149 AL 8 6 931	
2147 AL8 3.727	2161 AL 8 5 829	2109 AL 8 6 949	
2156 AL8 3.578	2075 AL 8 5 845	21007/20 01010	
	2154 AL 8 5 869		
Group No. 5	2181 41 8 5 878		
2124 AL8 4.202	2159 41 8 5 881		
2058 AL8 4.983	2183 41 8 5 9/5		
2200 AL8 4.951	2162 AL8 5 057		
2036 AL8 4.994	2102 ALO 5.957		
4305 ST8 4.332	4202 ST8 5 000		
9589 ST8 4.175	4303 310 - 5.990		
9590 ST8 4.108			
9591 ST8 4.888			
1075 ST8 4.469			

Group No.	9
7302 FLIP	8.130
7306 FLIP	8.140
7309 FLIP	8.337
7308 FLIP	8.648
Group No.	10
7307 FLIP	9.677
7305 FLIP	9.795
Group No.	11
7304 FLIP	10.408
Group No.	12
7303 FLIP	11.826
7301 FLIP	11.903

Rustam Khan

Introduction

≻x

۸

Simple Monte Carlo Example

Evaluate
$$G = \int_{0}^{1} g(x) dx$$
, with $g(x) = \sqrt{1 - x^2}$ $g(x)$

Mathematical approach:

For k = 1, ..., N: choose \hat{x}_k randomly in (0,1)

$$G = (1-0) \cdot [\text{average value of } g(x)] \approx \tfrac{1}{N} \cdot \sum_{k=1}^{N} g(\hat{x}_k) = \tfrac{1}{N} \cdot \sum_{k=1}^{N} \sqrt{1-x_k^2}$$

Why we need Temperature dependent cross sections When MCNP deals with continuos energy distribution only?

Ideally $\delta = f(E,T)$

MCNP & Temp Dependent XS

Rustam Khan

MCNP with resonance

• MCNP versions are equipped with

 $- \delta = \delta(E, T_o) \cdot [T_o \text{ is given Temp.}]$

- Current MCNP has no module which can create $\delta(\text{E},\text{T})$ from $\delta(\text{E},\text{T}_{\text{o}})$
- Codes like "HELIOS" can creat $\delta(E, T)$ from $\delta(E, T_o)$
- NJOY generates cross sections having different temp.
- Current MCNP has no module which can create $\delta(\text{E},\text{T})$ from $\delta(\text{E},\text{T}_{o})$

MCNP - Electric and Magnetic fields

- Magnetic field tracking with MCNP5
 - J. S. Bull1,*, H. G. Hughes1, P. L. Walstrom1, J. D. Zumbro1 and
 - N. V. Mokhov2

Current Core Model

Rustam Khan RRFM2010 29