
UNIVERSITY OF ZAGREB

FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

DIPLOMA THESIS no. 130

COMPARATIVE RENDERING OF
SIMULATION SCENARIOS

Hrvoje Ribičić

Zagreb, September 2010.

Acknowledgments

First of all, I would like to thank my mentors, who provided leadership and inspiration
when it was needed the most. Jürgen Waser and Raphael Fuchs helped out with both
the theory and implementation, and were willing to put aside a large amount of time
for discussion and assistance. Their help was invaluable, and I feel that I’ve learned a
lot from the time spent with them. Meister Eduard Gröller accepted me as his student,
and provided insightful comments about the thesis. His ability to spot weak spots in
a thesis is both useful and frightening. My mentor at my home university, Željka Mi-
hajlović, provided valuable comments and references. I’d like to thank her for always
being supportive and helpful, and especially so during the writing of this thesis.

It is also necessary to mention the people I’ve worked with - thanks go out to the
entire Visdom team, in particular to Benjamin Schindler, whose coding and software
engineerings skills I hope to reach someday. I would also like to thank the VRVis for
allowing me to do my internship there, preparing me for the thesis. The ERASMUS
programme allowed me to visit Austria and led to this thesis, so I’d like to thank all the
people involved in the exchange programme as well.

Finally, I would like to thank my family and friends, who shared the good and the bad
times with me. Without them, I have no doubt that this thesis would not have been
completed.

This thesis was supported in part by a grant from the Austrian Science Fund (FWF):P
22542-N23 (Semantic steering).

Contents
1 Introduction 1

2 Basics and Related Work 4
2.1 SPH . 4
2.2 PhysX . 7
2.3 Architecture and framework description . 7

2.3.1 Visdom . 7
2.3.2 World Lines . 9

2.4 Earlier work in comparative rendering . 11
2.4.1 Visualization of multi-variate data 13
2.4.2 Visualization of time-varying data 14
2.4.3 Visualization of ensemble data . 15

2.5 CUDA . 15

3 Simulation handling 17
3.1 Simulation system . 17
3.2 Abstract simulation node . 19
3.3 PhysX simulation system . 23

4 Scene rendering 26
4.1 Rendering subsystem . 26
4.2 Geometry rendering . 29
4.3 Particle rendering . 29

5 Aggregate renderings 35
5.1 Aggregate rendering pipeline . 35
5.2 Flood exposure . 37

5.2.1 Measuring exposure . 37
5.2.2 Results aggregation and visualization 40

5.3 Fluid-property visualization . 41
5.3.1 Property-texture extraction . 42
5.3.2 Texture application . 46
5.3.3 Comparative rendering . 47

6 Results and discussion 52
6.1 Performance . 52
6.2 Usability . 53

7 Conclusion 55
7.1 Future work . 55

7.1.1 Exploration in aggregate rendering 56
7.1.2 Multiple gradual events use . 57

1 Introduction

One of the most disastrous floods in recent history occured in New Orleans as an aftermath
of the hurricane Katrina. New Orleans is situated below the sea level, and its flood
protection system consists of a series of flood walls and levees channeling the flow of the
water. After the passing of hurricane Katrina, multiple breaches in the flood protection
system occured and more than 80 percent of the city was submerged in water. One of these
breaches, situated in the 17th Street Canal, was responsible for most of the flooding in
the city and had to be closed for the restoration efforts to continue. The army attempted
to close the breach by dropping large bags of sand, but soon found that the task was not
straightforward [27]. Bags failed to make a stable barrier and were washed away, and
multiple tries were needed to close the barrier.

This work was developed around a case study of breach closure procedures based on
the events that took place in New Orleans [32]. In the case study, various procedures
were tried on a scale model of the breach, and several possible solutions were found. The
idea of the research that this thesis is a part of was to create software support that would
allow for similar experimentation in a virtual enviroment. The behavior of the system is
based on simulation and visualization techniques applied to the results to allow for better
insight into the problem.

The main characteristic of the case study that our research was trying to improve upon
was experimentation. In the study, many various approaches to sealing the breach were
tried to see how they performed. Even though some of these approaches differed only
in parts of the procedure, each one required the study to be started anew. The ability
to explore how various choices taken at a certain time affect the state of the system is
hard to achieve in real-world laboratory models. This is due to the difficulty of returning
the system to a previous state and the work involved in doing so. However, a virtual
enviroment allows for saving and restoring states of a system, which gives the user the
ability to easily check how some changes would affect the system. In comparison to the
laboratory conditions, the cost of experimentation is decreased. The user can afford to
explore possibilities that would have been too expensive to pursue in a laboratory setting,
which may lead to new insight about the system’s behavior.

The type of exploration in which the user fine-tunes the parameters of the simulation
until a desired result is reached is called computational steering. Previously developed
solutions like SCIrun allowed the user to apply small modifications to the parameters
of a simulation in progress, but major changes required the simulation to be stopped
and started anew [26]. In our solution, the user manipulates simulation runs, which
are executions of simulations with different parameters and starting states. The user can
monitor simulation runs, control their execution and even change the settings at any point
of the run. Setting changes do not require the simulation to be restarted, allowing the user
to consider multiple alternatives at the same time. The introduction of computational
steering requires the development of visualization tools that will allow the user to deal
with the additional information and complexity that emerges. The first tool created was
World Lines, which provides a representation of the simulation flow and of the choices
the user has made, and will be talked about in more detail later on. The tools this thesis
focuses on are related to the comparison of simulation scenarios. The ability to experiment

1

produces many different states of the system, and while the user may experiment blindly,
to use the system efficiently there is a need to visualize the relationship of different states.

The prerequisite for the development of these new tools is the software support for
the simulation and rendering of a flooding scenario. The simulation engine we use has
been modified to work with our framework, and extended to allow for parameter changes
and state saving and retrieval. In our extended engine, these operations work by using
the least amount of resources possible, and provide a formal model that allows them to
be understood and extended easily. While we could not exactly reproduce the laborat-
ory conditions because of the complexity of the experiment, we developed a simulation
scenario that manages to capture the essential parameters of the problem. The scen-
ario is accompanied by views capable of rendering it. The views need to visualize the
scenario accurately and realistically enough for it to resemble the laboratory conditions.
The resulting simulation scenario allows users to perform experiments in an enviroment
that behaves and looks similar to the actual procedure and the laboratory recreation (see
Figure 1).

Real-world procedure

Laboratory recreation Simulated procedure

Flooded area

Figure 1: The differences and similarities of the procedures

Some experimentation with the simulation scenario revealed what properties these views
need to posess. A realistic view of the simulation scenario does not show how successful
the user is in closing the breach, nor does it show the hidden properties of the fluid.

2

A measure of success is needed to help guide the user’s experimentation towards more
favorable solutions. However, the complexity of the problem is such that the exploration
is not straightforward. One example is the behavior of barriers under stress. Barriers
that are considered stable break when more pressure is put on them later on, and the user
needs to be able to understand the fluid’s behavior in order to predict such events. The
prerequisite for gaining such an understanding is a tool that shows the parameters of the
simulation which are invisible in a realistic rendering of the fluid.

An additional challenge stems from the fact that these views are to be used with multiple
system states. To avoid having the user manually compare the results, the views need to
be modified to allow handling of multiple states. To this end, we have developed aggregate
renderings that serve two purposes. They extract the similarities of all selected states,
and allow a single simulation state to be compared with the created combination. This
allows the user to gain insight into both the similarities and the differences of states.

The final goal of the system is to create an enviroment in which the user can perform
complex experiments to find plausible solutions to real-world problems. While our tools
cannot help with the inherent difficulty of the scenario being explored, our hope is that
they will help reduce the complexity of managing such an exploration and help the user
gain new insights.

3

2 Basics and Related Work

To succesfully create a simulation scenario similar to the laboratory procedure, it is neces-
sary to prepare for the task by studying various previous solutions that might be useful.
The first problem is deciding on the method of fluid simulation that would be best for
replicating the conditions. We chose the SPH method, but instead of writing our own
simulation engine capable of simulating both fluids and rigid bodies, the PhysX engine
was integrated into the Visdom visualization framework. The integration was done in a
generic way, by creating an interface usable with different simulation engines. The design
of this interface is such that it can work with tools for controlling simulations already
present in the framework. Since the specifics of the framework and these tools affected
the development of the simulation infrastructure, they will be described in this section
in more detail. The choice of framework and simulation method also defined the format
of the data that was output, making it possible to look into various methods used to
comparatively visualize data.

2.1 SPH

The method of simulation used to model the behavior of water in the flooding scenario
is called Smoothed Particle Hydrodynamics (SPH). It was originally developed in astro-
physics by Monaghan[15] and Lucy[21] to study the dynamics of the behavior of gases.
Later on it was adapted to allow for simulations of incompressible fluids as well. A de-
scription of the method and its development can be found in Monaghan’s review of the
SPH method and its uses [22].

The basic idea of any fluid simulation method is to create a discrete representation of
the inherently continuous fluid that can be used to predict the future states of the fluid.
In traditional computational fluid dynamics (CFD), the space that the fluid occupies is
divided into smaller cells, creating a mesh or a grid. The interaction between neighbouring
cells can be described using Euler or Naiver-Stokes based differential equations. Given
the initial state of the cells, numerical methods can be used to solve the equations and
predict the future states of the cells. In contrast to traditional methods, SPH discretizes
the fluid by representing it as a number of particles. Each one of them has certain
physical properties e.g. density, velocity, temperature. The behavior of the fluid can then
be modeled by considering the pairwise interactions between particles. This problem is
known as the n-body problem, and is often encountered in physical modeling, where many
efficient solvers for it already exist [6] [1].

The difficulty of SPH modeling lies in converting the discrete particles to a continuous
description of a fluid. We expect to be able to evaluate the value of some property of the
fluid at any point that belongs to the fluid. For traditional CFD methods, finding out this
value requires an interpolation between the cells of a grid near the point of interest. In
the SPH method, a single point in the fluid can be affected by multiple particles. While
some processes like rendering can work with the particle representation of the fluid, the
model would be incomplete without the ability to determine the value of one of the
properties of the fluid at any point. SPH resolves this by defining ranges of influence of

4

individual particles and combining them into one continuous field from which values can
be extracted. The range of influence of a single particle is defined by its kernel function.
One such kernel function is the cubic function, named after the degree of the polynoms
used:

W (~r, h) =
σ

hv

1− 3

2
q2 + 3

4
q3

1
4
(2− q)3

0

if 0 ≤ ~r
h
≤ 1;

if 1 ≤ ~r
h
≤ 2;

otherwise

(1)

where q equals:

q =
‖~r‖
h

(2)

The kernel function takes two values as input - the vector distance ~r and the smoothing
length of the particle h. As can be seen from Equation 2, the smoothing length defines
how the input vector ~r is scaled. The value of the kernel function monotonously drops as
the norm of ~r increases, and reaches zero when the norm exceeds two smoothing lengths.

When the function argument ~r is taken to be the distance from the center of a particle,
the kernel function describes how the influence of that particle changes in space. Since
the value of the kernel function drops to zero after a certain distance, the influence of
individual particles is localized to an area defined by their smoothing length. To ensure
that the contribution of each particle is equal regardless of the smoothing length size,
the integral of the kernel function over its area of definition is required to equal one.
Depending on the number of dimensions v present in the simulation, the constant σ in
Equation 2.1 is chosen to fulfill this requirement by normalizing the value of the integral
to 1.

Using Equation 2.1 mentioned earlier, evaluating a property A of the fluid at some point
r can be done by summing up the contributions of all the particles using the formula:

A(~r) =
∑
j

mj
Aj

ρj
W (|~r − ~rj| , hj) (3)

where mj is the mass of the j-th particle, ρj is its density, hj its smoothing length,
Aj its property value, and rj its position. Since this formula can be evaluated at any
point in space, it allows the discrete particles to be interpreted as a scalar field. Figure 2
shows how kernels are combined to find particle properties. If it is necessary to find out
which points belong to the fluid, its border can be found as the set of points ~r where the
following equation holds:

∑
j

W (|~r − ~rj| , hj) = 0.5 (4)

5

Combined kernels Final attribute values

Individual kernels multiplied by property value

Figure 2: A property field of three particles extracted using SPH interpolation

Because kernel functions limit the effects of a particle to an area defined only by its
smoothing length, it is possible to evaluate Equation 3 more efficiently. This is done by
limiting the number of particles taken into consideration by using a space-partitioning
structure such as a KD-tree or an octree. As can be seen in Equation , when evaluating
the kernel function, only particles whose distance to the point in question is less than
2hj return a value different from zero. The contribution of other particles to the sum
in Equation 3 can be ignored. Space-partitioning structures can eliminate some distant
enough particles whose contribution would be zero, speeding up the calculation. As the
repulsive forces inherent to the SPH simulation work to spread the particles apart evenly,
such a strategy can work very well and prevent many unnecessary calculations.

While the grid-based methods often allow for greater precision and can model more
complex phenomena [4], the SPH method works well in situations where a free surface is
involved. The advantages of using SPH in modeling the simulation scenario come from
its meshlessness and the particle-based interaction model. The meshlessness allows for
quick changes in the shape the water may take, which is vital to simulating levee breaches
and adding barriers during the simulation. The particle-based interaction model allows
for easy interaction with dynamic objects, making barriers breakable. Both of these
advantages are vital for running a flood simulation scenario, and the SPH method has
been successfully applied to such scenarios previously [14].

6

2.2 PhysX

The interaction between the geometry and the fluid that the scenario requests severely
limits the number of engines that can be used to implement the simulation scenario.
The simulation engine chosen to model the behavior of all the objects in the scenario is
NVIDIA’s PhysX [25]. Originally made to enhance game physics by using the power of
modern GPUs, PhysX allows for the simulation of various physical phenomena - rigid
bodies, soft and deformable bodies, fluids, and more importantly, provides collision de-
tection and allows for interaction between objects in the scene. While the engine was not
built with the accuracy of simulations as a primary goal, it supports and produces realistic
enough models to be used to reproduce the scenario from the case study with sufficient
complexity. An additional advantage is that in contrast to engines like SPHysics [1], the
preprocessing phase required for efficient collision detection used in rigid body physics can
be done at runtime. This allows changes to geometry such as levee breaches to happen
without losing the benefits of fast collision detection.

However, the PhysX engine has some restrictions which make it more difficult to use in
a steering enviroment. Most parameters that regulate the physical properties of objects
can only be set at the time of the objects’ creation. This applies to fluid properties, rigid
body properties, and the parameters that govern interactions between the two. Since
the very idea of steering while considering alternatives requires that the parameters be
changed during a run, workarounds must be used to bypass this restriction. PhysX allows
the user to extract all the relevant data from objects, making it possible to use the existing
object data to create another set of objects with the same physical properties apart from
the parameters that need to be changed. The same approach needs to be used when
the static geometry is changed, as the collision information is updated only when objects
are created. While this approach allows parameter changes to be applied, the recreation
of objects is expensive due to the graphics card use, and should be avoided whenever
possible.

Additional restrictions related to the simulation scenario stem from the different types
of objects used. PhysX does not allow every type of interaction, making it impossible
to use it to the fullest. As an example, while it would have been better to model the
bags as deformable rather than rigid, interactions between particles and soft objects are
disallowed. Because of this, bags need to be modelled as rigid bodies, lessening the realism
of the scenario. Even though PhysX has its restrictions, it still offers a very large number
of features that other SPH simulation engines do not have, making it the best choice for
the simulation of the scenario.

2.3 Architecture and framework description

2.3.1 Visdom

The implementation part of this thesis was done as an extension of the Visdom framework.
Visdom is a visualization framework that allows a user to create a visualization pipeline
from premade and self-supplied components. It is developed jointly by the ETH Zurich

7

and VRVis, and has seen use in various research projects and the development of several
scientific papers [36][13].

The architecture of the Visdom framework is based on a two-tiered server-client model
with a thin client. The client controls the work-flow, displays the results, and handles
user interactions while all the calculations, rendering, and data management are done on
the server. The separation of the computationally intensive part from the interaction-
heavy one is meant to allow users access to the framework from low-powered and mobile
devices. The differences between the server and the client have influenced the choice of
the technologies used for their implementation. The server is written in C++ for reasons
of performance and to ease algorithm and library reuse, and the client is written in the
Flash-based Flex framework which allows for quick implementation of rich user interfaces
[3]. Due to the nature of libraries used, the server runs on x64 enviroments only, and is
deployable on Windows and Linux platforms. The client works on all major platforms
which support the Adobe AIR runtime [2].

The basic concept common to both server and client is the node. A node is the basic
building block of the system. It can be seen as a data processing component with a
certain number of input and output connectors. The client offers a design view in which
the user constructs a dataflow by adding nodes and connecting the input and output
connectors of nodes. The counterpart of the design view is the semantic view, which
consists of semantic windows created by nodes. Each semantic window contains a view or
an interactive component and is linked to other semantic windows, meaning that changes
in one window may be reflected in others [30]. Additional changes to the way nodes work
can be applied by changing the individual settings of the nodes, accessible by highlighting
a node in the design view. A sample node layout can be seen in Figure 3.

The nodes can be divided into four major categories according to their function: produ-
cers, filter nodes, view nodes, and configuration nodes. Producers are nodes that have no
input connectors and are considered the starting points of the data-flow pipeline. They
either load data from external sources or produce it according to the provided settings.
The majority of the nodes in the pipeline are filter nodes, which perform calculations
on the inputs provided and create new data. The ending points of the pipeline are view
nodes, which create semantic windows that serve as views. Configuration nodes extend
the functionality of connected nodes by adding new settings or semantic windows to an
existing node. They can be connected to multiple nodes at once by using the special top
and bottom connectors. These connectors do not participate in the horizontal data-flow
and can only be used for connecting the configuration nodes.

Once a user has finished arranging the nodes and wishes to execute the data-flow, a run
request is issued from the client menu. A run request specifies which calculations the server
must perform. It contains information about the nodes, settings and connections in an
XML format. For every node described in the request, the server creates a corresponding
node object capable of processing data, and executes the node when all of its connected
inputs are available. Once the entire request is processed, the server sends back all the
results the nodes have produced as a result of the request. The results are interpreted by
the client and used to update the semantic windows. The created node objects persist
as long as a request does not notify the server of their deletion. This feature allows the
nodes to posess internal states and the server to preserve the state of the data-flow even

8

View node

Con�guration node

Filter nodes

Producer nodes

Figure 3: A screenshot of a data-flow setup

if the connection between the server and the client is lost.

Subsequent run requests that do not change the layout of the nodes cause the execution
of only those nodes that need updating. The nodes that have to be updated are determined
according to changes in settings and connected nodes. This feature is especially important
for steering simulations, as it makes it possible to change the parameters of views without
having to generate the data gained from the simulations again.

While this system encourages the reuse of nodes and provides many designed to perform
common tasks, it is not always possible to decompose the desired functionality into nodes.
More complex functionality such as rendering or simulation handling cannot be spread
across multiple nodes. Rendering requires access to many common resources, and a
decomposition would require that these resources are shared between multiple nodes.
Since such a setup would be inefficient and hard to maintain, almost all the rendering
code remains within a single node. Another special case involves nodes that have an
internal state, such as simulation nodes. These nodes consider their inputs to be only a
specification of the initial state of the system. As these special cases are relevant to this
thesis, they will be explored in more detail later.

2.3.2 World Lines

World Lines is a visualization tool that allows the user to intuitively control the flow
of simulations and explore alternative scenarios in one comprehensive view [36]. They
are integrated into the client as a semantic window which appears when a World Lines

9

configuration node is created. This configuration node is connected to view nodes, and it
controls the settings of the nodes.

World Lines show each simulation run within the window as a horizontal panel called a
track. Different tracks take up different vertical positions, and the horizontal position and
the length of a track are determined by the start and end time of the run it represents.
Since different tracks can contain different settings and inputs, the time value alone cannot
be used to uniquely identify the state of the system. The combination of track and time
value called a frame is used instead. Clicking on a track sets the current active frame of
the system according to the point clicked. The active frame defines which data values
and settings are used to update all the semantic windows linked to World Lines.

In most cases, when a user begins to work with World Lines, no data will be present
in the system. Each track in World Lines is colored to show which frames have been
simulated. The user can specify which track he wants to execute and up to which point
by setting the active frame and pressing the record button. The World Lines interface
interprets the user’s actions and breaks them down as a sequence of execution requests that
are sent to the server. All the tracks on screen can also be simulated using a simulation
schedule, which defines in which order tracks and frames are executed.

When World Lines is started, the only track present is the base track, which describes
the settings of the simulation system. If the user has reached an interesting point in the
simulation that he wishes to explore with different simulation parameters, he changes the
settings of the system, creating a new track. This process is called branching, and involves
changing exactly one parameter marked as steerable. While it could be possible to change
multiple parameters while branching, the system is currently designed in such a way that
only one setting can be changed at every branch. It is possible to continue simulation in
both the original and the current track, and to do more branches in both tracks, allowing
the exploration to continue. Figure 4 shows how the World Lines window looks like after
a lengthy period of experimentation.

Figure 4: The World Lines window after a period of experimentation with the simulation
scenario

10

It is also possible to change settings in a track without branching. If a user changes the
setting value of an existing track, the entire track becomes invalid. The results already
present for that track are no longer useful because they have been created with different
settings. All children tracks also become invalid, and the effect propagates further, inval-
idating all descendants. This action causes the server to delete the data of the affected
tracks, requiring a resimulation for the results to be visible again. The simulate schedule
option is useful in such cases as it automatically resimulates all tracks.

Lengthy periods of experimentation can cause many tracks to be created, and World
Lines provides mechanisms for dealing with the emerging complexity. One problem is
screen clutter. With many created branches, it is possible that the user will not be
satisfied with the automatic resizing or that the resizing will create a layout that does
not emphasize the path of exploration the user is taking. To counter this problem, the
World Lines interface allows the user to manipulate the tracks and rearrange them. The
user can change the thickness and length of the tracks and their vertical positions. In
addition, tracks can be collapsed into their parent tracks, hiding them to make the tracks
important to the user more visible.

A remaining problem with using World Lines is how to learn from the experimentation.
Continued experimentation requires constant comparisons of tracks to find valuable in-
formation. Examples include finding out in which tracks a certain building is not flooded
or what causes a barrier breach to happen in certain tracks. Since this task is difficult
and requires much manual labor, World Lines provides a mechanism that offers visually
intuitive track ordering and coloring based on analysis criteria supplied by the user. This
approach is shown in Figure 5.

The core of this approach are the analysis nodes. When given a state of the simulation
system, the analysis node outputs a scalar value which describes the state according to
some quality the analysis monitors. In a special visualization mode, World Lines can use
this value to color the tracks using a transfer function and sort the tracks according to
value, giving the user visual cues that show differences among tracks.

The analysis results can also be presented in linked views. In this work, special views
have been developed which help the user understand the differences and similarities of
the selected tracks. These comparative renderings have been designed with different
approaches in mind, and some of them will be presented in the following section.

2.4 Earlier work in comparative rendering

The idea of using appropriate illustrations to compare sets of data is very old and has
been applied successfully in information visualization for a very long time. The simplest
approach towards visualizing the differences in data consists of using graphs or scatter
plots to create an image that shows correlation or progression in time in a way the user
can easily grasp. A comprehensive overview of these classical approaches to showing and
comparing data can be found in Tufte’s ”The Visual Display of Quantitative Information”
[34] . These visualizations are effective, but mostly concern data sets that are dependent
upon only one variable.

11

Figure 5: Tracks colored according to how much danger the buildings are in

Approaches for showing multiple dimensions in one picture exist as well, with parallel
coordinates being one example that works particularly well in terms of comparing sets
of data [18]. The parallel coordinates visualization consists of vertical lines, each corres-
ponding to a dimension of the data. Each line represents a span of values the related
variable can take, with the top position being the maximum and the bottom most the
minimum. For each data sample, points corresponding to the values of the sample are
found on the lines, and connected with a multiline. When a very large number of data
samples is placed in the parallel coordinates, the user may gain additional insight into
the data by observing the way the lines are grouped, allowing him to focus on desired
attribute values or detect outliers of interest. One example of how the parallel coordinates
visualization may look like is given in figure 6.

Parallel coordinates work especially well with linked views, an approach that uses mul-
tiple visualizations at once. The approach allows the possibility of combining visualiza-
tions such as scatterplots and graphs with more complex ones such as parallel coordinates
and actual renderings of data. In such a setup, the user can select areas of interest in
one visualization in a process called brushing [8]. The brushed values are highlighted in
other visualizations, linking the views together and allowing the user to filter the values
shown. A good example of how this technique can be applied to sets of real-world data
can be found in Weaver’s paper on visual analysis using cross-filtered views [37]. This
approach allows the user to examine sets of data for outliers and other interesting values,
and differentiate them in multiple views. The linked views can also be combined with
scientific visualization approaches, as shown in solutions like SimVis [11] .

12

Figure 6: A parallel coordinates visualization of car fuel consumption data. Taken from
the Protovis website [33]

While information visualization has many approaches that focus on comparison, sci-
entific visualization lacks commonly accepted methods that could be used for the same
purpose. Such a condition is far from unexpected though, as information visualization of-
ten deals with a large number of independent data items in a data set, making a method of
comparison vital for the finding outliers and trends. In contrast, scientific visualization is
primarily concerned with massive data sets which typically focus on a single phenomenon.
Creating a suitable visualization for such a data set is a big enough problem by itself, and
most approaches in scientific visualization are designed without even considering the idea
of comparison. Despite that, several approaches to comparing data for certain scientific
visualization tasks have been developed. While these approaches are not compatible with
the simulation scenario or the method of exploration used, they are worth being described
in more detail.

2.4.1 Visualization of multi-variate data

In scientific visualization, the data to be visualized can be described as a mapping that
assigns a scalar or vector value to each point in a multi-dimensional field. When the
mapping assigns more than one value to each point, the data is called multi-variate.
Multi-variate data commonly occurs in scientific visualization when more sources of data
are present or more than one quantity is measured. For example, in volume visualization
the same object might be scanned with more than one type of machine, producing multiple
values for each voxel. Since the connections between different values are important for
gaining insight into the data, a good visualization of multi-variate data is expected to
show more than one attribute at the same time in a clear and cohesive way. According
to a report on the visualization of multi-variate data, it remains an important problem
of the field, with many different approaches already existing, but each tailored to fit the

13

type of data set it is meant to visualize [10].

Visualizing multiple scenarios to compare them can be seen as a type of multi-variate
data visualization, as it also attempts to visualize multiple spatially related values with
the goal of giving insight into the connectedness of different attributes. One method
that deals with both multi-variate data and comparative rendering uses contextual cues
to explore data [38]. The idea behind the method is to combine all the layers of data
from different datasets, attributes and time values by using operators that combine these
values to create new ones. The user specifies an expression that uses the operators and
the layers to be combined.

The combination is done on a per-element basis, with the end result rendered in the
same way as the individual data layers. Based on the structure of the expression, a
tree depicting the various intermediate results is also rendered, allowing the user to see
the possibly complex process of recombination in more detail and to experiment with
different operators. The flexible nature of the expressions leaves the user a lot of space to
experiment, making it possible to create many different images. The flexibility also has
its disadvantages, as the process requires a lot of user engagement. Comparing fields can
require the specification of transfer functions for each field and the expression that links
the fields, making quick comparisons impossible. While the authors consider the idea of
the automatic generation of combination expressions as a part of their future work, no
such follow-ups have been made at the time this thesis was written.

2.4.2 Visualization of time-varying data

Another type of data that can be considered to be related to comparative rendering is
time-varying data. One of the goals in visualizing time-varying data is to show how it
changes over time, which also allows the user to compare various points in time. An
interesting approach to showing such changes is described in the earthquake visualization
made by Hsieh et al. [17]. A two-dimensional earthquake data set with a certain number
of time steps is treated as a volume to be rendered, with the third spatial dimension
being substituted by time. Several isosurfaces of the amplitude of the earthquake are
generated and shown together using transparency to make the isosurfaces distinguishable
from one another. Color cues are also used to signify the intensity of the amplitude. In
the resulting image, the user can see significant events as clearly distinguishable shapes.
Because time is used as one of the dimensions, the way the shapes change shows how the
earthquake unfolded. The idea of using a dimension of space to convey information about
time is powerful, but an approach similar to this one could not be used with World Lines.
The frames to be compared can come from different parallel worlds, and showing the way
they are connected would require a tree-like structure that cannot be shown using only
one dimension.

While the nature of the data the World Lines approach generates is different from
that of time-varying data, some methods developed for time-varying data can still be
used to provide additional information about the frames compared. Feature extraction
is a technique that usually requires knowledge about the underlying phenomena, but the
method described in the paper by Janicke et al.[19] attempts to create a general approach

14

to extracting features by using principles of information theory and automata theory.
The method uses a measure known as local statistical complexity, which calculates how
interesting a cell in a celluar automaton is based on its past and future states. The idea
of the measure is to find out how much information about surrounding cells is needed to
predict the future state of a cell. The authors of the paper use the measure to detect
interesting areas of fields by treating time-varying two-dimensional fields as automata
and applying a modified version of the measure to them. The approach manages to
detect structures similar to ones classic visualization techniques reveal without making
any assumptions about the type of the field analyzed. While the frames selected for
comparison in World Lines need not be temporally related in any way, the information
about how those frames were created still resides within the system. For each selected
frame, the preceding and following frames may be retrieved, allowing the use of the
described method to gain more information about the selected frames.

2.4.3 Visualization of ensemble data

In visualizations for the various types of data mentioned so far, the ability to make
comparisons is beneficial, but not the primary goal of the visualization. Ensemble data
contains heterogenous multi-variate and time-varying data sets produced with different
numerical models and different parameters. Comparing these data sets and finding com-
mon features is vital in visualizing ensemble data. Potter et al. [29] approach the task
by using multiple simple visualization techniques to show various statistical descriptors of
data. This includes techniques that map the values to their actual spatial representation
such as a heat map of the world, and simpler techniques such as graphs that show the
value of a statistical parameter as it changes over time. The statistical descriptors used,
such as the mean and the variance, are simple yet effective for reducing ensemble data to
multi-variate time-varying data which can be displayed using well-known methods.

This overview of various techniques for visualizing scientific data shows that the ap-
proaches attempted vary significantly according to the properties of the data and the aim
of the visualization. Because of this, the thesis will focus on the ways the data is acquired
through simulation first, then explain the classic rendering approaches used to show the
simulated phenomena, and only after that explain what attemps at comparative rendering
have been made.

2.5 CUDA

The NVIDIA CUDA parallel architecture is used in some compute-intensive parts of the
implementation to boost performance [24]. CUDA allows NVIDIA graphics processing
units (GPUs) to be used for general-purpose computation. GPUs typically have much
greater computing power than CPUs, but that power comes from the large number of
cores functioning in parallel. Programming parallel algorithms is a difficult task, and not
every algorithm can be efficiently parallelized. The requirement that an efficient CUDA-
using application must split the work into a large number of threads further limits the
problems that can benefit from GPU computation. An additional issue is the memory

15

usage. Because of the limited bandwidth between the graphics card and the CPU, memory
transfers between GPU and CPU memory must be carefully considered to avoid losses
in performance, which requires good knowledge of how the GPU transfers and retrieves
data.

While knowledge about how CUDA programs must be made to perform efficiently is
important for anyone writing or analyzing CUDA programs, it is not necessary to know
much about CUDA to understand this thesis. Details about the internals of CUDA have
been omitted from this thesis because a quality explanation of the subtleties of CUDA
would take up several pages. The CUDA reference manual serves as a good introduction
for any interested reader [23].

Despite all its drawbacks, CUDA can yield great speedups for many problems. Users
can take advantage of CUDA-accelerated applications if they have a modern NVIDIA
graphics card, and for professional uses, specialized hardware dedicated to providing raw
computing power exists. Since Visdom works as a distributed system, it is only necessary
to make sure that the server is equipped with CUDA-capable hardware. Because of this,
the choice of using CUDA in this thesis and in the framework is not likely to limit the
number of users capable of running it.

16

3 Simulation handling

The first problem addressed in the thesis concerns the simulation handling. The task
of introducing simulations into the framework was difficult by itself because of the way
nodes exchange data in the system. A standard node creates its output on the basis of
its input. One example of that is the FunctionNode, which performs an operation on two
inputs and produces one output. A more advanced example would include a node that
uses more than one time value - e.g., a node that calculates a derivative of its inputs needs
the current and previous value to approximate the derivative. Unlike the standard nodes,
a simulation node must use input values to create its initial state, but after that, all the
outputs are created based on this initial state. A special case happens when a branching
causes one of the input values to change, e.g. by modifying the levees geometry to create
a breach. In such a case, the node must decide whether the changes can be incorporated
into the current state of the simulation or whether the simulation has to be restarted,
causing the loss of all data. Using a simulation node alongside World Lines creates new
problems. The ability to jump to any frame at will requires that the simulation system
can revert its internal state to a previously used one, and recognize when it needs to
generate new data. The process of branching requires the parameters of the simulation
to be changed, and the internal state converted to match the new parameters.

From a design viewpoint, the problems that needed to be solved consist of:

• Finding an adequate representation of internal states within a simulation node

• Desigining mechanisms that allow for transitions between these internal states based
on changes in simulation parameters

• Extracting what parts of such behavior are common to all simulation nodes

This resulted in a design consisting of two vital parts - the abstract simulation node and
the simulation system. The abstract simulation node contains all the functionality com-
mon to various simulations, and controls a simulation system. The simulation system
performs the actual simulation, processes the input, and creates the output. The abstract
simulation node is represented by the AbstractSimulationNode class, and the ISimula-
tionSystem class is an interface that describes the functionality of a simulation system.
An UML diagram showing the classes and their relationship can be seen in Figure 7. The
abstract simulation node and the simulation system deal with different aspects of the
system’s complexity, and will both be talked about in more detail to explain the division
and how it affects the system’s capabilities.

3.1 Simulation system

A simulation system is a wrapper built around a simulation engine, designed to adhere to
the ISimulationSystem interface. The interface contains methods that allow the abstract
simulation node to control the system and handle its inputs and outputs. The simula-
tion system’s constructor is expected to initialize all simulation-engine related resources

17

+setSettings(in settings : SimulationSettings)

#createInitialState()

#findEarlierState(in fromFrame : Frame, in toFrame : Frame)

-run(in fromFrame : Frame, in toFrame : Frame)

AbstractSimulationNode

-lastFrame : Frame

-createPhysXEngine()

PhysXSimulationNode

+changeTimeValue()

+changeTrack()

+simulateStep()

+simulateSchedule()

WorldLines

+updateInput(in input : InputAdapter)

+isReady()

+updateSettings(in settings : SimulationSettings)

+advance(in relativeTime : double)

+getStatus() : StatusMap

+setStatus(in statusMap : StatusMap)

+setTrackStartTime(in startTime : double)

+setGlobalTime(in globalTime : double)

+reset()

ISimulationSystem

#regenerateSystem()

#regenerateScene()

#regenerateBarriers()

#regenerateFluid()

#regenerateEmitters()

-mPhysXSDK : PhysicsSDK

-mFluidParticles : FluidParticles

-mBarriers : BarrierList

-mTerrain : Geometry

-mFixedGeometry : Geometry

-mDrains : Geometry

-mEmitters : EmitterList

PhysXSimulationSystem

+Steers1

0..*

+Controls1

1

+timeValue : double

+trackName : string

<<datatype>> Frame

+Controls1

1

Figure 7: The UML class diagram of the simulation classes

to assure that all subsequent method calls can access the engine without problems. The
first method of the interface to be called is the reset method, which resets the internal
state of the system and prepares it for receiving data. Once the system is initialized,
the updateInput and updateSettings methods can be called. These methods check for
changes in the input or settings provided, comparing them to the ones the simulation sys-
tem is currently using. Once the differences are known, the methods call the appropriate
functions of the underlying simulation engine to apply the changes. While these methods
may seem simple, practice has shown that each change may trigger an expensive call of
the underlying engine’s functions. That is why an efficiently designed simulation system
must accumulate the effects of many individual settings or input changes. Since these
changes can be split between methods as well, the accumulated changes are applied only

18

when a simulation needs to be performed. To achieve this, the design invokes parts of the
simulation engine separately whenever a setting related to the part is changed.

Once the simulation system has been initialized and provided with the input and set-
tings, the run method can be used to perform the simulation. The run method accepts
only one parameter - the amount of time that needs to be simulated. While the method
may internally perform smaller timesteps to enhance precision, these are invisible to the
user of the interface. The run method is the elementary operation that can be invoked
from the interface. Any complex simulation scenario that involves changes in the input
or the settings must be broken down into multiple run calls with the settings or the input
changed between the calls.

The run method can only advance the simulation, and by itself it would not allow the
user to jump between frames. Because of this, the interface also contains status saving
(setStatus) and loading (getStatus) methods that allow for more complex behavior.
The status of a system consists of the values of all the variables in the simulation necessary
to reconstruct the state of the system, saved in a simple map which associates strings with
various parts of the status. By saving and loading status information, the interface can
be used to return the simulation to an earlier point in time, allowing branching to be
implemented. The status also serves as the output of the system, as the variables that
describe the system are often exactly the output the system is expected to produce. It
should be noted that the status itself is not a complete description of the internal state of
the system, as the correct settings and inputs are required to describe the state as well.

While these methods are enough to allow the simulation system to be used in conjunc-
tion with World Lines, a few other convenience methods have been added to the interface.
The most important one is setGlobalTime, which allows the current time value to be
given to the simulation system, providing information about the absolute time that has
passed since the beginning of the simulation. This method was added because the run
method in combination with the state loading allows for relative measurement of time
only, which has proven not to be sufficient for implementing more advanced behavior
such as gradual changes in the parameters. The global time value cannot be passed in the
settings because a run method may fragment a run. In this case, the global time value
needs to be updated after each part of a run so that gradual changes can be executed.
The method setTrackStartTime is also used for gradual changes only. It informs the
ISimulationSystem about the beginning of the current track, allowing it to find out how
long the change has lasted.

3.2 Abstract simulation node

The purpose of the abstract simulation node is to provide support for dealing with the
complex handling issues inherent to the Visdom framework and the World Lines technique.
A simple command issued in the World Lines interface may have to be decomposed into
setting changes, input changes and multiple simulation runs in order to be used with the
simulation-system interface. Depending on the data already present on the server, only
a number of those runs might have to be executed. Because this decomposition requires
detailed knowledge about the layout of the tracks, a simulation node cannot perform the

19

decomposition alone. Instead, World Lines reduces the command into smaller requests
that describe transitions from track to track and forwards them to the simulation node,
which decides whether and how these requests should be executed.

The run request that a simulation node receives is no more than a change in the settings,
consisting of four important values. The first two are the time value and track which form
a frame that describes data that needs to be produced after the node has completed its
run. Additional information that describes the target track is also supplied: when it was
started and what is its parent track. Based on these settings, the simulation node is tasked
with finding a saved state of the simulation system from which the requested frame can
be reached with the least amount of work. After the state is found, the simulation is run
until the desired frame has been reached. Depending on the frame time-step size, the run
may be broken up into multiple calls in order to save the intermediate results.

Since World Lines is implemented on the client and thus cannot know what data is
stored on the server, the duty of handling cases where previously created data can be
reused falls to the simulation nodes. The pseudocode for this procedure can be seen in
Figure 8. When a run request is issued, the first check a simulation node performs involves
seeing if any data is present on the server. In the case that none is present, the simulation
system has to create the first frame of the base track from the available input and settings.
After the simulation node is certain that at least one frame is present in the system, it
checks if the requested data is present on the server. If the data is present, no further
calculations need to be done, and the search terminates.

In the case that the requested data is not present, the node has to generate it. The
simulation node checks if any frame belonging to the requested group exists within the
server, and if it does, it finds a frame that has an earlier time value. Should no such frame
be found, the check is performed again, but in the parent track, seeking frames saved
earlier than the current track creation time. Once a fitting frame has been found, its
state is loaded into the simulation system. Since state loading is an expensive operation,
the simulation node also checks whether the simulation system is in an appropriate state
already. After the simulation system is properly prepared, the simulation runs up until
the point specified.

The principal disadvantage of this approach is that two tracks cannot be simulated at
the same time using only one run request. Each of these two tracks has different settings,
and since the run request is transferred as part of the settings, the settings of only one
track can be sent alongside the request. While the simulation node can transition from
one track to another by using a parent track to create data in a new one, it can only do
so if the appropriate start state has been prepared. To explain how World Lines must
create requests in more detail, an example will be given.

In the track layout described in Figure 9 there are two tracks, track 0 and track 1. Track
1 is created by branching off track 0 at frame B, and the last known saved simulation
state is present at frame A. When given frame C as the next target, the simulation node
will find frame A as the frame it needs to continue the simulation from, and run the
scenario as if the branch was made at frame A and not frame B. To counter this, World

20

function run(fromFrame, toFrame)

if the base frame does not exist then
createInitialState()

end if

if frame toFrame exists then
return

end if

previousFrame = findEarlierState(fromFrame, toFrame)
if previousFrame is not already loaded then

simSystem.loadStatus(previousFrame)
end if

for time = (previousFrame.time + frameTimeStep) to toFrame.time; step = frame-
TimeStep do

simSystem.run(time - lastTime)
simSystem.saveStatus(Frame(track, time))
lastTime = time

end for
return

function findEarlierState(fromTime, toTime, parentTrack, track)

if toFrame.track exists then
find an earlier frame on the starting track
return earlierFrame

end if

find an earlier frame on the parent track
return earlierFrame

Figure 8: The pseudocode of the abstract simulation node

Lines must create two requests: one that states frame B as its target and has the settings
of track 0, and another that states frame C as its target and has the settings of track 1.
To ensure that multiple requests are not issued all the time, World Lines keeps track of
which tracks have been simulated, limiting the number of requests sent. The system is
designed in such a way that the client will never issue a request that the server cannot
process.

The main disadvantage of this system is that the logic needed to process a user’s request
is split into two locations. The separation requires much information to be transmitted,
resulting in many requests which can be expensive due to the distributed nature of the
system. In the future, our intent is to refactor the system and make all the knowledge
about the layout of the tracks available to the server. This will cut down on processing
time and eliminate similar yet separate code that exists on the client and server.

21

A B

C

0

1

A B

C

0

1

Simulated data

Initial system state

After �rst run

Target frame reached

Target frame

Last frame
present in system

A B

C

0

1

Figure 9: An example of a simulation run that has to be broken up into smaller runs

Another function the simulation node performs is intermediate frame recording. While
the states of the frames that the user specifies must be recorded, it is practical to save
the intermediate states as well because of the jumping and branching. Since World Lines
allows the selection of only the frames whose time value is a multiple of the frame time-
step size, the intermediate states are saved at only those time values. To prevent the
overhead resulting from too many states being saved, each simulation node has an addi-
tional saving frequency property, which determines how often the intermediate values are
saved. While the status could be saved at every time step, the operation is both time and
memory intensive, and the user can make a tradeoff between faster exploration and faster

22

simulation. The frequency can be changed at any time without any processing costs as it
is not used during state retrieval, but only while saving states.

3.3 PhysX simulation system

To show how a simulation system has to be designed to conform to the common interface,
this section will contain more information about the way the PhysX simulation system
works and about its internal architecture. While most of the logic in the system is related
to adapting data to and from the PhysX format, there are two interesting parts of the
system that should be described in more detail. The first is the internal hierarchy, which
allows the system to function efficiently in spite of settings and input changes. The
hierarchy defines the effects of each change that can be done to the system in terms of
how it affects the individual parts that compose it. The second are the gradual changes
which occur when branching introduces a change that needs to be applied incrementally.

In order to better understand why efficient handling of input and settings changes is
important, it is necessary to understand the restictions placed on the user by the PhysX
SDK. The SDK provides support for many different types of physical phenomena by means
of classes that represent them. Objects of these classes are initialized with data, which
serves as the initial state, and settings specific to the phenomenon they are modeling. For
some objects, like those that represent particles, the settings cannot be changed after the
initialization, prompting the recreation of the object in question with each modification.
Since the PhysX engine uses the GPU as a source of computing power, the creation of
an object may include transferring the initial data to the GPU, making the operation
expensive. As many such examples of hidden expensive operations exist within the SDK,
they cannot be ignored, especially when handling simulations that take a significant time
to complete or handle great amounts of data.

One simple way of dealing with the problem would be to apply all settings at the same
time, and only then recreate all the objects. However, due to the design of the framework,
the passing of settings and input to a node does not happen at the same time, causing
the existence of two such phases. Another phase would be needed for the act of loading
a status, potentially tripling the amount of work that needs to be done. The objects
also contain interdependencies that require additional recreations - e.g. the only way to
change the geometry marked as fixed to support fast collision detection is to recreate the
scene, destroying all other created objects and requiring their recreation.

To resolve these problems, the system has been modified to delay applying the settings
and input changes up until the point the simulation starts. All the changes are saved
within a non-PhysX adjusted format, and the system is initialized on the basis of this
copy of all inputs and settings. Every change also sets one or more flags, marking which
part of the system the change influences. To account for the influence that some parts
have on others, some flags activate others after being changed. The parts can be ordered
into a tree-based hierarchy in which the setting of a part’s flag means that the flags of all
descendant parts get set as well. Figure 10 shows this hierarchy and how various changes
in input and settings affect parts of the system. Based on the flags set, various parts
of the system are recreated prior to using the simulation with the stored settings and

23

Buildings

Terrain Levees

Barriers

Solid body
interaction

Barrier
properties

Fluid
properties

Fluid - geometry
interaction

Emitter
settings

Particles

Inputs Settings

Scene

Fluid system

Barriers

Emitters

PhysXSimulationSystem

Figure 10: An illustration of how various parts of the system are connected. Arrows
indicate how changes propagate through the system.

inputs. To keep these stored values accurate, the design requires that when the status of
the system is saved, it is created from the stored data. This ensures that the copy is kept
accurate after a simulation run has ended.

The advantages of such an approach are twofold. As far as performance is concerned,
while storing the settings and input separately carries some small overhead, there is no
actual copying done. The overhead of the storage is insignificant compared to the cost
of recreating an object. The other benefit, perhaps more significant, is the clarity of
the design. Adding new settings or objects is relatively easy, and more importantly,
not likely to break any other preexisting part of the system. Our experience has shown
that many modifications were needed to actually use the node in the simulation scenario.
We assumed that should the system be used for a new purpose, new modifications will
have to be introduced as well. The presented design increases the reliability of the node
and increases the chances that it will be usable for its original purpose even after being
extended.

The bag dropping serves as an example of a behavior that was added later by modifying
the PhysX simulation system. While it may have been possible to implement such a be-
havior as a separate node that changes its output in time, making such a node compatible
with World Lines would require implementing functionality similar to that of the simula-
tion nodes. The solution chosen consisted of a node which allowed the user to define the
bags to be dropped within a track, while the simulation system would release them one
at a time. This setup mimicked the breach closure study, where the bags used to seal the
breaches were dropped by a helicopter one at a time, with a certain interval between bag
drops [32].

24

Introducing such a behavior into the system requires the use of absolute time values.
Unlike other behaviors modeled, the bag drops last for only a limited duration of time,
and can be considered a gradual change in the state of the system. Normal changes
of parameters are applied only once and require no additional actions, as the settings
mechanism ensures that the effects of these changes will be present at the correct time.
Unlike a normal parameter change, a gradual change must be integrated as part of the
system state. The information stored for the bag dropping mechanism contains the start
of the dropping process and the number of bags to be dropped. By using the absolute time
value available to the simulation system along with the track start-time, it is possible to
determine when and how many bags need to be dropped still. The transformation matrices
of the barriers are always present in the system status, but they only get updated if the
corresponding bags have been created in the PhysX engine. This allows the barriers to
be seen before they are dropped, so that the user can know when the bag dropping is
complete.

25

4 Scene rendering

Since this thesis concerns comparative rendering, a fair part of the work involved was
related to the rendering subsystem of Visdom. Because of that, this section contains a
description of the subsystem and the specific rendering modes used during the implement-
ation of the scenario.

4.1 Rendering subsystem

The rendering subsystem of the Visdom framework consists of a single node - the OpenGL
node. The functionality of the node is not spread out into multiple nodes because of the
complexity of rendering. Each node in the framework can be instantiated on its own,
and the rendering requires resources that would have to be shared among multiple nodes
performing the rendering. Separating the OpenGL node into multiple smaller nodes would
require tracking resources on a system-wide level, which would make it very difficult for
the nodes to be intuitively used and modified, and would likely leave them prone to errors.

However, the single node design comes with some difficulties as well. The requirements
placed on the node are not simple: the node must be able to:

• Process various types of input, some of which may not be present

• Control the behavior of rendering related to those inputs

• Be easily extendable

This means that all the complexity that would have been present in the multiple node
design is mirrored in the underlying architecture of the node. Because of this, the basic
concept of the OpenGL node is that of the Renderable. A Renderable is an object that
can perform rendering on a buffer when provided with the appropriate input, settings and
common resources. All rendering is done within the renderables, with all the other parts
of the OpenGL node concerned only with the management of renderables. To explain
the structure of the OpenGL node, various parts of the system will be explained in more
detail. An accompanying UML diagram is provided in Figure 11.

The basic class which controls and invokes the renderables is the OpenGLRenderer. The
renderer receives the settings and the input values, and based on the changes in the two,
makes a decision on what renderables to use or remove. Almost all renderables are tied to
inputs, and a renderable object usually lives as long as the input it visualizes is connected.
The only renderables not tied to inputs are the gadgets used to help the user to orient
himself by highlighting the origin or depicting the direction of the camera, which are
controlled by the node’s settings. For each renderable, the renderer loads a specification
of the inputs it is to pass on to the renderable. The specification consists of required and
optional inputs. A renderable is created only when all of the required inputs are present
and it is enabled in the node settings.

26

+updateInput(in input : InputAdapter, in settings : OpenGLSettings)

+updateSettings(in settings : OpenGLSettings)

+render(in imageInfo : GridDomain, out imageData : GPUVector<Vector4f>)

-initializeGL()

-setupPerspective()

-setupOverlayPerspective()

-setupRendering(in width : uint, in height : uint)

-initializeImageUpload(in width : uint, in height : uint)

-setupOrtographic()

-updateDefaultMaterial()

-retrieveRenderableInputDependencies()

-registerRenderables(in renderableFactory : RenderableFactory)

OpenGLRenderer

-mRenderTextureId : GLuint

-mRenderTextureNormalId : GLuint

-mFboId : GLuint

-mPboId : GLuint

-mRboId : GLuint

-mWidth

-mHeight

-mRenderManager : RenderManager

+registerRenderable(in name : string)

+unregisterRenderable(in name : string)

+getRenderable(in name : string) : Renderable

+getCurrentLights(out lights : vector<Light>)

+setCurrentLights(in lights : vector<Light>)

+renderStage(in stageName : string)

+getCamera(in name : string) : Camera

+setCamera(in name : string, in camera : Camera)

+getCurrentCamera() : Camera

+setCurrentCamera(in name : string)

+setProjection(in projectionData : ProjectionParams)

+getProjectionMatrix() : Matrix4x4

+getViewMatrix() : Matrix4x4

+getViewProjectionMatrix() : Matrix4x4

RenderManager

1

1

+instantiateRenderable(in name : string, in renderManager : RenderManager)

+template<RenderableType> registerRenderable(in name : string)

RenderableFactory

+renderStage(in name : string)

+setSettings(in settings : RenderableSettings)

+setShader(in shader : Shader, in type : ShaderType)

+setInput(in inputName : string, in data : AbstractData)

-mModelMatrix : Matrix4x4

-mVertexShader : Shader

-mFragmentShader : Shader

-mGeometryShader : Shader

Renderable

1

1

+position : Vector4f

+color : Vector4f

Light

+emissive : Vector4f

+ambient : Vector4f

+specular : Vector4f

+diffuse : Vector4f

Material

0..*

1

0..*
1

+position : Vector4f

+target : Vector4f

+up : Vector4f

-mViewMatrix : Matrix4x4f

Camera

1

0..*

1 *

+getInstance() : ResourceManager

+getMaterial(in name : string) : Material

+getShader(in name : string) : Shader

ResourceManager

+getCGProgram() : CGprogram

-mName : string

-mType : ShaderType

Shader

1

*

+Vertex

+Geometry

+Fragment

«enumeration»

ShaderType

*

0..3

Figure 11: A class UML diagram of various classes used for rendering in the framework.

While the renderer does have control over the renderables, it does not store the in-
formation about which renderables are actually present in the system. Whenever the
renderer requires a renderable object of a certain type, it requests it by name from the
RenderManager. The RenderManager creates the object if necessary, and when the ren-

27

derer decides a renderable object is no longer needed, it may destroy it as well. Because
the renderables are fetched by name only, no more than one renderable object of a cer-
tain type can be present in the system at the same time. While such a limitation may
seem too restrictive, it is useful because it forces more complex methods of tracking input
changes to remain within the renderables, making the already complex part of renderable-
initialization cleaner.

After handling the changes in the inputs and the settings, the renderer must perform
rendering to make these changes visible. Since the rendering is not directly output to
the screen but sent to the client instead, the results must be stored in an intermediate
container. OpenGL provides such functionality in the form of frame buffer objects (FBO),
which allow the rendering to be done to various separate buffers. One such buffer is used
to accumulate the effects of renderables and to retrieve the results as a byte stream.

The process of rendering is divided into phases that regulate the order in which the
renderables are executed. Each renderable can register itself for participation in a phase,
and it can participate in multiple phases in case multiple non-consecutive rendering passes
are needed. Registration for a phase means that a renderable will be activated sometime
during the phase and notified which phase it is participating in, allowing it to perform
different actions according to the phase it is invoked from. The idea behind the phase
system is to allow for a simple specification of execution order by supplying a number of
self-explanatory phases and leaving room for user-made ones. Some common phases are
the background phase, the rendering phase, the postprocessing phase, the overlay phase,
etc. It should be noted that within a phase, there are no guarantees on the order of
execution.

When invoked, each renderable may need access to common resources and settings,
and there are two manager objects that supply them. The first one is the aforementioned
RenderManager. Besides holding information about the renderables, it also provides in-
formation about the current rendering settings. While there are many renderable-specific
settings, some settings like the camera and lighting data are widely used and should
not be passed to each renderable individually. When needed, the renderables query the
RenderManager to get the current values of these settings, assuring consistency. The
RenderManager also provides a set of convenience functions that return values that could
be extracted using OpenGL functions, such as current matrix values, FBO ids, etc. The
ResourceManager is the second manager object, and its function is to provide storage for
calculated results and to manage resources. Its primary function is to store CG shader
programs and load new ones when they are requested. Another of its intended purposes
is the storage of results from other renderables. Since renderables that perform compar-
ative rendering can use the data generated by other renderables, the idea of the Resource

Manager is to allow intermediate results to be stored for future use.

While the OpenGLNode presents a powerful set of tools that allow for smooth com-
ponent design, the main parts of the rendering system are the renderables themselves.
Table 1 shows the renderables currently present in the framework, along with a short

28

Renderable name Renderable function

Clone renderer Renders multiple copies of the same tri-
angle mesh

Coord gizmo Shows the orientation of the camera

Fluid texture renderer Renders the particle texture

Geometry renderer Renders a triangle mesh

Origin sphere Shows the origin of the scene

Particle point sprite renderer Renders particles as a smooth fluid

Point renderer Renders particles as points

Screen-space ambient occlusion renderer Adds realistic ambient lighting

Table 1: The renderables currently present inside the Visdom framework

explanation of what each one does. The renderables used to show the simulation scenario
will be explained in more detail.

4.2 Geometry rendering

The basic renderable is the geometry renderer, which is used to render triangle meshes in
a quick and efficient way. The renderer uses Vertex Buffer Objects (VBO) to speed up
the rendering process and custom shaders to provide lighting effects.

The geometry renderer is useful for huge non-changing meshes such as the terrain, but
for objects that change often, it is inefficient. The large number of bags being dropped
meant that another type of geometry renderer had to be introduced in order to efficiently
render many copies of the same object. The other geometry renderer, called the clone
renderer, accepts as input a triangle mesh and a vector of matrices which describe how
the object’s coordinates are transformed to the world. The triangle mesh is preprocessed
and stored as a VBO and rendered once for each matrix supplied. Since it is usually not
the triangle mesh that changes, the renderer can perform very efficiently.

4.3 Particle rendering

One of the first problems that had to be addressed during this thesis was the rendering of
the particles produced by the SPH simulation. Approaches that try to represent particles
as geometry exist, relying on isosurface extraction to create meshes that represent the
fluid [31]. Their performance drops with the number of particles, reaching non-interactive
levels at as little as 3000 particles, far beneath the number of particles needed for a flood
in the simulation scenario. Other approaches capable of rendering a greater number of

29

particles try to render the fluid by finding sets of surface particles [5] or by creating and
deforming mesh representations of the fluid [16]. As the particle rendering is only the
basis upon which other comparative methods of rendering were to be built, the particle
rendering is based on a fast splatting-based method. Splatting is a technique in volume
rendering that generates a graphical primitive for every volume element and constructs
the final image by rendering them together [39].

The screen-space fluid-rendering with curvature flow method [35] treats the particles as
volume elements for splatting. The process happens in three stages. During the first stage,
the particles are rendered as spheres using a shader, and their effects are accumulated
into buffers which describe the surface of the fluid visible on screen. Because the rendered
spheres do not look as smooth as a fluid surface, in the second phase the fluid surface is
iteratively processed to create a smooth appearance. The third and final stage renders
the buffers on screen, taking into account lighting and fluid transparency. Each of these
stages will be explained in more detail. Figure 12 shows the basic idea of how the particles
are rendered, while Figure 13 shows the images created from the intermediate buffers.

The rendering of the fluid begins with the extraction of depth and thickness data. For
each pixel on screen, we imagine a ray emanating from the camera origin and passing
through the pixel. The two values that need to be found for the later stages are the
depth of the nearest particle encountered on the ray and the thickness of the particles
intersecting the ray. To find these values, two buffers the size of the viewport are created
and gradually filled up with information as the particles are drawn. The particles them-
selves are rendered as point sprites - camera-oriented quad shapes with equal sides. The
advantage of point sprites is that only one vertex is used to specify the quad’s location
and orientation, as opposed to the four sprites that would usually be necessary, drastic-
ally reducing the number of vertices needed to render the particles. To actually render
a sphere as opposed to a quad, a fragment shader is deployed to discard pixels that are
outside of the circle in the middle of the quad. The shader also manually outputs the
depth, increasing it depending on the pixel’s distance from the vertex, thus creating a
sphere. If the depth calculated for a certain position on screen is smaller than the one
already present, the new depth is stored instead. The thickness is calculated in a similar
way and added to the thicknesses already accumulated.

The end result of the first phase of rendering is a new description of the fluid, where all
the information from the particles has been reduced to two fields - depth and thickness.
Because of the simplicity of this form, in certain cases information about the actual
appearance of the fluid can be lost. If particles are overlapping, the measured thickness
of the fluid will be greater than the actual one because there is no way to tell how the
particles are placed from a single value, making a correction impossible. A similar problem
can be found when there are gaps in a fluid along the ray, as there is no way to store
or even detect the gaps. The disadvantages of the method also prevent the usage of
transparent objects in the same scene as the fluid, as there is no way of telling how the
fluid is positioned in relation to the transparent object. While it could be possible to
modify the algorithm to extract one layer of fluid after another and use them in a depth
peeling technique [12], the process would be highly expensive, both in terms of the time
needed to render the result and the modifications required in various shaders. There
would also be no guarantee that the fluid surface produced would not vary greatly in

30

a) Initial state b) Extracted depth
 and thickness bu�er

c) Smoothing of depth bu�er d) End result as perceived
 by the user

Point sprites are expanded
into spheres using a shader

depth

thickness

Figure 12: Various stages of the particle rendering algorithm

thickness depending on the number of layers peeled.

While the fluid surface from the first step could be rendered without any modifications,
it does not look like an actual fluid surface due to the fact that it is just stitched together
from particle spheres. In the second phase, iterative smoothing is applied to make the
surface seem more realistic. The idea of the smoothing process is to minimize the curvature
of the surface, where the curvature can be defined as the divergence of the unit normals.
In other words, the changes between the surface normals need to be made more gradual,
which will result in a smooth appearance. For each pixel, the curvature can be computed

31

a) Scene without particle rendering

b) Depth bu�er

d) End result as perceived
 by the user

c) Thickness bu�er

Figure 13: Images showing stages of the particle rendering algorithm

using spatial derivatives and second derivatives of depth. Since the curvature is the
divergence of the unit normal, each iteration can be seen as a step of an Euler integrator
that works towards minimizing curvature by changing the depth of pixels according to
the calculated curvature values.

To reduce the number of iterations that have to be made, the depth smoothing is

32

actually done on a buffer half the size of the screen produced by minifying the original
depth buffer. The changes in curvature propagate with greater speed, improving the
efficiency of each iteration, but the buffer cannot be used directly, and must be blurred
before being used in the rendering to avoid the appearance of artifacts. Figure 14 shows
the difference in appearance between the initial depth buffer and the smoothed depth
buffer.

a) Without smoothing, full resolution

b) After smoothing, halved resolution

Figure 14: The depth buffer before and after the depth smoothing.

33

The third and final phase of rendering involves combining the information from the
buffers with the already rendered scene to create the final rendering. The opacity of
the fluid grows exponentially with the thickness, while the color is influenced by several
factors. The basic color of the fluid is determined by the thickness, ambient lighting, and
diffuse lighting, with the color stemming from the reflected light being placed upon it.
For the lighting calculations to function, each pixel’s coordinates and estimated normal
must be converted from the projected space to the world space in order to calculate the
required vectors. To enhance the realism of the scene, a specific Perlin noise texture is
added to each particle, creating a more realistic look and allowing for tracking of the
fluid’s movement over time steps. As the noise is unique to each particle, the movement
of the surface patterns created by the noise offers a visual hint about the direction of the
fluid’s movement.

34

5 Aggregate renderings

Once the rendering of a single simulation scenario was completed, the next goal was the
creation of comparative renderings that would be immediately useful in experimenting
with the flooding scenario. To that end, two visualizations that enriched the rendering
with information taken from the particle fields are presented here. These renderings
are called aggregate renderings because they combine a large amount of data into one
simple representation which gives he user some idea of what is common to all states
being observed. The flood exposure aggregate rendering serves as a measure of how
successful the solution was, and the particle attribute visualization helps with discovering
explanations for the fluid’s behavior that cannot be seen with just a rendering of the
surface.

5.1 Aggregate rendering pipeline

Both of the visualizations designed for the simulation scenario have some common char-
acteristics, and before describing their specifics, a model of how data is processed in these
visualizations will be shown here. A diagram that describes a generic aggregate rendering
can be seen in Figure 15. The goal of an aggregate rendering is to extract and combine
data from multiple simulation states, and create a rendering that shows the combined
data within the context of one. This happens within three distinct phases, each one of
which processes the data in a different way.

The first phase is the data extraction. As the simulation states used as input can consist
of many different types of objects, combining them into one single simulation state that
can be rendered is very difficult or even impossible. The goal of the data extraction phase
is to create output that describes a feature or a property of the simulation state, and has a
representation which is the same for all types of simulation states that can be encountered.
Defining what property is to be described is very specific to the simulation at hand, but
logical choices are sets of objects that are guaranteed to be present in all the simulation
states, or properties that can be mapped to a specific area within the simulation. For
example, in the flood exposure aggregation, the building colors serve as the intermediate
form. As the buildings are present in all worlds, the vector of building colors has the same
dimensions in all worlds, and combining such vectors is a simple task.

The requirement that the representation of the extracted data is the same for all sim-
ulation states is understandable only within the context of the second phase, the data
aggregation phase. While the design of the data extraction phase is closely related to the
simulation and must take into account all the characteristics of the simulation to create
meaningful output, the aggregation phase simply combines the data in a universal way.
All the data that is given is combined using operators which produce only one value of
the same type. When the representation of the data is the same for all data produced
in the first phase, the operators are simply applied to all values, and another output,
called the aggregate data, is produced. The aggregate data has the same format as the
original data. When only one input is supplied to the data-aggregation phase, the output
is expected to be equal to the input value.

35

Simulation state Simulation state Simulation state

Extracted data Extracted data Extracted data

Aggregated data Context

Aggregate rendering

Data extraction

Data aggregation

Embedding

Figure 15: The various phases of a visualization that produces an aggregate rendering.
Blue rectangles represent simulation states, green ones represent extracted fea-
tures and data, and the pink rectangle is the final rendering.

The idea of using operators that combine data is similar to Woodring and Shen’s
operator-based comparative rendering method [38] that was described in Section 2.4.1,
but the operators that can be used in our context are much more restricted. The main
idea of Woodring and Shen’s work is that the user crafts expressions that determine how
various layers will be combined. In the context of World Lines, the problem with this idea
is that it does not adapt well to the process of exploration. The number of data fields that
could be used in the expressions changes dynamically because of the branching, requiring
the expressions to be adapted often, stifling the process of exploration. If there was a
way to reuse expressions and specify their inputs easily, possibly in a graphical way, it
would be possible to use the approach with World Lines. However, the current way the
tracks are visualized would only become more cluttered by introducing such an approach,
possibly diminishing the usefulness of the system. Instead, we use only simple operators,
such as the minimum, maximum and average operators, which produce the same output
regardless of the ordering of the inputs, and are still useful despite their simplicity.

The final phase of aggregate rendering is embedding, which consists of mapping the ag-
gregated data to primitives and rendering the scene. Since the aggregated data represents
only a certain aspect of the simulation state, rendering the data by itself does not provide
the user with much information. Because of this, the rendering is done as a part of the

36

rendering of one of the original simulation states, called the context. Using the context
provides information required to interpret the aggregated data correctly and allows the
user to compare the state of the world in the context with the aggregated state of all
the simulations. By changing contexts, the user can perform multiple comparisons while
using the same set of aggregated data, and visually detecting interesting differences.

With the various phases of the aggregate rendering explained, the visualizations which
are constructed according to these principles will be described in the following sections.
This will provide a basis for the discussion of how the user can interact with and learn
from the visualizations based on aggregate rendering.

5.2 Flood exposure

In order to properly explain what flood exposure means, it is necessary to understand how
the success of user actions in the simulation scenario is measured. In the original scen-
ario, bags were deployed between houses to create makeshift barriers. These multibarrier
systems proved to be more stable than the first attempt at closing the breach without
buildings. Since the buildings used in barriers were left flooded and unusable, the goal
of our experimentation was to try and find a solution which minimizes the number of
buildings used as parts of the barrier or abandoned in the flooded area. We use the term
flood exposure to describe the overall state of the buildings with respect to flooding. Al-
ternative metrics such as the time needed to close the breach or the quantity of materials
used were also considered. However, flood exposure was chosen as the important one
because it gives the user a clear goal to aim for. The flood exposure is also tied to the
other metrics, as more buildings lost causes the length of a barrier to increase, requiring
more material that takes longer to deploy.

After defining the metric to be used, two problems become apparent. The first one
involves finding a way to measure which buildings have been flooded. Once such a measure
has been chosen and applied, it is also necessary to find a way in which to meaningfully
show information about the buildings being flooded that stems from multiple system
states.

5.2.1 Measuring exposure

Estimating the risk of flood exposure is an easy task for a human observer that is presen-
ted with the rendering of the buildings and the particles. When allowed to interact with
a three-dimensional rendering of the simulated scene, the user can examine the buildings
at will and see which buildings are surrounded by high water and thus flooded. However,
this process is time-consuming and hard to extend to the analysis of multiple simulation
scenarios, as it would require a single rendering that combines the states of all the sim-
ulation runs. To provide an alternative to manual examination, we define a measure of
exposure that detects which buildings are flooded.

The basic assumption made while designing the measure is that flooding happens when

37

the height of the water reaches a certain level on either side of a building, causing the
inside of the building to fill up with water. Should the water not reach a high enough level
to flood the building, we still consider the building lost if it is surrounded by water. Thus,
two height thresholds are used - one to determine if a side of the building is exposed to
water, and the other one to determine if a side is letting water into the building. Buildings
exposed from all four sides and buildings flooded from at least one side are considered to
be flooded, while buildings exposed from at least one side are considered to be in danger.
With the basic state signifying that the building was not exposed to water, the output of
the measure is reduced to three possible warning levels per building: safe, in danger, and
flooded

This measure maps a very large number of states a building may be in to just three
categories. It could be argued that more warning should be added to allow a user to
distinguish the state of the buliding more clearly by using just the measure. While this
is a good idea for a single building, the simulation scenario contains between 15 and 20
buildings, each of which has to be assigned a value. The number of possible states of
the buildings in the whole scenario increases exponentially with the number of values the
measure can produce, and adding just one additional value can make the overview too
complex to be useful to the user. The choice to make the number of different values equal
to three was a balancing act between providing enough information so that the user can
see what is happening with a single building and not being overwhelmed when looking at
the whole scenario.

The main problem with the implementation of the measure was the need to find the
height of the water touching a side. If the simulation were performed using a classical
twodimensional grid-based method, the extraction of the height would be simple and
amount only to finding the height of the cells neighbouring the side. However, since
a three-dimensional non-grid based method is used, the extraction relies on finding all
particles that could be considered as touching the side, and finding out the height of
those. While the rendering produces a depth texture that could be used to find some of the
heights required, it cannot provide all the values needed. The buildings and barriers may
obscure parts of the fluid, making the information about the occluded sides unavailable.

Finding out which particles touch a side of a building is not particularly complex, as
it involves nothing more than finding all the particles positioned in a rectangular area in
front of the side. How far the area extends from the side depends on the properties of
the SPH simulation. In our simulation scenario we ignored the expected distance, based
on the kernel function form, in favor of a guessed value. This was done primarily because
of the inacurracies introduced by the simulation. They were caused by the small number
of particles in the scenario and the dynamics of particle-geometry interaction such as
collisions. The inaccuracies would require us to account for the changes introduced by
using an additional tolerance value, which would have to be guessed anyway.

Once the subset of particles that is of interest has been found, they are examined to
find the maximum value. During the examination, special care must be taken to consider
stray particles. Figure 16 shows a possible scenario in which some of the particles splash
and fly upward, reaching a level higher than the one the user would perceive as the
correct level from the rendering. Such behavior is problematic because it can cause the
maximum height to change rapidly when splashing occurs. This is undesirable given that

38

it may distract the user, or worse yet, make him consider the introduced error as genuine
behavior of the simulation and lead him to false conclusions. To remedy the problem, the
average height of all the particles is recorded, and used to determine whether the found
maximum value is acceptable. If the maximum height found is close enough to double the
average height, it is considered to be acceptable, and otherwise, it is replaced with double
the average height. This correction is based on the assumption that the particles will be
distributed uniformly in the space that they occupy, which is a reasonable assumption
given the repulsive forces present in the SPH model and the similar size of all the particles
in the simulation. While there is still a possibility that the found height will be incorrect in
cases of an uneven distribution of particles, the correction works well and does not require
a significant increase in computational power, as the average height can be calculated at
the same time as the maximum height.

a)

c)

b)

Figure 16: Various heights considered while determining the height of water touching a
side of a building. a) Maximum height found. b) Average height. c) The
acceptable range of heights, based on the average value.

Finding out which particles belong to which building is computationally intensive, as
each one of up to 25 000 particles present in the scenario must be examined to see if
it touches one of the sides of the 15 to 20 buildings. When rendering the results of
the simulation in real time, the operation needs to be performed for each frame being
displayed. For an interactive frame rate, the operation should be called no less than 20
to 25 times per second alongside other tasks which also use up computational power. To
allow for the measure to be used in real time, we implemented the search on the GPU using
CUDA to take advantage of the GPU’s processing power. This means that the calculations
need to be parallelized, with the number of parallel tasks as high as possible. For each
particle, one CUDA thread that checks it against all sides is created, and the heights
of the particles that touch a side are gathered together using a fast parallel reduction
procedure. The pseudocode of the procedure can be seen in Figure 5.2.1. Implementing
the checks in CUDA causes the average time needed to perform the analysis to fall from
120 ms to 50 ms, making it possible to use the measure in real time.

39

function findBuildingSideHeights(buildingData, particles)

set height array to zero with size noParticles * noBuildings * noSides
set particleExists array to zero with size noParticles * noBuildings * noSides

for each particle in particles in parallel do
buildingData = getBuildingData()
for each(building, side) in buildingData do
if particle belongs to side then
height[building][side][particle] = particle.height
particleExists[building][side][particle] = 1

end if
end for

end for

for each (building, side) in buildingData do
maxHeight[building][side] = maxReduce(height[building][side])
averageHeight[building][side] =
sumReduce(height[building][side]) / sumReduce(particleExists[building][side])

end for

Figure 17: Pseudocode of the CUDA height extraction

5.2.2 Results aggregation and visualization

The building-flooding data extracted from the simulation state consists of a vector of
values, one per building, which show if the building is in danger, flooded or safe. We
use this data to create an aggregate rendering. Our motivation comes from the often
encountered situation in which several ways of closing the barriers are tried, resulting
in multiple simulation states. The user wishes to see which buildings were successfully
protected in all of these states, and which buildings were exposed to danger or flooding
in at least one of the states. If the results are ordered according to severity, with the safe
state being least severe and the flooded state being most severe, the maximum operator
can be used to combine the results from various simulation states.

Once the combined results were obtained, the embedding of the calculated results was
done by substituting the colors of the buildings with new ones that signify the warning
level of the buildings. The colors used were chosen to be the same as the ones found
on a semaphore, with safe buildings colored in green, endangered ones in yellow, and
flooded ones in red. Since these colors are usually associated with various levels of danger,
the meaning behind them is apparent even to the user who knows nothing about the
underlying mechanisms (see Fig. 18).

The purpose of this view is to allow the user a quick overview when observing just one
simulation state and to give him tools that allow him to compare a simulation state with

40

Figure 18: Flood exposure visualization showing which buildings are affected by the
spreading water.

others. While the building colors allow a quick assesment of their state, the comparison
relies on the user examining the flooding both by using the water levels and the colors,
and noticing discrepancies.

5.3 Fluid-property visualization

The flood-exposure visualization has been made to solve the problem of letting the user
know how successful his efforts were, and in this aspect it performs quite well. However, it
did not help the user understand which changes to make in order to improve the situation.
Using the visualization, the user could only try a number of parameters and pick the ones
resulting in the best outcome. Exploring the scenario with only the flood-exposure visu-
alization available proved to be quite challenging, as events that were seemingly random
happened often, even in tracks that were unchanged for a long time.

The most common of such events was the fall of an already placed barrier that was
considered to be stable. When enclosing an area with barriers, the additional pressure
created by the water that could not pour out of the area almost always caused the de-
struction of at least one barrier, showing hidden weaknesses in previously created barriers.
To understand why the barriers fall and to predict when they will do so, a new type of
visualization is needed, one that shows the hidden properties of the particles.

The idea behind the visualization involved rendering the fluid in such a way that changes
in various properties of the underlying particles are seen by the user. The properties that
the SPH model defines and uses affect the simulation and can show changes in the fluid
that do not directly manifest themselves in the shape of the fluid or its appearance in
the existing particle rendering. Showing these properties would allow the user to make

41

better informed decisions, and hopefully help him find causes of unexpected behavior in
the simulation system.

The problem of showing various properties of the fluid is by no means new, as there
exists a collection of dedicated approaches called flow visualization [20] [28]. The most
commonly used approaches such as streamlines and isosurfaces assume that the domain
of the input data is a grid. The meshless SPH data cannot be used with these techniques
directly, but they can be applied by converting the data into a grid-based representation.
The conversion is based on using SPH interpolation to find out the value of a property
at every point in the grid, making the process very slow and inadequate for interactive
purposes. Some visualization techniques made specifically for SPH have been developed
[9], but the authors admit that much work remains to be done before they can be compared
to the techniques developed for mesh-based simulations.

Given that SPH visualization techniques are anything but standardized, our approach
was created to fit the needs of the simulation and the comparative rendering. Since the
user is already familiar with the fluid being rendered realistically in three dimensions, the
familiarity can be exploited by using the property information in combination with the
shape information to produce a new rendering. This approach borrows more from volume
rendering than from flow visualization, as the rendering is created by casting vertical rays
through the fluid to extract a two-dimensional texture and mapping it onto the fluid. In
this way, the user is presented with both shape and property information, and the format
of the extracted property texture allows it to be combined with textures generated for
other simulation states.

5.3.1 Property-texture extraction

Aggregating the information about the properties of the fluid into a texture can be done in
many ways, and the choice of how exactly to do it depends on what sort of information the
user needs, and how often the texture needs to be updated. The ray-casting approach used
in volume rendering creates a two-dimensional image to be shown to the user by following
a ray through the volume space for every pixel of the image. Values encountered along the
ray are composited in a certain way to produce the final color value for the pixel. Such
an approach could be made to work with the SPH particles, but even the most efficient
algorithm would require a number of interpolations proportional to the number of pixels
and the neighbours of a particle, making it too slow for normal use. Even if the cost of
the interpolations was to be removed by performing a resampling of the data to a grid,
the volume rendering itself would still slow down the interaction significantly.

To offset these problems, our approach casts vertical rays into the fluid to generate a
two-dimensional texture, and then applies the texture to the previously extracted fluid-
shape information. The process can be seen in Figure 19. One texture needs to be
generated for each simulation state. This process takes time, but since applying the
texture is a simple operation, the interaction is smooth as long as the user does not
modify the data. The disadvantage of the approach is that information about the three-
dimensional structures within the fluid can be lost. For a general SPH simulation, this
would be a problem, but in our simulation scenario, the height of the fluid is small in

42

comparison to its other dimensions, and we assume that the lack of three-dimensional
information does not hamper the user significantly.

The disadvantage is partially offset in the way the values are composited along the
ray. The user can choose between several modes of compositing which are similar in
concept to the ones used in volume rendering. An equivalent approach to front-to-back
and back-to-front compositing does not exist, as it is impossible to make parts of the fluid
transparent when the direction of the view need not match the direction of the rays. The
first-hit option functions much in the same way as in volume rendering, and extracts the
value of the property on the surface of the fluid. The maximum and minimum options are
similar to maximum intensity projection, extracting the largest or smallest property value
encountered along the ray, while the average option takes the average value of samples
found along the ray.

The difficulty of using these compositing techniques stems from the need to efficiently
perform SPH interpolation. Since it would be grossly inefficient to use all the particles
in every interpolation, space-partititioning structures are used to retrieve only a subset
of the particles. The particles within are close enough to the target point that all the
particles that need to be used in the interpolation are contained within it. The use of
these structures drastically lowers the time needed to do SPH interpolation, but their
construction takes a considerable amount of time. In cases where many interpolations
have to be performed on the same set of particles, the additional time needed to construct
the structure is small compared to the time saved by doing faster interpolation. In this
approach however, interpolations are done only once to create the texture, making the
construction time more important.

To find out which space-partitioning structure was best suited for our scenario, two
such structures were used and tested. The first structure used was the octree, a tree
data-structure in which each node represents a part of space, and its eight children are
created by subdividing the space of the node. Each leaf node contains all the particles
that might be needed to perform SPH interpolation of a point within the node. Finding
the particles needed for the SPH interpolation of a point amounts to finding the leaf that
contains the point.

The second structure was a two-dimensional rectangular grid, which divided the area in
which the simulation was performed into square-shaped cells. The cells are sized according
to the smoothing length of the kernel, so that when inserting a particle, it needs to be
placed only in the cell it belongs to and its eight neighbours. This allows the construction
to be done quickly, and the particles are distributed almost equally thanks to the way
the fluid particles are distributed. This structure was chosen with the specifics of the
simulation scenario in mind, and it is likely it would not fare well in any other SPH
simulation. If accuracy is to be sacrificed for speed, the cell size can be decreased so
that some particles which should be used in the interpolation are not used. The loss
in precision from using such a tradeoff can be small because of the way the cells are
structured. With the required cell size, the neighbouring squares overlap an area bigger
than the one that would be needed to cover all the necessary particles. While the cells
in this reduced-size grid will not overlap the entire needed area, they have a smaller
percentage of unnecessarily covered area, making the lack of coverage not as severe as it
would seem.

43

Texture extraction �nding the maximum value

Mapping the texture to the surface

Final result

Figure 19: The extraction, mapping, and rendering of the texture.

44

Structure Construction
time (ms)

Interpolation
time (ms)

Total time (ms)

Octree 1296 316 1612

Grid 7 261 268

Reduced-size grid (80%) 7 185 192

Table 2: Performance of various space-partitioning structures

The results of the test done to assess the performance of various structures can be seen
in table 2. The generated texture was made with 2500 values, 50 in width and 50 in
length, spanning the area of the simulation scenario. Three structures were tested - the
octree, the two-dimensional grid, and another version of the grid which uses a smaller cell
size. The result that we expected was that the octree would perform the interpolation
the fastest, but lags behind the other structures when the construction time is factored
in. When the actual tests were performed, a different result was observed, as the octree
performed the interpolation slower than either one of the grids. This behavior can have
two causes: the octree performing more interpolations, or more particles being taken into
account with each interpolation. Since the octree is constructed so that only particles
close to the target point are taken into consideration when interpolating, it is unlikely
that there is a big difference in the number of particles used by the two data structures.
Given that the octree can distinguish particles according to their z-coordinate, it should
even have an advantage in this aspect.

One big advantage that the grid structure has over the octree is the ability to easily
determine the maximum and minimum height of the fluid in one cell. Since the interpol-
ations are done along a ray that extends vertically into the fluid, the heights at which the
interpolations have to be started and stopped must be estimated. The estimate must be
conservative enough so that no part of the fluid is missed, but the better the estimate, the
fewer interpolations need to be done. The grid requires no additional efforts to find the
minimum and maximum height, but the octree offers no easy way to get these estimates.
Because of this, the octree must use estimates based on the bounding boxes of the fluid
particles. These estimates are not as accurate, causing additional interpolations.

Even if the octree was to perform the interpolation so quickly that the time spent
was insignificant, it would still be inefficient in comparison to the grids because of its
construction time. The construction of the grid structures is simple and takes up only a
small amount of time, making them the ideal choice when the fluid is changed often. The
time needed to construct the grid is dependent on the number of particles alone, and the
grid size does not affect it. Unlike the construction, the interpolation is affected by the
smaller number of particles taken into consideration in the reduced-size grid, and takes
less time to finish. Since the usage of the reduced-size grid does not result in an image
that differs significantly from the one created with the normal cell size, the reduced size
grid turns out to be the best choice of all three tested structures.

45

Should the height estimates of the octree be improved, and its interpolation cost fall
beneath the one belonging to the grid, in certain situations it might be better to use
an octree. In the case that a more detailed texture has to be generated, the number of
interpolations increases while the construction time stays the same. Given a large enough
size of the texture, the octree might be the better choice, but it is not likely that such a
large texture is necessary for the simulation scenario.

5.3.2 Texture application

After the texture has been prepared during the extraction process, it defines which prop-
erty values correspond to the xy coordinates in the scenario. This information can be used
in the previously described particle rendering to color the fluid by using the property val-
ues along with a transfer function to generate new colors. To find out the correct property
value for a pixel rendered on screen, it is first necessary to find out its three-dimensional
coordinates. The particle rendering already calculates this value from the depth buffer
as a part of the lighting calculations, making the xy-coordinates of the pixel easy to re-
trieve. The xy-coordinates are transformed into the texture space and the property value
is extracted and converted into the color of the pixel.

The size of the texture determines the quality of the resulting image. The difference
between various texture sizes can be seen in figure 20, which shows three screenshots of
the same simulation state made with a varying texture size. The artifacts present on
the low and medium resolution images appear because the values between the already
calculated ones are linearly interpolated using texture-lookup mechanisms. Such artifacts
may be sharply pronounced in highly sloped areas of the fluid. When the surface of the
fluid is close to vertical, a very large number of pixel values has to be generated using
only a small number of texture values, causing the surface to appear stretched in the final
rendering.

To prevent non-existing values to be taken into account when interpolating the values
at the edge of the texture, the shader does two interpolations instead of one. The first
interpolation occurs in the property texture, which contains the attribute values where
they were interpolated and zeroes elsewhere. The second is done in the mask texture. The
mask texture is a very simple texture in which any texture element where the interpolation
was successful contains the value 1, and the value 0 otherwise. Both of the textures are
two-dimensional, use the same type of interpolation, and are of the same size. When
interpolated at the same location, the factors used to scale texture elements contributions
will be the same.

When texture elements with undefined values are used in the property texture interpol-
ation, the value will be different than it would be with those elements included. Since the
undefined elements have the value zero, it is enough to normalize the interpolated value
with the sum of all weight factors of the defined texture elements. Because the factors of
the mask texture and the property texture are the same, the normalization value equals
the interpolated mask texture value. The property value that should be used can be
obtained by dividing the two interpolated values.

46

a) b) c)

Figure 20: The fluid rendered with the velocity magnitude shown, using different tex-
ture sizes to store the data: a) low resolution b) medium resolution c) high
resolution

As the purpose of this visualization is to allow the user to observe the properties of
the fluid, smooth interaction is expected in order for the user to be able to explore the
scenario. With this rendering method, the interaction is as smooth as in the original
particle rendering, but only as long as the property texture does not need to be updated.
The texture updates slow down the interaction because of the duration of the extraction
process, but need to happen only when the input data or one of the settings related to
the extraction process are changed. Unfortunately, this means that animating a sequence
of simulated states is slow, as the texture needs to be rebuilt for every frame rendered.
Using the visualization in such a way is possible, but not recommended, as its primary
purpose is to allow the user to explore an interesting state of the system and not to show
the changes of properties in time.

5.3.3 Comparative rendering

Despite the difficulties of using this visualization to show changes in time, it can still be
used to compare multiple simulation states in an aggregate rendering approach. The idea
of the approach is to combine the property textures of each of the states into one texture
using an aggregation operator, and to show the aggregated data in a way similar to the
one-state approach. With the properties combined, the user can detect areas where they
take on interesting values. An example would involve using a minimum operator to find
areas that have consistently high values of the measured property, or a maximum operator
to find areas with consistently low values.

The aggregation operators used in this rendering differ from the previously mentioned
ones because of the possibility that a texture contains values that can be interpreted as
there being no data present at the point. Since the texture extraction process is applied
to an area, it is performed even in places where there is no fluid present. The lack of a
property to extract at such locations is denoted by a special value which is written into
the property texture. When the aggregation operator is applied to combine the textures,
only the values that signify the presence of data are used to create the final result. If no
such value is present, the value for no fluid is written there instead. By combining the
data in this way, the operators actually create a union of all the shapes. An example of
the operator being used on textures can be seen in Figure 21.

47

Max operator

Figure 21: The process of combining multiple textures using the max operator. The color
blue represents the undefined areas.

Embedding this information into the standard rendering is troublesome because a simple
reuse of the rendering with the new property texture would show the proper values on the
surface of the context fluid, but all the other information would be lost. Without an idea
of the shape and the property values of the other fluids that are not shown, the rendering
does not perform a comparison, making it only marginally more useful than the normal
rendering. The problem was to find a way to represent both the shape of the context fluid
and the additional information gained by the aggregation in the same rendering.

The first option is finding a way to show the shapes of all the fluids at the same time.
Displaying the shapes in such a way that the human eye can recognize them is not an easy
task, and there has been some research into it. Bair et al. [7] investigate ways in which
two surfaces can be textured and colored in order to make them distinguishable from one
another. The color and texture selections were chosen by using a genetic algorithm to find
promising combinations, which were further improved after additional analysis. While the
results are somewhat distinguishable, the use of more than two layers was not discussed
in the paper. Even though the results of the paper were not directly usable in the thesis,
they did give a clear sign that showing the shapes of all the fluids without restrictions is
a very difficult task.

When using some restrictions, it is possible to show shapes using transparency and
different colors only. In the earthquake visualization [17] described in section 2.4.2, the
isosurfaces created for different magnitudes define shapes that are nested in one another.
These shapes are made distinguishable by using transparency and varying lightness of
colors. The outermost shapes are highly transparent and brightly colored, and the inner
shapes have different, but darker colors with less and less transparency as they approach
the innermost shape. By coloring the isosurfaces in this way, each layer of them can be
distinguished. Applying this approach to the rendering problem is difficult because of the
lack of a similar type of guaranteed nesting between the fluid shapes. However, if the

48

union of all the fluid shapes is considered to be a fluid shape itself, any individual fluid
shape is guaranteed to be contained in it.

Based on the principles displayed in the earthquake visualization, two shapes could be
rendered distinguishably - the context fluid and the fluid union. However, the problem
of applying the property textures onto them would be difficult for two reasons: first of
all, the earthquake visualization uses color to make the different shapes stand out. In
the property rendering, the color is reserved for showing the values of properties. Using
color to both highlight the shape and display the values would result in two different
sets of colors used to show the same values of properties, confusing the user. The second
and more important reason involves the user’s inability to perceive two stacked colored
textures separately. In many cases, the context fluid could only be seen through the
transparent fluid union, making the property colors useless. Although this approach had
not yielded any useful results as well, it served as another argument against using multiple
shapes.

Figure 22: Aggregate rendering of fluid properties

The approach which had shown itself to be successful used a simple solution that
discarded all shape information except the one from the context state, and managed to
show the rest of the aggregated values despite that. Since the bottom of the simulation
scenario is gray and even, it is possible to use the ground to show the aggregated values and
the shape of all the fluids. To accomplish that, a new graphical primitive was introduced
- a quad that floated just barely above the ground, colored according to the particle
properties in much the same way as the surface of the fluid was colored. Since the shader
that renders the data ignores the areas where the value of the data is undefined, the
shape drawn looks like a two-dimensional projection of the fluid union. The context

49

fluid is rendered as well, using the aggregated texture to color its surface. As can be
seen in Figure 22, the end result shows how the fluid has spread and contains all the
aggregate information, and the context shape is easily distinguishable as well. To show
how the various phases of the fluid property aggregation correspond to the ones shown
in the diagram pictured on Fig. 15, Figure 23 shows the diagram with screenshots of the
intermediate stages.

While it is our desire to use shape information from more than one simulation state, it
has shown itself to be impossible or very difficult. The chosen solution is a compromise.
It relies heavily on the properties of the simulation scenario, but manages to show the
aggregate information. The advantage of this approach is that the user is still free to
switch the context state, and thus select the fluid whose shape is to be rendered on
screen. An additional option the user has is to turn off particle rendering, causing only
the quad colored with the aggregate data to be shown on screen.

50

Aggregate rendering

Data extraction

Data aggregation

Embedding

Extracted data Extracted data Extracted data

Aggregated data

Simulation state Simulation state Simulation state

Context

Figure 23: Diagram showing the stages of particle property aggregation.

51

6 Results and discussion

When examining the system as a whole, its usefulness to the user can be measured in
terms of what it can do and how fast it can be done. The various types of interaction
with the system have been described in detail in previous sections, so this section will
focus on how the speed of execution affects the user’s ability to interact with the system.

6.1 Performance

To be able to judge how well the user can interact with the system, it is necessary to
know the time needed for the system to perform various actions and present the user
with a response. The times stated here are averages of measurements made when the
objects simulated were most complex. Assuming a frame rate of 25 frames per second
is interactive, the server must produce and deliver one frame to the client every 40 ms
for the user to percieve the interaction as smooth. The base overhead of any action
performed by the framework stems from its distributed nature. Even when both client
and server are running on the same computer, the cost of sending a request and receiving
the results amounts to 10 ms on average. The delay is caused by the socket interface used
to communicate data and the XML parsing of the requests and the results.

After the time taken by the framework is deducted, we are left with 30 ms in which
the simulation and rendering must be performed. The performance of simulation varies
greatly with the number of objects and particles in the scene, but in the most complex
scene, approximately 650 ms are needed to simulate one second of the scenario’s behavior.
Assuming a real-time simulation, each 40 ms frame takes 26 ms to simulate, leaving only
4 ms for the rendering to be performed. This short period of time is not sufficient for the
difficult task of rendering the scene, which takes up 22 ms on average. The large amount
of time needed to render the scene is caused by the particle rendering, which takes up
to 17 ms to render approximately 20000 particles, the maximum encountered when using
the simulation scenario.

The sum of simulation and framework costs leaves an amount of time which is not
sufficient to perform demanding rendering. When the simulation is performed in real-
time, the frame rate which the system is capable of sustaining falls beneath the desired
interactive one, clocking in at about 13 to 15 frames per second. However, it is not always
necessary or possible to perform the simulation in real-time. Given that the flooding
scenario takes a long time to unfold, it is practical to use larger time steps to see how
the state of the scenario changes. We have found that a time step of 0.5 seconds fits
the events well. When using such a time step, the sheer amount of time needed for the
simulation to be done eliminates the possibility of the user interacting with the system
as the simulation takes place. To allow the user to still be able to see how events unfold,
we take advantage of the framework’s ability to store data produced by the nodes. The
results of the simulation are calculated in advance when the user selects tracks of interest
using the World Lines. When the lengthy process of simulating the tracks is complete,
the system can be interacted with at acceptable frame rates.

52

The interaction described so far involves only the base functionality of the system
and not the comparative rendering. The performance problems are only amplified by its
introduction, as the production of data used for comparative rendering takes up additional
time. The flood-exposure visualization requires an additional 50 ms per track for the
building colors to be generated, and 200 ms per track are needed to create the attribute
textures used to color the fluid. For both of the aggregations, the costs of aggregating the
data are insignificant in comparison to the time needed to extract it.

While the 50 ms needed to calculate the flood exposure still allow for some degree
of interactivity while the calculations take place, the 200 ms required to explore the
properties of the fluid do not. This presents a problem similar to the one encountered
when handling long simulation times, but the same solution can not be applied in this case.
Unlike the data produced by the simulation, the extracted data is internal to the nodes,
and the framework does not offer a way to automatically save and reuse it. Instead, the
framework offers another solution for saving internal data by using the attribute system.
Each data object can have additional attribute objects attached to itself that persist
as long as the original data object. The attribute system can be used to associate the
extracted data to the input data, but the caching process is not straightforward. The
textures are generated from two data objects, the particles and the attribute vector,
instead of one, and manual checks that associate pairs of objects to cached data must
be added. When using the attribute system, it is possible to perform data extraction
calculations for each data object only once. This makes it possible for the user to perform
most of the calculations in advance and explore the results afterwards. Because there is
no data object the aggregation results can be mapped to, they cannot be cached. The
aggregation calculations must be performed every time the user changes the frame or a
setting.

However, it should be pointed out that the caching procedure is not a solution for the
problem, but only a remedy. In order to use the fluid-property aggregation as a part of the
interaction, the extraction procedure should be moved to the GPU, where the processing
power should reduce the long calculation times.

6.2 Usability

While most of the advanced functionality takes a significant amount of time to be ready
for use, these delays in the use of the system are not as noticeable as they may seem.
The people using the World Lines interface to explore the simulation scenario followed a
certain pattern of exploration. The pattern consisted of short simulation runs interspersed
with parameter changes. While the simulation delay was present at this point, because of
the shortness of the runs, it did not slow down the exploration significantly. The flood-
exposure visualization was used when multiple alternatives were compared, and while it
took some time to generate results for every track considered, the delay was acceptable.
Once critical tracks were identified, the fluid-property visualization was used to compare
them. All in all, the actions that took the longest to complete were used rarely, allowing
the exploration to proceed relatively uninhibited.

An additional concern that surfaced during the testing of the system revolved around

53

the use of memory. The framework lacks a memory management system that could delete
unused data and regenerate it if needed later on, meaning that all produced data continues
to reside in the memory. Given that most of the data produced is particle information
that takes up a lot of space, we wondered how much exploration the systen could support
before running out of resources. During an extremely detailed session of experimentation
in the simulation scenario that included over 25 tracks, the generated data exceeded two
gigabytes of size. While such an amount of data can be handled on any modern computer,
the event does show that in the case of a more complex simulation being handled by the
framework, a better memory management system will be needed.

54

7 Conclusion

The goal of this thesis was to develop a solution that would allow the user to interactively
explore a simulation scenario, and to find approaches that could be applied to many similar
tasks, in terms of both simulation and visualization. While it is possible to extract models
that describe how a generic process of simulation or comparative visualization works, the
experience of designing implementations of these models has shown that the specifics of
the modeled physical processes still have the biggest influence on the final solution. The
only thing that can be said to be common to the various approaches are patterns of user
interaction. The aggregate rendering model builds on this assumption by providing a way
in which many different visualization techniques can be extended to accomodate such
interactions. The simulation system is designed to extend existing simulation engines,
allowing them to support the exploration of parameters and events without requiring
significant changes to their internal structure.

In some ways, the system that was developed as a part of this thesis is a transitional
system. It mediates between the steering capabilities that World Lines introduces and
the classic visualization and simulation techniques. It may be possible that in the future,
new visualization techniques better suited to comparative rendering will be developed.
Right now, creating new techniques is hard due to a lack of knowledge about the needs
of the user and the nature of the insight that the user can achieve by examining multiple
simulation states. The users exploring the simulation scenario using our system help
define the goals that the next generation of tools aims to achieve.

The ever-increasing complexity of simulations that researchers are performing suggests
that sooner or later, there will be a need for tools that allow the user to steer incredibly
complex simulations and filter the enormous amounts of data created. This thesis is just
the beginning of the work that needs to be done to successfully tackle this challenge.

7.1 Future work

The further development of the system can proceed in many different ways. The idea of
using aggregate renderings to perform visual queries is powerful, and may serve well as a
tool that allows the user to quickly find frames with desired properties. The presence of
such a tool in the framework would open up the possibility of doing parameter studies by
having the system automatically create tracks that vary in selected parameters. Without
a powerful filtering mechanism, the user would have only a limited use of the wealth of
information generated by such an approach, as the aggregate renderings offer no way of
linking a specific property to a frame.

The aggregate renderings currently exist only for physical objects from which it is easy
to extract an intermediate representation. One big step towards proving that they are an
approach that can work universally would be applying them to the barriers. The difficulty
of that endeavour stems from the fact that the barriers are easily distinguishable, and a
visualization makes sense only if they can be tracked. Tracking the barriers across multiple
frames while aggregating the information about their positions is not an easy task, and

55

it would be the next logical step in the development of the visualizations related to the
simulation scenario.

The simulation could benefit from better memory management. It would be interesting
to explore whether the idea of a saving frequency could be replaced by dynamic data
management that would be used to save memory in memory-critical systems by removing
already present values from underused tracks.

As far as the performance issues of the system are concerned, there is unfortunately no
easy way of dealing with them. Most of the overhead is caused by the simulation engine,
and replacing it would be a very difficult task. Many faster SPH simulation engines
exist, but they lack the support for interaction with objects that is vital to the simulation
scenario. The fluid rendering is also not likely to be replaced until a new and better
method of rendering SPH data is created. The aggregation process could be improved
by attempting to use a different grid, as both a three-dimensional and a hexagonal grid
would likely perform better than the current one. Additional improvements could be
made by porting the sampling code to CUDA, and possibly getting direct access to the
PhysX-allocated particle buffer that resides in the GPU memory. It would be worthwhile
to explore whether the performance can be improved by using better hardware.

7.1.1 Exploration in aggregate rendering

As the example of the particle-property aggregate rendering has shown, adding a certain
degree of interactivity to the rendering can help compensate for not being able to show
all the data or to allow the user to experiment with the data. Since the way the user
is supposed to interact with the aggregate renderings using World Lines has not been
explained in more detail, this section will serve to explain how that interaction can occur,
and what changes should be made to it in order for it to be more flexible and more
powerful.

In the current setup of World Lines, the user can perform a selection of simulation
states only by choosing a time value and a number of parallel worlds of the current time.
This restricts the states that the user can select to the ones that have the same time value,
which limits the flexibility of aggregate renderings considerably. Without this restriction,
the same tools used to analyze parallel worlds could be applied to sequential time values
or similar states that were not grouped around the same time value.

These restrictions are scheduled to be removed in the next version of World Lines, and
replaced with a marker system which would allow the user to select an arbitrary number
of states in World Lines, either by clicking on particular frames or brushing an entire
sequence of frames on one or more tracks. However, once they are removed, the basic
problem of interacting with the aggregate renderings remains the inability to connect
aggregated results to the frames that influenced them. To find out what track caused
a value that stands out, the user must manually add or remove tracks and guess what
effects the changes will have on the rendering.

To counter this problem, a new type of interaction can be used, one which relies on the

56

ability of the rendering to detect how a primitive that the user has clicked on is connected
to the extracted data. For both of the aggregate renderings presented here, that problem
is solved easily. The flood exposure rendering needs only to detect which building the
user has selected. The particle property rendering can perform an inverse transformation
of the location the user has selected in screenspace into the space of the fluid, and map
that three-dimensional location to the property texture. Once such a connection is made,
it can be used to make a new selection of simulation states based on the properties of the
selected area.

An example of the interaction that would be possible in this model involves a user
examining a large number of states and trying to find out which ones of them have high
pressure near one barrier and low pressure near another. The user begins by selecting the
particle-property rendering, the density property, and the maximum aggregation operator.
The rendering shows the maximum values of pressure encountered in all simulation states
he had selected. The user locates one of the barriers in question, finds an area in front of
it, which should be marked as an area of high pressure if any simulation state has high
pressure in that area, and clicks on it. The click is mapped to the exact location in the
property texture, and a search of all the simulation states is carried out. The simulation
states which have a value at that point similar to the one found in the aggregated texture
are left in the selection, while all the others are removed. After the search is completed,
the user has a selection of simulation states with high pressure in the specified area. To
find those which have low pressure near another barrier, the user switches the aggregation
mode to minimum and repeats the process with the other barrier, further reducing the
number of tracks in his selection to contain only the ones which satisfy the conditions he
has specified.

The example shows how the user can perform a complex brushing of tracks by using no
more than selections of aggregation modes and clicks on the rendering in question. Even
though this type of interaction is interesting, it has not been implemented in the course
of this thesis. The reasons are a lack of time and the current architecture of the system,
which is distributed and assumes that all settings changes originate from the client. Since
the selection of simulation states is a setting, this model of interaction would require that
the server changes the settings too, something which is possible in this model only as a
workaround at this time, thus making it hard to implement. Despite that, it is certainly
a powerful addition to the set of analysis tools and will be explored in the future should
circumstances allow it.

7.1.2 Multiple gradual events use

The problem with the bag dropping and gradual changes in general is that they require
the running process to be fragmented. Whenever a new bag must be introduced into the
system, the object must be created and added using the appropriate SDK functions. That
event happens at a fixed time, and should a simulation system be ordered to perform a
run during which the event takes place, the run has to be split into two or more separate
runs. In general, using multiple gradual changes at the same time could cause the run to
be fragmented to the point where it becomes a danger to efficiency. Figure 24 shows the
fragmentation that would result when more than one gradual change was to be introduced

57

A

0

1

2

B

The track is fragmented, but rarely and at regular intervals

Both of the gradual changes have to be applied,
leaving the track highly fragmented

Dropping
multiple bags

Gradually increasing
the river speed

Figure 24: The occurence of fragmentation when using multiple gradual changes.

into the system. Two changes are introduced into the system - the dropping of the bags
in track 1 and a gradual increase in the river speed in track 2. The first change lasts
long enough that the bag dropping events are still present in track 2 along with the river
speed-increase events. As can be seen in track 2, unless the periods of the changes are
matched, the number of breaks that would have to be made in a run multiplies with every
gradual change added. When a sufficient number of gradual changes is applied, the run
can be subdivided to the point where only a miniscule amount of time must pass before
another event occurs.

A possible solution for this problem would require the ability to schedule events slightly
earlier or later so that multiple events can be handled at the same time. However, care
should be taken that these shifts do not reduce the quality of the simulation. Given that
only one gradual-change mechanism is currently present in the simulation system, such a
modification is not necessary at the moment, but may have to be implemented if more
gradual changes are added.

58

List of Figures
1 The differences and similarities of the procedures 2
2 A property field of three particles extracted using SPH interpolation 6
3 A screenshot of a data-flow setup . 9
4 The World Lines window after a period of experimentation with the simu-

lation scenario . 10
5 Tracks colored according to how much danger the buildings are in 12
6 A parallel coordinates visualization of car fuel consumption data. Taken

from the Protovis website [33] . 13
7 The UML class diagram of the simulation classes 18
8 The pseudocode of the abstract simulation node 21
9 An example of a simulation run that has to be broken up into smaller runs 22
10 An illustration of how various parts of the system are connected. Arrows

indicate how changes propagate through the system. 24
11 A class UML diagram of various classes used for rendering in the framework. 27
12 Various stages of the particle rendering algorithm 31
13 Images showing stages of the particle rendering algorithm 32
14 The depth buffer before and after the depth smoothing. 33
15 The various phases of a visualization that produces an aggregate rendering.

Blue rectangles represent simulation states, green ones represent extracted
features and data, and the pink rectangle is the final rendering. 36

16 Various heights considered while determining the height of water touching
a side of a building. a) Maximum height found. b) Average height. c) The
acceptable range of heights, based on the average value. 39

17 Pseudocode of the CUDA height extraction 40
18 Flood exposure visualization showing which buildings are affected by the

spreading water. 41
19 The extraction, mapping, and rendering of the texture. 44
20 The fluid rendered with the velocity magnitude shown, using different tex-

ture sizes to store the data: a) low resolution b) medium resolution c) high
resolution . 47

21 The process of combining multiple textures using the max operator. The
color blue represents the undefined areas. 48

22 Aggregate rendering of fluid properties . 49
23 Diagram showing the stages of particle property aggregation. 51
24 The occurence of fragmentation when using multiple gradual changes. . . 58

59

References

[1] SPHysics. http://wiki.manchester.ac.uk/sphysics/index.php/SPHYSICS_FAQ,
September 2010.

[2] Adobe Systems Incorporated, Adobe air system requirements. http://www.

adobe.com/products/air/systemreqs/, September 2010.

[3] Adobe Systems Incorporated, Flex: An open source framework for developing
web applications. http://www.adobe.com/products/flex/, September 2010.

[4] O. Agertz et al., Fundamental differences between SPH and grid methods,
Monthly Notices of the Royal Astronomical Society, 380 (2007), pp. 963–978.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, Point set surfaces, in VIS ’01: Proceedings of the conference on Visualization
’01, IEEE Computer Society, 2001, pp. 21–28.

[6] G. Amara, N-body / particle simulation methods. http://www.amara.com/papers/
nbody.html, March 2000.

[7] A. Bair, D. H. House, and C. Ware, Texturing of layered surfaces for optimal
viewing, IEEE Transactions on Visualization and Computer Graphics, 12 (2006),
pp. 1125–1132.

[8] R. A. Becker and W. S. Cleveland, Brushing scatterplots, Technometrics, 29
(1987), pp. 127–142.

[9] J. Biddiscombe, D. Graham, and P. Maruzewski, Visualization and analysis
of SPH data, ERCOFTAC Bulletin, 76 (2008), pp. 9–12.

[10] R. Bürger and H. Hauser, Visualization of multi-variate scientific data, in Euro-
graphics 2007 State of the Art Reports (STARs), 2007, pp. 117–134.

[11] H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser, Inter-
active feature specification for simulation data on time-varying grids, in In Conference
on Simulation and Visualization 2005, 2005, pp. 291–304.

[12] C. Everitt, Interactive order-independent transparency.

[13] R. Fuchs, J. Kemmler, B. Schindler, J. Waser, F. Sadlo, H. Hauser,
and R. Peikert, Toward a Lagrangian vector field topology, Computer Graphics
Forum, 29 (2010), pp. 1163–1172.

[14] J. N. Ghazali and A. Kamsin, A real time simulation and modeling of flood haz-
ard, in ICS’08: Proceedings of the 12th WSEAS international conference on Systems,
World Scientific and Engineering Academy and Society (WSEAS), 2008, pp. 438–443.

[15] R. A. Gingold and J. J. Monaghan, Smoothed particle hydrodynamics - theory

60

and application to non-spherical stars, Royal Astronomical Society, Monthly Notices,
181 (1977), pp. 375–389.

[16] R. Hoetzlein and T. Höllerer, Interactive water streams with sphere scan con-
version, in Proceedings of the 2009 symposium on Interactive 3D graphics and games,
2009, pp. 107–114.

[17] T.-J. Hsieh, C.-K. Chen, and K.-L. Ma, Visualizing field-measured seismic data,
in Proceedings of IEEE Pacific Visualization Symposium, March 2010, pp. 65–72.

[18] A. Inselberg, The plane with parallel coordinates, The Visual Computer, 1 (1985),
pp. 69–91.

[19] H. Janicke, A. Wiebel, G. Scheuermann, and W. Kollmann, Multifield
visualization using local statistical complexity, IEEE Transactions on Visualization
and Computer Graphics, 13 (2007), pp. 1384–1391.

[20] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, The state of the art in flow visualization: Dense and texture-based
techniques, Computer Graphics Forum, 23 (2003), pp. 203–221.

[21] L. B. Lucy, A numerical approach to the testing of the fission hypothesis, Astro-
nomical journal, 82 (1977), pp. 1013–1024.

[22] J. J. Monaghan, Smoothed particle hydrodynamics, Annual review of astronomy
and astrophysics, 30 (1992), pp. 543–574.

[23] NVIDIA, Cuda reference manual 2.3. http://developer.download.nvidia.com/

compute/cuda/2_3/toolkit/docs/CUDA_Reference_Manual_2.3.pdf, September
2010.

[24] NVIDIA, NVIDIA CUDA architecture: Introduction & overview. http:

//developer.download.nvidia.com/compute/cuda/docs/CUDA_Architecture_

Overview.pdf , September 2010.

[25] NVIDIA, PhysX features. http://developer.nvidia.com/object/physx_

features.html, September 2010.

[26] S. G. Parker and C. R. Johnson, Scirun: a scientific programming environment
for computational steering, in Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’95, New York, NY, USA, 1995, ACM.

[27] U. U. I. performance evaluation taskforce (IPET), Final report. https:

//ipet.wes.army.mil/, Mar 2007.

[28] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, The
state of the art in flow visualisation: Feature extraction and tracking, in Computer
Graphics Forum, vol. 22, John Wiley & Sons, 2003, pp. 775–792.

[29] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,

61

V. Pascucci, and C. Johhson, Visualization of uncertainty and ensemble data:
Exploration of climate modeling and weather forecast data with integrated visus-cdat
systems, Journal of Physics: Conference Series, 180 (2009).

[30] J. C. Roberts, State of the art: Coordinated & multiple views in exploratory visu-
alization, in Proceedings of the 5th International Conference on Coordinated & Mul-
tiple Views in Exploratory Visualization (CMV2007), IEEE Computer Society Press,
2007.

[31] I. D. Rosenberg and K. Birdwell, Real-time particle isosurface extraction, in
Proceedings of the 2008 symposium on Interactive 3D graphics and games, 2008,
pp. 34–43.

[32] A. M. A. Sattar, A. A. Kassem, and M. H. Chaudhry, Case study: 17th
street canal breach closure procedures, Journal of Hydraulic Engineering, 134 (2008),
pp. 1547–1558.

[33] Stanford Visualization Group, Protovis. http://vis.stanford.edu/

protovis/, September 2010.

[34] E. R. Tufte, The Visual Display of Quantitative Information, Graphics Press,
second ed., 2001.

[35] W. J. van der Laan, S. Green, and M. Sainz, Screen space fluid rendering
with curvature flow, in I3D ’09: Proceedings of the 2009 symposium on Interactive
3D graphics and games, ACM, 2009, pp. 91–98.

[36] J. Waser, R. Fuchs, H. Ribičić, B. Schindler, G. Blöschl, and
E. Gröller, World lines, in IEEE Transactions on Visualization and Computer
Graphics 15(6), 2010.

[37] C. Weaver, Cross-filtered views for multidimensional visual analysis, IEEE Trans-
actions on Visualization and Computer Graphics, 99 (2009), pp. 192–204.

[38] J. Woodring and H.-W. Shen, Multi-variate, time varying, and comparative
visualization with contextual cues, IEEE Transactions on Visualization and Computer
Graphics, 12 (2006), pp. 909–916.

[39] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, Ewa volume splatting,
in VIS ’01: Proceedings of the conference on Visualization ’01, IEEE Computer
Society, 2001, pp. 29–36.

62

Comparative Rendering of Simulation Scenarios

In the course of this thesis, a software solution that can be used to handle
the simulation and visualization of multiple flooding scenarios was developed.
Multiple alternatives can be simulated at once, and the user can jump between
various simulation states and explore them at will. New alternatives can be
explored by changing parameters or introducing events into the simulation.
The thesis is centered around the study of breach-closure procedures used to
repair the damage done to the levees of New Orleans after hurricane Katrina.
A simulation scenario resembling the original study was made and used to
explore alternative ways of closing the breach. The results of the simulation are
rendered to the user using the screen-space fluid with curvature-flow rendering-
method. To allow ease of exploration, additional views that allow the user to
compare simulation states were developed. These views show which buildings
are threatened in various states, and the properties of the simulated fluid
across multiple states. It is shown that these views follow a common approach
that can be used to create new comparative renderings.

Keywords: Fluid simulation, SPH, comparative rendering, visualization,
fluid rendering, computational steering, World Lines

Usporedni prikaz simulacijskih scenarija

U sklopu ovog rada je razvijena softverska podrška za simuliranje i vizualiza-
ciju vǐse scenarija poplavljivanja. Korisnik može ispitivati alternative mijen-
janjem parametera ili poticanjem dogaaja u simulaciji. Inspiracija za korǐsteni
scenarij je studija različitih načina zatvaranja proboja nasipa, temeljena na
dogadajima koji su uslijedili nakon što je tornado Katrina poharao New Or-
leans. Napravljen je simulirani scenarij koji sliči uvjetima iz studije, i korǐsten
da se testiraju različiti načini zatvaranja proboja. Rezultati simulacije se
iscrtavaju korǐstenjem ”Screen space fluid with curvature flow” metode. Radi
olakšavanja istraživanja, razvijeni su dodatni prikazi koji omogućavaju koris-
niku da usporedi simulirana stanja. Pogledi pokazuju koje su zgrade u opas-
nosti i svojstva simulirane tekučine. Pokazujemo da pogledi dijele zajednički
pristup koji može biti korǐsten za stvaranje novih usporednih prikaza.

Ključne riječi: simulacija tekućina, SPH, vizualizacija

63

