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ABSTRACT

This paper provides a performance comparison of
soft MMSE and max-log demodulators for multiple-input
multiple-output (MIMO) bit-interleaved coded modulation
(BICM) systems with imperfect channel state information.
We use the capacity of the equivalent modulation channel
as a code-independent performance metric. Our results show
that the conventional approach of mismatched demodulation
is noticeably inferior to optimal demodulators that are derived
by conditioning on the channel estimate right from the begin-
ning. Numerical simulations further demonstrate the impor-
tance of appropriate pilot power allocation.

1. INTRODUCTION

1.1. Background

Bit-interleaved coded modulation (BICM) is a promising
scheme for multiple-input multiple-output (MIMO) wireless
systems [1,2]. With BICM, a block of information bits is
mapped to transmit symbols via a channel encoder and a sym-
bol mapper which are separated by an interleaver. At the
receiver, a soft-output demodulator calculates /log-likelihood
ratios (LLR) for the code bits, which are deinterleaved and
passed to the channel decoder. Since MAP and max-log de-
modulation in MIMO-BICM systems are computationally ex-
pensive, many low-complexity demodulators have been pro-
posed in the literature. It was recently demonstrated [3] that
the performance of the soft MMSE demodulator proposed
in [4] is close to optimal for many system configurations and
operating regimes.

Soft-out demodulators for MIMO-BICM are usually de-
signed assuming perfect channel state information (CSI). In
practice, CSI is obtained via pilot symbol assisted channel
estimation. Estimation errors result in imperfect CSI that
causes conventional MIMO demodulators to be mismatched
and thereby deteriorates their performance significantly. De-
modulation in MIMO systems with imperfect CSI has been
first adressed in [5]. Taking into account the statistics of the
channel estimate, an optimal version of the max-log demodu-
lator has been proposed in [6]. Its performance in the context
of iteratively decoded MIMO-BICM was investigated in [7]
by means of EXIT charts. In a similar spirit, a modified
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soft MMSE demodulator using CSI statistics has been pre-
sented [8]; its performance was verified in terms of bit error
rate (BER) using an off-the-shelf LDPC code.

1.2. Contributions

The novel aspects of this work can be summarized as follows:

e By extending the optimal soft MMSE demodulator [8] to
arbitrary linear channel estimators, we show that the opti-
mal soft MMSE demodulator is actually independent of the
specific linear channel estimator used.

e Following [3], we assess the performance of mismatched
and optimal demodulators under imperfect CSI using the
mutual information of the equivalent modulation chan-
nel. This mutual information can be interpreted as max-
imum achievable information rate and provides a code-
independent performance metric.

e We compare the maximum achievable rates of mismatched
and optimal soft MMSE receivers for correlated and uncor-
related MIMO channels. As baseline systems, we use the
rates achievable with the mismatched and optimal max-log
demodulator, and the maximum achievable rates of demod-
ulators with perfect CSIL

e We investigate how the allocation of power to data and pi-
lots impacts the maximum achievable rate, thereby reveal-
ing the importance of optimal power allocation.

The paper is organized as follows. In Section 2 we intro-
duce the system model. Channel estimation and the various
demodulator designs are discussed in Section 3. Section 4
proposes to assess demodulator performance in terms of sys-
tem capacity. In Section 5 we present our numerical results.
Section 6 provides conclusions.

2. SYSTEM MODEL

Fig. 1 shows a block diagram of the MIMO-BICM system
considered. There are Mt antennas at the transmitter and
Mg, antennas at the receiver. The MIMO-BICM transmitter
first encodes a length-K sequence of information bits b =
(by ---bg )T into a length-M sequence of code bits by means
of a channel code (thus, the code rate equals R= K /M). The
code bits are passed through a bitwise interleaver II. The re-
sulting sequence of interleaved code bits d = (d; ---dM)T
is scrambled by a pseudo-random sequence q. The uni-
formly distributed, interleaved, and scrambled code bits are
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Fig. 1. Block diagram of a MIMO-BICM system.

demultiplexed into M7 antenna streams (“layers”). In each
layer kK = 1,...,Mr, groups of B successive bits d,, x =
(din)+(k-1)B+1 " - dimy+48) 7> With {(n) = (n — 1)MrB
are mapped to symbols S,k from a symbol alphabet A of size
| A| =25 and mean power Es £ 75 "¢ 4 la|*. The transmit

vector at symbol time n is given by s, £ (85,1 - .- SpMp)T
and carries Ry £ BMr interleaved code bits d,,.
Assuming block flat fading, the length-M g receive vector

at symbol time n is given by

=Hs, + w,, n=1,...,N. (D
Here, H denotes the M g x Mp MIMO channel matrix, w,, ~
CN(O, 02 1) denotes i.i.d. complex Gaussian noise, and N =
M /(BMTr) is the block length. By stacking the columns of
the channel matrix H into a vector h = vec{H} and defining
Sn =sL @1, (1) can be rewritten as

n=9Sh+w,, n=1,...,N. 2)
The channel vector h is assumed zero-mean complex Gaus-
sian with covariance matrix Cp, h ~ CN(0, Ch,).

For channel estimation, the pilot vector sequence
P1,---,Pn, of length N, > Mr is transmitted during a train-
ing phase. We define P = (P{ ... P} )T with P, = p ®1
and assume orthogonal training sequences ie, PP =

N, P1. The total training power is E, = N,P. The recelved
pilot sequence vector of length N, Mz equals

¥, =Ph+w,

with the length-N, Mg noise vector w ~ CN (0, 02 I).

3. MIMO-BICM WITH IMPERFECT CSI

The receiver structure employed is shown in Fig. 1 and con-
sists basically of a demodulator and a channel decoder. The
demodulator calculates bit LLRs which are descrambled by
the sequence g = 1 — 2q, deinterleaved, and then passed to
the channel decoder. The decoder finally obtains decisions
for the information bits. In addition, a channel estimator (not
shown in Fig. 1) provides an estimate H of the channel based
on y, and the known training matrix P.

3.1. Channel Estimation

LS and MMSE Estimator [9]. An estimate of the channel
matrix is obtained according to H-= unvec{h} with

h = Ay, = A(Ph +W). (3)

Here, A is a M7 Mg x Np,Mpg full-rank estimator matrix.
With our assumption of orthogonal training sequences the

LS channel estimate simply reads his = —pP ¥p- An alter-

native is provided by the MMSE estimate which equals

» 1 ~ . _ E -1
hyvvse = O—QEPHyp, with X = (Chl + 0_;’1)
w w

Posterior Channel Distribution. We next determine the
posterior density f(h|h) of the channel h given the estimate

H. Since h and W are independent and Gaussian, (3) implies

h
that z = (ﬁ) ~ CN(0,C,) is Gaussian with covariance

c (S Cf,
*"\Cin Ci)’

where Cj; ,, = APCp and C;, = APCLPFA# + 02 AAH.
This furthermore implies [9] that conditional on h the chan-
nel h is also Gaussian with conditional mean equal to the
MMSE estimate My = Ch’ﬁC}»—llh and conditional covari-
ance given by the Schur complement of Cy, i.e., Ch|ﬁ =
C; - Cfg{hcﬁcﬁ,n Invoking the assumptions that P is or-
thogonal and A has full rank, we obtain after some algebra
Py = hywvse and Ch|ﬁ = X and hence

h/h ~ CN (hwvse, T). (4)
We emphasize that this result holds true for any linear estima-

tor (cf. (3)) provided the estimator matrix A has full rank.

3.2. Genie and Mismatched Demodulation

From now on, we will drop the symbol time index n to sim-
plify notation. Assuming perfect CSI, the optimal demodu-
lator calculates the posterior likelihood ratios (LLR) of the
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The last expression, obtained via the max-log approximation,
will be referred to as genie max-log demodulator. The con-
ventional approach to deal with imperfect CSI, termedAmis-
matched max-log demodulation, replaces H in (6) with H.
Since max-log demodulation tends to be computationally
expensive, [4] proposed a soft demodulator based on (linear)
MMSE equalization and per-layer max-log LLR calculation.
The MMSE equalizer output is given by

— efsy" H} (E{yy"H}) 'y =Wy ()
with the Wiener filter

éMMSE

W = H¥ (HHH + ‘;—%I)_l. ®)

Assuming that the residual interference at the equalizer output
is Gaussian, the approximate LLR for the ith bit in layer [ is
subsequently computed according to

AMMSE sMMSE
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Here yy = [WH];;, 07 = p; — pf, and A? denotes the set
of transmit symbols, whose bit label at position i equals b.
The genie MMSE demodulator just described assumes per-
fect CSI. Practical implementations use a mismatched MMSE
demodulator in which the true channel H in (8) is replaced
with a channel estimate H. We note that the performance of
mismatched max-log and MMSE demodulation depends crit-
ically on the actual channel estimate.

3.3. Optimal Demodulators

The mismatched demodulators do not exploit the statistical
information about h conveyed by the channel estimate h ac-

cording to (4). Rather than replacing H with H in the final
results (6) and (8), this replacement should be made right in
the beginning, i.e., the conditioning in (5) and (7) should be
with respect to H instead of H. Using the relation

F(v1s,50) = [ 7(yis, H) (R
and the Gaussianity of the densities involved, we obtain
yls,ﬁ ~ CN(ﬁWSES, SusH 4 0'1201) .

with ﬁMMSE = unvec{flMMSE} (see Section 3.1). This dis-

tribution is again independent of the the actual channel esti-

mator used and leads to an optimal max-log demodulator that
2

replaces — =y — Hs||* in (6) with the metric

" (y — Huses)
—logdet (Ss+021)

(y — Hyvses) (Ss+o2I)”

with g = (ST®I)2(S®I). This differs from the mismatched
max-log demodulator in that the agpropriate covariance ma-
trix 3 + 021 is used instead of o2 I and in that there is the
additional log-det term that depends on the symbols.

In a similar spirit, [8] proposed an optimal soft MMSE de-
modulator given by

= g ~ 1 —~
SMMSE = g{sy# H}(E{yy"H}) y =Wy. (9
Using (1) and (4),i£is straightforward to show that the modi-
fied Wiener filter W equals

W _ 0H = T H s, 93!
8

The matrix 3 equals the sum of Mg x Mg diagonal blocks
of 3, i.e., S = Zz 3, with 3 = (el ®I) (1 ®1)
(here e; is the [th umt vector of length Mr). It is seen that

the mismatched and optimal Wiener filter differ by S which
accounts for the additional “noise” caused by the channel es-

timation errors. The lthe element of sMMSE equals
SE _ -~
ME = fusi + 2,

where i = [WHMMSE], |, and 2; captures the residual inter-
ference whose power equals 62 = ji; — fi?. Assuming that the
interference z; is Gaussian, the optimal MMSE demodulator
computes the per-layer LLRs

AMMSE

1
— | min |§}™ SE _jus|?| .

=2 .| 2MM
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4. DEMODULATOR PERFORMANCE

We consider an equivalent “modulation” channel (see Fig. 1)
that comprises the space-time modulation, the actual fad-
ing channel, and the soft demodulator. The input of this
equivalent channel is given by the interleaved code bits d
and its output is constituted by the (approximate) LLRs,
generically denoted A (these LLRs are provided by the ge-
nie/mismatched/optimal max-log or MMSE demodulator).
We adopt the approach from [3] which proposed to use the
mutual information R £ I(d; A) of the equivalent modula-
tion channel as a code-independent performance measure for
MIMO soft demodulators. This mutual information can be in-
terpreted as maximum rate that can be achieved with a given
demodulator (in the sense of allowing asymptotically error-
free communication). A mathematically precise justification
of this interpretation was recently provided in [10].

For our setup, it can be shown that (recall that Ry = BM7)

BMT 1

F(A
R= Ro——z Z/f Axldy log2f(A(|dZ) dAy, (10)

k=1 dr=0
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Fig. 2. Comparison of MIMO demodulators for (a) 2 x 2 and (b) 2 x 4 uncorrelated MIMO channel.

where f(A) %Z;FO f(Ag|dy). Analytical expressions
for the conditional distributions f(Ax|d) required for calcu-
lating the maximum achievable rate are unknown but for rare
special cases. Hence, these distributions (and the capacity R)
are generally determined numerically via Monte-Carlo simu-
lations.

5. NUMERICAL RESULTS

We next assess the performance of the previously discussed
demodulators in terms of the maximum achievable rate in bits
per channel use (bpcu). We consider M1 x Mg = 2 x 2 and
2 x 4 MIMO-BICM systems with Gray-labeled 16QAM of
mean power E; = 10 (here, Ry = 8bpcu). The pilot power
was chosen to be £, = 5. The SNR was varied by changing
the noise variance o2,.

5.1. Capacity for Uncorrelated Channel

Fig. 2 shows the capacity versus SNR for an i.i.d. MIMO
channel, ie., C, = I. For both the 2 x 2 and 2 x 4 system
it is seen that both max-log and MMSE demodulation with
imperfect CSI results in significant capacity losses compared
to genie max-log and soft MMSE demodulation: at a rate
of R = 4bpcu, the SNR gap between the demodulators with
perfect CSI and the demodulators with imperfect CSI equals
6 dB (with max-log) and 8 dB (with soft MMSE). However,
optimal max-log and MMSE demodulation perform notice-
ably better than their mismatched counterparts. Specifically,
for the 2 x 2 system shown in Fig. 2(a) the SNR gain of the
optimal soft MMSE demodulator over mismatched MMSE
ranges from 1 dB at R =2 bpcu to about 1.5 dB at R =6 bpcu.
The SNR gain of the optimal max-log demodulator over mis-
matched max-log is about 1 dB for rates between R = 2 and
R =6Dbpcu. For rates below R < 4 bpcu soft MMSE demod-
ulation performs identically to or even better than max-log
demodulation; at high rates, however, max-log is superior to
MMSE demodulation.

Fig. 2(b) shows the results for the 2 x 4 system. Compared
to the 2 x 2 case, all capacity curves are shifted to lower
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Fig. 3. Comparison of MIMO demodulators for a 2 x 2 cor-
related MIMO channel.

SNRs (by about 5 dB at R =4 bpcu), despite the larger num-
ber of channel coefficients that have to be estimated (8 com-
plex coefficients instead of 4). Apparently the larger num-
ber of receive antennas allows better spatial separation of the
two data streams and outweighs the more difficult channel
estimation. Max-log and MMSE demodulation (mismatched
and optimal) perform almost identically in this scenario, with
MMSE having a slight advantage at rates below 4 bpcu. The
SNR gain of the optimal demodulators over their mismatched
counterparts is about 1.5 dB at medium rates.

5.2. Capacity for Correlated Channel

We next consider the 2 x 2 system with a correlated MIMO
channel that obeys the Kronecker model [11], i.e., Cy =
T1/2 @ RY/2. The transmit and receive correlation matrices
were chosen as

with p = 0.7. Fig. 3 shows the capacity of the various de-
modulators versus SNR for this scenario. Compared to the
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Fig. 4. Impact of pilot power allocation on capacity of (a) mismatched soft MMSE and (b) optimal soft MMSE demodulator for

a 2 x 2 uncorrelated MIMO channel.

uncorrelated case, all curves are shifted to the right by about
4 dB. Furthermore, max-log now outperforms soft MMSE for
all rates above 0.5 bpcu: at R =4 bpcu, the gap between opti-
mal max-log and optimal soft MMSE is about 1.5 dB, and in
case of the mismatched demodulators the gap is close to 2 dB.
Furthermore, optimal max-log and optimal soft MMSE gain
1dB and 1.5 dB, respectively, over their mismatched counter-
parts. Apparently, the MMSE equalizer (9) performs worse in
case of correlated channels.

5.3. Allocation of Pilot/Data Power

We next fix the total transmit power Ei, = E, + E and
study how the allocation of power to pilots (i.e., £,) and
data symbols (i.e., E) impacts capacity. We reconsider the
2 x 2 system with uncorrelated MIMO channel. Fig. 4 shows
the results obtained with mismatched (part (a)) and optimal
(part (b)) soft MMSE demodulation for total power budgets
of Eyy = 8 (dash-dotted line), Eiy = 15 (solid), Eyr = 25
(dashed), and for the three noise levels a?,, = 0.08 (black
‘+°), 02 = 0.5 (red ‘x’), and 02 = 2 (blue ‘0’). It is seen
that the power allocation has a strong impact on capacity: The
capacity is very small for low pilot power (due to poor channel
estimates) and for high pilot power (due to lack of resources
for data transmissions). In between, there is an optimal choice
of pilot power, roughly around Eiy /2. These results illustrate
that improper power allocation can significantly deteriorate
the overall performance.

6. CONCLUSION

We studied mismatched and optimal soft MMSE and max-log
demodulation in MIMO-BICM system with imperfect CSI.
The performance of these demodulators was compared in a
code-independent manner in terms of the channel capacity
(mutual information) of the equivalent modulation. The opti-
mal demodulators were seen to provide noticeable gains over
mismatched demodulation, specifically in the case of uncor-
related MIMO channels. We further observed that optimal
pilot power allocation is crucial for achieving optimal perfor-
mance.
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