
Extensions for Interaction Nets

Eugen Jiresch and Bernhard Gramlich (Faculty Mentor)

Institute of Computer Languages

Vienna University of Technology

Vienna, Austria

Email: {jiresch,gramlich}@logic.at

Abstract — Interaction Nets are a novel model of computa-

tion based on graph rewriting. Their main properties are par-

allel evaluation and sharing of computation, which leads to ef-

ficient programs.

However, Interaction Nets lack several features that allow for

their convenient use as a programming language. In this pa-

per, we describe the implementation of an extension for pattern

matching of interaction rules. Furthermore, we show the cor-

rectness of the implementation and discuss its complexity.

I. INTRODUCTION

A. OVERVIEW

Models of computation are the basis for many program-

ming languages. They allow for reasoning on formal

properties of programs such as their correctness and ter-

mination (i.e., whether a program eventually halts). An

example is the λ-calculus, which is the basis for func-

tional programming languages such as Haskell.

Interaction Nets are a relatively new model of com-

putation based on graph rewriting. They enjoy several

useful properties that give them great potential for a fu-

ture programming language. In this paper, we introduce

a method for extended pattern matching which allows for

the formulation of more powerful interaction rules. We

describe our recent contribution, an implementation of

the extended pattern matching, and discuss its properties.

This paper is organised as follows: The next subsec-

tion gives a short introduction to Interaction Nets. In

Section II., we introduce extended pattern matching and

outline its implementation. Finally, we present a conclu-

sion and give an outlook on further research.

B. INTERACTION NETS

Interaction Nets were first introduced in [1]. A net is a

graph consisting of agents (nodes) and ports (edges).

��
��
α

?

@
· · ·

x1 xn

Computation is modeled by rewriting the graph, which

is based on interaction rules. These rules apply to two

nodes which are connected by their principal ports (de-

noted by the arrow). For example, the following two

rules model the addition of natural numbers (encoded by

0 and a successor function S):

��
��
+

��
��
0

@
	

� =⇒
��
��
+
@

��
��
S

	

� =⇒
��
��
S

6

��
��
+

 	 @

This simple system allows for parallel evaluation of pro-

grams: If more than one interaction rule is applicable

at the same time, they can be applied in parallel with-

out interfering with each other. In addition, nets share

computation: If an expression appears multiple times in

a program, it is evaluated only once.

II. NESTED PATTERN MATCHING AND ITS

IMPLEMENTATION

The simplicity of interaction rules brings a disadvantage:

Only the two nodes that are connected via their princi-

pal ports are relevant to the rule. This makes it hard

to express functions that depend on more than two non-

variable symbols, or in other words, have a more compli-

cated pattern. Consider a function that finds and returns

the last element of a list:

l a s t Cons (x , N i l) = x

l a s t Cons (x , xs) = l a s t xs

The first rule pattern includes three function symbols:

last,Cons andNil. Since interaction rules are restricted

to two function symbols per rule pattern (the names of the

agents), one has to introduce an auxiliary rule to model

this function:

l a s t Cons (x , xs) = aux x xs

aux x Ni l = x

aux x Cons (y , ys) = l a s t Cons (y , ys)

To counter this problem, Interaction Nets with nested

patterns were introduced [2]. Nested rules allow for pat-

tern matching of more complicated functions. The bene-

ficial properties of Interaction Nets are preserved if the

nested rules are of a specific form (i.e., well-formed).

Moreover, it is possible to transform nested rules into or-

dinary ones by introducing auxiliary rules, much like in

the example above.

295

The first author contributed to this research by imple-

menting nested pattern matching in the Interaction Nets

based prototype programming language inets [3]. The

corresponding theoretical description of this work was

presented at the workshop RULE’09 [4]. In the remain-

der of this section, we outline the main ingredients of the

implementation.

The implementation consists of two parts:

1. Verification of the well-formedness of interaction

rules

2. Translation of nested rules into ordinary rules

Verification of well-formedness The well-formedness

property of a set of interaction rules ensures that there is

no overlap between rules: A given pair of agents (with

nested arguments) must not match more than one rule.

Otherwise, the rules cannot be applied in a determinis-

tic fashion which leads to inconsistent results. The algo-

rithm in inets tries to falsify this condition of the rule set:

It searches (exhaustively) for two nested patterns that can

match the same net. The condition is falsified if and only

if the set of rules is not well-formed. A formal proof can

be found in [4, 5].

Rule translation We now give an overview of the ac-

tual translation of nested rules. This is done as follows:

The inets compiler reads source code and builds an ab-

stract syntax tree (AST) which is further compiled into

byte code and later C source code. Our translation func-

tion rewrites ASTs that represent nested rules into ASTs

that represent ordinary interaction rules. The back end of

the compiler remains unaffected by the translation. Over-

all, our translation function is similar to the compilation

schemes defined in the original paper [2]. We summarise

the translation algorithm in the following steps:

1. A rule is found in the AST. If the rule has a nested

pattern, its well-formedness is verified.

2. If the rule is well-formed, it is translated: The first

nested argument is removed from the rule and an

auxiliary rule is generated. This rule is appended to

the AST.

3. The remaining nested agents are not (yet) trans-

lated. They are resolved by translating the auxiliary

rule.

4. The AST is traversed until the next (unprocessed)

rule is found.

This algorithm allows for an arbitrary number of nested

patterns (i.e., the number of nested agents in a nested

rule) and an arbitrary pattern depth.

Properties of the translation We show that the algo-

rithm is terminating: The translation function either fails

(due to a non well-formed rule) or yields a set of ordi-

nary interaction rules. The idea behind the formal proof

is to show that the number of rules and nested patterns

decreases with each call of the translation function.

The time and space complexity of the algorithm can be

described as follows: The time complexity of the transla-

tion is O(n2) where n is the sum of the number of rules

and nested patterns in the input rule set. This is due to

(one part of) the well-formedness check that compares

each rule with every other rule (
n(n−1)

2 checks are per-

formed). Space complexity is linear with the number of

input rules. For a more detailed complexity discussion,

the reader is referred to [5].

III. CONCLUSION AND OUTLOOK

In this paper, we have given a short introduction to In-

teraction Nets and their extension through nested pat-

terns. We have contributed to this field of research

by implementing a translation algorithm for nested pat-

terns in the Interaction Nets based programming lan-

guage inets. This algorithm includes verification of the

well-formedness of rules. Moreover, the translation han-

dles programming language features that are not part of

the original definition of the translation. Some impor-

tant examples are data values of agents (integers, floats,

strings,. . .), side effects (declaration and manipulation of

variables, I/O) and conditions.

Nested pattern matching can serve as a basis for fur-

ther language extensions for Interaction Nets. These ex-

tensions are pursued in the context of the PhD project of

the first author which is funded by the Austrian Academy

of Sciences (ÖAW) and the Vienna PhD School of Infor-

matics.

REFERENCES

[1] Y. Lafont. Interaction nets. In Proceedings of the

17th ACM symposium on Principles of programming

languages (POPL), pages 95–108, 1990.

[2] A. Hassan and S. Sato. Interaction nets with nested

pattern matching. Electr. Notes Theor. Comput. Sci.,

203(1):79–92, 2008.

[3] The inets project. http://www.interaction-nets.org/.

[4] A. Hassan, E. Jiresch, and S. Sato. Interaction nets

with nested patterns: An implementation. Prelim.

Proceedings: 10th Int. Workshop on Rule-Based Pro-

gramming (RULE’09), pp. 14-25, Brası́lia, Brazil,

June 2009.

[5] A. Hassan, E. Jiresch, and S. Sato. Interaction nets

with nested patterns: An implementation. Full ver-

sion of [4]. In Proceedings of RULE’09: Electr. Pro-

ceed. in Theor. Comp. Sci. (EPTCS), 2010, to appear.

296

