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Abstract

This diploma thesis investigates light propagation in optical waveguides which are used in
opto-electronic printed circuit boards. In the boards under investigation, optical multi-
core waveguides are used in order to increase the laser-to-waveguide and waveguide-to-
photodiode misalignment tolerance. The individual cores have an approximately Gaussian
refractive index profile due to the manufacturing process. In this work different charac-
teristics of such multi-core waveguides are investigated. The main parameter of interest is
the so-called throughput, which is defined as the ratio of waveguide output power to input
power.

Due to the complexity of the multi-core waveguide structures, numerical analysis meth-
ods have to be used. The major part of this thesis was to develop a computer program which
is capable of simulating light propagation in arbitrary waveguide structures. A software
suite called BeamLab has been developed, which implements a Beam Propagation Method,
a waveguide eigenmode solver, as well as the novel Eigenmode Decomposition Method using
the high-level programming language Matlab.

The throughput of different lateral and angular laser misalignments, as well as the
throughput of different laser modes is computed. Simulations have shown that the av-
erage throughput of a multi-core waveguide with a stochastically modelled lateral laser
misalignment is between 20% and 30%, which is only 10% to 15% larger than the average
throughput of a single-core waveguide. Angular laser misalignments can also significantly
reduce the throughput. The angle between the waveguide axis and the emitted laser beam
should not be larger than 5◦.

Multi-core structures, which are not invariant with respect to the propagation direction,
are also investigated in this work. Such structures include bent waveguides, splitters, Mach-
Zehnder interferometers, tapered waveguides, as well as waveguides crossing each other.
Simulations have shown that bent waveguides should not have a bend angle larger than
5◦ and that the crosstalk between multi-core waveguides crossing each other is negligible.
Splitters, Mach-Zehnder interferometers, and tapered multi-core waveguides are difficult to
implement using multi-core waveguides due to the large number of waveguide eigenmodes.

It has also been shown that the throughput of multi-core waveguides can be influenced
by applying pressure onto the waveguide. The pressure applied causes a deformation which
induces additional losses and hence, reduces the photocurrent.

There certainly is potential for optimization of the multi-core waveguides investigated in
this work. By adjusting parameters like the refractive index difference between waveguide
core and cladding or number and spatial placement of the cores, the throughput could be
increased.
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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Ausbreitung von Licht in optischen Wellenleit-
ern, welche in opto-elektronischen Leiterplatten zum Einsatz kommen. In diesen Leiter-
platten werden optische Multi-Kern Wellenleiter verwendet um die Fehljustierungstoleranz
von Laser zu Wellenleiter, sowie von Wellenleiter zu Photodiode, zu erhöhen. Die einzelnen
Kerne haben ein annähernd gaußförmiges Brechungsindexprofil. In dieser Arbeit werden
diverse Charakteristiken dieser Wellenleiter untersucht. Der wichtigste Parameter der Un-
tersuchungen ist der sogenannte Durchsatz, welcher als Verhältnis von Ausgangsleistung zu
Eingangsleistung definiert ist.

Aufgrund der Komplexität der Multi-Kern Wellenleiterstrukturen müssen numerische
Berechnungsmethoden verwendet werden. Der Großteil dieser Arbeit ist der Entwicklung
einer Computer Software gewidmet, welche es ermöglicht, die Ausbreitung von Licht in be-
liebigen Wellenleiterstrukturen zu simulieren. Im Rahmen dieser Arbeit wurde die Software
BeamLab entwickelt, welche eine Beam Propagation Method, ein Modul zur Berechnung
der Eigenmoden von Wellenleitern, sowie die neue Eigenmode Decomposition Method in der
Programmiersprache Matlab implementiert.

Mit Hilfe von Simulationen wird der Durchsatz bei unterschiedlichen lateralen und angu-
laren Fehlpositionierungen des Lasers ermittelt. Weiters wird der Durchsatz diverser Laser-
moden berechnet. Es wird gezeigt, dass der durchschnittliche Durchsatz eines Multi-Kern
Wellenleiters bei stochastischer Modellierung der lateraler Fehlpositionierung des Lasers
zwischen 20% und 30% beträgt. Dies ist lediglich 10% bis 15% mehr als der durchschnit-
tliche Durchsatz eines Einzel-Kern Wellenleiters. Eine angulare Fehlpositionierung des
Lasers kann den Durchsatz ebenfalls signifikant verringern. Der Winkel zwischen der Achse
des Wellenleiters und dem emittierten Laserstrahl sollte nicht größer als 5◦ sein.

Multi-Kern Strukturen, welche nicht invariant in Ausbreitungsrichtung sind, werden
ebenfalls untersucht. Derartige Strukturen sind z.B. gebogene Wellenleiter, Splitter, Mach-
Zehnder Interferometer, Einzel-Kern Wellenleiter mit Multi-Kern Taper, sowie Wellenleiter,
welche sich gegenseitig kreuzen. Simulationen haben gezeigt, dass der maximal zulässige
Biegewinkel von Multi-Kern Wellenleitern 5◦ beträgt. Das Übersprechen zwischen Multi-
Kernwellenleitern, welche sich gegenseitig kreuzen, ist vernachlässigbar. Splitter, Mach-
Zehnder Interferometer sowie Einzel-Kern Wellenleiter mit Multi-Kern Taper sind aufgrund
der hohen Anzahl an Eigenmoden der Multi-Kern Wellenleiter schwierig zu implementieren.

Weiters wird der Einfluss einer Deformierung, welche entsteht wenn Druck auf den
Multi-Kern Wellenleiter ausgeübt wird, auf den Durchsatz untersucht. Die Deformierung
führt zu erhöhten Verlusten, welche den Durchsatz und somit den Photostrom verringern.

Die Simulationsergebnisse legen die Vermutung nahe, dass die in dieser Arbeit unter-
suchten Multi-Kern Wellenleiter Potenzial für Optimierungen aufweisen. Durch Modifika-
tion von Parametern wie Brechungsindexunterschied zwischen Wellenleiterkern und -mantel
sowie Anzahl und räumliche Platzierung der individuellen Kerne, ließe sich der Durchsatz
erhöhen.
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Chapter 1

Motivation

1.1 Opto-Electronic Printed Circuit Boards

Conventional electronic printed circuit boards (PCB) use copper tracks to transport data
from an information source to an information sink within the board. They have the ad-
vantages of being inexpensive and highly reliable but generally have a relatively limited
bandwidth.

Optical data transmission uses optical waveguides which have many advantages over
their electronic Al counterparts such as:

� larger bandwidth,

� lower losses,

� larger possible transmission distances,

� no electromagnetic interference, and

� lower power consumption above a certain threshold of the bandwidth-distance prod-
uct.

On the other hand, optical data transmission has the disadvantage of requiring addi-
tional electrical-to-optical conversion at the transmitter and optical-to-electrical conversion
at the receiver. Furthermore, the tight alignment tolerances of laser and waveguide, as
well as waveguide and photodiode, make optical data transmission systems generally more
expensive.

With today’s ever increasing demands on bandwidth it becomes increasingly difficult
to transmit high data rates, even over the relatively short distances within printed circuit
boards. In opto-electronic PCBs the copper tracks are replaced by optical waveguides in
order to make use of the aforementioned advantages of optical data transmission. Above
a certain threshold of the bandwidth-distance product, opto-electronic PCBs have a lower
power consumption than pure electronic PCBs. The inherent immunity to electromagnetic
interference and negligible crosstalk between adjacent waveguides are also important reasons
for using optical waveguides in PCBs.

Figure 1.1 shows a schematic of an opto-electronic PCB. The light source is a vertical
cavity surface emitting laser (VCSEL) and the light sink is a photo diode, both of which
are mounted on top of the PCB. In order to optically connect VCSEL and photo diode,
the whole PCB is covered with a polymer coating (ORMOCER® [1] cladding) where the
actual waveguide is inscribed into. VCSEL and photo diode are electrically connected to
PCB tracks by bond wires.

1
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Printed Circuit Board

VCSEL Photo Diode

Multi-Core Waveguide
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Refractive Index n1

Refractive Index n2
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x

Figure 1.1: Schematic of an opto-electronic printed circuit board.

ORMOCER® Cladding Material. The ORMOCER® cladding material was devel-
oped at Fraunhofer-Institut für Silicatforschung ISC in Germany. It allows to laser-write
waveguide cores into the cladding material using a non-linear optical process called two-
photon absorption (TPA) [2]. This process requires very high intensities which can be
created only by using pulsed femtosecond lasers. The TPA process slightly increases the
refractive index of the ORMOCER® in the laser focus which allows virtually any three-
dimensional waveguide structure to be written into the substrate. As already indicated in
Figure 1.1, there is a small gap between the waveguide and the VCSEL/photo diode. This
gap has a size of about 15µm and is necessary because the waveguide cannot be written
arbitrarily close to the opto-electronic devices without harming them.

Multi-Core Waveguide. Figures 1.2(a) and 1.2(b) and show the lateral refractive index
profiles of a single-core waveguide and a multi-core waveguide, respectively1. A single-core
waveguide consists of a single core region which has a slightly larger refractive index than
the surrounding cladding material while a multi-core waveguide has multiple core regions.
In the context of opto-electronic PCBs, the reason to use such multi-core structures is to
somewhat relax the constraints of perfectly aligning the VCSEL to the waveguide. Because
of the much larger overall waveguide diameter a larger misalignment is tolerable. These
multi-core waveguide structures do not show any advantage with respect to their “wave-
guiding properties” but rather are used as a necessity for coupling enough light power
into the waveguide in order to enable a reliable data transmission. The actual refractive
index profile of each core has a Gaussian shape which will be discussed in more detail in
Section 2.2.

1.2 The Software BeamLab

The major part of this diploma thesis was to develop a software suite which is capable of
simulating light propagation in arbitrary waveguide structures in order to analyze various
properties of multi-core waveguides from Figure 1.2(b). This software called BeamLab [3]
is a comprehensive set of simulation tools for photonic devices and optical waveguides
written in Matlab. It consists of three different modules:

� BeamLabBPM implements a Beam Propagation Method,

� BeamLabEIG implements a waveguide eigenmode solver, and

� BeamLabEDM implements a novel Eigenmode Decomposition Method.

1For simplicity the schematic in Figure 1.2 shows step-index waveguides. The actual refractive index
profile of the waveguides investigated in this work will be discussed in 2.2.
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Figure 1.2: Schematic of the refractive index profile n(x, y) of (a) a single-core waveguide and (b)
a multi-core waveguide.

BEAMLAB
PHOTONIC DESIGN SOFTWARE

Figure 1.3: BeamLab logo.

Figure 1.3 shows the BeamLab logo.

1.2.1 Advantages Over Existing Commercial Software

Most of BeamLab’s advantages arise from the fact that it is implemented using the high-
level programming language Matlab.

Flexibility. In BeamLab all simulations models are “programmed” using Matlab code
(see Appendix C for some examples). Thus, virtually any waveguide models, i.e. spatially
refractive index distributions, as well as simulation input fields can be realized. On the other
hand, most commercially available software packages use some kind of graphical computer
aided design (CAD) interface to “draw” waveguide geometries. This generally results in
a better usability but also imposes some limitations on the models which actually can be
realized. With BeamLab complex waveguide structures like the ones in Chapter 6 can be
realized using only a few lines of Matlab code.

Scalability. With BeamLab it is very easy to implement parameter sweeps of all kinds.
For example, if one wants to analyze waveguide throughput vs. refractive index difference
between waveguide core and cladding (see Section 5.4), just a single for loop in the Matlab
code is necessary. Furthermore the computations of such sweeps are very often independent
of each other and can therefore be executed in parallel on multiple central processing unit
(CPU) cores or even on multiple computers simply by using a parfor loop2.

Further Advantages. Some further advantages inherent to Matlab are

2These features require Matlab’s Parallel Computing Toolbox and Distributed Computing Server, re-
spectively.
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� Platform independence (Windows, Linux, Mac OS X, Solaris are supported)

� Support of 32 and 64 bit platforms

� Extensive plotting options

1.2.2 List of Features

In the following the most important features provided by the three BeamLab modules are
listed. In Chapters 3 and 4 all of these features will be discussed in more detail.

BeamLabBPM.

� Implements an Alternate Direction Implicit Finite Difference Beam Propagation Method
(3D-ADI-FD-BPM) in Matlab

� Semi-vectorial or scalar beam propagation analysis

� 3-D or 2-D analysis

� Transparent Boundary Conditions

� Non-equidistant or equidistant discretization in all three spatial directions

� Very high scalability of CPU and memory usage

� Video export of propagating fields

� Ultra-fast semi-vectorial or scalar eigenmode solver using the Imaginary Distance
Beam Propagation Method

BeamLabEIG.

� Implements a waveguide eigenmode solver based on the Finite Difference method in
Matlab

� Semi-vectorial or scalar analysis

� Non-equidistant or equidistant discretization meshes

BeamLabEDM.

� Implements a novel Eigenmode Decomposition Method (see Chapter 4) in Matlab

� Ultra-fast calculation of waveguide throughput for given input fields



Chapter 2

Simulation Models

2.1 Introduction and Outline

This chapter describes the simulation models of the waveguides, i.e. the spatial refractive
index distributions, as well as the laser output fields which constitute the “input parame-
ters” of the BeamLab simulations carried out in Chapters 4–6.

This chapter is organized as follows.

� In Section 2.2 the simulation model of the multi-core waveguides introduced in Chap-
ter 1 are discussed in detail. Furthermore, the simulation model of single-core wave-
guides is presented which will be used in Chapters 5 and 6 to compare multi-core and
single-core waveguides.

� In Section 2.3 the transversal modes of a VCSEL are presented. The most important
Gaussian LP01 mode is discussed in more detail.

2.2 Waveguides

2.2.1 Multi-Core Waveguides

The simulation model of multi-core waveguides used in opto-electronic PCBs is shown in
Figure 2.1. It is matched to refractive index measurements carried out by Fraunhofer-
Institut für Silicatforschung ISC. The waveguide consists of seven separate cores which are
arranged in a hexagonal structure. The main parameters are given as follows.

� n1 is the (maximum) core refractive index.

� n2 is the cladding refractive index.

� nc,xy is the local minimum of the refractive index between two adjacent cores.

� r is the radius of the circle with center x = y = 0 on which all outer cores are located.

� h =
√

3/2 · r is the height of the hexagon and follows from simple geometrical consid-
erations.

� w0,n is the radius1 of a single core.

1Here, the radius of a single core with a Gaussian profile is defined as the radius where the refractive
index has decayed to the value n = n2 + (n1 − n2)/e.

5
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Table 2.1: Locations of the centers of the waveguide cores.

k xk yk

1 0 0

2 −r 0

3 +r 0

4 −r/2 +h

5 +r/2 +h

6 −r/2 −h
7 +r/2 −h

Table 2.2: Default values of the multi-core waveguide simulation model parameters.

Parameter Default value

n1 1.5180

n2 1.5150

nc,xy 1.5154

r 25µm

w0,n 7.6µm

With these parameters the simulation model of the multi-core waveguide is given by

n(x, y) = n2 + nd · f(x, y) , (2.1)

where
nd = n1 − n2 , (2.2)

f(x, y) =
K∑

k=1

exp

[
−
(
x− xk
w0,n

)2

−
(
y − yk
w0,n

)2
]
, (2.3)

w0,n =
r

2

√
ln

(
2

nc,xy

) , (2.4)

nc,xy = n(r/2, 0) . (2.5)

Here, f(x, y) ∈ [0, 1] in a very good approximation. Figure 2.1 shows this spatial refractive
index distribution. The red dots show the centers of the cores which are located at the
coordinates from Table 2.1. Evidently K = 7 for this multi-core waveguide structure.

Default Parameters. The numerical default values of the parameters used throughout
this document—unless explicitly stated otherwise—are shown in Table 2.2. The value of
w0,n follows directly from Equation (2.4).

2.2.2 Single-Core Waveguides

In Chapters 5 and 6 single-core waveguides are also investigated in order to compare their
properties to multi-core waveguides. We will also use Equations (2.1), (2.2), and (2.3), only
this time with K = 1 and x1 = y1 = 0. The same core radius w0,n (see footnote on page 5)
will be used.
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Figure 2.1: Refractive index profile n(x, y) of the multi-core waveguide model.
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2.3 Laser Output Fields

2.3.1 Transversal VCSEL Modes

In literature there exist two different models for the transversal modes of a VCSEL: Bessel
modes [4], which are also the eigenmodes of step-index cylindrical waveguides, and Laguerre
Gaussian modes [5, 6], which are the eigenmodes of graded-index circularly symmetric
waveguides with a parabolic refractive index profile. The Laguerre Gaussian model has the
advantage that it provides a closed form expressions of all modes for arbitrary distances
from the VCSEL.

The spatial field distribution of the Laguerre Gaussian modes LPlp in cylindrical coor-
dinates is given by [7]

Φlp(r, ϕ, z) = A0
w0(l, p)

w(z)

[√
2r

w(z)

]l
L

(l)
p−1

[
2r2

w2(z)

]

exp

{ −r2

w2(z)
+ jlϕ+

jkr2

2R2(z)
− jkz + j[2(p− 1) + l + 1]ξ(z)

}
, (2.6)

where L
(l)
p−1(x) is the generalized Laguerre polynomial of kind l and order p− 1. Here l, p

describe the azimuthal and radial mode order, w(z) is the mode field radius, w0(l, p) is the
radius of the beam waist of the mode LPlp, R(z) is the curvature of the beam wave front,
ξ(z) is the so-called Gouy phase2, and z0(l, p) is the confocal parameter. These parameters
are related to each other by the following equations:

z0(l, p) =
πw2

0(l, p)

λ
, (2.7)

R(z) = z

[
1 +

(
z0(l, p)

z

)2
]
, (2.8)

w(z) = w0(l, p)

√
1 +

(
z0(l, p)

z

)2

, (2.9)

ξ(z) = arctan
z

z0(l, p)
. (2.10)

In [7] the transversal modes of the VCSEL under investigation, the ULM Photonics
multi-mode 5 Gbit/s device ULM 850-05-TN-U46FOP with center wavelength λ = 850 nm,
are computed numerically using the software VISTAS (VCSEL Integrated Spatio Tempo-
ral Device Simulator). Since VISTAS uses the aforementioned Bessel modes, they are
matched to corresponding Laguerre Gaussian modes using a minimum mean square error
(MMSE) approximation. This approximation leads to different mode radii w0(l, p) for dif-
ferent modes LPlp which are summarized in Table 2.3. These different mode radii destroy
the orthogonality inherent to the Laguerre Gaussian modes (which is irrelevant for the
investigations in this text). Figure B.1 shows the normalized intensity distributions of the
VCSEL eigenmodes from Equation (2.6) with the mode radii from Table 2.3.

2.3.2 Gaussian LP01 Mode

From Equation (2.6) it is evident that the fundamental LP01 mode equals the so-called
Gaussian mode [8]

Φ01(r, ϕ, z) = A0
w0

w(z)
exp

[ −r2

w2(z)
+

jkr2

2R2(z)
− jkz + jξ(z)

]
, (2.11)

2The Gouy phase describes the fast change in phase at the beam waist.
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Table 2.3: Mode radii w0(l, p) of different Laguerre Gaussian modes LP01 MMSE-matched to the
corresponding Bessel modes from VISTAS.

Mode w0(l, p)/µm

LP01 2.10

LP11 1.73

LP21 1.54

LP02 1.62

LP31 1.41

LP12 1.46

LP41 1.32

LP22 1.37

LP03 1.41
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Figure 2.2: Normalized radial intensity distributions of some Laguerre Gaussian modes at z = 0.
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Figure 2.3: Definitions of the angles (a) θx and (b) θy with respect to the propagation direction z.

or using r2 = x2 + y2 in Cartesian coordinates

Φ01(x, y, z) = A0
w0

w(z)
exp

[
−x

2 + y2

w2(z)
+ jk

x2 + y2

2R2(z)
+ jkz − jξ(z)

]
. (2.12)

For simplicity, offsets with respect to the x and y direction as well an angle of the beam
are not taken into account in Equations (2.12) and (2.11). Offsets are realized by replacing
x by x− xoffset and y by y − yoffset, respectively, in Equation (2.12).

Gaussian beams which have an angle with respect to the propagation direction z are
modelled as3

Φ01(x, y, 0) = |Φ01(x, y, 0)| exp [j arg{Φ01(x, y, 0)}] , (2.13)

with

|Φ01(x, y, 0)| = A0 exp

[
−
(

x

w0/ cos(θx)

)2

−
(

y

w0/ cos(θy)

)2
]

(2.14)

and

arg{Φ01(x, y, 0)} =
2π

λ
[x sin(θx) + y sin(θy)] . (2.15)

where θx designates the angle in the plane y = 0 and θy designates the angle in the plane
x = 0, respectively. (see Figure 2.3).

3Here, z = 0 is assumed for the sake of simplicity.



Chapter 3

Finite-Difference Beam
Propagation Method

3.1 Introduction and Outline

In this chapter the so-called Beam Propagation Method implemented in BeamLabBPM is
discussed. The main principle of this method is shown in Figure 3.1. The input parameter
is the field Φin(x, y) = Φ0(x, y) = Φ(x, y, 0)1 at z = 0. In each propagation step the field
at z + ∆z is calculated until the output field Φout(x, y) = ΦL(x, y) = Φ(x, y, L) at z = L
is obtained. Here, the propagation step distance ∆z can be different for each propagation
step, but in general we will use equidistant discretization with respect to the z direction.
Figure 3.2 shows the lateral spatial discretization of the analysis area with Mx ×My mesh
grid points. Here, equidistant discretization is shown. BeamLabBPM also supports non-
equidistant discretization which, depending on the waveguide under consideration, can
reduce the number of required mesh grid points and hence, the required computation time
significantly.

There are various kinds of BPMs which use different approximations of the derivatives
with respect to the lateral directions in the wave equation [9]:

� Fast Fourier Transform (FFT) BPM uses the fast Fourier transform [10],

� Finite Difference (FD) BPM uses a finite-difference approximation [11], and

� Finite Element (FE) BPM uses a finite-element approximation [12].

FFT-BPM. The FFT-BPM has been widely used in simulation software until the FD
BPM was developed. It has the following major disadvantages mainly due to the nature of
the FFT:

� It requires a long computation time compared to the other methods,

� only equidistant discretization with respect to the lateral directions can be imple-
mented,

� the very efficient and practical Transparent Boundary Conditions (see Section 3.2.4)
cannot be used,

� the propagation step distance ∆z has to be very small, and

� very small discretization widths cannot be used in the lateral directions.

1In Chapters 4 and 6 sometimes the fields Φin(x, y) and Φ0(x, y) are not equal—Φin(x, y) is always the
input field of the BeamLabBPM simulations, while Φ0(x, y) can be a different field under investigation. If
not mentioned otherwise, Φin(x, y) = Φ0(x, y).

11
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Figure 3.1: The main principle of the Beam Propagation Method: The propagating field at z+∆z
is calculated from the previous field at z.
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Figure 3.2: Lateral spatial discretization of the analysis area. Here, equidistant discretization is
shown, but non-equidistant discretization is also possible in x and y direction.
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FD-BPM. BeamLabBPM implements the much more powerful FD-BPM using the an
implicit scheme from [11] which is very accurate, numerically efficient, and unconditional
stable2. This unconditional stability is very useful because it allows the propagation step
distance ∆z to be relatively large compared to the FFT-BPM which in turn significantly
reduces the computation time. Additionally, Transparent Boundary Conditions (see Sec-
tion 3.2.4) can be used, which employ no adjustable parameters, and are thus problem
independent. BeamLabBPM uses a paraxial approximation which imposes an upper limit
on the angles of the propagating beams. There also exist wide-angle schemes using Padé
approximant operators [13] which will not be discussed here.

Most of the derivations of the discretized FD-BPM formulations presented here is very
similar to the derivations from [9]. There are two major reasons why they are included in
this work:

� In order to understand the limitations of the Beam Propagation Method, it is manda-
tory to know which approximations are used in the derivations of the FD-BPM for-
mulations.

� Unfortunately, in [9] there are some mistakes which would make it impossible to
implement the Beam Propagation Method.

This chapter is organized as follows.

� In Section 3.2 the derivation of the two-dimensional semivectorial FD-BPM is pre-
sented. Starting with the well-known Maxwell equations the spatially discretized
FD-BPM formulations, which can be solved efficiently using Matlab, are developed.
A non-equidistant discretization scheme, as well as Transparent Boundary Conditions
are also discussed.

� In Section 3.3 we discuss the three-dimensional semivectorial analysis using the nu-
merically very efficient Alternate Direction Implicit (ADI) method.

� In Section 3.4 the different approximations used in Section 3.2 and their implications
on the simulation results’ accuracy are analyzed in detail.

� Section 3.5 presents the so-called Imaginary Distance BPM which allows to calculate
the fundamental eigenmode of a waveguide in only a few BPM propagation steps.

3.2 Two-Dimensional Semivectorial Analysis

3.2.1 Wave Equation

The electromagnetic fields satisfy the following well-known Maxwell equations3:

~∇× ~E = −∂t ~B , (3.1)

~∇× ~H = ~J + ∂t ~D , (3.2)

~∇ · ~D = % , (3.3)

~∇ · ~B = 0 , (3.4)

2A simulation method is called unconditional stable if propagating fields cannot diverge for any input
field. Oscillations, however, are possible.

3Following the nomenclature from [14] we will use ∂t = ∂/∂t for the partial derivative with respect to
time and ∂x = ∂/∂x, ∂y = ∂/∂y, and ∂z = ∂/∂z for the partial derivatives with respect to the direction x,
y, and z, respectively.
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where ~E is the electric field, ~H is the magnetic field, ~D is the electric flux density, ~B is
the magnetic flux density, ~J is the current density, and % is the density of volume charge.
Furthermore in a linear and isotropic—but not necessarily homogeneous—material these
electromagnetic fields are related to each other through the equations

~D = ε ~E , (3.5)

~B = µ ~H , (3.6)

where the permittivity ε and permeability µ are defined as

ε = ε0εr , (3.7)

µ = µ0µr . (3.8)

Here, ε0 = (µ0c
2
0)−1 and µ0 = 4π · 10−7 Vs/(Am) are the permittivity and permeablility of

a vacuum, and εr and µr are the relative permittivity and permeablility of the material,
respectively. Since µr = 1 for materials other than magnetic materials, it is assumed to be
1 in the following. In general, εr = ε′r − jε′′r is a complex number with ε′′r = −={εr} 6= 0
for lossy materials. [15] The optical waveguides investigated in this work are assumed to
be lossless, and therefore ε′′r = 0 in the following. Nevertheless, BeamLab is also capable
of simulating light propagation in lossy materials.

If a general vector field ~F oscillates at a single angular frequency ω, it can be expressed
as

~F (~r, t) = <
{
~F(~r) exp(jωt)

}
. (3.9)

Using this form of representation, the electromagnetic fields can be written as

~E(~r, t) = <
{
~E(~r) exp(jωt)

}
, (3.10)

~H(~r, t) = <
{
~H(~r) exp(jωt)

}
, (3.11)

~D(~r, t) = <
{
~D(~r) exp(jωt)

}
, (3.12)

~B(~r, t) = <
{
~B(~r) exp(jωt)

}
. (3.13)

If we plug these equations in Equations (3.1) to (3.4) we get with the slight abuse of notation
using ~F as ~F4

~∇× ~E = −jω ~B = −jωµ0
~H , (3.14)

~∇× ~H = jω ~D = jωε0εr ~E , (3.15)

~∇ · ~H = 0 , (3.16)

~∇ ·
(
εr ~E

)
= 0 . (3.17)

where µr = 1, % = 0, and ~J = 0 is assumed. The component representations of these
equations are

∂yEz − ∂zEy = −jωµ0Hx , (3.18)

∂zEx − ∂xEz = −jωµ0Hy , (3.19)

∂xEy − ∂yEx = −jωµ0Hz , (3.20)

∂yHz − ∂zHy = jωε0εrEx , (3.21)

∂zHx − ∂xHz = jωε0εrEy , (3.22)

∂xHy − ∂yHx = jωε0εrEz . (3.23)

4In Equations (3.9)–(3.13) ~F (~r, t) is a function of ~r and t, while from now on ~F (~r) = ~F(~r) is a function
only of ~r.
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In the two-dimensional semivectorial analysis we assume the structure of the waveguide to
be uniform in the y direction. In this case the derivatives with respect to y can be set to
zero, i.e.

−∂zEy = −jωµ0Hx , (3.24)

∂zEx − ∂xEz = −jωµ0Hy , (3.25)

∂xEy = −jωµ0Hz, (3.26)

−∂zHy = jωε0εrEx , (3.27)

∂zHx − ∂xHz = jωε0εrEy , (3.28)

∂xHy = jωε0εrEz . (3.29)

TE Mode. In the TE mode the electric field component in the longitudinal direction
is zero, i.e. Ez = 0. Since here we assume ∂y = 0, Equation (3.29) results in ∂xHy = 0.
This means that Hy has to be constant and we can assume that Hy = 0. Furthermore,
substitution of Ez = Hy = 0 into Equation (3.25) results in ∂zEx, which means that we
can assume Ex = 0. We thus get

Ex = Ez = Hy = 0 . (3.30)

Substituting Equation (3.35) into Equations (3.24) to (3.29) we obtain the following wave
equation for the principal electrical field component Ey:

∂2
zEy + ∂2

xEy + k2
0εrEy = 0 , (3.31)

where k2
0 = ω2ε0µ0. In a similar way the wave equation for the x-directed magnetic field

component Hx can be derived:

∂2
zHx + ∂2

xHx + k2
0εrHx = 0 . (3.32)

It is important to note that here the approximation

∂z(εrEy) = Ey∂zεr + εr∂zEy ≈ εr∂zEy (3.33)

was used. This means that the approximation

∂zεr ≈ 0 (3.34)

is implicitly used in the BPM. In Section 6.8 we will see that this approximation can be
problematic for specific use cases.

TM Mode. In the TM mode the magnetic field component in the longitudinal direction
is zero, i.e. Hz = 0. Similar to the TE mode we now get ∂xEy = 0 from (3.26) when using
the condition ∂y = 0. This means that Ey has to be constant and we can assume Ey = 0.
Furthermore, substitution of Hz = Ey = 0 into Equation (3.29) results in ∂zHx, which
means that we can assume Hx = 0. We thus get

Hx = Hz = Ey = 0 . (3.35)

The wave equation for the x-directed electric field component Ex is

∂2
zEx + ∂x

[
1

εr
∂x(εrEx)

]
+ k2

0εrEx = 0 , (3.36)

and the wave equation for Hy is

∂2
zHy + εr∂x

(
1

εr
∂xHy

)
+ k2

0εrHy = 0 . (3.37)

We now have derived a set of four wave equations which can be solved numerically using
finite-difference expressions which will be discussed in the next section.
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3.2.2 FD-BPM Formulation

BeamLabBPM uses a FD-BPM formulation based on the implicit scheme from [11]. In
this section we will derive the finite difference approximations of Equations (3.31), (3.32),
(3.36), and (3.37).

Scalar Helmholtz equation. We will start with the general three-dimensional scalar
Helmholtz equation

∇2Ψx, y, z + k2
0n

2(x, y, z)Ψ(x, y, z) = 0 , (3.38)

where ∇2 = ∂2
x + ∂2

y + ∂2
z is the Laplacian an k0 is the wave number in vacuum. Using

the so-called slowly varying envelope approximation the wave function Ψ(x, y, z) of the light
propagating in the z direction is divided into the slowly varying envelope function Φ(x, y, z)
and a spatially very fast oscillating phase term exp(−jβz) as follows:

Ψ(x, y, z) = Φ(x, y, z) exp(−jβz) . (3.39)

Here,
β = neffk0 , (3.40)

where neff is the effective refractive index. In actual calculations, this value is a-priori
unknown and can be set to the refractive index of the substrate or cladding [9]. Substituting

∂2
zΨ = exp(−jβz)∂2

zΦ− 2jβ exp(−jβz)∂zΦ− β2Φ exp(−jβz) , (3.41)

which can be obtained from Equation (3.39), into Equation (3.38) and dividing both sides
of the resultant equation by exp(−jβz), we get

∂2
zΦ− 2jβ∂zΦ +∇2

⊥Φ + (k2
0n

2 − β2)Φ = 0 , (3.42)

where ∇⊥ = ∂2
x +∂2

y is the Laplacian in the lateral directions and εr = n2. Equation (3.42)
can also be written as

2jβ∂zΦ− ∂2
zΦ = ∇2

⊥Φ + k2
0(εr − n2

eff)Φ , (3.43)

which is the so-called wide-angle formulation since the second derivative of the wave func-
tion Φ with respect to z is not neglected. If we neglect this second derivative, i.e.

∂2
zΦ = 0 , (3.44)

Equation (3.43) is reduced to

2jβ∂zΦ = ∇2
⊥Φ + k2

0(εr − n2
eff)Φ . (3.45)

This approximation is called the Fresnel approximation or the paraxial approximation.
When simulating light propagation in optical waveguides, neglecting the second derivative
of the wave function Φ is justified in many cases. In Section 3.4 we will further investigate
the implications of this approximation.

TE Mode. Here we will use a two-dimensional model of the principal field Ey(x, y, z)
which means that ∂yEy = 0. Using the slowly varying envelope approximation from Equa-
tion (3.39), i.e.

Ey(x, y, z) = Φ(x, y, z) exp(−jβz) , (3.46)

we get the Fresnel equation

2jβ∂zΦ = ∂2
xΦ + k2

0(εr − n2
eff)Φ . (3.47)
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We now discretize the x and z coordinates according to

x = p∆x , (3.48)

y = l∆z , (3.49)

where p and l are integers. In the following, the spatially discretized versions of the wave
function Φ(x, z) and the relative permittivity εr(x, z) are notated as

Φ(x, z)→ Φ(l)
p , (3.50)

εr(x, z)→ ε(l)
r (p) . (3.51)

First, we discretize Equation (3.47) in the x direction, i.e. the terms on the right-hand are
expressed as (see [16] for more details about the FD discretization used here)

∂2
xΦ =

1

∆x

(
Φp+1 − Φp

∆x
− Φp − Φp−1

∆x

)
=

Φp+1 − 2Φp + Φp−1

(∆x)2
, (3.52)

k2
0(εr − n2

eff)Φ = k2
0(εr(p)− n2

eff)Φp . (3.53)

Discretizing the left-hand side of Equation (3.47) in the z direction, we get

2jβ
Φl+1
p − Φ

(l)
p

∆z
. (3.54)

Using the definitions

αw =
1

(∆x)2
, (3.55)

αe =
1

(∆x)2
, (3.56)

αx = − 1

(∆x)2
, (3.57)

we finally get the finite difference expression of the TE mode principal field Ey(x, y, z):

−α(l+1)
w︸ ︷︷ ︸
ap

Φ
(l+1)
p−1 +

{
−α(l+1)

x +
4jβ

∆z
− k2

0

[
ε(l+1)
r (p)− n2

eff

]}

︸ ︷︷ ︸
bp

Φ(l+1)
p −α(l+1)

e︸ ︷︷ ︸
cp

Φ
(l+1)
p+1

= α(l)
w Φ

(l)
p−1 +

{
α(l)
x +

4jβ

∆z
+ k2

0

[
ε(l)
r (p)− n2

eff

]}
Φ(l)
p + α(l)

e Φ
(l)
p+1

︸ ︷︷ ︸
dp

. (3.58)

Since Equations (3.31) and (3.32) are equal, Equation (3.58) is also valid for the principal
field Hx(x, y, z).

TM Mode. Using the slowly varying envelope approximation from Equation (3.39) for
the TM mode principal magnetic field component Hy(x, y, z) and inserting it into Equa-
tion (3.37), we get the Fresnel wave equation

2jβ∂zΦ = εr∂x

(
1

εr
∂xΦ

)
+ k2

0(εr − n2
eff)Φ . (3.59)
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Figure 3.3: One-dimensional non-equidistant discretization.

Using the spatial discretizations from Equations (3.48)–(3.51) we get the the same finite
difference expression as for the TE case, i.e. Equation (3.58), only with different definitions
of

αw =
1

(∆x)2

2εr(p)

εr(p) + εr(p− 1)
, (3.60)

αe =
1

(∆x)2

2εr(p)

εr(p) + εr(p+ 1)
, (3.61)

αx = −αe − αw . (3.62)

The finite difference discretization of the TM mode principal electrical field Ex(x, y, z) leads
to

αw =
1

(∆x)2

2εr(p− 1)

εr(p) + εr(p− 1)
, (3.63)

αe =
1

(∆x)2

2εr(p+ 1)

εr(p) + εr(p+ 1)
, (3.64)

αx = − 4

(∆x)2
+ αe + αw . (3.65)

3.2.3 Non-Equidistant Discretization Scheme

Until now we assumed equidistant discretization with respect to the x direction. In actual
simulations it can be very convenient to discretize non-equidistantly—for example if a wave-
guide structure is uniform in a specific spatial region it might reduce the overall simulation
time significantly if we choose a larger discretization distance only in that region. Regions
where a finer spatial granularity is required to model the structure sufficiently accurate can
be chosen to have a smaller discretization step size. Figure 3.3 shows the one-dimensional
discretization mesh for the two-dimensional semivectorial analysis.

It can be shown that Equation (3.58) can still be used, again just with different coeffi-
cients. [9]

TE Mode. Ey and Hx representation:

αw =
2

w(e+ w)
(3.66)

αe =
2

e(e+ w)
(3.67)

αx = −αe − αw (3.68)

TM Mode. Ex representation:

αw =
2

w(e+ w)

2εr(p− 1)

εr(p) + εr(p− 1)
(3.69)

αe =
w

e(e+ w)

2εr(p+ 1)

εr(p) + εr(p+ 1)
(3.70)

αx = − 4

ew
+ αe + αw (3.71)
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Figure 3.4: Location of the nodes p = 0 and p = Mx + 1 outside of the actual analysis area.

Hy representation:

αw =
2

w(e+ w)

2εr(p)

εr(p) + εr(p− 1)
(3.72)

αe =
2

e(e+ w)

2εr(p)

εr(p) + εr(p+ 1)
(3.73)

αx = −αe − αw (3.74)

3.2.4 Transparent Boundary Conditions

In actual simulations it is not possible to simulate an infinitely wide area with no spatial
analysis boundaries because of memory and computation time limitations. Therefore one
has to choose a reasonable large finite simulation area where reflections at the boundaries
can occur. Unfortunately, if no countermeasures are taken the beam propagation method
is somewhat deficient when it comes to simulating waveguide structures which scatter a
significant amount of light power towards these simulation boundaries. The reflections
cause unwanted interference effects which can severely impair the overall accuracy.

In this section the so-called Transparent Boundary Conditions (TBC) from [17] are
presented. The TBC simulate a nonexistent boundary. Radiation is allowed to freely
escape the simulation area without appreciable reflections. The huge advantage of the
TBC over other boundary conditions such as the Absorbing Boundary Conditions (ABC)
[18] is that it employs no adjustable parameters, and is thus problem independent. On
the other hand, the ABC inserts artificial absorption regions adjacent to the pertinent
boundaries. The thickness of the region, the maximum absorption coefficient, and the
functional shape of the absorption coefficient must all be chosen carefully for the method
to work properly. Each problem requires the adjustment of these parameters to different
values in order to ensure sufficient boundary reflection suppression. If the gradient in the
absorption coefficient chosen is too large, that gradient itself will generate reflections.

In Section 3.4.3 the TBC boundary reflectivity is analyzed in more detail. It should be
stressed that the TBC is only an approximative method where some residual reflections ex-
ist. In principal, it is also possible to calculate complete reflection-free boundary conditions
but the computation complexity is very high. [19]

As shown in Figure 3.4, the (one-dimensional) TBC assumes two additional nodes at
p = 0 and p = Mx + 1 which are not in the actual analysis area. The trick of the TBC
is to incorporate the influence of these two nodes into their adjacent nodes at p = 1 and
p = Mx.

Left-Hand Boundary. We start the derivation with the wave function of the left-
traveling wave with the x-directed wave number kx

Φ(x, z) = A(z) exp(jkxx) . (3.75)

With fields at the nodes expressed as

Φp = A(z) exp(jkxxp) , (3.76)
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it follows from dividing Φ2 by Φ1 and Φ1 by Φ0

η1 =
Φ2

Φ1
=

Φ1

Φ0
= exp(jkx∆x) , (3.77)

where ∆x = x2 − x1 = x1 − x0. Now

Φ0 =
1

η1
Φ1 = Φ1 exp(−jkx∆x) , (3.78)

with

kx =
1

j∆x
ln(η1) . (3.79)

In order to prevent radiation flux back into the problem region, it is very important that

<{kx} < 0 . (3.80)

If this condition is not fulfilled, the sign of kx must be changed in the actual simulation
software.

Right-Hand Boundary. Analog to the derivation of the left-hand boundary conditions,
we get for the right-hand boundary

ΦMx+1 = ηMxΦMx = ΦMx exp(−jkx∆x) , (3.81)

where

ηMx =
ΦMx

ΦMx−1
, (3.82)

and

kx = − 1

j∆x
ln(ηMx) . (3.83)

Here,

<{kx} > 0 (3.84)

is necessary for unidirectional radiation flux out of the analysis area.

3.2.5 Implementation in Matlab

Equation (3.58) for all possible values of p = 1, . . . ,Mx can conveniently written as the
following matrix equation:




b1 c1 0 0 0 . . . 0
a2 b2 c2 0 0 . . . 0
0 a3 b3 c3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 aMx−1 bMx−1 cMx−1

0 . . . . . . . . . . 0 aMx bMx




︸ ︷︷ ︸
T




Φ
(l+1)
1

Φ
(l+1)
2

Φ
(l+1)
3
...

Φ
(l+1)
Mx−1

Φ
(l+1)
Mx




︸ ︷︷ ︸
Φ(l+1)

=




d1

d2

d3
...

dMx−1

dMx




︸ ︷︷ ︸
d

. (3.85)

The variables b1, c1, and d1 contain the Transparent Boundary Conditions of the left-
hand boundary, while the variables aMx , bMx , and dMx contain the Transparent Boundary
Conditions of the right-hand boundary from Subsection 3.2.4. [9] The tridiagonal matrix
equation

T Φ(l+1) = d (3.86)

can be solved in Matlab simply by using the command
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1 phi = T\d;

where the variable T contains the matrix T, d contains the vector d, and the result Φ(l+1)

is stored in the vector phi.

3.3 Three-Dimensional Semivectorial Analysis

In principal the 2D-BPM discussed above can be extended to the 3D-BPM in a rather
straightforward manner. BeamLabBPM implements a much more numerically efficient
3D-BPM technique based on the Alternate Direction Implicit (ADI) method [20]. The ADI-
BPM reduces the three-dimensional problem to two two-dimensional problems by dividing
one propagation step z → z + ∆z into two separate steps z → z + ∆z/2 and z + ∆z/2 →
z + ∆z which are solved successively in the x and y directions. The computation of one
large matrix equation is replaced by solving two tridiagonal matrix equations which reduces
the required computation time significantly.

In two-dimensional semivectorial analysis in Section 3.2, we assumed ∂y = 0, i.e. the
refractive index profile and electric and magnetic fields were invariant with respect to the
y direction. In the three-dimensional semivectorial analysis derivatives with respect to the
y direction do not vanish and therefore the wave equations to be solved are numerically
different. [9]

TE Mode. Ey representation:

∂2
zEy + ∂2

xEy + ∂y

[
1

εr
∂y(εrEy)

]
+ k2

0εrEy = 0 (3.87)

Hx representation:

∂2
zHx + ∂2

xHx + εr∂y

(
1

εr
∂yHx

)
+ k2

0εrHx = 0 (3.88)

TM Mode. Ex representation:

∂2
zEx + ∂x

[
1

εr
∂x(εrEx)

]
+ ∂2

yEx + k2
0εrEx = 0 (3.89)

Hy representation:

∂2
zHy + εr∂x

(
1

εr
∂xHy

)
+ ∂2

yHy + k2
0εrHy = 0 (3.90)

Using the slowly varying envelope approximation from Equation (3.39) and the Fresnel
approximation from Equation (3.44), Equations (3.87)–(3.90) simplify to

2jβ∂zΦ = ∂2
xΦ + ∂y

[
1

εr
∂y(εrΦ)

]
+ (k2

0εr − β2)Φ , (3.91)

with Φ = Ey for the TE mode Ey representation,

2jβ∂zΦ = ∂2
xΦ + εr∂y

(
1

εr
∂yΦ)

)
+ (k2

0εr − β2)Φ , (3.92)

with Φ = Hx for the TE mode Hx representation,

2jβ∂zΦ = ∂x

[
1

εr
∂x(εrΦ)

]
+ ∂2

yΦ + (k2
0εr − β2)Φ , (3.93)
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Figure 3.5: Two-dimensional non-equidistant discretization.

with Φ = Ex for the TM mode Ex representation, and

2jβ∂zΦ = εr∂x

(
1

εr
∂xΦ

)
+ ∂2

yΦ + (k2
0εr − β2)Φ , (3.94)

with Φ = Hy for the TM mode Hy representation, respectively.
For the discretization, we use the two-dimensional non-equidistant discretization mesh

from Figure 3.5. The discretized coordinates for (x, y, z) are (xp, yq, zl), where p, q, l
are integers. The discretized versions of the fields Φ(x, y, z) and the relative permittivity
εr(x, y, z) are notated as

Φ(xp, yq, zl) = Φ(l)
p,q , (3.95)

εr(xp, yq, zl) = ε(l)
r (p, q) . (3.96)

The discretization widths are defined as

n = yq − yq−1 , (3.97)

s = yq+1 − yq , (3.98)

e = xp+1 − yp , (3.99)

w = xp − xp−1 . (3.100)

Like in Section 3.2.2, Equations (3.91)–(3.94) can be represented by a single difference
equation

2jβ∂z = (αwΦp−1,q + αeΦp+1,q + αxΦp,q)︸ ︷︷ ︸
derivative with respect to x

+ (αnΦp,q−1 + αsΦp,q+1 + αyΦp,q)︸ ︷︷ ︸
derivative with respect to y

+ k2
0

[
εr(p, q)− n2

eff

]
Φp,q . (3.101)

TE mode Ey and Hx representation and TM mode Ex and Hy representation are now
characterized by the six parameters αw, αe, αn, αs, αx, and αy instead of just the three
parameters αw, αe, and αx from Equations (3.66)–(3.74). [9]
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TE Mode. Ey representation:

αw =
2

w(e+ w)

2εr(p− 1, q)

εr(p, q) + εr(p− 1, q)
(3.102)

αe =
2

e(e+ w)

2εr(p+ 1, q)

εr(p, q) + εr(p+ 1, q)
(3.103)

αn =
2

n(n+ s)
(3.104)

αs =
2

s(n+ s)
(3.105)

αx = − 4

ew
+ αe + αw (3.106)

αy = −αn − αs (3.107)

Hx representation:

αw =
2

w(e+ w)

2εr(p, q)

εr(p, q) + εr(p− 1, q)
(3.108)

αe =
2

e(e+ w)

2εr(p, q)

εr(p, q) + εr(p+ 1, q)
(3.109)

αn =
2

n(n+ s)
(3.110)

αs =
2

s(n+ s)
(3.111)

αx = −αe − αw (3.112)

αy = −αn − αs (3.113)

TM Mode. Ex representation:

αw =
2

w(e+ w)
(3.114)

αe =
2

e(e+ w)
(3.115)

αn =
2

n(n+ s)

2εr(p, q − 1)

εr(p, q) + εr(p, q − 1)
(3.116)

αs =
2

s(n+ s)

2εr(p, q + 1)

εr(p, q) + εr(p, q + 1)
(3.117)

αx = −αe − αw (3.118)

αy = − 4

ns
+ αn + αs (3.119)
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Hy representation:

αw =
2

w(e+ w)
(3.120)

αe =
2

e(e+ w)
(3.121)

αn =
2

n(n+ s)

2εr(p, q)

εr(p, q) + εr(p, q − 1)
(3.122)

αs =
2

s(n+ s)

2εr(p, q)

εr(p, q) + εr(p, q + 1)
(3.123)

αx = −αe − αw (3.124)

αy = −αn − αs (3.125)

Scalar Mode.

αw =
2

w(e+ w)
(3.126)

αe =
2

e(e+ w)
(3.127)

αn =
2

n(n+ s)
(3.128)

αs =
2

s(n+ s)
(3.129)

αx = −αe − αw (3.130)

αy = −αn − αs (3.131)

3.3.1 First ADI Step

The first ADI propagation step is z → z+∆z/2, or equivalently l→ l+1/2. The derivative
with respect to x in Equation (3.101) is expressed by the implicit FD expression using the
unknown fields at l + 1/2, i.e.

α(l+1/2)
w Φ

(l+1/2)
p−1,q + α(l+1/2)

e Φ
(l+1/2)
p+1,q + α(l+1/2)

x Φ(l+1/2)
p,q . (3.132)

The derivative with respect to y is written as explicit FD expression using the known fields
at l, i.e.

α(l)
n Φ

(l)
p,q−1 + α(l)

s Φ
(l)
p,q+1 + α(l)

y Φ(l)
p,q . (3.133)

This leads to the following difference equation which can be solved numerically:

−α(l+1/2)
w︸ ︷︷ ︸
a′p,q

Φ
(l+1/2)
p−1,q +

{
−α(l+1/2)

x +
4jβ

∆z
− k2

0

2

[
ε(l+1/2)
r (p, q)− n2

eff

]}

︸ ︷︷ ︸
b′p,q

Φ(l+1/2)
p,q

−α(l+1/2)
e︸ ︷︷ ︸
c′p,q

Φ
(l+1/2)
p+1,q

= α(l)
n Φ

(l)
p,q−1 +

{
α(l)
y +

4jβ

∆z
+
k2

0

2

[
ε(l+1/2)
r (p, q)− n2

eff

]}
Φ(l)
p,q + α(l)

s Φ
(l)
p,q+1

︸ ︷︷ ︸
d′p,q

. (3.134)

Equation (3.134) has the same structure as Equation (3.58), just with different parameters
ap,q, bp,q, cp,q, and dp,q, which are now functions of p and q, and therefore the first ADI step is
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formally equivalent to the two-dimensional semivectorial analysis. Hence, Equation (3.134)
can also be represented as a matrix equation similar to Equation (3.85), i.e.

T′Φ(l+1/2) = d′ . (3.135)

The matrix T′ is of size Mx ×Mx.

3.3.2 Second ADI Step

The second ADI propagation step is z + ∆z/2 → z + ∆z, or equivalently l + 1/2 → l.
Here, the derivative with respect to y from Equation (3.101) is expressed by the implicit
FD expression using the unknown fields at l + 1, i.e.

α(l+1)
n Φ

(l+1)
p,q−1 + α(l+1)

s Φ
(l+1)
p,q+1 + α(l+1)

y Φ(l+1)
p,q . (3.136)

The derivative with respect to x is written as explicit FD expression using the known fields
at l + 1/2 from the first ADI step, i.e.

α(l+1/2)
w Φ

(l+1/2)
p−1,q + α(l+1/2)

e Φ
(l+1/2)
p+1,q + α(l+1/2)

x Φ(l+1/2)
p,q . (3.137)

This results in the following difference equation.

−α(l+1)
n︸ ︷︷ ︸

a′′p,q

Φ
(l+1)
p,q−1 +

{
−α(l+1)

y +
4jβ

∆z
− k2

0

2

[
ε(l+1/2)
r (p, q)− n2

eff

]}

︸ ︷︷ ︸
b′′p,q

Φ(l+1)
p,q −α(l+1)

s︸ ︷︷ ︸
c′′p,q

Φ
(l+1)
p,q+1

= α(l+1/2)
w Φ

(l+1/2)
p−1,q +

{
α(l+1/2)
x +

4jβ

∆z
+
k2

0

2

[
ε(l+1/2)
r (p, q)− n2

eff

]}
Φ(l+1/2)
p,q + α(l+1/2)

e Φ
(l+1/2)
p+1,q

︸ ︷︷ ︸
d′′p,q

.

(3.138)

Like Equation (3.134) from the first ADI step, Equation (3.138) has the same structure
as Equation (3.58). Thus, the second ADI step is also equivalent to the two-dimensional
semivectorial analysis. Hence, a representation of Equation (3.138) as a tridiagonal matrix
equation is also possible, i.e.

T′′Φ(l+1) = d′′ . (3.139)

The matrix T′′ is of size My ×My.

3.3.3 Computational Complexity

As already mentioned above, the ADI-BPM splits each propagation step z → z + ∆z into
two separate steps z → z + ∆z/2 and z + ∆z/2 → z + ∆z. In the first ADI step, the
tridiagonal matrix Equation (3.135) of size Mx ×Mx has to be solved My times. In the
second ADI step Equation (3.139) of size My ×My has to be solved Mx times.

If the waveguide structure to be analyzed is invariant with respect to the z direction,
the so-called Eigenmode Decomposition Method, which will be discussed in Chapter 4, may
be more appropriate since it is computational much less complex.

3.4 Accuracy Estimation

3.4.1 Fresnel Approximation

Figure 3.6 shows the relation between wave number k, propagation constant β, and x-
directed wave number kx for a wave travelling with a propagation angle θx with respect
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z

x

β = k cos(θx)

k
kx = k sin(θx)

θx

Figure 3.6: Relation between wave number k, z-directed wave number β (propagation constant),
x-directed wave number kx, and propagation angle θx with respect to the z direction in the plane
y = 0.

to the z direction in the plane y = 0. According to [9] the Fresnel approximation from
Equation (3.44) is a good approximation for the general wide-angle formulation if and only
if the propagation angles are so small that

cos2

(
θx
2

)
≈ 1 . (3.140)

3.4.2 Spatial Sampling Constraints

In Section 2.3.2 the model for Gaussian beams with some angles θx and θy with respect
to the z direction in the planes y = 0 and x = 0, respectively, were presented. In the
following, θy = 0 is assumed without loss of generality, since this can always be achieved
by an appropriate rotation of the coordinate system.

The spatial sampling frequency with respect to x is defined as

fs =
Mx

xmax − xmin
. (3.141)

The spatial frequency with respect to x of a beam with an angle θx with respect to propa-
gation direction z in the plane y = 0 equals

fx =
sin(θx)

λ
. (3.142)

The so-called oversampling factor is defined as

γ =
fs

2 fx
=

λ

2 sin(θx)

Mx

xmax − xmin
. (3.143)

The spatial sampling frequency has fulfill Nyquist’s sampling criterion [21]

fs ≥ 2 fx , (3.144)

or, equivalently, γ ≥ 1.
Figure 3.7 shows the dependency of the spatial period with respect to x on the angle

θx. It can be seen that the spatial period decreases with increasing θx. Figure 3.8 shows
which actual angle θ̂x a simulated beam has when the angle θx is used as setpoint angle.
There are two reasons why these two angles are not equal:

� due to a violation of the Fresnel approximation, i.e. the approximation from Equa-
tion (3.140) is not fulfilled for the setpoint angle θx, and

� due to a small oversampling factor from Equation (3.143).

Figure 3.7 shows that even with a very large oversampling factor of γ = 10, the actual
angle θ̂x deviates rather drastically from the setpoint angle if θx is large. The conclusion
of this figure is, that due to the Fresnel approximation, beam angles of θx > 10◦ should be
avoided in BeamLabBPM simulations because these beams are not approximately paraxial
anymore. The Eigenmode Decomposition Method discussed in Chapter 4 does not have
this limitation.
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Figure 3.7: <{Φ0(x, y)} for different values of θx. The spatial period with respect to x is 1/fx =
λ/ sin(θx).

 

 

γ = 10

γ = 5

γ = 3

θ̂ x

θx

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 3.8: Setpoint angles θx vs. actual angles θ̂x for different oversampling factors γ.
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Figure 3.9: Intensity I in the plane y = 0 of an incident Gaussian beam (θx = −10◦, w0 = 15µm)
and the reflected beam.
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Figure 3.10: Power P in the whole transversal simulation region vs. propagation distance z.

3.4.3 Boundary Reflections

In Figure 3.9 the boundary reflection due to the approximative nature of TBCs from Sec-
tion 3.2.4 is shown. A Gaussian beam propagates at an angle of θ = −10◦ and hits the
right simulation boundary at z = 50µm/ tan(θx) ≈ 284µm. Figure 3.10 depicts the power
in the whole lateral simulation region as a function of z. For Mx = My = 513 a total of
P = −59.62 dB is reflected back into the simulation region. This results in a boundary
reflectivity of R = −59.62 dB = 1.09 · 10−6. This low reflectivity also matches the values
found in the literature. [17] Simulations using smaller values of transversal discretization
points Mx = My show a slightly larger boundary reflectivity. In simulations where most of
the input power is guided in a waveguide, these boundary reflections are generally negligi-
ble. When waveguide structures are analyzed, in which a large amount of the input power
is radiated towards the simulations boundaries, these boundary reflections can reduce the
overall simulation accuracy. The Eigenmode Decomposition Method discussed in Chapter 4
does not have this limitation.

3.5 Imaginary Distance Beam Propagation Method

It has been shown that if the paraxial wave equation is modified so that fields travel imag-
inary distances, the field resulting from an imaginary distance propagation is the funda-
mental mode of an optical waveguide. [22] Using the FD-BPM the fundamental mode can
be obtained within a few propagation steps which shows that the so-called Imaginary Dis-
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Figure 3.11: Intensity I in the plane y = 0 vs. propagation step number n for a step-index circular
waveguide using the Imaginary Distance BPM. The input field is a plane wave, i.e. Φ0(x, y) = A0 =
1, the initial value of the normalized propagation constant is B0 = 0, and the propagation step size
is ∆z = 10µm.

tance Beam Propagation Method (ID-BPM) is a numerically very efficient way of computing
waveguide eigenmodes. Conventional eigenmode calculations require the computation of
eigenvalues and eigenvectors of a huge (MxMy) × (MxMy) matrix (see Section 4.3). Un-
fortunately, the simulation result of the ID-BPM usually is the fundamental mode of the
waveguide under investigation—higher order modes are difficult to obtain. In principal, it
is also possible to compute modes of higher order by using different starting conditions, i.e.
input fields Φ0(x, y), but the discussion of these techniques is beyond the scope of this text.

The fundamental mode has the largest propagation constant and therefore it sees the
most rapid oscillations in phase when traveling down the real axis. The ID-BPM exploits the
fact that propagation down the imaginary axis changes these sinusoidal variations in phase
into exponential growth in amplitude. A sufficient long imaginary distance propagation
gives the fundamental mode—the mode with the most growth. [22]

Figure 3.11 shows the exponential growth in amplitude of the fundamental eigenmode
of a circular step-index waveguide with a core radius of a = 4.5µm. Core and cladding
refractive index are n1 = 1.455 and n2 = 1.450, respectively. The so-called normalized
propagation constant of an eigenmode with effective refractive index neff is defined as [23]

B =
n2

eff − n2
2

n2
1 − n2

2

. (3.145)

Here, an initial value of the effective refractive index of neff,0 = n2 = 1.5 was chosen, i.e.
B0 = 0.

In Figure 3.12 the normalized propagation constant B of the fundamental eigenmode
is depicted as a function of the ID-BPM propagation step number. After only n = 15
propagation steps, B has already converged sufficiently to its final value—the relative error
compared to the exact analytical solution is already smaller than 10−6. For demonstration
purposes, the input field of this simulation was a plane wave, i.e. Φ0(x, y) = A0 = 1. If
a Gaussian field is chosen—which is already very similar to the fundamental Bessel mode
of the circular step-index waveguide—the propagating field approaches the fundamental
eigenmode even faster. The final value of B = 0.8412 is equal to the simulation result using
the eigenmode solver BeamLabEIG (see value of B from eigenmode V1(x, y) in Figure C.3).
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Figure 3.12: Calculated value of the normalized propagation constant B of the fundamental mode
at each iteration for the starting conditions Φ0(x, y) = A0 = 1 and B0 = 0. The propagation step
size is ∆z = 10µm.



Chapter 4

Eigenmode Decomposition Method

4.1 Introduction and Outline

In this chapter a numerically very efficient method for calculating the throughput of an
optical waveguide is presented. This method, called Eigenmode Decomposition Method,
uses the framework of linear vector spaces to decompose an arbitrary input field into a
part which lies within the Hilbert space of eigenmodes and another part which lies in the
orthogonal complement of this eigenmode space. Since the throughput of any eigenmode is
equal to one and the throughput of any field in the orthogonal complement of the eigenmode
space is zero, the throughput can be calculated very efficiently.

This chapter is organized as follows.

� In Section 4.2 the throughput of an optical waveguide is defined.

� In Section 4.3 so-called eigenmodes of optical waveguides are discussed.

� In Section 4.4 the fundamentals of linear vector spaces and orthonormal bases are
discussed.

� Section 4.5 combines the concepts of waveguide eigenmodes and linear vector spaces
to explain the Eigenmode Decomposition Method.

� Finally, in Section 4.6 two numerical examples of the Eigenmode Decomposition
Method are presented.

4.2 Waveguide Throughput

The throughput of an optical waveguide for a given input field Φ0(x, y) is defined as the
ratio of output power P∞ = P (z →∞) to input power P0 = P (z = 0), i.e.

η(Φ0) =
P∞
P0

=

∞∫
−∞

∞∫
−∞
|Φ∞(x, y)|2 dx dy

∞∫
−∞

∞∫
−∞
|Φ0(x, y)|2 dx dy

. (4.1)

It is bounded by
0 ≤ η(Φ0) ≤ 1 , (4.2)

where when η = 1 that means all of the input power is guided by the waveguide and when
η = 0 that means all of the input power is radiated.

31
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Figure 4.1: Schematic representation of the spatial transient and the spatial steady state.

One way of computing the throughput numerically is to compute the output power
Pout at a finite distance z < ∞ using the Beam Propagation Method implemented in
BeamLabBPM. This method is not very computationally efficient if the throughput is the
only result of interest.

In this chapter a much more efficient method is presented which only requires to com-
pute the waveguide eigenmodes once using the eigenmode solver BeamLabEIG. Once the
eigenmodes are known, only N so-called overlap integrals1 have to be computed, where N
is the number of waveguide eigenmodes, in order to compute the throughput.

4.3 Waveguide Eigenmodes

A waveguide eigenmode is a lateral field distribution V (x, y) which does not change during
propagation. The number of eigenmodes is finite and depends on the frequency—it generally
increases with increasing frequency. The superposition of eigenmodes does change during
propagation since eigenmodes generally have different propagation constants and therefore
different propagation velocities. These different propagation velocities lead to so-called
mode dispersion which can severely limit the maximum data rates in optical communication
systems.

The multi-core waveguide under investigation (see Section 2.2.1) has a total of 51 eigen-
modes at a wavelength of λ = 850 nm which are depicted in Figures A.3–A.5.

In general, not all of the laser output power can be guided by an ideal, i.e. non-
absorbing, waveguide—some of the power is radiated within a finite distance from the
optical source. This region is called spatial transient. Sufficiently far from the optical
source, all of the power of the radiation field ΦH⊥

2 is lost to radiation and all of the
remaining guided optical power is “contained” within the waveguide eigenmodes. Within
this region, the waveguide fields are in a so-called spatial steady state. Figure 4.1 depicts
this situation schematically. [24] “Spatially steady” does not mean that the field does
not change during propagation since, as mentioned above, the superposition of eigenmodes
with different propagation constants is not spatially constant. It just means that the power
carried by each individual waveguide eigenmode is constant and hence, the total guided
power is constant in a non-absorbing waveguide.

1Overlap integrals will be defined in Section 4.5.
2This nomenclature will be explained in Section 4.5.
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4.3.1 Eigenmode Equation

BeamLabEIG computes the eigenmodes of a waveguide by solving the eigenmode matrix
equation

AΦ = β2Φ , (4.3)

where the scalar quantity β2 is an eigenvalue of the equation, and the vector Φ is an
eigenvector of the equation. The matrix A has a size of (MxMy) × (MxMy), where Mx

and My are the numbers of lateral discretization points in x and y direction, respectively.
The values of the matrix elements of A depend on the refractive index profile n(x, y), the
discretization mesh, and the wavelength λ. A detailed discussion on how to construct the
matrix A is beyond the scope of this text and can be found in [9, 25].

The eigenmode equation is solved in BeamLabEIG by executing the following Matlab
commands:

1 % Compute eigenvalues betaˆ2 and eigenvectors phi eigs of matrix A
2 [phi eigs, beta square] = eigs(A, k, ...
3 (sqrt(max(max(epsilon r)))*k0)ˆ2, options);
4

5 % Reshape and permute matrix phi eigs in order to get correct x and y axes
6 phi eigs = permute(reshape(phi eigs, My, Mx, k), [2 1 3]);
7

8 % Effective refractive indices of eigenmodes: neff = beta/k0
9 neff = diag(sqrt(beta square))/k0;

10 % Normalized propagation constants of eigenmodes
11 B = (neff−n2)/(n1−n2);

Here, in line 2 the variable A contains the matrix A and k is the number of eigenmodes
to be computed. The results of the eigenmode computation are the eigenvectors stored in
the columns of the matrix phi eigs, as well as the eigenvalues β2 stored in the matrix
beta square. As already mentioned above, the matrix A has a size of (MxMy)× (MxMy),
and therefore the execution of the eigs function generally requires a rather long compu-
tation time. In line 6 the matrix phi eigs is reshaped and permuted in order for the
waveguide eigenmodes to be finally stored in a 3-D matrix, which is convenient for further
computations.

The eigenmode equation from Equation (4.3) which is solved by BeamLabEIG has a
multitude of solutions, but only some of them are physically meaningful. The necessary
condition for a solution of Equation (4.3) to be a waveguide eigenmode is

n2 ≤ neff ≤ n1 , (4.4)

where neff is the effective refractive index which can be computed from the eigenvalues β2

of the eigenmode equation using Equation (3.40), and n1 and n2 are core and cladding
refractive index, respectively. The closer neff is to n1, the stronger the spatial confinement
of the eigenmode to the core region is. The closer neff is to n2, the more the eigenmode
extends into the cladding region.

Using the definition of the normalized propagation constant from Equation (3.145),
Equation (4.4) can also be formulated as

0 ≤ B ≤ 1 . (4.5)

4.3.2 Rotation of Eigenmodes

In general, the solutions of the eigenmode equation from Equation (4.3) are not unique.
If the waveguide under investigation is rotationally symmetric, any rotated eigenmode is
again an eigenmode.
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More generally, if the refractive index profile of the waveguide has a rotational period
of ∆ϕ, i.e. n(r, ϕ) = n(r, ϕ + ∆ϕ), then all rotated eigenmodes Ṽn(r, ϕ) = Vn(r, ϕ + ∆ϕ)
are again eigenmodes. In order to preserve the orthogonality of the eigenmodes, all N
eigenmodes V1, . . . , Vn have to be rotated by ∆ϕ. The rotational period of the multi-core
waveguide from Figure 2.1 is ∆ϕ = 60◦.

Matlab’s eigs function uses a random starting vector for the computation of eigenval-
ues and corresponding eigenvectors. Hence, the eigenmodes computed by BeamLabEIG
are also random, where the randomness lies exactly in the rotation of the eigenmodes. Con-
secutive eigenmode computation of the same waveguide structure can result in differently
rotated eigenmodes each time.

4.4 Linear Vector Spaces and Orthonormal Bases

A linear vector spaceH is a set of functions Φ(x, y) with the following property: If Φ1(x, y) ∈
H and Φ2(x, y) ∈ H, then αΦ1(x, y) + β Φ2(x, y) ∈ H. [21]

Inner Product and Norm. The inner product of two functions Φ1(x, y) and Φ2(x, y)
is defined as

〈Φ1,Φ2〉 =

∞∫

−∞

∞∫

−∞

Φ1(x, y) Φ∗2(x, y) dx dy . (4.6)

The norm3 of a function Φ(x, y) is defined as

‖Φ‖ =
√
〈Φ,Φ〉 =

√√√√√
∞∫

−∞

∞∫

−∞

|Φ(x, y)|2 dx dy . (4.7)

Orthonormal bases. Let {Vn(x, y)}n=1,2,...,N be a set of orthonormal functions in H, i.e.

〈Vn, Vm〉 = δn,m =

{
1 , n = m
0 , n 6= m

, (4.8)

where δn,m is the so-called Kronecker delta. Equation (4.8) implies ‖Vn‖ = 1. A set
of orthonormal functions {Vn(x, y)}n=1,2,...,N is called an orthonormal basis for the linear
vector space H, if any function Φ(x, y) ∈ H can be represented as a linear combination of
the basis functions Vn. That means that to each Φ(x, y) ∈ H there exist coefficients Φn

with n = 1, 2, . . . , N such that

Φ(x, y) =

N∑

n=1

ΦnVn(x, y) for Φ(x, y) ∈ H . (4.9)

For a given orthonormal basis {Vn(x, y)}n=1,2,...,N for the vector space H the coefficients
Φn from Equation (4.9) are unique for each Φ(x, y)—they are given by the inner products
of Φ(x, y) with the basis functions Vn(x, y), i.e.

Φn = 〈Φ, Vn〉 . (4.10)

Dimension. The number N of basis functions required is called the dimension of the
vector space H. In general, dimension may be infinite. The set of vectors H that can be
reached by all possible linear combinations of basis functions {Vn(x, y)}n=1,2,...,N is called
span, i.e.

H = span{Vn(x, y)}n=1,2,...,N . (4.11)

3A norm which is defined by the inner product as in Equation (4.7) is called induced norm.
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4.5 Hilbert Space of Eigenmodes

In this section we will discuss waveguide eigenmodes in the framework of linear vector
spaces described in the previous section.

All N eigenmodes V1, V2, . . . , VN of an optical waveguide constitute an orthonormal
basis of a finite-dimensional Hilbert space H, i.e.

H = span(V1, V2, . . . , VN ) , (4.12)

with norm ‖Φ‖ and inner product 〈Φ1,Φ2〉 from Equations (4.7) and (4.6), respectively.
The waveguide eigenmodes are normalized4 in order for the basis to be orthonormal, i.e.

‖Vn‖2 = 1 , n = 1, . . . , N . (4.13)

The overlap integral of two fields Φ1 and Φ2 is defined as

O(Φ1,Φ2) =

∣∣∣∣∣
∞∫
−∞

∞∫
−∞

Φ1(x, y) Φ∗2(x, y) dx dy

∣∣∣∣∣

2

∞∫
−∞

∞∫
−∞
|Φ1(x, y)|2 dx dy

∞∫
−∞

∞∫
−∞
|Φ2(x, y)|2 dx dy

=
|〈Φ1,Φ2〉|2

‖Φ1‖2 ‖Φ2‖2
. (4.14)

Due to the Cauchy-Schwarz inequality

|〈Φ1,Φ2〉| ≤ ‖Φ1‖ ‖Φ2‖ , (4.15)

the overlap integral from Equation (4.14) is bounded by

0 ≤ O(Φ1,Φ2) ≤ 1 , (4.16)

with O(Φ1,Φ2) = 1 if and only if the functions Φ1(x, y) and Φ2(x, y) are “colinear”, i.e.
Φ1(x, y) = cΦ2(x, y) with some constant c.

Theorem 4.5.1 Any arbitrary input field Φ0 of an optical waveguide can be decomposed
as

Φ0 = ΦH + ΦH⊥ , (4.17)

where ΦH is the component of Φ0 which lies in the Hilbert space of eigenmodes H. ΦH can
be represented as a linear combination of waveguide eigenmodes Vn, i.e.

ΦH =

N∑

n=1

〈Φ0, Vn〉Vn , (4.18)

where the analysis relation from Equation (4.10) has been used. ΦH⊥ is the component of
Φ0 which lies in H⊥, the orthogonal complement of H and is given by the relation

ΦH⊥ = Φ0 − ΦH . (4.19)

The field ΦH⊥ is orthogonal to all waveguide eigenmodes, i.e.

〈ΦH⊥ , Vn〉 = 0 for n = 1, . . . , N . (4.20)

Figure 4.2 shows the schematic representation of Equation (4.17). ΦH lies in the space
spanned by the waveguide eigenmodes while ΦH⊥ is orthogonal to any eigenmode.

4The waveguide eigenmode solver BeamLabEIG internally takes care of this normalization, i.e. Equa-
tion (4.13) is always fulfilled for all eigenmodes.
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H = span{Vn}n=1,2,...,N

Φ0 ΦH⊥

ΦH

Figure 4.2: Schematic representation of the decomposition Φ0 = ΦH + ΦH⊥ .

Theorem 4.5.2 The throughput of ΦH has to be equal to 1 because it is a weighted sum of
all eigenmodes of the waveguide, i.e.

η(ΦH) =
N∑

n=1

O(ΦH, Vn) =
N∑

n=1

|〈ΦH, Vn〉|2

‖ΦH‖2 ‖Vn‖2
=

1

‖ΦH‖2
N∑

n=1

|〈ΦH, Vn〉|2 = 1 , (4.21)

where Equation (4.13) has been used. The throughput of ΦH⊥ has to be equal to 0 because
the inner product of ΦH⊥ with any eigenmode vanishes, i.e.

η(ΦH⊥) =

N∑

n=1

O(ΦH⊥ , Vn) =

N∑

n=1

|〈ΦH⊥ , Vn〉|2

‖ΦH⊥‖2 ‖Vn‖2
= 0 , (4.22)

where Equation (4.20) has been used.

Because of Equation (4.22) the throughput of an arbitrary input field can be calculated
computationally very efficiently using the following theorem.

Theorem 4.5.3 The throughput of an arbitrary input field Φ0 can be calculated by

η(Φ0) =

N∑

n=1

O(Φ0, Vn) . (4.23)

Because of Equation (4.16) the throughput bounds from Equation (4.2) are indeed
fulfilled.

Theorem 4.5.4 In a linear waveguide, the output field Φout at any point in space resulting
from the input field Φ0 = ΦH+ΦH⊥ must be equal to the sum of output fields resulting from
the separate input fields ΦH and ΦH⊥, i.e.

Φout(Φ0) = Φout(ΦH) + Φout(ΦH⊥) . (4.24)

In the following section Theorems 4.5.1–4.5.4 will be investigated in detail by calculating
numerically ΦH and ΦH⊥ for different input fields Φ0 and different sets of eigenmodes.

4.6 Examples

4.6.1 Single-Mode Waveguide

In this section a step-index waveguide with a single circular core will be investigated. The
so-called normalized frequency V is defined as [23]

V = ak0NA = ak0

√
n2

1 − n2
2 , (4.25)
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Table 4.1: Numerical values of inner products 〈Φin, V1〉 and overlap integrals O(Φin, V1) with the
only eigenmode V1, as well as numerical throughput values η(Φin) of the fields Φin = Φ0, Φin = ΦH,
and Φin = ΦH⊥ .

Φin Φ0 ΦH ΦH⊥

〈Φin, V1〉 -2.4076 -2.4076 0.0000

O(Φin, V1) 0.3275 1.0000 0.0000

η(Φin) = O(Φin, V1) 0.3275 1.0000 0.0000

where NA designates the numerical aperture of the waveguide, a is the core radius, and
k0 = (2π)/λ0 is the wave number in a vacuum. The normalized frequency is chosen to
be smaller than the cut-off frequency of the second waveguide eigenmode V2

5 in order to
ensure single-mode operation, i.e. [8]

V < Vc = 2.405 . (4.26)

Here, V = 2.2 was chosen.

Simulation Results. Figure 4.3 graphically illustrates the decomposition from Equa-
tion (4.17) of a Gaussian LP01 input field Φ0, as defined in Section 2.3. The radius of
the beam waist is w0 = 2.10µm and the lateral offset6 is xoffset = 2.5µm. Figure 4.4
shows the intensity of the propagating beams for the different input fields Φ0, ΦH, and
ΦH⊥ . Figure 4.4(b) shows that the throughput of ΦH is indeed η(ΦH) = 1. Because
we have only a single waveguide eigenmode V1, the output intensity is moreover con-
stant with respect to the z direction. Figure 4.4(c) shows that the throughput of ΦH⊥
is η(ΦH⊥) = 0, i.e. all of the input power is radiated from the waveguide towards the
simulation boundaries. Figure 4.4(a) and (d) are virtually identical, which shows that The-
orem 4.5.4 holds—Figure 4.4(d) is simply the addition7 of the fields from (b) and (c). This
sum Φout(ΦH) + Φout(ΦH⊥) is equal to the field distribution which results form the sum
input field Φ0 = ΦH + ΦH⊥ .

Figure 4.5 shows the normalized power in the waveguide as a function of z for the input
fields Φ0, ΦH, and ΦH⊥ . Again, it can be seen that Equations (4.21) and (4.22) hold. The
throughput of Φ0 is η(Φ0) = 0.33.

Figure 4.6 depicts the power carried in each waveguide eigenmode as a function of the
propagation distance z. Since, per definition, eigenmodes do not change their lateral field
distribution during propagation, the power carried in each eigenmode must also be constant
with respect to z, i.e.

O(Φz, Vn) = O(Φ0, Vn) for all z ≥ 0 . (4.27)

Here, we have single-mode operation and therefore all of the power in the eigenmode space
H is contained in the only eigenmode V1.

Table 4.1 shows the numerical values of inner products 〈Φin, V1〉 and overlap integrals
O(Φin, V1) with the only eigenmode V1, as well as the numerical throughput values η(Φin)
of the fields Φin = Φ0, Φin = ΦH, and Φin = ΦH⊥ . The field ΦH⊥ is orthogonal to the
eigenmode V1 (see Equation (4.20)). Theorems 4.5.1–4.5.3 are all fulfilled by the simulation
results.

5For a circular step-index waveguide this is the LP11 Bessel mode. “Second” refers to a descending
ordering of the eigenmodes with respect to the normalized propagation constant B from Equation (3.145).

6The definition of the lateral offset is depicted in Figure 5.1.
7Please note that Figure 4.4 is represented in a logarithmic scale.
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Figure 4.3: Illustration of the decomposition Φ0 = ΦH + ΦH⊥ for a single-mode waveguide with
core radius a = 4.5µm and a Gaussian input field with lateral offset xoffset = 2.5µm. The abscissas
an ordinates are all in µm and show x and y coordinates, respectively.

4.6.2 Multi-Mode Waveguide

In this section the same waveguide as in Section 4.6.1 is investigated, but now a normalized
frequency of V = 5 is used. Hence, V > Vc = 2.405 and therefore multiple eigenmodes
exist. These eigenmodes are computed in the example in Section C.2 using BeamLabEIG.
There exist a total of N = 6 eigenmodes V1, . . . , V6 which are depicted in Figure C.3.

Simulation Results. Figure 4.7 graphically illustrates the decomposition from Equa-
tion (4.17) for a Gaussian input field Φ0. Here, the radius of the beam waist is again
w0 = 2.10µm and the lateral offset is xoffset = 4.5µm. Figure 4.8 shows the spatial inten-
sity distribution for the beams resulting from the three input fields Φ0, ΦH, and ΦH⊥ . Like
in Subsection 4.6.1, the throughput of ΦH is η(ΦH) = 1, while the throughput of ΦH⊥ is
η(ΦH⊥) = 0. Figures 4.8(a) and (d) show again that Theorem 4.5.4 is fulfilled for these
simulations.

Figure 4.9 depicts the normalized power of the propagating beam as a function of z for
the three input fields Φ0, ΦH, and ΦH⊥ . The throughput of Φ0 is η(Φo) = 0.57.

Figure 4.10 shows how the power in the eigenmode space H is distributed between the
N = 6 waveguide eigenmodes. Each color represents the power contained in one of the
eigenmodes. Again, the overlap integrals O(Φz, Vn) and therefore the power carried in each
of the eigenmodes is constant with respect to z.

Table 4.2 shows the numerical values of inner products and overlap integrals with all
eigenmodes V1, . . . , V6, as well as the throughput for the three fields Φ0, ΦH, and ΦH⊥ .
Theorem 4.5.2 is fulfilled, i.e. η(ΦH) = 1 and η(ΦH⊥) = 0. Equation (4.20) is also fulfilled,
i.e. ΦH⊥ is orthogonal to all waveguide eigenmodes. 〈Φin, V5〉 = 0 since V5(x, y) is an odd
function for a fixed value of x (see Figure C.3) and Φ0(x, y) is an even function for a fixed
value of x (see Figure 4.7).
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Figure 4.4: Intensity I in the plane y = 0 of the beams propagating in a single-mode waveguide
for the input fields Φ0, ΦH, and ΦH⊥ . Here, xoffset = 2.5µm.
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Figure 4.5: Normalized power P in a circular area with radius 20µm vs. propagation distance z
for the input fields Φ0, ΦH, and ΦH⊥ and a single-mode waveguide.
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Figure 4.6: The dark blue bar represents the power O(Φz, V1) carried in the only waveguide
eigenmode V1 at propagation distance z. Since there is only N = 1 eigenmode, this is equal to the
throughput, i.e. η(Φ0) = O(Φ0, Vn) due to Equation (4.27).
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Figure 4.7: Illustration of the decomposition Φ0 = ΦH + ΦH⊥ for a multi-mode waveguide with
core radius a = 4.5µm and a Gaussian input field with lateral offset xoffset = 4.5µm. The abscissas
an ordinates are all in µm and show x and y coordinates, respectively.
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Figure 4.8: Intensity I in the plane y = 0 of the beams propagating in a multi-mode waveguide
for the input fields Φ0, ΦH, and ΦH⊥ . Here, xoffset = 2.5µm.
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Figure 4.9: Normalized power P in a circular area with radius 20µm vs. propagation distance z
for the input fields Φ0, ΦH, and ΦH⊥ and a multi-mode waveguide.

O
(Φ

z
,V

n
)

z/cm

η(Φ0) =
∑N

n=1 O(Φ0, Vn) = 0.57

O(Φ0, V6) = 0.10
O(Φ0, V5) = 0.00
O(Φ0, V4) = 0.18

O(Φ0, V1) = 0.07

O(Φ0, V2) = 0.14

O(Φ0, V3) = 0.08

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 4.10: Each color represents the power O(Φz, Vn) carried in one of the N = 6 waveguide
eigenmodes Vn at propagation distance z. The sum of these powers is the throughput, i.e. η(Φ0) =∑N

n=1O(Φ0, Vn) due to Equation (4.27).

Table 4.2: Numerical values of inner products 〈Φin, Vn〉 and overlap integrals O(Φin, Vn) with all
N = 6 eigenmodes V1, . . . , V6, as well as numerical throughput values η(Φin) of the fields Φin = Φ0,
Φin = ΦH, and Φin = ΦH⊥ .

Φin Φ0 ΦH ΦH⊥

〈Φin, V1〉 1.1365 1.1365 0.0000

〈Φin, V2〉 1.5516 1.5516 0.0000

〈Φin, V3〉 1.1687 1.1687 0.0000

〈Φin, V4〉 1.7972 1.7972 0.0000

〈Φin, V5〉 0.0000 0.0000 0.0000

〈Φin, V6〉 1.3178 1.3178 0.0000

O(Φin, V1) 0.0730 0.1288 0.0000

O(Φin, V2) 0.1360 0.2400 0.0000

O(Φin, V3) 0.0772 0.1361 0.0000

O(Φin, V4) 0.1825 0.3220 0.0000

O(Φin, V5) 0.0000 0.0000 0.0000

O(Φin, V6) 0.0981 0.1731 0.0000

η(Φin) =
∑6

n=1O(Φin, Vn) 0.5668 1.0000 0.0000



Chapter 5

Throughput of Multi-Core
Waveguides

5.1 Introduction and Outline

This chapter contains simulation results of the multi-core waveguide structure from Chap-
ter 2. Here, the main parameter of interest is the throughput, i.e. the ratio of output power
at z →∞ and input power at z = 0 defined in Equation (4.1).

The chapter is organized as follows.

� In Section 5.2 the throughput is computed for different lateral misalignments with
respect to the the x and y directions.

� In Section 5.3 the dependence of throughput on an angular laser misalignment is
investigated.

� Section 5.4 discusses how the throughput is related to the relative refractive index
difference between waveguide core and cladding.

� Finally, in Section 5.5 the throughput of different VCSEL modes is investigated.

5.2 Lateral Laser Misalignment

5.2.1 Deterministic Lateral Misalignment

As already mentioned in Section 1, it is very difficult to perfectly align laser and waveguide
when inscribing the waveguide using the TPA process—in fact this problem was the main
motivation to use multi-core structures in the first place. In this subsection the throughput
of the multi-core waveguide structure is analyzed for different lateral misalignments xoffset

and yoffset of the input field Φ0(x, y) with respect to the x and y directions. Figure 5.1
shows the definition of these lateral offsets. In this subsection deterministic lateral mis-
alignments are investigated. This means that the lateral misalignments of the input fields
have deterministic values and the throughput has a deterministic value for each simulation.
In the next subsection a stochastic lateral misalignment model is discussed, where the av-
erage throughput for a given probability density function of the lateral laser misalignment
is evaluated.

Figure 5.2 shows the spatial intensity distributions of beams with different lateral laser
misalignments xoffset. For xoffset = 12.5µm the throughput is much smaller than for xoffset =
0µm and xoffset = 25µm.

Figure 5.3 depicts the power in a circular area of radius 50µm beam as a function of
the propagation distance z. For all three lateral laser misalignments, this power converges

43
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Figure 5.1: Definition of lateral offsets xoffset and yoffset with respect to the x and y direction,
respectively.

to a final value after a sufficient large propagation distance, i.e. the power of the radiation
field in the spatial transient from Figure 4.1 has decayed to zero.

Figure 5.4 shows the throughput η as a function of the lateral laser misalignments xoffset

and yoffset. The throughput is much smaller when the lateral misalignment is in y direction,
i.e. xoffset = 0 and yoffset 6= 0. Figure 5.4 also compares the throughput of the multi-core
waveguide with the throughput of a single-core waveguide. If the lateral misalignment is in
y direction, the difference in throughput between single-core and multi-core waveguide is
rather small. On the other hand, if the lateral misalignment is in x direction, i.e. xoffset 6= 0
and yoffset = 0, this difference is much larger, especially at xoffset = 25µm where one of the
cores of the multi-core waveguide is located.

Figures 5.5 and 5.6 show the throughput of a multi-core waveguide and a single-core
waveguide, respectively, as a function of both lateral laser misalignment directions xoffset

and yoffset. These simulation results are a prerequisite for the stochastic throughput com-
putations in the next subsection. Figures 5.5 is very similar to Figure 2.1(c), where the
refractive index profile of the multi-core waveguide is shown—the throughput indeed has a
maximum if the values of the lateral offsets xoffset and yoffset fulfill the equations

xoffset = xk for k = 1, . . . ,K , (5.1)

yoffset = yl for l = 1, . . . ,K , (5.2)

where xk and yl are the x and y coordinates of the centers of the multi-core waveguide
cores from Table 2.1.

5.2.2 Stochastic Lateral Misalignment

Since the actual laser misalignment is unknown, it makes sense to model it as a random
variable and calculate the average throughput η̄. Here, we will assume that the lateral offset
is a jointly Gaussian continuous 2-D real random variable (X,Y ) ∼ N (µX , µY , σ

2
X , σ

2
Y , ρ).

With a slight abuse of notation we use X and Y instead of Xoffset and Yoffset. The probability
density function (pdf) of (X,Y ) is given by [26]

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2

exp

{
− 1

2(1− ρ2)

[
(x− µX)2

σ2
X

− 2ρ
(x− µX)(y − µY )

σXσY
+

(y − µY )2

σ2
Y

]}
, (5.3)
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Figure 5.2: Intensity I in the plane y = 0 of beams propagating in a multi-core waveguide for
different values lateral laser misalignment xoffset.
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Figure 5.3: Normalized power P (z)/P (0) in a circular area of radius 50µm vs. propagation
distance z for different values of lateral laser misalignment xoffset.
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Figure 5.4: Throughput η vs. lateral laser misalignment in x direction (yoffset = 0) and in y
direction (xoffset = 0).
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Figure 5.5: Throughput η vs. lateral laser misalignment xoffset and xoffset in both lateral directions
x and y for a multi-core waveguide.
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Figure 5.6: Throughput η vs. lateral laser misalignment xoffset and xoffset in both lateral directions
x and y for a single-core waveguide.

where ρ = ρX,Y represents the correlation coefficient and µX , µY , σ2
X , and σ2

Y are the
means and variances of the 1-D random variables X and Y . Here, we assume that X and
Y are uncorrelated, i.e. ρ = ρX,Y = 0. Equation (5.3) then simplifies to

fX,Y (x, y) =
1

2πσXσY
exp

{
−1

2

[
(x− µX)2

σ2
X

+
(y − µY )2

σ2
Y

]}
. (5.4)

If we furthermore assume that X and Y are zero-mean, i.e. µX = µY = 0, and with
identical variance σ2

X = σ2
Y = σ2, Equation (5.4) further simplifies to

fX,Y (x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (5.5)

Here, the only unknown parameter remaining is σ2. Figure 5.7 shows the dependence of
the average throughput η̄ on the standard deviation σ =

√
σ2. It is evident that for σ → 0

the average throughput equals the deterministic throughput with xoffset = yoffset = 0, i.e.
η̄ → 0.67 (see Figures 5.3 and 5.4). Unfortunately, the actual manufacturing tolerances
are unknown but realistic state of the art values are somewhere between σ = 10µm and
σ = 20µm. Therefore the average throughput will be between 20% and 30%. Under these
assumptions, the average throughput of a multi-core waveguide is between 10% and 15%
larger than the average throughput of a single-core waveguide.

The average throughput of a multi-core waveguide is between

20% ≤ η̄ ≤ 30% , (5.6)

which is only 10% to 15% larger than the throughput of a single-core waveguide.
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Figure 5.7: Average throughput η̄ vs. standard deviation σ of the jointly Gaussian random variable
(X,Y ).

5.3 Angular Laser Misalignment

In this section we will discuss the influence of the throughput on an angular laser misalign-
ment. Figure 5.8 shows the definition of the angular offset θx with respect to the z direction
in the plane y = 0.

z

x

y

θx

n1 > n2 Cladding
n2

Core
n1

Figure 5.8: Definition of angular offset θx with respect to the z direction in the plane y = 0.

Figure 5.9 shows the intensity of a propagating beam for the misalignment angles θx = 5◦

and θx = 10◦. When comparing Figures 5.9a and 5.9b to Figure 5.2a where θx = 0◦, it can
be seen that there is a significant amount of optical power radiated towards the simulation
boundaries within the first few millimeters. Evidently, this is directly related to a reduced
throughput. Figure 5.10 shows the normalized power of the propagating beam as a function
of the propagation distance z. The normalized power has sufficiently converged to the the
final throughput value at about z = 5 mm.

Figure 5.11 shows the throughput as a function of the misalignment angle θx for different
additional lateral misalignments xoffset and xoffset. Angles of the emitted laser beam should
not be larger than θx > 5◦. A combination of lateral and angular misalignments can severely
reduce the throughput.
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Figure 5.9: Intensity I in the plane y = 0 of beams propagating in a multi-core waveguide with
xoffset = 0µm and different values of the misalignment angle θx. (c) and (d) show details of (a) and
(b), respectively.
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Figure 5.10: Normalized power P (z)/P (0) in a circular area of diameter 50µm vs. propagation
distance z for different values of angular laser misalignment θx.
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Figure 5.11: Throughput η vs. angular laser misalignment θx.
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5.4 Dependence of Throughput on Core Refractive Index

In this section the dependence of the throughput on the relative refractive index difference
is investigated.

The relative refractive index difference is given by [23]

∆ =
n2

1 − n2
2

2n2
1

≈ n1 − n2

n1
. (5.7)

The approximation in Equation (5.7) is valid if n1 ≈ n2, i.e. the waveguide structure is
weakly guiding—then n2 ≈ n1(1−∆) and ∆� 1.

Figure 5.12 shows the refractive index profile of the multi-core waveguide for different
values of ∆. The default waveguide considered until now has as core refractive index of
n1 = 1.5180 (see Table 2.2), which according to Equation (5.7) corresponds to ∆ ≈ 0.2%.
In Figure 5.13 the intensity of the propagating beam is depicted for different values of the
refractive index difference ∆. The throughput increases with increasing refractive index
difference. Figure 5.14 shows that the final output powers are reached after a few millimeters
of propagation. A waveguide with a refractive index difference of ∆ = 1.0% has virtually no
losses, i.e. a throughput of η ≈ 1 for an input field with no lateral or angular misalignment.

In Figure 5.15 the throughput as a function of ∆ is shown. As already mentioned above,
the throughput increases with increasing refractive index difference. This could explain the
temperature dependence of photocurrents measured at the institute—if the refractive index
difference increases with increasing temperature, so does the throughput.

Figure 5.16 shows the dependence of the number of multi-core eigenmodes computed us-
ing BeamLabEIG on the relative refractive index difference ∆. The number of eigenmodes
increases approximately linear with increasing refractive index difference.
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Figure 5.12: Refractive index profile of the multi-core waveguide for different values of the relative
refractive index difference ∆.
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Figure 5.13: Intensity I in the plane y = 0 of beams propagating in a multi-core waveguide for
different values of the refractive index difference ∆.
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Figure 5.14: Normalized power P (z)/P (0) in a circular area of diameter 50µm vs. propagation
distance z for different values of the refractive index difference ∆.

 

 

yoffset = 15µm

xoffset = 12.5µm

xoffset = 0µm

η

∆/%
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 5.15: Throughput η vs. relative refractive index difference ∆ for different lateral laser
misalignments xoffset and yoffset.
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Figure 5.16: Number of multi-core waveguide eigenmodes N vs. relative refractive index difference
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5.5 Throughput of Different VCSEL Modes

In Section 2.3 the VCSEL output field model was presented. Here, we compute the through-
put of the Laguerre Gaussian laser modes using the spatial field distribution from Equa-
tion (2.6) with the mode radii w0(l, p) from Table 2.3. In Figure B.1 the normalized intensity
distributions of these VCSEL modes are depicted.

Figure 5.17 shows the simulation results for a lateral offset of xoffset = yoffset = 0µm. It
can be seen that the LP01 mode has the largest throughput of η = 67% while all modes of
higher order have a throughput smaller than 30%. The actual output field of a multi-mode
VCSEL is generally a weighted sum of the eigenmodes with the weights depending on the
operating point, i.e. the laser drive current (see [7]).
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Figure 5.17: Throughput η of different Laguerre Gaussian VCSEL modes.



Chapter 6

Complex Multi-Core Structures

6.1 Introduction and Outline

In this chapter various multi-core structures are investigated, which are not invariant with
respect to the z direction. Since eigenmodes are only defined for waveguides which are
invariant with respect to the propagation direction, these “complex” multi-core structures
can only be analyzed using BeamLabBPM.

In some of the simulations the radiation field ΦH⊥ in the spatial transient from Figure 4.1
is not of interest—we assume that the structure is placed in the spatial steady state of the
waveguide, i.e. sufficiently far away from the light source. In these simulations the radiation
field ΦH⊥ is “filtered” by using the Eigenmode Decomposition Method. The actual input
fields of these simulations are Φin = ΦH rather than Φin = Φ0.

This chapter is organized as follows.

� In Section 6.2 the throughput of bent multi-core waveguides is analyzed for different
bend angles.

� In Section 6.3 multi-core waveguide splitters are investigated.

� In Section 6.4 the crosstalk of multi-core waveguides crossing each other is analyzed.

� In Section 6.5 a concept of external modulators using Mach-Zehnder interferometers
is discussed.

� In Section 6.6 tapered multi-core waveguides, which could significantly reduce the
time required to inscribe a waveguide using TPA, are investigated.

� In Section 6.7 the deformation of multi-core waveguides is investigated. By applying
pressure onto the waveguide, the throughput and hence, the photocurrent can be
reduced.

� Finally, in Section 6.8 the influence of a pulsed TPA waveguide inscription process
on the waveguide throughput is investigated.

6.2 Bent Multi-Core Waveguides

One of the advantages of inscribing waveguides using the TPA process is that is is possible
to create virtually any waveguide shape in all three dimensions. On the other hand, litho-
graphically manufactured waveguides are often limited to the x-z-plane from Figure 1.1.

One especially useful shape is a bent waveguide, since it allows to connect a VCSEL and
a photodiode which are not located at the same x and y coordinates. It also is the basic

55
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Figure 6.1: Definition of the bend angle αB.
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Figure 6.2: Three-dimensional refractive index profile of a bent multi-core waveguide. Here, the
bend angle is αB = 2◦. The surface shows all points with equal refractive index n = n2+(n1−n2)/e =
1.5161.

element used in multi-core waveguide splitters (see Section 6.3), crossing multi-core wave-
guides (see Section 6.4), and multi-core Mach-Zehnder interferometers (see Section 6.5).
Using a lithographical manufacturing process, it is very difficult to connect a VCSEL and
a photodiode which are located at different y coordinates. On the other hand, such bent
waveguides can easily be manufactured using the TPA process.

Waveguide Model. Figure 6.1 shows the definition of the bend angle αB. For the sake
of simplicity, here only a single core is depicted. The bend angle is related to the bend
length LB and the bend offset 2AB

1 by the simple geometrical relation

αB = arctan

(
πAB

LB

)
. (6.1)

In Figure 6.1 the bend angle is defined as an angle with respect to the z direction in the
plane y = 0. By an appropriate rotation of the coordinate system any angle with respect
to the z direction can be transformed into an angle in the plane y = 0. Figure 6.2 shows
the three-dimensional refractive index profile of a bent multi-core waveguide with αB = 2◦.
Here, the bend offset is 2AB = 150µm.

1AB is actually the amplitude of the cosine function connecting the two parts of the waveguide which
are invariant with respect to the z direction. This explains why there is a factor of 2 in the definition of the
bend offset.
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Simulation Results. Figure 6.3 shows the spatial intensity distributions of propagating
beams for different values of the bend angle αB. The input field Φ0 is decomposed using
the Eigenmode Decomposition Method and only ΦH, the component in the Hilbert space
of eigenmodes, is used as actual simulation input field Φin, i.e. Φin = ΦH. The reason for
using ΦH as input field, rather than simply using Φ0, is that in these simulations we are
not interested in the losses from the laser → waveguide coupling, but only in the effects
of the waveguide bend. Therefore in the region 0 mm ≤ z ≤ 5 mm in Figure 6.3 there are
no losses since, per definition, the throughput of ΦH is η(ΦH) = 1. If the input field was
Φin = Φ0, there would be some losses like, for example, in Figure 5.2(a).

Figure 6.4 shows the throughput as a function of the bend angle. The throughput
decreases rather fast with increasing bend angle—for αB ≥ 4.5◦ the throughput is effectively
zero.



6.2. BENT MULTI-CORE WAVEGUIDES 58

 

 

x
/µ

m

z/mm

I(x, 0, z)/dB, αB = 1◦, xoffset = 0µm

0 2.5 5 7.5 10 12.5 15 17.5 20

−40

−30

−20

−10

0

−125

−75

−25

25

75

125

(a)

 

 

x
/µ

m

z/mm

I(x, 0, z)/dB, αB = 3◦, xoffset = 0µm

0 2.5 5 7.5 10 12.5 15 17.5 20

−40

−30

−20

−10

0

−125

−75

−25

25

75

125

(b)

 

 

x
/µ

m

z/mm

I(x, 0, z)/dB, αB = 5◦, xoffset = 0µm

0 2.5 5 7.5 10 12.5 15 17.5 20

−40

−30

−20

−10

0

−125

−75

−25

25

75

125

(c)

Figure 6.3: Intensity I in the plane y = 0 of beams propagating in bent multi-core waveguides for
different values of the bend angle αB.
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Figure 6.4: Throughput η of a bent multi-core waveguide vs. bend angle αB. Here, the lateral
laser misalignment is xoffset = yoffset = 0µm.

6.3 Multi-Core Waveguide Splitters

In this section we investigate multi-core waveguide splitters. Splitters are very useful to
distribute an optical signal from a single VCSEL to multiple photodiodes. An ideal 1:2-
splitter2, with one input port and two output ports, would split the input power into equal
parts at the two output ports, i.e. the throughputs of the two splitter arms should be
η1 = η2 = 0.5. It is evident that an ideal splitter furthermore has a total throughput of
η1 + η2 = 1, i.e. no power is lost in the splitter.

Waveguide Model. Figure 6.5 shows the three-dimensional refractive index profile of
the multi-core waveguide splitter model. The bend angles, as defined in Figure 6.1, of the
two splitter arms are αB = 1.35◦. According to Figure 6.4 this bend angle leads to a very
small loss of 1− η < 4% due to the bending.
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Figure 6.5: Three-dimensional refractive index profile of a multi-core waveguide splitter. The
surface shows all points with equal refractive index n = n2 + (n1 − n2)/e = 1.5161.

2In this context this type of splitter is also called Y-splitter, or 3 dB-splitter
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Simulation Results. Figure 6.6 shows the intensity of the propagating beams in the
waveguide splitter for different values of xoffset . Here, like in Section 6.2, the simulation
input field is Φin = ΦH, rather than Φin = Φ0 in order to “filter” the spatial transient.

In Figure 6.7 the throughput η1 and η2 of the two splitter arms, as well as the total
throughput η1 + η2 is depicted. Due to interference effects the output power of the two
arms can be quite different. According to Figure 6.7, a throughput of η1 > 20% in the
upper splitter arm and η2 > 20% in the lower splitter arm can be guaranteed, independent
of the lateral misalignment of the laser at the waveguide input.
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Figure 6.6: Intensity I in the plane y = 0 of beams propagating in a multi-core waveguide splitter
for different values of the lateral laser misalignment xoffset.
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Figure 6.7: Throughputs η1 and η2 from the input at z = 0 to the upper and lower splitter arm,
respectively, as a function of the lateral laser misalignment xoffset. η1 + η2 is the total throughput.

6.4 Crossing Multi-Core Waveguides

In this section the crosstalk of multi-core waveguides crossing each other is investigated.

Waveguide Model. Figure 6.8 shows the three-dimensional waveguide model of two
crossing waveguides. The crosstalk χ is defined as the residual throughput between the two
waveguides.
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Figure 6.8: Three-dimensional refractive index profile of a two multi-core waveguides crossing each
other. The surface shows all points with equal refractive index n = n2 + (n1 − n2)/e = 1.5161.

Simulation Results. Figure 6.9 shows the spatial intensity distributions of beams prop-
agating in two multi-core waveguides crossing each other. Here, xoffset = 0µm means that
the input beam is perfectly aligned with respect to the upper waveguide, which has its
center at x = 75µm. In these simulations, like in Section 6.2, the simulation input field is
Φin = ΦH, rather than Φin = Φ0 in order to “filter” the spatial transient.

Figure 6.10 depicts the crosstalk χ = η1 between two multi-core waveguides crossing
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each other. The throughput is smaller than

χ < 6% . (6.2)

In practical applications this small crosstalk might be negligible. On the other hand, the
losses 1 − η2 in the waveguide connecting the input in the top left to the output in the
bottom right corner of Figure 6.9 might not be negligible—η2 is as low as 34% for a lateral
laser misalignment of xoffset = −12.5µm. As mentioned above, the input fields for these
simulations are already Φin = ΦH. That means, that the losses of 1 − η2 = 66% (for
xoffset = −12.5µm) are additional to the losses from the input coupling laser→ waveguide.
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Figure 6.9: Intensity I in the plane y = 0 of beams propagating in crossing multi-core waveguides
for different values of the lateral laser misalignment xoffset.
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Figure 6.10: Crosstalk χ = η1 between two multi-core waveguides crossing each other as a function
of the lateral laser misalignment xoffset. η2 is the throughput from the top left input to the bottom
right output in Figure 6.9.

6.5 Multi-Core Mach-Zehnder Interferometers

Integrated Mach-Zehnder interferometers could potentially be used to build fast external
modulators for lasers operated in a continuous-wave (CW) mode. If the refractive index
is changed in one of the interferometer arms, for examply by an electro-optical effect, the
output of the interferometer can be switched between “on” (ideally, η = 1) and “off”
(ideally, η = 0). This is due to either constructive or destructive interference of the fields
at the outputs of the two arms, depending on the phase shift induced by the different
refractive indices in the two interferometer arms. If no phase shift exists between the fields
in the two interferometer arms, there should be constructive interference at the output.

Waveguide Model. Figure 6.11 shows the three-dimensional refractive index profile of
the multi-core Mach-Zehnder interferometer. The input at z = 0 mm is split into the two
interferometer arms at z = 5 mm which are combined at z = 20 mm to one output port.
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Figure 6.11: Three-dimensional refractive index profile of a multi-core Mach-Zehnder interferom-
eter. The surface shows all points with equal refractive index n = n2 + (n1 − n2)/e = 1.5161.



6.5. MULTI-CORE MACH-ZEHNDER INTERFEROMETERS 66

Simulation Results. Figure 6.12 shows the spatial intensity distribution of beams prop-
agating in the Mach-Zehnder interferometer structure without any phase shift between the
two arms. In all three subfigures (a)–(c) there is radiated some power when combining the
two arms at z = 20 mm. Again, like in Section 6.2, the simulation input field is Φin = ΦH,
rather than Φin = Φ0.

Figure 6.13 depicts the throughput vs. lateral laser misalignment xoffset of the multi-core
Mach-Zehnder interferometer. Ideally, for no phase shift between the interferometer arms,
the throughput should be η = 1, independent of xoffset. This shows that it is difficult to build
a reliable multi-core Mach-Zehnder interferometer since the throughput heavily depends on
the input misalignment. The throughput is as low as η = 43% for xoffset = 12.5µm. The
reason for this partially destructive interference, even in the absence of a phase shift between
the two interferometer arms, is the large number of N = 51 eigenmodes of the multi-core
structure.
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Figure 6.12: Intensity I in the plane y = 0 of beams propagating in a multi-core Mach-Zehnder
interferometer for different values of the lateral laser misalignment xoffset.
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Figure 6.13: Throughput η of a multi-core Mach-Zehnder interferometer vs. lateral laser misalign-
ment xoffset.

6.6 Multi-Core Taper Waveguides

In this section single-core waveguides with multi-core waveguide tapers are investigated.
Ideally, these structures should have the same low sensitivity to laser misalignment as
multi-core waveguides. However, for seven waveguides cores, the time required to inscribe
a waveguide into the substrate material is approximately reduced by a factor of 7, since
only in the region 0 ≤ z ≤ LT, with LT as the so-called taper length, there have to be
inscribed seven cores. More generally, for N waveguide cores, the required manufacturing
time is approximately reduced by a factor of N .

Waveguide Model. Figure 6.14 shows the three-dimensional simulation model of the
single-core waveguide with a multi-core taper. There are seven cores at the input at z =
0 mm, which are merged to a single core in the interval 0 ≤ z ≤ LT.
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Figure 6.14: Three-dimensional refractive index profile of a single-core waveguide with a multi-
core taper. Here, the taper length is LT = 3 mm. The surface shows all points with equal refractive
index n = n2 + (n1 − n2)/e = 1.5161.



6.6. MULTI-CORE TAPER WAVEGUIDES 69

Simulation Results. Figure 6.15 shows spatial intensity distributions of beams prop-
agating in the multi-core taper structure. Figure 6.15(b) shows that for a lateral laser
misalignment of xoffset = 12.5µm, effectively all of the input power is radiated, i.e. η = 0.
Comparing this simulation result with the one from Figure 5.2(b), where the standard
multi-core waveguide from Section 2.2.1 is used, it can be seen that the throughput of the
multi-core taper waveguide is much lower than the one of the standard multi-core wave-
guide. Comparing Figure 6.15(c), where LT = 3 mm, and (d), where LT = 1 mm, it can be
seen that the throughput also depends on the taper length.

Figure 6.16 depicts the throughput vs. lateral laser misalignment xoffset for different
values of the taper length LT. The throughput values of the tapered multi-core wave-
guides with LT = 2 mm, LT = 3 mm, and LT = 5 mm are approximately equal, while the
throughput of LT = 1 mm at xoffset = 25µm is almost zero.

Figure 6.17 shows a comparison of the throughput between a multi-core taper wave-
guide, a standard multi-core waveguide with no taper (see Section 2.2.1), and a single-core
waveguide with no taper (see Section 2.2.2). As already discussed in the stochastic lateral
misalignment model in Section 5.2, small values of the lateral misalignment xoffset occur
with a higher probability than large values. Hence, Figure 6.17 shows that the through-
put of a multi-core taper waveguide is actually inferior to the throughput of a single-core
waveguide.
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Figure 6.15: Intensity I in the plane y = 0 of beams propagating in a multi-core taper waveguide
for different values of the taper length LT and the lateral laser misalignment xoffset.



6.6. MULTI-CORE TAPER WAVEGUIDES 71

 

 

LT = 5mm

LT = 3mm

LT = 2mm

LT = 1mm
η

xoffset/µm
0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

Figure 6.16: Throughput η of a multi-core taper waveguide vs. lateral laser misalignment xoffset

for different values of the taper length LT.
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Figure 6.17: Comparison of the throughputs η of a multi-core taper waveguide, a single-core
waveguide with no taper, and a multi-core waveguide with no taper.



6.7. DEFORMATION OF MULTI-CORE WAVEGUIDES 72

6.7 Deformation of Multi-Core Waveguides

In this section the deformation of multi-core waveguides, caused by pressure applied onto
the waveguide, is investigated. By applying a sufficiently large pressure onto the waveguide,
the optical output power—and therefore the photocurrent of the photodiode—can be in-
fluenced. This effect is not limited to multi-core waveguides—in fact any elastic waveguide
has this property to some degree.

Waveguide Model. Figure 6.19 shows a three-dimensional model of the multi-core wave-
guide, which is deformed by applying pressure onto the center section 10 mm ≤ z ≤ 20 mm.
The deformation is modelled as a change of the core radius w0,n,y in y direction with respect
to the z direction as

w0,n,y(z) =
1

2
(w0,n,max − w0,n,min)

[
1 + cos

(
2π

z − z1

z2 − z1

)]
+ w0,n,min , (6.3)

where w0,n,max and w0,n,min are maximum and minimum of the core radius, respectively, and
z1 and z2 are the locations of start and end of the deformation. In Figure 6.19, z1 = 10 mm
and z2 = 20 mm. The compression factor is defined as

ζ =
w0,n,max

w0,n,min
. (6.4)

The core radius w0,n,x in x direction is modelled to be constant with respect to the z
direction, i.e. w0,n,x(z) = w0,n,x. The centers of the cores are located at

ỹk = yk −
1

2
(w0,n,max − w0,n,min)

[
1− cos

(
2π

z − z1

z2 − z1

)]
for k = 1, . . . , 7 , (6.5)

while the x locations stay constant, i.e. x̃k = xk for k = 1, . . . , 7.

Simulation Results. Figures 6.20(a) and (b) show the spatial intensity distribution in
the planes y = 0 and x = 0, respectively, of a beam propagating in a deformed waveguide
with compression facto ζ = 4.

Figure 6.21 shows the powerO(Φz, Vn) in each of the waveguide eigenmodes as a function
of z. Each color represents one eigenmode. In Figure 6.21(a) the compression factor is ζ = 1,
i.e. the waveguide is not deformed at all. The power carried by each waveguide eigenmode
is constant with respect to z. In Figure 6.21(b) the waveguide is deformed by a compression
factor of ζ = 4. Here, in the middle section z1 ≤ z ≤ z2 mode conversions can be seen,
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Figure 6.18: Schematic representation of the waveguide deformation model. The pressure p is ap-
plied onto the waveguide which causes a reduction of w0,n,y and changes the center of the waveguide
to (x̃k, ỹk).
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Figure 6.19: Three-dimensional refractive index profile of a multi-core waveguide deformed by
applying pressure onto it (compression factor ζ = 4). The surface shows all points with equal
refractive index n = n2 + (n1 − n2)/e = 1.5161.

resulting in a reduced overall throughput η̃(Φ0). This leads to a relative change in output
power compared to the undeformed waveguide, which directly relates to a relative change
in photocurrent

∆IPD,rel =
η̃(Φ0)

η(Φ0)
− 1 . (6.6)

Figure 6.21(c) shows the power carried by each waveguide eigenmode for a lateral laser
misalignment of xoffset = 12.5µm and a compression factor of ζ = 4. Here, the relative
change in photocurrent is larger than for xoffset = 0µm, while the absolute change in
photocurrent is smaller. In Figures 6.21(a) and (b) most of the power is carried by the
fundamental V1(x, y) mode (see Figure A.3), which has a negligible attenuation in spite
of the deformation. In Figure 6.21(c) this fundamental mode is not excited by the input
field at z = 0, which results in the larger relative photocurrent change mentioned above.
In order to get a large relative photocurrent change, we must excite waveguide eigenmodes
which show a large attenuation due to the deformation of the waveguide.

Figures 6.22 shows the relative photocurrent change as a function of the waveguide com-
pression factor. |∆IPD,rel| increases with increasing compression factor. |∆IPD,rel| can also
be increased by exciting only waveguide eigenmodes which show a large attenuation caused
by the deformation, which, for example, is the case for xoffset = 12.5µm (see Figure 6.21).
To guarantee a large relative photocurrent change for any lateral laser misalignment, the
compression factor has to be rather large. In the worst case, i.e. xoffset = 0µm3, a waveguide
compression factor of ζ = 2 results in a relative photocurrent change of ∆IPD,rel = −7.6%.

3Since here, we do not want to excite the waveguide eigenmode V1(x, y), the absence of a lateral laser
misalignment, i.e. xoffset = 0µm, is not desirable—in fact, here it is the worst case.
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Figure 6.20: Intensity I in (a) the plane y = 0 and (b) the plane x = 0 of beams propagating in
the deformed multi-core waveguide from Figure 6.19. The solid white lines indicate the locations of
the cores of the undeformed waveguide.
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Figure 6.21: Throughput
∑N

n=1O(Φz, Vn) for different values of the waveguide compression factor
ζ and lateral offset xoffset. Each color represents the power O(Φz, Vn) carried in one of the waveguide
eigenmodes Vn at propagation distance z.
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Figure 6.22: Simulated relative photocurrent change ∆IPD,rel vs. waveguide compression factor ζ.

6.8 Periodic Refractive Index Variation in Propagation Di-
rection

As already explained in the introduction in Section 1.1, the TPA process needs very high
laser intensities which, at least today, can only be created using pulsed lasers. The inscrip-
tion of the waveguides using pulsed lasers results in a refractive index profile, which is not
invariant with respect the z direction, but rather shows a periodic structure.

Waveguide Model. Figure 6.23 shows the simulation model of this periodic refractive
index variation. Here, Equation (2.1) is replaced by

n(x, y, z) = n2 + nd · f(x, y, z) , (6.7)

where

f(x, y, z) =

dL/Λe∑

l=0

K∑

k=1

exp

[
−
(
x− xk
w0,n

)2

−
(
y − yk
w0,n

)2

−
(
z − lΛ
w0,n

)2
]
, (6.8)

and nd and w0,n are defined as in Equations (2.2) and (2.4), respectively. Λ is the refractive
index period with respect to the z direction and L is the simulation length as defined in
Figure 3.1. dxe denotes the smallest integer ≥ x. The average refractive index n̄1 with
respect to the z direction is defined as

n̄1 =
1

Λ

z+Λ∫

z

n(0, 0, z) dz . (6.9)

Simulation Results. Figure 6.24 shows the throughput of a multi-core waveguide in-
scribed using a pulsed laser as a function of the refractive index period Λ. The throughput
is equal to the throughput of a waveguide which is invariant with respect to the z direction,
but has a core refractive index of n̄1 instead of n1, i.e.

n(x, y) = n2 + n̄d · f(x, y) , (6.10)

where
n̄d = n̄1 − n2 . (6.11)
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Figure 6.23: Periodic refractive index profile n(x, y, z) (a) in the plane y = 0 and (b) in the plane
x = y = 0. n̄1 is the average refractive index with respect to the z direction.
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Figure 6.24: Throughput of a multi-core waveguide with periodic refractive index variation ac-
cording to the model from Equations (6.7)–(6.8) (“n periodic”). “n̄1” designates that the waveguide
is invariant with respect to the z direction according the the model from Equations (6.10)–(6.11).

In this simulation the approximation from Equation (3.34) might be violated, i.e. the
refractive index changes too fast with respect to the z direction. Therefore it is unclear if
these simulation results are trustworthy.



Chapter 7

Conclusions and Outlook

In this diploma thesis light propagation in optical multi-core waveguides, which are used in
opto-electronic printed circuit boards, has been analyzed numerically. It has been shown
that a precise alignment of laser and waveguide is crucial in order to obtain a large through-
put and hence, a large photocurrent. Measurements have shown that a large photocurrent
more or less directly relates to a large maximum data rate for a given bit error probability.
The most important conclusions of the throughput simulations are listed in the following.

� The average throughput of a multi-core waveguide is between 20% and 30% if the
lateral laser misalignment is modelled stochastically as a jointly Gaussian 2-D real
random variable with standard deviations 10µm ≤ σ ≤ 20µm.

� This average throughput is only 10% to 15% larger than the average throughput of a
single-core waveguide for the same stochastical misalignment model.

� Angular laser misalignment also can reduce the throughput significantly—angles of
the emitted laser beam should not be larger than θ > 5◦.

� The relative refractive index difference between core and cladding can significantly in-
fluence the throughput. This is a possible explanation of the temperature dependence
of photocurrents measured at the institute.

� Different laser modes have different throughput values.

Some “complex” multi-core structures, which are not invariant with respect to the
propagation direction, have also been investigated. The following list shows the key facts
of the simulation results.

� The throughput of bent waveguides is effectively zero if the bend angle is larger than
αB ≥ 4.5◦.

� Multi-core waveguide splitters work reasonably well—regardless of the lateral mis-
alignment at the input of the waveguide, the throughput of each splitter arm is ≥ 20%.

� The crosstalk between multi-core waveguides crossing each other is negligible.

� Due to the large number of eigenmodes of multi-core waveguides, integrated Mach-
Zehnder interferometers do not allow switching of light by inducing a phase shift
between the two interferometer arms. The throughput heavily depends on the laser
misalignment.

� Single-core waveguides with a multi-core taper have a throughput which is actually
lower than the throughput of a single-core waveguide without a taper.
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� The throughput and hence, the photocurrent of multi-core waveguides can be in-
fluenced by deforming the waveguide by applying pressure onto it. The waveguide
compression factor has to be rather large in order to guarantee a large relative pho-
tocurrent change for any lateral laser misalignment.

� Simulations of periodic refractive index variations due to a TPA writing process using
a pulsed laser were inconclusive. The spatially fast refractive index variations might
violate an approximation of the Beam Propagation Method.

A novel Eigenmode Decomposition Method has been presented, which is a very compu-
tationally efficient method for computing the throughput of a waveguide for a given input
field. The mathematical framework of this method is based on a decomposition of the input
field into one part which lies in the Hilbert space of waveguide eigenmodes, and another
part which lies in the orthogonal complement of this space. The part in the eigenmode
space is represented as a linear combination of waveguide eigenmodes and hence, has a
throughput equal to one. The part in the orthogonal complement of the eigenmode space
is orthogonal to any eigenmode and therefore has a throughput equal to zero. This de-
composition delivers insight into the more general question of how light propagation in an
optical waveguide works.

The software BeamLab has shown to be very capable of carrying out all of the above
mentioned simulations.

� BeamLabBPM implements a Finite Difference Alternate Direction Implicit Beam
Propagation Method (FD-ADI-BPM). It uses some approximations in the derivation
of the discretized wave equation which are irrelevant for most, but not all of the
simulations in this work.

� BeamLabEIG implements a waveguide eigenmode solver, also based on the Finite
Difference method. It has been used to calculate the eigenmodes for the Eigenmode
Decomposition Method.

� BeamLabEDM implements the Eigenmode Decomposition Method. It allows to
compute waveguide throughputs much faster than BeamLabBPM and, more impor-
tantly, without the restrictions of the approximations of the BPM.

The simulation results indicate that there is potential for optimization of the multi-core
waveguides investigated in this work. For example, the throughput would increase if the
relative refractive index difference between waveguide core and cladding is increased by
improving the ORMOCER® substrate material. By adjusting parameters like the number
and spatial placement of the cores, the throughput could also be increased to some degree.



Appendix A

Multi-Core Waveguide Eigenmodes

Figure A.1 shows the dispersion relation B(V ) of the multi-core waveguide. In Figure A.2
the number of eigenmodes as a function of the normalized frequency (see Equation (4.25)) is
depicted. The core radius a of the multi-core structure is defined as a = r+w0,n = 32.5µm,
where the parameter values from Table 2.2 have been used.

Figures A.3–A.5 show the 51 eigenmodes of the multi-core waveguide from Section 2.2.1
for the wavelength λ = 850 nm. According to Equation (4.25), this wavelength corresponds
to a normalized frequency of V = 22.98. The eigenmodes in Figures A.3–A.5 are sorted by
their effective refractive index neff in descending order.
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Figure A.1: Dispersion relation B(V ) of the multi-core waveguide. The dashed vertical line
indicates the normalized frequency V corresponding to the wavelength λ = 850 nm.
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Figure A.2: Number of eigenmodes N vs. normalized frequency V of the multi-core waveguide.
The dashed vertical line indicates the normalized frequency V corresponding to the wavelength
λ = 850 nm.
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Figure A.3: Eigenmodes 1–18 of the multi-core waveguide. The abscissas an ordinates are all in
µm and show x and y coordinates, respectively.
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Figure A.4: Eigenmodes 19–36 of the multi-core waveguide. The abscissas an ordinates are all in
µm and show x and y coordinates, respectively.
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Figure A.5: Eigenmodes 37–51 of the multi-core waveguide. The abscissas an ordinates are all in
µm and show x and y coordinates, respectively.



Appendix B

VCSEL Eigenmodes

Figure B.1 shows the normalized intensity distributions of the VCSEL eigenmodes from
Equation (2.6). Here, the helical c polarization of the eigenmodes is shown since the
intensity distribution of the weighted sum of c and s polarization with equal weights results
in an intensity distribution which is azimuthally invariant. The intensity distributions of the
s polarizations can be found simply by rotating the intensity distributions form Figure B.1
by π/(2l) for l > 0 where l is the number of azimuthal zeros in the interval 0 ≤ ϕ < π of
mode LPlp. It is evident that the intensity distributions are the same for c and s polarization
for l = 0.
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Figure B.1: VCSEL eigenmodes from Equation (2.6). The abscissas an ordinates are all in µm
and show x and y coordinates, respectively.
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Appendix C

BeamLab Examples

C.1 Beam Propagation Computation Using BeamLabBPM

In this example we will compute the light propagation of a Gaussian beam which couples
into a circular step-index single-mode waveguide. The beam has an angle of θx = 5◦ with
respect to the z direction in the plane y = 0, the beam mode field radius is w0 = 5µm and
the beam offset with respect to the x direction at z = 0 is xoffset = 5µm. The waveguide
core radius is a = 4.5µm and the core and cladding refractive index are n1 = 1.455 and
n2 = 1.450, respectively. The waveguide starts at z = 100µm.

1 clear all;
2 close all;
3

4 %% Define general parameters
5 lambda = 850e−9; % wavelength
6 Mx = 129; % number of discretization points in x direction
7 My = Mx; % number of discretization points in y direction
8 dz = 1e−6; % discretization step size
9

10 %% Define mesh grid points
11 mesh points.x = linspace(−20,20,Mx)*1e−6; % mesh grid points in x direction
12 mesh points.y = linspace(−20,20,My)*1e−6; % mesh grid points in y direction
13 mesh points.z = (0:dz/1e−6:2000)*1e−6; % mesh grid points in z direction
14

15 %% Define output "slices" of calculated field
16 compression.z = 1; % compression of slices.x and slices.y in z direction
17 slices.x = [];
18 slices.y = ceil(My/2);
19 slices.z = [];
20

21 %% Define x−y−grid
22 [X,Y] = ndgrid(mesh points.x, mesh points.y);
23

24 %% Define waveguide geometry
25 n1 = 1.455; % core refractive index
26 n2 = 1.45; % cladding refractive index
27 neff = n2; % reference index
28 a = 4.5e−6; % core radius
29

30 N offset.z = 100e−6; % wavguide starts at z = N offset.z
31

32 mesh points.Nz = [0 N offset.z]; % mesh grid points of refractive index
33 % in z direction
34 MN = length(mesh points.Nz);
35
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36 N = n2*ones(Mx,My,MN);
37 N2 = n2*ones(Mx,My);
38 N2((X.ˆ2 + Y.ˆ2) ≤ aˆ2) = n1; % circular step−index optical waveguide
39 N(:,:,2) = N2;
40

41 %% Define input field
42 w0 = 5e−6; % mode field radius
43 A0 = 1; % amplitude
44 phi0 offset.x = 5e−6; % offset with respect to the x direction
45 phi0 offset.y = 0e−6; % offset with respect to the y direction
46 phi0 offset.z = 0e−6; % offset with respect to the z direction
47 phi0 theta.x = 5; % angle with respect to the x direction
48 phi0 theta.y = 0; % angle with respect to the y direction
49

50 phi0 = phi gaussian(mesh points, lambda, w0, A0, phi0 offset, phi0 theta);
51

52 %% Define BeamLabBPM options
53 index.power = (X.ˆ2 + Y.ˆ2) ≤ 20e−6; % define logical index matrix for
54 % area of power integral
55 options.mode = 'scalar'; % use scalar computation mode
56 options.discretization = 'equidistant'; % use equidistant discretization
57

58 %% Start actual computation
59 [phi slices, ret params] = beamlab bpm3d v62(lambda, neff, phi0, N, ...
60 mesh points, phi0, slices, compression, index, options);
61

62 P = ret params.power; % power in area defined by index.power
63

64 %% Plot output field slice
65 plot slice(phi slices.y, mesh points, −40:10:0);
66 % Plot lines indicating the position of the waveguide
67 line([N offset.z/1e−6,mesh points.z(end)/1e−6],[a a]/1e−6, ...
68 'Color','white','LineStyle','−','LineWidth',1);
69 line([N offset.z/1e−6,mesh points.z(end)/1e−6],−[a a]/1e−6, ...
70 'Color','white','LineStyle','−','LineWidth',1);
71 line([N offset.z/1e−6,N offset.z/1e−6],[−a a]/1e−6, ...
72 'Color','white','LineStyle','−','LineWidth',1);
73

74 %% Plot power P in the waveguide vs. propagation distance z
75 figure;
76 plot(mesh points.z/1e−6,P/P(1));
77 title('Power in the Waveguide');
78 xlabel('z/\mum');
79 ylabel('P(z)/P(0)');
80 ylim([0 1]);
81 box on;
82 grid on;

Figure C.1 shows the first output plot this example, i.e. the spatial intensity distribution
of the input beam propagating in the circular step-index waveguide. Figure C.2 shows the
second output plot of this simulation, i.e. the power in a circular area of radius 20µm as a
function of the propagation distance z.
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Figure C.1: First output plot of the BeamLabBPM example showing the intensity I in the plane
y = 0 of a beam propagating in a circular step-index waveguide.
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Figure C.2: Second output plot of the BeamLabBPM example showing the power in a circular
area of radius 20µm vs. propagation distance z.
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C.2 Eigenmode Computation Using BeamLabEIG

In this example we will compute and plot the eigenmodes as well as the dispersion relation
B(V ) of a circular step-index waveguide. B is the normalized propagation constant defined
in Equation (3.145) and V is the normalized frequency defined in Equation (4.25). The
simulation parameters used are a = 4.5µm for the core radius, and n1 = 1.455 and n2 =
1.450 for core and cladding refractive index, respectively.

1 clear all;
2 close all;
3

4 %% Define general parameters
5 Mx = 129; % number of discretization points in x direction
6 My = Mx; % number of discretization points in y direction
7

8 %% Define mesh grid points
9 mesh points.x = linspace(−10,10,Mx)*1e−6; % mesh grid points in x direction

10 mesh points.y = linspace(−10,10,My)*1e−6; % mesh grid points in y direction
11

12 %% Define x−y−grid
13 [X,Y] = ndgrid(mesh points.x, mesh points.y);
14

15 %% Define waveguide geometry
16 n1 = 1.455; % core refractive index
17 n2 = 1.45; % cladding refractive index
18 a = 4.5e−6; % core radius
19

20 N = n2*ones(Mx,My);
21 N((X.ˆ2 + Y.ˆ2) ≤ aˆ2) = n1; % circular step−index optical waveguide
22

23 %% Define BeamLabEIG options
24 options.mode = 'scalar'; % use scalar computation mode
25 options.discretization = 'equidistant'; % use equidistant discretization
26

27 %% Compute eigenmodes for V=5
28 k = 50; % maximum number of eigenmodes to be computed
29 V = 5; % normalized frequency
30 lambda = (2*pi*a*sqrt(n1ˆ2−n2ˆ2))./V;
31 [phi eigs, neff] = beamlab eig v11(lambda, N, mesh points, k, options);
32

33 mode count = sum(neff > n2); % number of eigenmodes
34 B = (real(neff.')−n2)/(n1−n2); % normalized propagation constant
35

36 %% Save workspace variables
37 % The eigenmodes will be used in the BeamLabEDM example the calculate the
38 % throughput using the Eigenmode Decomposition Method
39 filename = 'beamlab eig demo.mat';
40 save(filename, 'phi eigs', 'mesh points', 'neff', 'mode count', 'lambda');
41 disp msg(['Results saved in file: ' filename]);
42

43 %% Plot eigenmodes
44 subplot dim = [3 2]; % rows and colums of subplots
45

46 plot eigenmodes(X, Y, phi eigs, neff, mode count, subplot dim, ...
47 [1 1.5]*500, B);
48

49 %% Define BeamLabEIG options
50 options.mode = 'scalar'; % use scalar computation mode
51 options.discretization = 'equidistant'; % use equidistant discretization
52 options.display = 'none'; % suppress command line output
53
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54 %% Compute dispersion relation B(V)
55 k = 30; % maximum number of eigenmodes to be computed
56 V vec = linspace(0,10,50); % vector of normalized frequencies
57 lambda vec = (2*pi*a*sqrt(n1ˆ2−n2ˆ2))./V vec;
58

59 neff matrix = zeros(k, length(lambda vec)); % allocate matrix for neff
60 % values
61

62 % If you own a license of Matlab Parallel Computing Toolbox and/or Matlab
63 % Distributed Computing Server, this for loop can be replaced by a parfor
64 % loop to enable parallel computation of independent loop iterations.
65 for i = 1:length(lambda vec)
66 disp msg(['Iteration: ' num2str(i) '/' num2str(length(lambda vec))]);
67 lambda = lambda vec(i);
68 [phi eigs, neff] = beamlab eig v11(lambda, N, mesh points, k, options);
69 neff matrix(:,i) = neff;
70 end
71

72 B = (real(neff matrix.')−n2)/(n1−n2); % normalized propagation constant
73

74 %% Plot dispersion relation diagram
75 figure;
76 plot(V vec,B);
77 xlim([min(V vec) max(V vec)]);
78 ylim([0 1]);
79 title('Dispersion Relation of a Circular Step−Index Waveguide');
80 xlabel('V');
81 ylabel('B');

Figure C.3 shows the first output plot of this simulation. Here, the six eigenmodes of the
circular step-index waveguide at V = 5, which relates to λ = 605.8 nm by Equation (4.25),
are shown. These eigenmodes Φ1,Φ2, . . . ,Φ6 are the well-known Bessel modes LP01, LP11,
LP11, LP21, LP21, and LP02, respectively. It can be seen that Φ2 and Φ3 and also Φ4 and
Φ5 are degenerated, i.e. they have the same normalized propagation constant B since they
are just rotated versions of each other.

Figure C.4 shows the second output plot of this example, i.e. the dispersion relation
B(V ). The results obtained from the simulation using BeamLabEIG match the corre-
sponding analytical results very good (see [8]).
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Figure C.3: First output plot of the BeamLabEIG example showing the six eigenmodes V1, . . . , V6

of the circular step-index waveguides at V = 5. The abscissas an ordinates are all in µm and show
x and y coordinates, respectively.
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Figure C.4: Second output plot of the BeamLabEIG example showing the dispersion relation
B(V ) of a circular step-index waveguide.
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C.3 Throughput Computation Using BeamLabEDM

In this example the throughput of the circular step-index waveguide from Section C.2 will be
investigated in detail using the Eigenmode Decomposition Method from BeamLabEDM.

The input field Φ0 is a Gaussian LP01 field, as defined in Section 2.3, with w0 = 2.10µm
and a lateral offset of xoffset = 2.5µm. The waveguide has a circular step-index refractive
index profile with a = 4.5µm core radius and n1 = 1.455 and n2 = 1.450 core and cladding
refractive index, respectively. The normalized frequency is V = 5 which results in the 6
different Eigenmodes V1, . . . , V6 from Figure C.3.

1 clear all;
2 close all;
3

4 %% Load eigenmodes from the BeamLabEIG example
5 load 'beamlab eig demo.mat';
6

7 %% Define input field
8 w0 = 2.098e−6;
9 A0 = 1;

10 phi0 offset.x = 4.5e−6;
11 phi0 offset.y = 0e−6;
12 phi0 offset.z = 0e−6;
13 phi0 alpha.x = 0;
14 phi0 alpha.y = 0;
15

16 phi0 = phi gaussian(mesh points, lambda, w0, A0, phi0 offset, phi0 alpha);
17

18 %% Compute overlap integrals and inner products with all eigenmodes, as
19 %% well as the throughput of phi0
20 [throughput phi0, overlap vec phi0, inner product vec phi0] = ...
21 beamlab edm v11(phi0, phi eigs, mode count)
22

23 phi H = zeros(size(phi0));
24 for k = 1:mode count
25 phi H(:,:,k) = phi eigs(:,:,k)*inner product vec phi0(k);
26 end
27 phi H = sum(phi H,3);
28 phi H comp = phi0−phi H;
29

30 %% Compute overlap integrals and inner products with all eigenmodes, as
31 %% well as the throughput of phi H
32 [throughput phi H, overlap vec phi H, inner product vec phi H] = ...
33 beamlab edm v11(phi H, phi eigs, mode count)
34

35 %% Compute overlap integrals and inner products with all eigenmodes as
36 %% well as the throughput of phi H comp
37 [throughput phi H comp, overlap vec phi H comp, ...
38 inner product vec phi H comp] = ...
39 beamlab edm v11(phi H comp, phi eigs, mode count)
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bertz, M. Popall, and M. Robertsson, “Polymer optical interconnects - a scalable
large-area panel processing approach,” IEEE Transactions on Advanced Packaging,
vol. 29, 2006.

[2] V. Schmidt, L. Kuna, V. Satzinger, R. Houbertz, G. Jakopic, and G. Leising, “Ap-
plication of two-photon 3D lithography for the fabrication of embedded ORMOCER
waveguides,” Proceedings of SPIE, vol. 6476, 2007.

[3] J. Reitterer. http://www.beamlab.net/, June 2010.

[4] M. X. Jungo, “Spatiotemporal VCSEL model for advanced simulations of optical
links,” Series in Quantum Electronics, vol. 30, 2003.

[5] H. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices. Springer, 2003.
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[22] S. Jüngling, “A study and optimization of eigenmode calculations using the Imaginary-
distance Beam-Propagation Method,” IEEE Journal of Quantum Electronics, vol. 30,
1994.

[23] W. Leeb, “Optische Nachrichtentechnik.” Lecture Notes, 2007.

[24] A. W. Snyder and J. D. Love, Optical Waveguide Theory. London: Chapman & Hall,
1991.

[25] G. Schmid, “Rechnerische Analyse der Eigenschaften von Polymerlichtwellenleitern,”
Master’s thesis, Technische Universität Wien, 2005.

[26] F. Hlawatsch, “Processing of stochastic signals.” Lecture Notes, 2008.


	Motivation
	Opto-Electronic Printed Circuit Boards
	The Software BeamLab
	Advantages Over Existing Commercial Software
	List of Features


	Simulation Models
	Introduction and Outline
	Waveguides
	Multi-Core Waveguides
	Single-Core Waveguides

	Laser Output Fields
	Transversal VCSEL Modes
	Gaussian LP01 Mode


	Finite-Difference Beam Propagation Method
	Introduction and Outline
	Two-Dimensional Semivectorial Analysis
	Wave Equation
	FD-BPM Formulation
	Non-Equidistant Discretization Scheme
	Transparent Boundary Conditions
	Implementation in Matlab

	Three-Dimensional Semivectorial Analysis
	First ADI Step
	Second ADI Step
	Computational Complexity

	Accuracy Estimation
	Fresnel Approximation
	Spatial Sampling Constraints
	Boundary Reflections

	Imaginary Distance Beam Propagation Method

	Eigenmode Decomposition Method
	Introduction and Outline
	Waveguide Throughput
	Waveguide Eigenmodes
	Eigenmode Equation
	Rotation of Eigenmodes

	Linear Vector Spaces and Orthonormal Bases
	Hilbert Space of Eigenmodes
	Examples
	Single-Mode Waveguide
	Multi-Mode Waveguide


	Throughput of Multi-Core Waveguides
	Introduction and Outline
	Lateral Laser Misalignment
	Deterministic Lateral Misalignment
	Stochastic Lateral Misalignment

	Angular Laser Misalignment
	Dependence of Throughput on Core Refractive Index
	Throughput of Different VCSEL Modes

	Complex Multi-Core Structures
	Introduction and Outline
	Bent Multi-Core Waveguides
	Multi-Core Waveguide Splitters
	Crossing Multi-Core Waveguides
	Multi-Core Mach-Zehnder Interferometers
	Multi-Core Taper Waveguides
	Deformation of Multi-Core Waveguides
	Periodic Refractive Index Variation in Propagation Direction

	Conclusions and Outlook
	Multi-Core Waveguide Eigenmodes
	VCSEL Eigenmodes
	BeamLab Examples
	Beam Propagation Computation Using BeamLabBPM
	Eigenmode Computation Using BeamLabEIG
	Throughput Computation Using BeamLabEDM


