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Light scattering proceeding through electric and magnetic dipole absorption events (E1-M1) exhibits
natural circular dichroism, widely used in the characterization of chiral media, and the magneto-chiral
effect, which is under consideration as a mechanism for the homo-chirality of life. Additional
manifestations of E1-M1 scattering are resonance enhanced Bragg diffraction and non-reciprocal linear
dichroism. In spite of its established importance for a raft of significant phenomena, there has not been a
complete treatment of E1-M1 light scattering by electrons. Starting from the interaction that includes
both electron spin and angular momentum variables, we construct scattering that proceeds via a spin—
orbit split intermediate state for the photo-gjected electron. Employing new relations for re-coupling
angular momentum we give a theoretical basis for the derivation of sum-rules for integrated dichroic
signals. In order to assist in the interpretation of the algebraic terms present for EI-M1 we construct
a family of equivalent operators that include monopoles for chirality and magnetic charge. Worked
examples of corresponding expectation values are given for two sample wave functions to demonstrate

the flavour and support the use of specific equivalent tensor operators.
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1. Introduction

There is widespread use of natural circular dichroism
experienced by light for the characterization of electrons
in chiral media,' and the photon magneto-chiral effect is
a serious candidate for the origin of the homo-chirality of
life.>!! Notwithstanding the established importance of these
two photo-electron absorption processes, alongside non-
reciprocal linear dichroism and magneto-chiral dichroism,
relatively little about their properties is established from
quantum mechanics. Frequently ascribed to electric dipole
(E1) and magnetic dipole (M1) absorption processes,
inadequate calculations of the corresponding scattering
amplitude lead to misunderstandings and false claims in
the literature. For example, that natural circular dichroism
(NCD) is forbidden for photon absorption by an intermediate
s-like state that carries no orbital angular momentum,'? or
that E1-M1 absorption is absent unless two or more valence
electrons participate.'*' Added to which there is no
complete reduction of the E1-M1 amplitude for Bragg
diffraction in terms of quantum mechanical operators,
sometimes called equivalent or multipole operators, nor
sum-rules that decompose integrated dichroic signals at
spin—orbit split intermediate states conventionally labelled
K-edge, L-edge, M-edge, etc.

We remedy all the mentioned shortcomings by (i)
launching our calculation of the E1-MI amplitude from
quantum-electrodynamics in which electron spin is natu-
rally included'>'” and (ii) application of new angular-
momentum identities in the scattering amplitude that allow
electron charge, spin and orbital degrees of freedom to be
reflected in atomic entities, possibly unfamiliar entities,
that include, e.g., chirality and magnetic charge. From
(ii) we derive sum-rules for E1-M1 dichroic signals, at
an arbitrary absorption edge, that are analogues of the
celebrated sum-rules derived by Thole and his collabora-
tors for parity-even dichroic signals.'®® Tables I and II

summarize our findings with the E1-M1 scattering ampli-
tude resolved in to equivalent operators that form spherical
tensors.

Our working appears in §5 while Appendix A contains
much of the attendant algebra, including new relations for
Racah symbols that enable decomposition of the scattering
amplitude at spin-orbit split intermediate states. Notably,
dependence of the EI-M1 amplitude on the total angular
momentum of the intermediate state, J. = I, &+ (1 /2), is
identical to the dependence of parity-even amplitudes on Je.
In consequence, sum-rules for parity-odd dichroic signals
resemble those derived by Thole and collaborators.!!9
However, the sum of E1-M1 amplitudes at the spin—orbit
split absorption edges, labelled by J, = I, =+ (1/2), depends
explicitly on electron spin in contrast to the parity-even
amplitudes, v%%lose sum over the edges is purely orbital
angular-momentum. We resolve electron degrees of freedom
in the amplitude into equivalent, quantum-mechanical
operators or atomic multipoles.

Some multipoles encountered in the E1-M1 amplitude do
not arise in any other branch of chemistry or physics, to the
best of our knowledge. One such multipole is a magnetic
charge, or monopole, that can be observed in Bragg
diffraction but not in a dichroic signal. The anapole, a
dipole also odd with respect to both parity and time, is
more familiar, perhaps. Use of resonant Bragg diffraction to
observe an anapole, and other magneto-electric muitipoles,
emulates parity-violation experiments in atomic physics to
observe the nuclear anapole?” and it is the method of choice
to observe enigmatic multipoles predicted in advanced
simulations of complex materials.2"

The Racah identities on which our achievements hinge,
found in Appendix A, are of interest in their own right for
they shed some insight on 12j(I) and 12 j(II) Racah symbols
which rarely arise in calculations. Familiar 3j, 6/, and 9j
Racah symbols arise in the Wigner—Eckart theorem and .
reduced matrix-elements. We find that 12j@) and 12j(1)
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Table 1. Operator equivalents derived from eq. (5.1) for the special case
I.=0.

Magneto-electric
multipoles Gg

Tensor rank K Polar multipoles Uy

0 S. 8 S'R
1 iRx8)={SS -R)~(S- R)S)} 2
2 {(S x ) ® RY? {S®RP

Table 1. Operator equivalents derived from eq. (A'4) for the general
case, I > 0, are listed by order of the tensor rank, K. Composite operators
are constructed by the rule for tensor products. Operators prefaced by £
cancel in the sum of integrated dichroic signals gathered at spin—orbit
split intermediate states, labelled by total angular momentum J, = [, +
1/2. Here, we use a D, = {L ® R}? and D3 = {L® L)’ Q R}, Oper-
ators A, are the same as D, apart from €, in place of R. The operator
W=(S®L)’=-8 -L/V3.

Polar multipoles Ug
K=0 S- R
R®L+29}, H{S® R},
(S @Dy}, £{R @ WS)!
(2.8 L +28) £(S® ), £S® A2,

K=2 H(S ® Asl?, £(R; ® WS)?
Magneto-electric multipoles G
K=0 SR
Kol (2.® L +29), £S® )",
S ® Az}, £{Q, ® WS}
K2 R® @ +28)1, £{S®RY, £{S@D,}%,

S ®Ds ), +{R @ WSJ?

Racah symbols are associated with spin and orbital varia-
bles, respectively.

The following section contains the definition of the
resonant scattering amplitude and essential attendant in-
formation. Dichroic signals that arise from a parity-odd
resonant event are quite well-known and briefly discussed in
§3, mainly for the sake of completeness. Working presented
in §5 are to be read in conjunction with Appendix A and
Appendix B. Section 6 is a brief discussion of our work.

2. Resonant Scattering Amplitude

The scattering amplitude on which we base our work is
calculated from quantum-electrodynamics.!>!” A resonant
processes may dominate all other contributions to the
amplitude should the primary energy |g|fic match an atomic
resonance, where q (q') is the primary (secondary) photon
wave-vector. In a development in powers of g and ¢,
the zeroth-order amplitude describes an E1-E1 absorption
event, and the next level E1-M1 and E1-E2 events. In this
communication our interest is in the E1-M1 event, for which
the amplitude is,

ZE-MD = 2 30 5 (€ - Rin)nl(a x )
oy

: + (g x €) - piln)inle - Ry}, 2.1
where ¢ (¢') is the polarization vector of the primary
(secondary) photon. In eq. (2.1), j labels an electron, and the
magnetic moment g = (L + 28) with R, L, and S operators
for position, orbital angular momentum and spin, respec-
tively. Intermediate states visited in the resonant event are

labelled » and angular brackets {- - -) denote the expectation
value, or time average, of the enclosed quantum~mechanical
operator. Brouder’ has derived the correct expression
for the EI-M1 scattering amplitude using non-relativistic
quantum mechanics [see eq. (3.15) in ref. 22]. However,
Brouder limits applications to non-magnetic media and
photon states with linear polarization, and neither limit
applies in our work.

The presence of § in eq. (2.1) allows enhancement at a
K-edge which would otherwise be forbidden on account of
zero orbital angular momentum. To engage the M1 event
in resonant scattering valence and intermediate states have
common angular momentum, because matrix elements of L
and S are diagonal with respect to orbital angular momen-
tum. Thus absorption at a K-edge can engage # when s-like
valence states are available. In addition, intermediate and
valence states must not be orthogonal. Parity-odd events,
like E1-M1 (and E1-E2), are allowed when valence states
at the site of the resonant ion are an admixture of orbitals
with different parities, which can occur when the site is not
a centre of inversion symmetry. This requirement, on the
resonant site for non-zero contributions to scattering from
parity-odd events, does not mean in Bragg diffraction that
the crystal structure must be non-centrosymmetric (see, for
example, a discussion of the corundum structure in ref. 23).

Electron wave-functions in eq. (2.1) can be obtained from
a simulation of states in the medium using, say, a cluster
or band-structure code. Thereafter the expression can be
estimated by a purely numerical method. This programme
has already been followed in investigations of both E1-M1
and E1-E2 events (see, for example, refs. 24-27), However,
numerical evaluation does not give much insight or a handle
on properties of the valence electrons that contribute to a
resonant event. Thole and his collaborators for a parity-even
(E1-E1) dichroic signal'®'¥) provided insight by writing the
corresponding amplitude in terms of equivalent electron
operators built from R, S, and L. In this communication we
pursue a parallel development for the E1-M1 event which is
parity-odd. To this end, we exploit fundamental properties of
the scatteringzamplitude and reach conclusions independent
of estimates and assumptions.

The amplitude is a scalar quantity and as such it can be
written as a scalar product of two quantities, one for the
photons and one for the electrons. Application of the triangle
rule to a pair of vector quantities, E1 and M1, shows that the
scalar product is a sum of spherical tensors with rank K = 0
(scalar or charge), K = 1 (dipole), and K = 2 (quadrupole).
Inspection of eq. (2.1) tells us that it consists basically of
two terms, each a product of two matrix elements with a sum
over intermediate states n. A lengthy algebraic calculation
reveals the fundamental structure obtained from eq. (2.1) by
separating the photon- and electron-related quantities into
tensors forming scalar products for each rank K. Tensors
(Yx) describe the electronic properties including the
influence of the sum over intermediate states. One finds,

Z(EI-M1) = Z[Nx A(Tk) + M - (X)), (22)

K
where Ny is constructed from g x e’: e and Ng is
constructed from q x ¢, €, i.e., Ny and Ny are related by
interchange of un-primed and primed photon variables.
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Values of Ny and Ny are found in ref. 28. The spherical

tensor (Yx) is the physical quantity of interest, for it .

describes ground-state properties of valence electrons that
participate in the resonant event. In §5, we will write (Yk) in
terms of expectation values of electron operators R, S, and
L. Before that we exploit a fundamental property of the
scattering amplitude to re-write (2.2) in perspicacious form
because (Yx), though parity-odd, does not exhibit specific
symmetry properties with respect to time reversal.

The property of QED we invoke is called the crossing
transformation, with the interchange of un-primed and
primed photon variables conjugate to the product of time-
reversal and inversion of electron variables. Pairing sym-
metric and anti-symmetric combinations of photon variables
Nk =+ N with two types of atomic variables that are parity-
odd, by the very nature of the event, and time-odd or
time-even, respectively, imposes on Z(E1-M1) a structure
manifestly consistent with the crossing transformation.

Whence it is wise to construct two types of atomic multi-
poles from (Yk) that have definite time signatures. Parity-
odd, time-even multipoles (Ug) are called polar. Polar
multipoles with rank O and 1 have an immediate physical
significance, for chirality = (Up) and displacement = (Uy).
Parity-odd, time-odd multipoles, (Gg), are called magneto-
electric by analogy with a necessary condition for the
magneto-electric effect that the inversion is accompanied
by time reversal. The magneto-electric monopole, (Gy), is a
magnetic charge while the dipole, (G1), is usually called an
anapole, or toroidal moment.

The link between (Yx) and polar and magneto-electric
atomic multipoles is found to be,

(i) = poli* " (Uk) — i¥(G)}, 2.3)

where the dimensionless factor pg is defined later. Lastly,
we combine egs. (2.3) and (2.2). In doing so we take the
opportunity to spell out states of polarization in the primary
and secondary beams, and introduce a structure factor,
F = Z(E1-M1)/pg, that proves useful in expressions for
both integrated dichroic signals and the Bragg diffraction
amplitude. With K = 0,1,2 and projections Q that satisfy
—K < @ < K, the structure factor is,

Fuu(B1-M1) = ) i*1 3 (- 1)2
K Q

X { =W 0(8)[Nk,—0 + Nk,—0l v

+ Wk 0Nk —g — Nk -0l }. (2.4)
Subscripts on the structure factor label polarization in the
channel with primary (secondary) polarization v (u'). In

eq. (2.4), W is a sum of atomic multipoles (O) that are
either of type (Gg) or (Ug),

Wk = ) (Ox)aexp(id - (g — q))},
d

(2.5)

where the sum is over all resonant ions located at d.
Integrated dichroic signals are proportional to the structure
factor (2.4) evaluated at forward scattering, i.e., the trivial
Bragg wave-vector is 0.

For Bragg diffraction the sum in eq. (2.5) is restricted to
resonant ions in the unit-cell of the crystal lattice, and the
Bragg condition for diffraction is met when the wave-vector
(g — g) coincides with a vector in the crystal reciprocal-

lattice. Resonant Bragg diffraction by non-magnetic and
magnetic crystals is discussed at length in refs. 23, 28, and
30. Already, it has been demonstrated that the E1-M1 event
contributes in Bragg diffraction observed from the multi-
ferroic modification of gallium ferrate.3!32

The factor pp in eq. (2.3) is dimensionless for the E1-M]1
event, and purely real. It involves the product of two radial
integrals. One is the familiar dipole radial integral from the
El-event, namely, (®|R|E) where © is a valence state that
carries orbital angular momentum I, and E is the inter-
mediate state which accepts the photon and it carries orbital
angular momentum /c; the two angular momenta differ by
unity, of course. The second radial integral, (®'|E), is the
radial part of the matrix element of the magnetic moment
and the valence state ©' carries orbital angular momentum
I = .. With these definitions, the value of po in eq. (2.3) is,

O[RIEX®'|E)
o0 = 9(OIR| 2)( | ’ 2.6)
where g = E/hc.

3. Dichreic Signals

Parity-odd absorption creates three dichroic signals,
natural circular dichroism (NCD), magneto-chiral dichroism
(MxD) and non-reciprocal linear dichroism (NRLD). These
signals can occur with non-centrosymmetric media only, and
isotropic media (fluids) which contain chiral molecules.?® In
eqs. (2.4) and (2.5) set (g — q') = 0, and the corresponding
sums are now Wg o(u) and Wk o(g) where the projection Q
satisfies ~K < @ < K. Polarization of the light is in terms
of Stokes parameters;'’?3 P, is helicity (a pseudo-scalar)
and Pj linear polarization. The coordinate system (x, y, 7) for
the experiment has the photon wave-vector, g, parallel to
the z-axis and linear polarization P; = +1 (often labelled
o-polarization) parallel to the x-axis. For the E1-Mi
event,3339

NCD = poP2{~/2W00() — W2 0(u)}, (3.1)
MyD = ponW¥;o(g), 3.2)
NRLD = ipgnP3{W _»(g) — ¥142()}, (3.3)

where 1 = qz/{(ql. Crystals not belonging to an enantiomor-
phic crystal class show no NCD signal. NCD has cylindrical
symmetry and it does not change with rotation of the media
about the beam. This property of NCD is required by its
dependence on circular polarization, which has cylindrical
symmetry about the beam. Anapoles contribute MyD and
the signal is independent of Stokes parameters. A motif of

parity-odd and time-odd quadrupoles generates NRLD.

4. FElectron Operators

Basic electron operators are R, L, and §. Angular
momentum operators L, 8, and also J=L + 8, satisfy
identities (commutation relations) of the form (L x L) = iL.
Operators R and L do not commute; [L,, Ryl =iR;, say,
with [Ly, Rg] = i€qp, R, the general case. Angular momen-
tum operators are parity-even (axial vectors) and time-odd,
whereas R is parity-odd (polar vector) and time-even. Not
surprisingly, our theoretical development in §5 demands
a fourth basic operator that is parity-odd and time-odd
(magneto-electric) and an anapole £; = (LxR-R x L)
possesses these properties.
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Cartesian components of the four operators are Hermitian.
Spherical components of a vector (dipole, K = 1), labelled
by the projection Q = +1,0, and Cartesian components,
labelled x,y,z, are related by Ay, = F(A, iiAy)/«/i and
Ao = A;, for an arbitrary vector A. One finds Ag =
(—=1%(A_g)*. It can be shown that L-R=L.®, =0, It
proves useful in §5 to use a spin anapole 25 = (S x R).
Anapole operators are Hermitian.

Since 2; and R are (polar) vectors with opposite time
signatures their matrix elements are proportional and the
coefficient of proportionality contains i. This relation
is manifest in their reduced matrix elements, namely,
CIRW + 1) = —(' + 1IR|F) with (7 — 1|R)) = -/
while ("I, + 1) = (' + 1|RLII) and (7 — 1|@.7) =
=2i'(l' - 1||R||Z'). In consequence, iR and £, have matching
physical properties. Note that R and £; are not orthogonal,
withR - &, =-2;, - R=2R-Rand R-R=1.

5. Decompeosition of the E1-M1 Structure Factor

In this section we report a rewarding representation of
electron variables in the E1-M1 structure factor that @)
exposes its dependence on the total angular-momentum
used to label the intermediate state, J, = I, +(1/2), and
(ii) provides a reduction in terms of operator equivalents.
The beauty of accomplishment (ii) is that electron degrees
of freedom are neatly represented as quantum mechanical
operators which provide both physical insight to observed
quantities and, at the same time, a framework in which to
interpret observable quantities derived in simulation calcn-
lations, e.g., by using cluster calculation or density-func-
tional method. An outcome of the decomposition is a set of
sum-rules for dichroic signals whereby electron degrees of
freedom can be estimated from integrated signals at spin—
orbit split intermediate states. Much of the detailed formal-
ism of the actual decomposition is relegated to two
Appendices in the hope that doing so will allow us to
high-light our essential accomplishments in this section
without detailed analysis of the algebra behind.

Parity-odd multipoles can be different from zero when the
electron ground-state is a mixture of states with different
angular momentum. Examples of a state that allows the E1—
M1 event are egs. (B-6) and (C-1); eq. (B-6) contains two
components, one with angular momentum L.(/ = [, & 1 /2)
and the other ! = I & 1(j = I & 1/2). Equivalent operators
suitable for Ux and G are defined in accord with egs. (B-8)
and (B-9) that relate the two parity-odd operators directly to
one operator, Y, introduced in eq. (2.2) and the subject of
Appendix A. By and large, we give results for Yk because it
is common to both Ug and Gg. Tables I and II contain our
results for operator equivalents and our working is set out
below.

5.1 Special case I, =0

We start with the simple case of absorption by an
intermediate s-state, for which I, = 0. The operator equiv-
alents are gathered in Table 1.

With [ =0, there are no orbital contributions to the
structure factor. The spin contribution scales with QJ. +
1) = 2 because there is just one absorption edge, i.e., two
spin-orbit split edges collapse and form a single edge.
Directly from eq. (A-4) we have,

GHIkNS' k) = 2p0(=D*GUIS @ RY¥|1/L),  (5.1)

with pp defined in eq. (2.6). In eq. (5.1), the tensor product
of rank K formed with spin, S, and unit vector, R, has three
values; {S® R}’ = —(S-R)/v/3, (S® R} =i(S x R)/v2
with spin anapole 5= (S x R) = —(R x 8), while the
diagonal part (projection Q = 0) of the quadrupole tensor-
product {S ® R}f2 is,

3SR, —S-R
N3

Note that {S ® R}° and {S ® R}? are time-odd, while {S ®
R}! is time-even. In the latter case, the time signature is
deduced from the identity iS = (8 x 8) in which the spin
operator, 8, is time-odd.

Let us consider the polar and magneto-electric monopoles.
Setting K = 0 in egs. (B-4) and (B-5) and using eq. (5.1),

(UGl 1) = 18,7 {(IN{S ® RI°|I 7)o, 1
~ (IS @ R|/ D5y, ),

Gl T) = ~8 {GIHS @ RN 1)5, 4
+ (L' 1{S @ RI°117Dé;, 1.

These two expressions satisfy eq. (B-2) for the reduced
matrix-element of a Hermitian operator. We may immediately
identify the Hermitian operator {S ® R}’ = ~S - R/+/3 as an
operator equivalent for magnetic charge, Gy. For the polar
monopole, chirality, we must instead utilize an anti-Hermitian
operator i{S ® R}® = —iS - R/+/3, with iS - R = § . Q.

Proceeding to dipole and quadrupole operators, G; and G,
are identified with Hermitian operators @5 and {S ® R},
respectively. Corresponding results for polar multipoles are
anti-Hermitian operators i(S x R) = {(§ - R)S — S -R)
and i{S @ R}3 = (32(S x S), — § - Rs)/+/6. All these find-
ings are gathered in Table I, and they illustrate use of
egs. (B-8) and (B-9).

[SORE = (5.2)

5.2 General case . > 0
K=0 v

For the gengral case I > 0, let us continue to list findings
by the rank of the atomic multipole. Setting K = 0 in
eq. (A-4) reduces all but one term to zero. The term that
survives stems from a = 0 and it is {8 ® R}°. The other term
in eq. (A-4) with K = 0, a = 0 vanishes because / #1I =1,
as can be seen immediately in eq. (A-3), while proof that all
terms with K = 0, a = 1 add to zero requires some algebra.
With K = 0 one must have j = j and,

_ o2 + DS - R||jL)
2V/3@2l + 1)

Operator equivalents for the polar and magneto-electric

monopoles derived from eq. (5.3) are listed in Table II, and

they coincide with results for the special case I. = 0 listed in
Table 1.

Ut Yolljle) = (5.3)

K=1

With K = 1 in eq. (A-4) all operators are time-even, e.g.,
SR} =i(§ xR) /2 already encountered in our account
of the special case /. = 0. In consequence, from eq. (A4)
we may immediately read off operator equivalents suitable
for the polar dipole, and these are listed in Table II. There
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we use a notation D; = {L ® R}%. One finds {S ® D,}' =
—/(B720){(S - L)R + L(S - R)} which is explicitly time-
even, for {S ® D,}! is a component of a polar multipole.

Corresponding results for the magneto-electric dipole
follow by substituting the orbital anapole, 2;, for R; results
are listed in Table II.

K=2

All operators in eq. (A-4) are explicitly time-odd and thus
give a decomposition of the magneto-electric quadrupole,
with results listed in Table II. For example, it is easy to show
that {S ® R} = +/(T/6){3zS, — S - R} and,

S®Dy)2 = -’2-{z(s x L), + (S x R),L,}

= %{(s x L),z + LS x R),}.

For D, we find D; = /(2/3)zL, because L and R = (x, ¥,2)
are orthogonal variables.

Corresponding results for the polar quadrupole follow by
substituting £, for R.

6. Summary

We have demonstrated similarity between sum-rules for
integrated dichroic signals at spin-orbit split absorption
edges due to parity-odd and parity-even absorption events.
The demonstration is but one outcome of a decomposition
of the E1-M1 scattering amplitude in terms of equivalent
operators.

For the case in which the intermediate state into which
photons are absorbed has no orbital angular momentum, an
s-like state, equivalent operators are related to a composite
operator formed with spin, 8, and unit vector, R. Specifi-
cally, monopole operators for magnetic charge and chirality
of the resonant ion can be represented by $ - R and iS - R =
§ - s, respectively, where the spin anapole €5 =S8 x R.
For parity-even events, E1-E1 and E2-E2, the monopole is
related to electric charge in the ground state of the resonant
ion. Magnetic charge is known not to contribute to parity-
odd dichroic signals but it may contribute in resonant Bragg
diffraction.’? Dipole and quadrupole operators observed
with an s-like intermediate state are listed in Table L

In the general case, in which the intermediate state
possesses angular momentum, addition of integrated inten-
sities collected at the two spin—orbit split edges is propor-
tional to ground-state expectation values of composite
operators built from spin and orbital variables. This contrasts
with parity-even absorption where the corresponding sum-
rule relates intensity to purely orbital expectation values.
For the EI-MI event, atomic multipoles have rank K = 0
(monopole), 1 (dipole), and 2 (quadrupole) and we provide
explicit expressions, in Table II, for all equivalent operators
that control dichroic signals and, also, intensities observed
in Bragg diffraction. With this achievement we identify
electron degrees of freedom that participate in the multi-
poles, and a framework for their simulation.

Appendix A: Re-Coupling with 12j(1)- and 12j(II)-
Symbols

It has become clear in §5 that the operators Yk are central
quantities in our considerations and we select the parts

Table A-l. Reduced matrix elements calculated from eq. (A-1) or (A-2),
for example, with / = 2 and I = 1, all j, j/ and rank, K.

GIXENST)

Jo=1 K=0 K=1 K=2
i=3 /=3 0 13 3B
I Tt B B
j=3 i=3 0 0 0

Jo=1} K=0 K=1 K=2
i=i 1=} 0 -3V VE
=t 7=t - 4R W
j=3% =3 0 0 21
j=1 j=3 0 2,8 2/3

constituting the reduced matrix element (jlj| Y(K)||j/'') from
eq. (B.1) in ref. 33.

GUYENTT) = po@ICOHT)
X &, /(=D T ), + 1)
x [(2j + D@ + DI2(=1D¥ QK + 1)1/2

pe o) £ Je 4
x((luLuz){j, p ]}

, Todr
cco-iagisppl 4 1)
2

J
y [ F A A ] 1 j !
1 j ks vy
Representative values of the reduced matrix-element are
found in Table A-I. Orbital angular momenta, / and I, are
appropriate for p- and d-like orbitals.

Both contributions, orbital and spin marked by their re-
spective reduced matrix elements (/' |L||/) = [I'(! + 1)2I +
12 and ¢} 18]l §) = +/372,%6*" are controlled by a product
of three 6j-symbols. Although all of these contain the inter-
mediate angular momentum J. it is possible to separate the
dependence on J; into a single 6j-symbol common to orbital
and spin part.;The new identities used for the separation
employ a 12j-symbol (second kind) for the orbital part,

I’Jc%[j’ljc}lj-é—
Jor ol joklisoroa

— Z(2a+ ])(_1)a+l(+/+l'
a % K -
5o il o -

Xi
|

and a 12j-symbol (first kind) for the spin part,

%Jcl’[j’lJc}lj%
iodoritr jokllaorou

— Z(za + 1)(_1)(1+K+j+1+j’+-’c+l/2

R
X{} a | K

- a

Np—
"2 NI

~
~
~ S N

ot

a

Nj—
Bf—=
B[

T~
&
&~
~
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In order to achieve this effective re-coupling for J. one has to resort to graphical methods for treating and manipulating 3n;-
symbols as demonstrated in ref. 35 and outlined in refs. 38 and 39.

The 12j-symbols can, again by graphical methods or by using identities given in ref. 39, be transformed into sums on Jrs

1
GUYUEONSTY = potICONIISL 0 (= 1T [2) + 1)27 + D]VAQ2J + (=1 2K + 1)!12 D Qa+ 1){ 12, *

[s]
N Np—
N,

X > Qje+1)
Jx

N
S~
)

1 j U .

/ » j 7 OKY[K 11
pojtlamndt 1k +(—1)’*+’+’+K2(%Ilsll%){ : ,/” 1
v A ’

Q = =

(A1)

Note all quantities in eq. (A-1) are purely real. The reduced matrix-element of C(1) is different from zero for | = I & 1 3637

Result (A-1) is usefully contrasted with its analogue for parity-even event which is found in eq. (73) of ref. 23. Notably,
the 6j-symbol that carries all dependence on J, is exactly the same for both parity-even and parity-odd events. In
consequence, the dependence on J. exposed by writing out the two terms in eq. (A-1) with a = 0 and 1 is the same for both
types of event. However, in the case of E1-M1 the two terms a = 0 and 1 contribute multipoles that depend on electron spin,
whereas a = 0 is pure orbital for parity-even events. Applied to dichroic signals, what we find for the dependence on J, of
eq. (A-1) means that the structure of sum-rules for integrated dichroic signals is the same for parity-even and parity-odd
events.

Whence, for all X, the sum of the two integrated signals at the spin—orbit split states labelled J. = [, = 1/2 is proportional
to contributions defined by a = 0, which scale with (2J, + 1), and the difference of the two integrated signals is proportional
to contributions defined by ¢ = 1.

In eq. (A-1) the sum over a consists of two terms, namely for @ = 0 and 1, and these are simplified and collected in the
bottom line of eq. (A-2),

GHIYENTTY = polICDNSp[2) + 1)2F + DIVA(~DF 2K + 1)'/2 Z (=142 + 1)

Ji=1/2,3/2
. i 1oy 1/2 % 1 j"'
o et i (1) 6l +1) T
20+ )1y Qr+1 2
1
o
S d (i 7 KY[K 11
X LILIHY 1 1 K} —o(d]|S[h)(—1yktsti+k L A (A-2)
-_— ll —_ J —
1 4 j/ 7 Jx 2 x 3
2

Result (A-2) includes explicit proof of the foregoing statements about the structure of ( JUYEK))j'T) as a function of
Jo=1.%£1/2.

For the a = 0 term the sum on j, in eq. (A-2) collapses to nj-symbols. For a = 1 no such collapse occurs. However, the
two sums are usefully re-arranged. The orbital contribution is converted to agum over integer b and as such it is a sum of
reduced matrix-elements of equivalent operators with rank » discussed in §5. The spin contribution arising from the 12j(J)-

symbol, by contrast, is a single reduced matrix-element. Thus we arrive at the foundation of our analysis of the E1-M1 event,
namely,

GHIYUENTTY = po(ICIYS, 125 + 1)2J + DI'2QK + 1)1/

=

i K j
@I+ 1) : S SRR AN A
PILIE ) —1)++172 2 25 SN (—1)t ¢ L 1
2ar 5Ty | CILI-D Lo o) 1 g TREISEHED ; ; :
v or)(s oot
VO + )| Y @b+ =D 1 L gy
b 1 K b 1 K b
2(4]s 1) . VSR VAR S VAN SV AT ER A
+ =2 Y (D A D)= 1Y (=) 2HK 2{ ] : A3
(I,HL”],);(A =1A(=1) oyl el i e o (A3)

Although this result, as well as the preceding ones, can be used for numerical calculations we find it instructive to replace
nj-symbols that depend on j, j’ in eq. (A-3) by reduced matrix elements of basic operators. Essential identities that enable us
to do this are in Edmonds,*® §7. For the a = 1 spin contribution in the last line of eq. (A-3) one may use an equivalent
operator {R ® WS} with W = {S @ L})® = —(S - L)/+/3. We then find
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. I AN (2JC + 1)
GHPYUNTT) = podir § 55
1
F V6Ll + D[ UICDIL) Y @b+ 1){ I
b
le

where I(K, b) is defined by

% j/ l/‘
I(K,b) = [(2j + DQJ + DQK + 1D]'/? Lojo
’ 1 K b]

Expression (A-4) is responsible for results in §5. The choice
of equivalent operators appearing in eq. (A-4) might not
be unique but any arbitrariness will not affect observable
quantities cited in §5.

Appendix B: Reduced Matrix-Elements

Observed multipoles are defined by reference to the
numerator of the resonant scattering length (2.1). Let Yo
denote the one-electron operator appearing in the parity-odd
amplitude.”*® It is defined by the expression (A-1). The
relation between Yx o and our polar and magneto-electric
operators is,

Yio = poli* g g — i¥Gxp), (:8))

where g for the E1-M1 event is defined in eq. (2.6). Unlike
Y@, polar and magneto-electric operators possess, by design,
definite parity and definite time-reversal signatures, =1, that
we denote by m, and my, respectively. Reduced matrix-
elements of such operators, B(K), say, required in the Wigner-
Eckart theorem for atomic matrix elements®>3" satisfy,

GTIBEOND = (-1 (jUBE)I T, (B-2)
GTIBEOND = (=1 (=1 mamg GUIBE) /). (B-3)
In eq. (B-3), mzmg = +1 for a magneto-electric (Gerade)
multipole, while m,my = ~1 for a polar (Ungerade) multi-
pole. Resuits (B-1) and (B-3) enable us to calculate matrix
elements of observable polar and magneto-electric operators

from our knowledge of (jI||Y(K)Ij), which is purely real
and the subject of Appendix A. The general expressions,

K-l
GUUETT) = (YR
— ST DRI, (B4)
_' K
GEWID = - T (Gl
Lo

+ = DG EONDY,  (B-S)

follow immediately from eqs. (B-1) and (B-3).
By way of orientation to the impact of these identities
consider a ground state that can give a non-zero expectation
value of a parity-odd multipole. We choose for this exercise,

N2 jimy + £17 1)), (B-6)

where the mixing parameter f can be complex, and the
normalization V is determined by A'(1 + |f|?) = 1. Values
of [ are [ = [. 4= 1 where I, is the angular momentum of the
intermediate state. For Gk o and eq. (B-6) one finds,

K

GIUIR ® (L + 28)}¥|1j'L)

1
l. ¢1(K,b)+ 2 GIR @ WSIEII/l) |}, (A4)
; (elILdide)
(Gk.0) = N{f{jlmIGkg|/lcm')
+ (L' |G gl jim)}, (B-7)

with a similar expression for (Ugg). The two reduced
matrix-elements in this expression are related by eq. (B-3),
and (Gg,g) can be taken to be proportional to (jI||G(K)|| L),
say. The Hermitian property (Ggg)* = (—I)Q(GK,_Q) is
guaranteed by eq. (B-2). Returning to egs. (B-4) and (B-5)
and expression (A-1) for (GIIYK)|/T) we see that the
latter vanishes unless I’ = .. In consequence, we may work
exclusively with reduced matrix-elements (jI[|U(K)||//¥') and
GUHGK)IT) derived from (jI)| Y(K)||jT) using egs. (B-4)
and (B-5) in which I/ = [..

Whence we elect equivalent operators for Uk g and Gk.0,
defined in accord with reduced matrix-elements with // = L.
Using this value of I in egs. (B-4) and (B-5) we arrive at
expressions for our elected equivalent operators, namely,

o ('_i)K—l . o
O = WYE)|FL), B-8
GHOEN j L) o0 YN i), (B-8)
, , (—i)¥ . y
VNG L) = — JUTEINL). B9
(2po)

Equivalent operators for Ux,o and Gggp so defined have
correct symmetry with respect to parity (both odd) and time
reversal (even and odd, respectively). Used in the context
described here, equivalent operators generate expectation
values (Ug,p) and (Gg ) with all desired properties.

Appendix C: Model Calculation of Parity-Odd
Multipoles

The wave fug:ction chosen for our exercise is an admixture
of p- and d-like single-particle, atomic states. Mixing
parameters may originate from several sources, including,
odd-order contributions to the crystal electric field, config-
uration interaction and covalency.?” There are two d-states,
with angular symmetry yz plus z2, chosen so that a parity-
even quadrupole, that may appear in the E1-E1 structure
factor, is different from zero while the orbital angular
momentum is zero. (The parity-even quadrupole contributes
Templeton and Templeton scattering.) For a p-state we
choose |/',0) with angular momentum / = 1 which has z-
like angular symmetry and no orbital angular momentum
because the projection m’ = 0. Mixture of the states |, m)
and |/,0) with /==2 and /=1 in the wave-function
allow parity-odd multipoles to be different from zero.
Electron spin is saturated with a wave-function s =1/2,
ms == 1/2).

The complete wave-function for the resonant ion is a
product state,

N2 s = 1/2,mg = 1/2){]1,0)
+ib(IL+1) + |1, ~1))/vV2 + £II, 0)},

€N
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with the normalization N determined by N(1 + b* +
If*) = 1. In eq. (C-1), the parameter f is allowed to be a
complex number, f = f' +if”, and it measures mixing of
the two states with opposite parity.

The parameter b in eq. (C-1) is chosen to be purely real
and consequently expectation values of the orbital angular
momentum are zero, i.e., (Lg) = 0 for B = x, y, or z, leading
to g =0 for = xoryand u, = 1 where g is the magnetic
moment.

We cite expectation values of some polar and magneto-
electric multipoles at the L, and L; edges to illustrate the
outcome of our working in §5.

Using our model wave-function (C-1), the polar monopole
(chirality) and dipole in the E1-M1 structure factor are,

%‘/g./\/' " La-edge,

{(Ug0) = (C2)
%‘/g./\/' f"  Ls-edge,
and
0 L-edge,
Uio) = C-3
(Uto) { -S%Nf' Ls-edge. 3

In §5 it is shown that, the contribution to a structure factor
from a monopole is proportional to (2J; + 1). This result is
illustrated in eq. (C-2) by values for {Uop) at the L, edge
(Jo = 1/2) and the L3 edge (J, = 3/2). Notable. is the null
value of (U, ) at the L, edge, whereas {Uy0) at the Ly edge
and (Ro) may be different from zero.

Magnetic charge that can be observed in the state (C-1) is
found to be,

LANF  Lo-edge,
%\/%Nf’ Ls-edge.
Note that chirality and magnetic charge are related,

respectively, to the imaginary and real parts of the mixing
parameter, f. For magneto-electric quadrupoles we find,

%\/%N f Lp-edge,
%\/%N ' Ls-edge.

Resuits (C-4) and (C-5) demonstrate that monopoles and
quadruples can have similar magnitudes.

(Gop) = (C4)

(Gop) = (C5)
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