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Abstract—We report an approach targeted to aid design
exploration, early decisioning in model refinement, optimization
and trade offs. The approach consists of SystemC AMS coupling
with a descriptive functional simulator. System engineering tools
are typically used in design and analysis of system prototypes
captured at very high level. Naturally, in high level analysis
accuracy and detail of results is compromised in lieu simulation
speed and design effort. In the presented approach, the much
needed abstraction and simulation speed is retained during
simulation of platform architecture while near implementation
models (RTL, SPICE) may be also be cosimulated with the
architecture.

I. INTRODUCTION

Until now Electronic System Level (ESL) methodologies

dominated digital domain of design. However, the launching

of Analog and Mixed Signal (AMS) Extensions of SystemC

by the Open SystemC
TM

Initiative marks the beginning of

analog ESL. The automotive and signal processing prevalent

applications spurred several years of academic and institutional

research in high level AMS modeling, which eventually gave

rise to justification of AMS abstraction [1]. The abstrac-

tion concepts of time [2], structure, frequency, behavior [2],

communication [2], computation [2] and data [2] have been

diligently used in designing the constructs and semantics of

SystemC AMS language and simulator’s kernel. The system

designer, thus, can readily capture diverse AMS behavior with

mere tens of lines of code by using Electrical Linear Networks

(ELN), Linear Signal Flow (LSF) and Timed Data Flow (TDF)

Models of Computation (MoC).

The semantics of SystemC AMS provide capability to

explore design space, investigate possible analog-digital par-

titioning and co-designing. Fast simulation speed allows the

designer to design experiments, reorganize architectures, de-

velop virtual prototypes, perform what-if scenarios, tune spec-

ification or use the system simulation model to drive later

verification. Note that the notions such as cycle accuracy

by a clock, boolean equation solver, adaptive stepping, non-

linear solver, analog operations (slew rate, crossing, wave

smoothening), time derivatives and integrals have been de-

liberately left out. However, such constructs are absolutely

necessary for accurate modeling for a designer to proceed

further down toward refinement from architecture level. Since

extending SystemC AMS with the solver concepts of hardware

design AMS languages [3] would violate the philosophy of

analog abstraction, the modeling capability, therefore, is com-

plemented as needed, with the modeling paradigms established

in standard Electronic Design Automation (EDA) flows.

To bridge the gap, we integrate Cadence mixed signal

simulator directly in SystemC AMS simulator. SystemC AMS

supports top-down design flow and refinement methodology

via its Timed Data Flow (TDF) model of computation. The

simulator uses constant time stepping (coarse solver) for

overall system level simulation, but for blocks needing deeper

behavioral characterization, our work utilizes precise mixed

signal solvers and adaptive time stepping of Cadence tools.

The main advantage of the approach is that cosimulation

is employed at selective blocks of the system architecture.

Therefore, the overall system architecture remains abstract in

time and behavior, however, the block where cosimulation is

employed local behavior is precise in computation, timing,

numerical accuracy and stability.

In Section II we present integration detail of Cadence

IUS simulator with OSCI SystemC AMS. In Section III we

apply the integration setup to the executable description of a

complex mixed signal transceiver, in which an abstract model

block (parity checker) is replaced and simulated with RTL

model of Data Encryption Standard (DES). In Section III-C

and III-D we evaluate performance of the integration package

and discuss limitation of data access between two simulations.

Section IV is about the final remarks.

II. SYSTEMC AMS AND CADENCE INTEGRATION

A C based integration package has been designed to coor-

dinate the system and circuit level (Cadence) simulations. The

interaction with Cadence tools is possible due to open nature

of the OSCI simulator. The package uses standard facilities

of operating system and procedural language interface hosted

in Cadence simulator. The package can be easily modified for

use with any simulator that has procedural language interface.

A. Application Specific Customization of Simulator

The OSCI SystemC AMS is an agile, open source and

open architecture simulator. The simulator can be used at the

front end in analog ESL designs. The simulator is canonic

by design in order to maintain speed and simplicity, but

it offers enrichment features. Illustrated in Fig. 1, Sys-

temC AMS is a layered architecture specifically designed

978-3-9810801-7-9/DATE11/ c©2011 EDAA



Fig. 1. Open architecture nature of OSCI simulators

for the user to enhance the simulator with specialty features

through C/C++ add-ons: programming interface e.g. Verilog

Procedural Language Interface (VPI) and VHDL Procedural

Interface (VHPI), dedicated solvers e.g. DASSL for non-linear

differential algebraic equations and supplementary libraries or

packages e.g. Monte Carlo, to name a few.

B. Anatomy of the Timed Data Flow Model of Computation

The TDF model of computation models continuous time

behavior through time abstraction. The continuous amplitude

behavior is approximated as highly sampled signals with

discrete time and discrete amplitudes. The TDF processes a

discrete time sample as a continuous time one, by holding

the sample until the next discrete time. A Laplace Transform

Function (LTF) in TDF is solved by using discrete sample

values held constant between sampling time, mimicking a

continuous time signal. The output is continuous in both time

and value, however, the TDF again samples the continuous

time signal and writes a discretized signal in discrete time to

the output using the output port attributes. This is demonstrated

by the example of Fig. 2.

The TDF model of computation can be used to act on

discrete time samples by a user defined C++ function. To gain

simulation speed, the TDF uses the notion of samples that are

equally time separated and their count is fixed at elaboration

by a static scheduler. Static scheduling [4], was agreed upon

by the architects of the SystemC AMS for observing fast

speed and averting the computational overhead of dynamic

scheduling. The step size used in TDF model of computation is

held constant throughout the simulation, which also accelerates

simulation as opposed to adaptive stepping. The TDF sets

rate attribute to maintain data flow at the ports and delay

attribute for providing latency. Additionally, TDF encapsulates

a synchronization layer to synchronize all SystemC AMS

model of computations with discrete event SystemC.

An elaborated TDF cluster is a graph of TDF blocks or

nodes. The input and output port rates are used to calculate

a firing schedule of all nodes. The schedule maintains the

dataflow rates in and out of the nodes. For example, if node

B of Fig. 3 is the block that needs to simulated and refined

as a circuit level model, the TDF processing() method

outin ltf

ltf input ltf output

out

t / ms

ltf outputin

t / ms

ltf input

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Fig. 2. Continuous time representation of a sampled discrete time step signal
using an LTF function. The LTF processes the discrete time signal at input
port as continuous time. The continuous time signal (filtered) is again sampled
to discrete time at the output port

will not be activated unless node A produces three samples,

for which the node B will consume two samples. In this case,

the balance equation of branch AB for R repetition in each

firing and a minimum, positive n is 3 × RA = 2 × RB ,

yielding a schedule
[
RA RB

]
=
[
2n 3n

]
where n ∈ Z+,

while BABAB, BBABA, AABBB and BBBAA all are

possible schedules. The port rates must be reasonable in the

TDF cluster to calculate a valid schedule between the nodes.
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Fig. 3. A static schedule determines node firing vector before simulation in
a TDF cluster of nodes

In our work, we encapsulate a circuit level cosimulation

interface within the TDF processing() method. The ad-

vantage of wrapping cosimulation call inside TDF is that,

firstly the TDF executes the cosimulation call as a user defined

method of own computation. Secondly, the synchronization of

the two simulations is autonomous because the TDF has no

information of a foreign simulator, and the external simulation

is synchronized with both SystemC and SystemC AMS kernels

every time the TDF block (that issues the cosimulation call)

is synchronized locally.

C. Design Refinement

SystemC AMS refinement methodology is top down which

starts with executable specification of the system. The intended

system behavior can be captured using the TDF model of com-

putation which supports timed flow of signals. The next step

concerns replacing the abstract models of system with more

accurate models (behavioral or structural). For analog case the

replacement process is stepwise, however, for digital behavior

(algorithmic nature) the replacement can be immediate, which

is the approach followed in application example of Section III.

The simulator speed is assisted by static scheduling, constant

sampling, time abstraction and data flow, which permit multi-

ple simulation runs for performance evaluation and feasibility

of architectures. Fig. 4 illustrates the application of the
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Fig. 4. Specification refinement from system concept to platform architecture

SystemC AMS extensions in system refinement. The user

can lower the level of abstraction for the intended domain

of implementation such as space state, LSF, LTF and ELN.

For instance, a lowpass filter may be described as pole-zero

(Hs = Ho

1+τs ), by cut-off frequency (Hs = Ho

1+ 1
2πfc

), space

state equations (y(t) = x(t) − 1
2πfc

d
dty(t)) or using circuit

components ( 1
1+sRC ).

D. Bridging Coarse and Fine Grain Simulations

The TDF processing() method wraps a cosimulation

method cadence_cosim(). The cosimulation method can

be instantiated in clockless discrete event blocks described in

sc_module() or sc_method() that connect TDF blocks.

In the listing below, a TDF node invokes an interface for fine

grain cosimulation passing it data read via the input port.

The node will remain in processing state in the cluster of

TDF nodes until cosim_data is returned. Note that in the

absence of cosimulation interface (cadence_cosim()), the

user would describe block behavior with own code.
SCA_TDF_MODULE(TxRx) {
sca_tdf::sca_in<double> in;
sca_tdf::sca_out<double> out;
void set_attribute()
void initialize()
processing() { // SystemC AMS user defined method
in.read(input); // read input port
/* invoke cosimulation and pass input data */
char *cosim_data = cadence_cosim(carrier_freq,
rate, bit_resol)
out.write(output); // write cosimulated data to output
}
};

The cadence_cosim() method formats input port data

and communicates it to the Cadence cosimulator via TCP

sockets. The method is flexible to take additional arguments

from the SystemC AMS description that might be necessary in

cosimulation. Typically, the port arguments are set_rate,

set_delay() and set_attribute() which aid in

model computation. The arguments are communicated to the

cosimulator via socket connection. The cosimulator uses sim-

ulator’s procedural language interface (VPI or VHPI) to write

the simulation data originated at the SystemC AMS model to

the circuit level model. The testbench configures the circuit

level model according to the port arguments received from

SystemC AMS model. This configuration provides semantics

for the circuit level model. For example, the SystemC AMS

set_attribute() may be interpreted as generic for

VHDL model. Similarly, set_rate may be interpreted as

number of data at clock edges, and set_delay() is ab-

stracted as clock latency. The designer must judge whether the

arguments are needed to be mapped in the circuit model. In

many cases, such as in the case study of Section III, the need

of providing equivalence for system attributes in the circuit

level model is unnecessary.

The simulation data returned by cadence_cosim() in

the return argument is stored as a data stream. The argu-

ment cosim_data is the cosimulation data saved by the

VHPI/VPI interface and received in the socket connection.

The processing() method converts the stream into the

SystemC AMS data type needed for the output port. The

TDF blocks only reads input port data from SystemC AMS

model, the computation is carried out at the cosimulator and

the computed resulted is written at the TDF output in SystemC

AMS. The cosimulator applies its fine solvers on abstract input

data generated at SystemC AMS. Therefore, the computation

whether digital or analog is precise both in accuracy and time.

Moreover, the analog non-idealities and non-linearities would

rise that typically cannot be observed in SystemC AMS uni-

simulation.

E. Loose Coupling

The time marking of the samples at SystemC AMS has

no use at the cosimulator and therefore this information is

not communicated to it. Because top level SystemC AMS

description is abstract, the connectivity of modules with each

other is supported by a few signals. When an abstract model

is replaced (by cosimulation) by a circuit level model, the

mapping of ports between two models is not one to one.

Thus, in cosimulation the signal flow path between the two

simulations is of interest. However, the cosimulated model

(refined) requires many more signals. We accommodate such

non-interfacing signals of the cosimulated model in it’s local

testbench. The dataflow samples originated at SystemC AMS

are applied to the cosimulated model with the local clock of

the testbench and timed accordingly with the model’s other

signals.

F. C Level Access of Cosimulation

The access of cosimulation objects is made through pro-

cedural interface of the cosimulator. The interface consists

Verilog VPI or VHDL VHPI task functions that register sim-

ulation begin/end callbacks, start/stop time callbacks, navigate

design hierarchy, obtain handles on various design objects,

monitor objects that participate in cosimulation and save value

change events on those objects. The relationships and rules for

these tasks are illustrated in Alg. 1. In brief, whenever an event

occurs on a simulation object contained in the monitored list,

the data and time of that event and object is recorded. If the

object is the signal flow object between the two simulations,

at the end of cosimulation, the saved stream shall be the co-

simulation data used by SystemC AMS simulator.



Input: Set of model instances to be cosimulated, start

and stop times, socket ID

Output: Values of the interested signals or ports

while not stop time do
foreach Model i do

register begin simulation callback

register end simulation callback

register add ValueChange callback at start

register remove ValueChange callback at stop

navigate Model i hierarchy to all SubModels
foreach SubModel j do

navigate design hierarchy

get port and signal objects

assign ASCII handle to each object

initialize objects

add desired object k to monitor list

add ValueChange callback on k
foreach k ∈ SubModel j ∈ Model i do

if ValueChange event occurs then
read (value,time)

write value to socket ID

end
end

end
end

end
remove ValueChange callback

Algorithm 1: Typical tasks in C level access of HDL

simulation

G. Lock Node Synchronization

The TDF interfaces with the synchronization layer shown

in light pink color in Fig. 1. The layer also synchro-

nizes SystemC methods (sc_module(), sc_method(),

sc_thread() to SystemC AMS TDF. By the nature of

static scheduling of synchronous data flow graphs, once the

cosimulation has begun no dynamic activity is expected at

the node’s input. When a TDF block has not produced the

required number of samples, the next block in the data flow

will not execute in a firing which is a single non-interruptible

step. The unavailability of samples at the block output means

temporarily imbalance of equation system and that the TDF

solver has not finished computation to produce the required

number of samples. Thus, the block is in momentarily sus-

pension for data flow activity. As soon as the computation is

complete, the computed result in form of samples is written

to the output. This is the basic synchronization idea used in

connecting SystemC AMS with Cadence IUS, which is in

effect data synchronization.

For cosimulation of TDF node B inside a TDF cluster of

Fig. 5, with input port rate rB1 is defined by a composite

mathematical expression f of sub-expressions fA, fB and fC :

f → (fC (fB (fA)))

The node B resides between TDF nodes A with output rate

rA and node C with input rate rC . A possible static schedule

exists:

A → B → C

The number of tokens represented by rB must be available

before the simulation wrapper is activated.

Possible schedule: {A B C}

t

V(t)

out CA B

TDF module TDF portTDF signal TDF cluster

rA=rB1
rB2=rC

Fig. 5. Number of tokens needed in cosimulation must be available before
cosimulation of node B begins

In cosimulation, the TDF member function

processing() has no computation method (solver), rather

it instantiates the cosimulation wrapper cadence_cosim().

Hence, the TDF processing is subjected to the time the

cosimulator takes at the remote machine. Until this time,

the TDF node is inactive in communication to all forward

nodes, while other TDF nodes might be processing that have

enough samples at their inputs. Therefore, SystemC AMS

simulator is not in a complete deadlock state because of the

cosimulator. If the cosimulator takes longer, the remaining

TDF nodes may run out of their samples. This will produce a

cyclic dependency in the TDF cluster, which will be cleared

as soon as the cosimulation data (samples) arrive in the node

that had triggered cosimulation. Recall that cosimulation data

is the return argument of cadence_cosim() which is

written to the TDF block output ports by processing().

III. APPLICATION EXAMPLE

A very high level specification of a Amplitude Shift Keying

(ASK) modem is captured in SystemC AMS described by the

behavior blocks of Fig. 6. The cryptographic block (right

most grayed blocks in Fig. 6) is simply modeled as XOR

parity logic (8-bits plus parity). The transmitter and receiver

are connected through AWGN noisy medium shown in the left

most gray block.
In cosimulation, the encode and decode code shown in

listing below is replaced by two cadence_cosim() meth-

ods, one for transmit and the other for receive path. The

methods cosimulate 64-bit Data Encryption Standard RTL

(537 slices, 232 Flip Flops and 1026 Look Up Tables on Xilinx

3s50pq208-5 device). SystemC AMS set_attribute sets

the consumer and producer token rates for each block. The

transceiver data passes through the noisy channel and is

encrypted/decrypted using the cryptographic DES and DES3

soft cores.
..
/* decode */
sc_bv<8> val = Rx.read().range(7,0); // discard parity
out.write(val ˆ "10101010");}
/* encode */
parval.range(7,0) = in.read() ˆ "10101010";
parval8=parval.range(7,0).xor_reduce(); // add parity
Tx.write(parval);
..
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Fig. 6. ASK transceiver modeled in SystemC AMS, crypto unit is cosimulated as DES in RTL with Cadence IUS

A. Measurements

Fig. 7 shows ASK signal before (blue trace) and after

(green trace) the channel effects. There is 80 dB loss in the

three peaks shown in the frequency spectrum while the is no

deterioration in the phase response. The signal is demodulated

in the receive path and the encrypted bits are recovered by a

lowpass filter whose response is shown in Fig. 8. The bit

stream is illustrated in both analog and digital representations

in Fig. 8.

Fig. 9 is the eye mask of the detected bits immediately after

lowpass filter. The 64-bit data encrypted signal is interposed

with Inter Symbol Interference (ISI). We note a keep out area

marked by at least 14 μs horizontal and 44 μs vertical eye

openings. Moreover, the signal contains RMS jitter (standard

deviation of the jitter calculated from the horizontal histogram)

of 31 μs and a peak to peak jitter (difference between the

extreme data points) of 94 μs. Jitter measurement in absence

of cosimulation (abstract 8-bit parity checker) is shown in Fig.

10. In this case, signal quality is higher marked by wider eye

opening (height = 109 μs and width = 31 μs). The strength of

jitter is additionally illustrated as histograms at the occurrence

in Fig. 9 and 10.

Fig. 7. Noisy channel effect on input signal, spectrum and phase response

Fig. 8. Lowpass Filter detected bits - analog and digital representation

Fig. 9. Jitter in detected bits that were encoded as 64-bit DES cryptography

Fig. 10. Jitter in detected bits encoded as 9-bit XOR parity

B. Specification Tuning

Fig. 11 shows the available degree of freedom to the

designer through abstraction (high simulation speed) and

refinement (cosimulation). The designer can put together a

system prototype by abstractly coding a modulation scheme

(height edge of the cube in Fig. 11), selecting a candidate

of cryptographic model from a cosimulation library (width)
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Fig. 11. Design exploration and specification refinement using cosimulation

and analyzing performance of virtual prototype on parameters

of interest (cube depth). For ASK switching scheme, the

detection of wave bits can be improved by experimenting with

carrier frequency and threshold voltage. A second option is

reduce the channel bandwidth by encoding the amplitude of

cryptographic symbols with different levels (e.g. M-ary Binary

ASK with 6-levels for 64-bits). For phase based modulations

e.g. Phase Shift Keying (PSK), the receiver may contain a

phase locked loop for more accurate detection. For frequency

modulation, the parameter of interest for measuring signal

distortion with time (non-linear phase shift and frequency

relationship) would be group or envelope delay. Similarly,

the designer can fine-tune bit error rate, signal to noise ratio

and transmission rate. SystemC AMS provides abstract analog

modeling capabilities for designing such experiments.

In automotive keyless entry application, interference and

reflections are primarily affect secure ASK transmission. Data

security is directly affected by the size of the cipher key. The

bigger sizes, however, inherently result in higher distortion and

ISI. Cadence cosimulation suite coupled by SystemC AMS can

provide further assistance in architecture exploration such as

by simulating RTL cores of Advanced Encryption Standard

and Skipjack with the system level executable specification.

C. Performance Evaluation

Fig. 12 indicates computation times of the cosimulation

(Intel Xeon 3.39 GHz running Debian Linux) interface for

several models of varying complexity. The computation in-

cludes complete automation including compiling, elaboration

and simulation of RTL models. The latency is inherent of

distributed computing and typically ranges between 400 and

1000 ms for both DES and DES3. These times can be reduced

by using shared memory as opposed to sockets and also by

simulation of pre-compiled and pre-elaborated models.

D. Framework Limitation

Currently, C level access of analog simulation data is not

possible either by any tool or IEEE standard. However, to
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Fig. 12. Execution times of cosimulation interface for different models

this end, work is underway standardization committees. If the

model to be cosimulated contains SPICE description, then the

model must be encapsulated inside a Verilog-AMS wrapper.

The VHPI/VPI application cannot access continuous time

objects: SPICE nets, VHDL-AMS quantity or Verilog-

AMS electrical objects. Hence, HDL-AMS nets that are

probed by the C interface must be real valued discrete time

objects as registered by the simulation kernel. This is not a

limitation in principle as low level continuous time signals

typically do not directly come in the signal flow in the system

level blocks. The designer however would be interested in their

indirect contribution to the overall analog behavior and on the

signal flow to the other blocks.

IV. CONCLUSION

A scalable simulation based approach of refining system

architecture level blocks by replacing them with circuit level

description is presented. The simulation setup takes advantage

of high level modeling capabilities of SystemC AMS simulator

which include open architecture, TDF MoC, static scheduling

and constant time stepping whereas finer behavior is simu-

lated with Cadence functional simulator. The synchronization

between the simulators is facilitated by SystemC AMS syn-

chronization layer. Synthesizeable DES and DES3 models are

directly cosimulated with the executable specification of an

ASK transceiver. The effect of noise is analyzed as a test

case for adjusting system specific parameters. The simulation

setup can assist in selecting the cryptographic algorithm.

The simulation speed although in hundreds of ms allows the

designer to add near implementable models in the architecture

being explored and evaluate system performance therefrom.
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