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Abstract
The primary goal of Visual Analytics (VA) is the close intertwinedness of human reasoning and automated meth-
ods. An important task for this goal is formulating a description for such a VA process. We propose the design
of a VA process description that uses the inherent structure contained in time-oriented data as a way to improve
the integration of human reasoning. This structure can, for example, be seen in the calendar aspect of time being
composed of smaller granularities, like years and seasons. Domain experts strongly consider this structure in their
reasoning, so VA needs to consider it, too.

Categories and Subject Descriptors (according to ACM CCS): Information Systems [H.1.1]: Models and
Principles—Systems and Information Theory; Computing Methodologies [I.m]: Miscellaneous—

1. Introduction

Visual Analytics (VA) is defined as “the science of ana-
lytical reasoning facilitated by interactive visual interfaces”
[TC05]. The combination of automated reasoning methods
and visual interfaces is a necessary step, but only an inter-
mediate one to the combination of automated and human
analytical reasoning. Current descriptions of the VA process
are either human-focused and difficult to apply for devel-
oping VA systems [TC05, PC05] or process-oriented frame-
works that do not place much consideration into human rea-
soning [KMS∗08, BL09]. To bridge the gap between human
reasoning and automated methods, we propose to include
specific characteristics of certain kinds of data. For many
applications of time-oriented data, the structure of time (see
Section 2 for a discussion of this term in state-of-the-art
research) is of key importance in the reasoning of human
users [SML∗08,SML∗09]. Our goal is to make the structure
of time an integrated part of the VA process. To pioneer that
development in this paper, we (1) propose a VA process in a
way suitable for our goal and (2) present a concept for orga-
nizing data according to the structure of time.

2. Related Work

We present existing descriptions of the VA process and im-
portant research regarding data concepts for the structure of

time. Most of today’s VA research is based on the work of
Thomas and Cook [TC05]. They describe the analytical rea-
soning process based on a sense-making loop. The work
is overall an advancement of a description by Pirolli and
Card [PC05] based on human actions in intelligence anal-
ysis. This description has a focus on the early steps of the
process, finding hypotheses in a vast amount of seemingly
unrelated data, but less detail on the later steps, the valida-
tion of hypotheses, building of models, and forecasting of
data. A description which contains several sub-processes is
presented by Green et al. [GRF09]. Most sub-processes deal
with the same tasks as the description by Pirolli and Card,
one of them handles the generation and analysis of hypothe-
ses. Keim et al. [KMS∗08] provide a process description as
an integrated view on visualizations and automated analysis.
The heart of the description is a diagram showing the VA
process with four states: datasets, visualizations, hypothe-
ses, and insights. The idea of the description is to iterate
over the states while increasing the amount of existing hy-
potheses and visualizations, generating an increasing num-
ber of insights. Bertini and Lalanne [BL09] focus on the
analysis of methods for the integration of a human-centered
approach to knowledge discovery and machine-driven Data
Mining. They do consider Data Mining as a transition while
they consider visualizations as a state—other approaches
usually consider them as equivalents. Furthermore, Bertini
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and Lalanne state the important fact that while it is pos-
sible for humans to form what they call a mental schema
based on visualizations with sensible defaults, it is essen-
tial for Data Mining to have this mental schema before per-
forming the mining algorithms because proper parametriza-
tion is much more important. The process descriptions are
kept independent of the types of data. To develop possibil-
ities focused on the structure of time, we also have to take
a look at concepts for structurizing time-oriented data (ac-
cording to aspects which have been, for example, described
by Aigner et al. [AMST11]). Jensen and Snodgrass intro-
duced the BCDM [JS96] and applied the important concepts
of chronons and intervals, but focused on database transac-
tions which are not of central importance in VA systems. The
HMAP by Combi and Pozzi [CP01] complements the inter-
val primitive with instants and durations. It also applies the
calendar model of granularities, which has been described
by Bettini et al. [BJW00]. Those aspects are implemented
for ontologies by Hobbs and Pan [HP04], as well as a defi-
nition of temporal before/after relations.

3. Our Process Description

For our process description, we take several aspects from
the ones by Keim et al. [KMS∗08] as well as Bertini and
Lalanne [BL09] (see Figure 1). Our description is not a state
machine. Rather, process elements are generated and accu-
mulated over the course of the process. Users can interact
with anything inside the grey area (including the arrows
that lead inside and outside), mainly by using the interac-
tive visual interfaces that double as process element as well
as interface. Data are real-world values collected by prior
processes. Domain Knowledge consists of hypotheses and
models from prior processes that are considered. Interac-
tive Visual Interfaces are any representation of data that
are intended for transferring them from automated systems
to human users through the sense of sight. Visual interfaces
can also have the ability to transfer data from users to auto-
mated systems through user interaction. Models are repre-
sentations of a system of entities, phenomena, or processes.
In many present process descriptions and essays about the
scientific method, hypotheses are a subclass of a model. We
narrow the definition and consider only those results a model
that are validated by comparison to existing data. Therefore,
results not validated are called a hypotheses. Still, models
cannot be considered “true” for sure, because they are only
correct for the current state of data collection. In automated
systems they often stem from Data Mining methods, but in
VA, an important source is the validation of hypotheses. Hy-
potheses consist either of a suggested explanation for an ob-
servable problem or of a reasoned proposal predicting a pos-
sible causal correlation among multiple phenomena. We dis-
tinguish between (1) hypotheses formulated in common lan-
guage or thoughts of users and (2) externalized hypotheses
formulated in a way that can be used by automated systems
(in the following, we will consider externalization always in
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Figure 1: Our VA process, based on [KMS∗08] and [BL09].
HK: Take hypotheses from domain knowledge. VK: Visualize
domain knowledge directly. MK: Take models from domain
knowledge. VD: Visualize data. MD: Generate models from
data. HV: Build hypotheses based on visualizations. VM: Vi-
sualize models. VH: Visualize hypotheses. MH: Validate hy-
potheses to form models. IH: Gain insights from hypotheses.
IM: Gain insights from models. IV: Gain insights from visu-
alizations.

that context). To keep the process description manageable,
we do not introduce two process elements, as both variants
have the same content. Externalizing hypotheses is of grave
importance for the VA process because it is the key to their
validation. Validated hyotheses become models. In theory,
methods like fuzzy logic can also generate hypotheses with-
out human users, but as their results are usually validated
automatically, we have omitted additional transitions for the
sake of simplicity. Hypotheses can also be visualized, of-
ten in form of annotations. It is possible for VA systems to
use interactive visual methods to externalize hypotheseses,
like Fuchs et al. [FWG09] do with linking and brushing. In-
sights are understandings of coherence gained by users that
were not clear before the process. Insights can cause users
to consider certain data, hypotheses or models to guide their
further actions or analyses.

4. A Data Concept Using the Structure of Time

We need to handle time-oriented data according to the
structure of time as well as according to the VA pro-
cess model. Hypotheses and models are handled similar to
data. We expect methods from VA to be easier applica-
ble and modularly replaceable if the concepts for data, hy-
potheses, and models are closely related, yet clearly dis-
tinguished. We adapt the concept of temporal objects from
Aigner [Aig06]. A temporal object is a pair <Object, Tem-
poral Element>, where, according to Aigner, the object
can be anything, including another temporal object. We use
specific kinds of VA process temporal objects for data, a
hypothesis, or a model. VA Process Temporal Object :=
<VA Process Object, Temporal Element> with VA Pro-
cess Object := <Type, Further Information, Object>. Type
can be data, hypothesis, and model. Further information for
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data is the source, for hypotheses it is the user who made it,
for models it is the applicability based on a certain kind of
data for which it has been validated. The structure of time
has been defined in various ways, most of which acknowl-
edge several aspects. Therefore, the temporal element of a
temporal object needs a structure that can represent those.
We rely on the aspects listed by Aigner et al. [AMST11]:
Scope: The temporal element of a temporal object is formu-
lated as instant, span, or interval. Intervals can be defined
based on two instants or on one instant and one span (see
Figure 2, without detailing the VA process additions in the
objects). The definition of scope becomes more complex in
the context of the granularities (see below). Viewpoints: We
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Figure 2: Temporal objects can be formed according to rows
of a data table.

explicitely allow the combination of consecutive data (see
Figure 3). A pattern based on several events found by Data
Mining methods, like the MuTinY approach by Bertone et
al. [BLT∗10], can be handled by our concept as a com-

Temporal Object
Data

Temporal Object

Instant
Temporal Object

Data

Time-
stamp 1

Time-
stamp 2

Instant

Assign-
ment total

Assign-
ment total

Interval

Timestamp 1 to 
Timestamp 2

Containing Object (Pattern)

InstantInstant

Figure 3: Temporal objects can also be formed according to
columns of a data table.

bined temporal object from several smaller temporal ob-
jects (the events). This is usually an ordered relation. We
expand this relation with optional additional data to objects
that are combined in that way as temporal objects. These
data describe the relation, e.g. “cause” and “effect’. By doing
this, branching time can be handled. By labeling “parallel”,
multiple viewpoints can be handled. In most real situations,
these additional data have to be provided by users, therefore
the resulting temporal objects are hypotheses. Granulari-
ties/Structure: Granularities are mappings of the units in the
discrete time domain (called chronons) to larger units. In the
temporal objects concept without granularities, instants are
given as absolute chronons and spans are given as an amount
of chronons. Using granularities instead has various advan-
tages. Users often think in granularities [SML∗08,SML∗09].
Therefore, it is easier for them to externalize hypotheses
when using them. Generating visualizations using granular-
ities is easier and more effective when a granularitiy-based

datal model lies beneath [Lam10], the resulting visualiza-
tions are more powerful. We apply granularities by allowing
an instant to be a chronon or a granule. A span can be a
number of chronons or a number of granules. When some-
where in the VA process a temporal element is asked for, it
is possible to pose this question on any granularity level and
automatical adaption is performed. A granule is an instant
in its own granularity. In granularities below or on the dis-
crete time domain, it is an interval. Therefore, when asking
for a granule combined with a finer granularity, the result
will be an interval, not an instant. Humans apply granules
also as spans. Depending on linguistic context, it is possi-
ble that an instant shifted by a span becomes an interval. For
example, in strict logics, “in three days” would mean the ex-
act same instant three days later, but it is often used as the
whole interval of the day (from midnight to midnight) that
contains the shifted instant. Granule labels are not necessar-
ily explicit. For example, “Sunday” recurs every seven days.
Therefore, “day of week” is called a “cyclic granularity”. By
combining non-temporal elements with “Sunday” as tempo-
ral element, it is possible to declare that these aspects occur
every Sunday. It is more common to use this possibility for
hypotheses and models. By using cyclic granularities, the
structure aspect can be handled in our concept. Scale: We
base our time concept on the assumption that chronons are
always discrete. The non-temporal elements also need con-
sideration. For data, it is sufficient to have absolute values
of some kind here that are not related to time by itself. In
order to deal with models and hypotheses, we have to deal
with value ranges and other more complicated data types as
non-temporal elements of the objects. Furthermore, the rela-
tions between temporal objects need more complex labelling
possibilities. For example, the relation “greater than” allows
for modelling that the value of one temporal object is greater
than the value of another temporal object.

5. Application on a Real World Example

We provide a theoretical application of our VA process to a
real-world example from prior work (see Figure 4). By look-
ing at a GROOVE visualization based on a dataset of police
assignments [LAB∗09, p. 7], and based on domain knowl-
edge, a user forms the hypothesis that the 6th and 7th hours
of each day have a higher number of assignments than the
other hours. This hypothesis can be externalized by forming
a granularity called “rush hour” that consists of those two
hours and building two temporal objects (“rush hour” and
“non rush hour” as labels) for each day. Based on this exter-
nalized hypothesis, an automated method can aggregate the
chronons from the dataset and count the fraction of the days
for which it is true, with the result being a model. The user
can gain insights from this model. Using the same dataset,
a MuTIny [BLT∗10] implementation might produce the re-
sult that 75% of the first five minutes of an hour with above
average assignments are followed by 55 minutes of below
average assignments. This statement, a model, is difficult to
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comprehend, so the user can visualize it to grasp the mean-
ing. After that, the user might form the hypotheses that this
pure consecutive temporal object has a causal connection,
labeling the relation between the temporal object. By inte-
grating the structure of time in the concept, users can exter-
nalize their hypotheses much more easily and have a better
insight in the working of the system.
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Figure 4: Our VA process applied to a real-world example.
Only the transitions existing in the first example from Section
5 are shown.

6. Conclusion and Future Work

Based on an overview of the state of the art in VA process
descriptions and the state of the art in concepts for time-
oriented data, we have presented our unified and expanded
process model. It makes a clear distinction between hypothe-
ses and models and therefore the important step of hypothe-
ses validation. Generating models not only through auto-
mated methods but also by human reasoning is an impor-
tant aspect of VA. Our process model has been developed to
support the integration of the structure of time, but the state
presented in this paper is general enough to be applied for
other use cases, too. Furthermore, we have presented a con-
cept for time-oriented data that can handle the several as-
pects of the structure of time in regards to data, hypotheses,
and models. We have also shown how the time concept can
be applied to traverse the process elements. Our next steps
will be (1) further integration of the process description and
the data concept into a reference for the VA process of time-
oriented data that is fully focused on the structure of time,
(2) defining a scenario of use cases related to the structure
of time and enlist users with real-world problems (3) finding
suitable methods for performing the various steps of the VA
process for our use cases (4) building an actual data structure
to hold our concept (5) provide a prototypical implementa-
tion (6) as a validation, test the application of our method
to the use cases by the users. We expect our approach to
provide valuable improvements of the application of VA to
time-oriented data according to the structure of time.
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