

Dissertation

A Formal Approach to Implement

Dimension Independent Spatial Analyses

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

technischen Wissenschaften unter der Leitung von

O. Univ.Prof. Dipl.-Ing. Dr.techn. Andrew U. Frank

E127

Institut für Geoinformation und Kartographie

eingereicht an der Technischen Universität Wien

Fakultät für Mathematik und Geoinformation

Institut für Geoinformation und Kartographie

von

Dipl.-Ing. Farid Karimipour

Matrikelnummer 0728643

Bräuhausgasse 64/7

1050 Wien

Wien, June 2011 eigenhändige Unterschrift

Dissertation

A Formal Approach to Implement

Dimension Independent Spatial Analyses

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

submitted to the Vienna University of Technology

Institute of Geoinformation and Cartography

Faculty of Mathematics and Geoinformation

by

Dipl.-Ing. Farid Karimipour

Bräuhausgasse 64/7

1050 Wien

Advisory Committee:

O. Univ.Prof. Dipl.-Ing. Dr.techn. Andrew U. Frank

Institut for Geoinformation and Cartography

Vienna University of Technology

O. Univ.Prof. Dipl.-Ing. Dr.techn. Walter G. Kropatsch

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Vienna, June 2011 autograph signature

To

my wife Aida,

my little Lona,

and

my parents.

 i

ABSTRACT

Extension of 2D spatial analyses — i.e., a set of operations applied on a spatial data set —

to higher dimensions, e.g., 3D and temporal, is one of the requirements to handle real world

phenomena in GIS. The current approach is to design a technical solution to extend a certain

2D spatial analysis to a new multi-dimensional space with the least increase in complexity

and speed. This technical approach has resulted in developments that cannot be generalized.

The result of following such an approach in the software development stage is recoding each

spatial analysis, separately, for each dimension. Therefore, the code for a, say, general

2D/3D static and moving objects supporting GIS is nearly four times the current code size,

offering four variants: static 2D, moving 2D, static 3D, and moving 3D. The complexity of

such a growth of code written in one of the currently popular programming languages, say,

C++ is hard to manage, resulting in numerous bugs.

This thesis investigates spatial analyses based on their dimension independent

characteristics (i.e., independent of the objects to which the analyses are applied), toward

achieving a general solution. It intends to provide an integrated framework for spatial

analyses of different multi-dimensional spaces a GIS should support. This framework will

be independent of the objects to which the analyses are applied and spatial analyses are

formally defined by combinations of the elements of this integrated framework.

To implement this approach, spatial analyses are formally expressed hierarchically

where each analysis is defined as a combination of simpler ones. These definitions are

independent of dimension and the hierarchy ends in a set of primary operations, which are

not further decomposed. A set of required data types are also identified. Having

implemented the dimensionally independent data types and operations, they all will be

extended to a specific space (e.g., moving points) by applying the mappings between

defined the spaces.

The required abstraction of the proposed approach is the subject of algebra that ignores

those properties of operations that depend on the objects they are applied to. The desired

spaces are structurally equivalent, so they are described by the same algebra. Having

implemented the required data types and operations, their extension to a specific space is

viable by applying the (structure preserving) mapping.

 ii

The proposed approach has been evaluated through implementation of Delaunay

triangulation for 2D and 3D static and moving points in the functional programming

language Haskell and their efficiency has been evaluated. The implementations were used in

two applications, i.e., convex decomposition of polytops and optimum placement of a sensor

network based on the moving Voronoi diagram, in order to show how the proposed

approach can be practically used. The achieved results certify the hypothesis of the research

says that “studying spatial analyses based on their dimension independent characteristics

leads to a consistent solution toward implementation of a multi-dimensional GIS“.

Complexity and speed are factors used to evaluate the performance of an extension

technique in current research. However, the aim here is to avoid recoding each spatial

analysis for each dimension. Thus, the main concern of this research is on the mathematical

validation of the conceptual framework and investigation of its implementation issues.

Nevertheless, the results show that the proposed approach does not affect the big O

complexity and speed for applying the spatial analyses on objects of higher dimensions.

KEYWORDS

Multi-dimensional spatial analyses, 3D spatial data, Moving objects, Formal theories,

Abstraction, Algebraic structures, Algebraic specifications, Lifting, Delaunay triangulation,

Voronoi diagram, Functional programming languages, Haskell

 iii

ACKNOWLEDGEMENT

I would like to express my gratitude to all those who contributed in one way or another in

the journey of my PhD. It would have not been possible to complete this journey without

their help and support.

In particular, I would like to express my deep thanks to Prof. Andrew U. Frank, my

first advisor. He generously honored me with his invaluable knowledge and provided me

with confidence to push forward. His guidance and ideas were essential for this work. My

special thanks to Prof. Walter G. Kropatsch, my second advisor, for his invaluable

comments to improve the work.

I also would like to thank my colleagues at the Institute for Geoinformation, with

whom I had unforgettable nice time. I appreciate the discussion with Takeshi Shirabe,

Gerhard Navratil, Gwen Wilke, Rizwan Bulbul and Barbara Hofer. I will not forget the help

and support of Edith Unterweger, Christian Gruber and Banob Akladious.

Several people outside the Institute helped me with this work. I would like to

acknowledge my colleagues in the 3D Topography project, especially Feriso Penninga,

Christopher Gold, Peter Van Oosterom and Rod Thomson. My special thanks go to Hugo

Ledoux for his constructive suggestions to improve the research. I would like to thank Cyrus

Shahabi for his kind hospitality during my visit to the University of Southern California.

I dedicate this work to my family members: I would like to thank my wife Aida for her

love and support. She always had an open ear for me, both in good and in bad times. And

finally, I deeply thank my father and mother for their encouragement and never-ending

support. I will not forget the first day of my school when I was fearful and my father stood

behind the door of the class all the day.

 iv

THE STORY OF MY PHD

It was the first days of September 2004 that I met prof. Andrew Frank for the first time, who

came to Iran to teach a course. The proposal of my master thesis had been accepted a week

ago on whose topic I had been working for about a year and I was preparing myself for an

easy and straightforward research. I did not know that, however, life is about the things that

happen while you are busy with planning something else…

In our first discussion, I asked him to contribute in my master thesis, but he found the

topic out of his interests. Instead, he suggested another topic. It was really a difficult

decision: working on a ready and familiar topic or walk to a completely unfamiliar filed of

research. Though, it was a tempting suggestion. Working with one of the pioneers of GIS is

not something that you can simply ignore, and of course I did not. I had a very hard time at

the beginning. Everything was new and unfamiliar: from the concepts and fundamentals to

the tools and even the implementation environment; but I tried to do my best to catch his

interest, and fortunately I could. The results of my master thesis were satisfactory enough

for him to accept that I keep working on it for the PhD. It was not the end of his generosity.

He invited me to join him at Institute for Geoinformation, Technical University of Vienna,

and I moved there and worked with him closely and learned from him as much as I could.

And now, I am at the end of this journey. When I look back, sometimes I wonder how

brave I was to take the risk of this detouring, but I am happy that I took it. Five year

continuous and close work with prof. Frank is not an experience that everyone can have, and

I am happy that I was one of those few lucky people. He taught me not only how to do a

research, but how to live in a scientific community. I learned that scientific community is a

family that everyone tries to improve it, and it is not a race that each opponent tries to

overtake the others, so you must not hide your promising results for yourself, but give them

to the other members of this big family, without fearing of being overtaken. I learned that

you can be a supervisor, and at the same time behave as a father, a bother or a close friend.

And I learned a lot of other things about real life comparing with which the results of this

research is like a drop.

Dear Prof. Frank! I will not forget your never-ending support. I hope I can use them in

my life and also teach them to others.

 v

TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGEMENT ... III

TABLE OF CONTENTS .. V

LIST OF FIGURES... X

LIST OF TABLES .. XIII

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Goal and hypothesis .. 3

1.3 Assumptions .. 4

1.4 Approach and scientific background .. 4

1.5 Research design .. 6

1.5.1 Construction of the abstract conceptual framework .. 6

1.5.2 Formal definition of spatial analyses .. 7

1.5.3 Definition of mappings ... 7

1.5.4 Development ... 7

1.5.5 Evaluation ... 7

1.6 Major expected results .. 8

1.7 Intended audience ... 8

1.8 Organization of the thesis ... 9

 vi

2 EXTENDING SPATIAL ANALYSES TO HIGHER DIMENSIONS: STATE-OF-

THE-ART .. 10

2.1 Delaunay triangulation ... 10

2.1.1 Definition .. 10

2.1.2 Star and ears of a Delaunay triangulation ... 12

2.1.3 Constructing Delaunay triangulation in 2 and 3 dimensions 13

2.1.3.1 Flipping algorithm .. 14

2.1.3.2 Bowyer-Watson algorithm .. 20

2.2 Dynamic spatial analyses ... 21

2.2.1 Dynamic Delaunay triangulation .. 22

2.3 Kinetic spatial analyses .. 25

2.3.1 Kinetic Delaunay triangulation ... 26

2.4 Event based approach to move several objects... 29

2.5 Discussion ... 30

2.6 Summary ... 33

3 FORMAL METHODS .. 34

3.1 Abstraction .. 34

3.1.1 Types of Abstraction ... 35

3.1.1.1 Procedural abstraction... 35

3.1.1.2 Data abstraction .. 36

3.1.1.3 Iterative abstraction .. 36

3.2 Algebraic structures .. 36

3.2.1 Definition of algebra ... 36

3.2.2 Mappings between algebras .. 37

3.2.3 Algebraic representation of an abstract data type ... 39

3.3 n-simplexes: an abstract data type for geometry .. 40

 vii

3.3.1.1 Orientation of an n-simplex .. 42

3.3.1.2 Canonical representation of n-simplexes .. 43

3.3.1.3 Faces of an n-simplex ... 43

3.3.1.4 Boundary of an n-simplex... 43

3.4 Functional programming languages ... 44

3.4.1 Why we use functional programming languages in this thesis? 45

3.4.2 Functional vs. structured programming languages 45

3.4.3 Evaluation of expressions in functional programming languages 47

3.4.3.1 Free and bound variables .. 47

3.4.3.2 Reduction .. 47

3.4.3.3 β-Reduction .. 48

3.4.3.4 Normal Form .. 49

3.4.3.5 Weak head normal form ... 49

3.4.3.6 Head normal form ... 50

3.4.3.7 Lazy evaluation ... 51

3.4.3.8 Outer-to-inner evaluation .. 51

3.4.3.9 Currying mechanism ... 52

3.5 Summary ... 52

4 PROPOSED APPROACH OF THE RESEARCH .. 54

4.1 A review on the proposed approach ... 54

4.2 Formal definition of spatial analyses.. 56

4.3 Constructing an abstract hierarchical framework of spatial analyses 57

4.3.1 Example: Constructing the hierarchical framework for Delaunay

triangulation .. 58

4.4 Summary ... 59

 viii

5 EXTENSION TO N-DIMENSIONS ... 60

5.1 Vector Algebra .. 60

5.1.1 Operations on vectors.. 61

5.1.1.1 Inner product ... 62

5.1.1.2 Cross product .. 63

5.1.1.3 Triple product ... 63

5.1.2 Lifting MakeND to extend data types and primary operations to n-

dimensional objects ... 64

5.2 Definition of data types and classes .. 65

5.3 Operations of n-simplexes ... 67

5.4 Implementation of spatial analyses ... 71

5.5 Summary ... 73

6 EXTENSION TO MOVING OBJECTS ... 74

6.1 Definition of the lifting MakeMoving .. 74

6.2 Implementation of the mappings (liftings) .. 75

6.3 Extension of primitive operations to moving objects .. 76

6.3.1 Extension of operations on Ring ... 76

6.3.2 Extension of operations with list arguments ... 76

6.4 Summary ... 78

7 RESULTS AND EVALUATION ... 79

7.1 Implementation results .. 79

7.2 Evaluation ... 88

7.3 Applications .. 94

7.4 Summary ... 101

 ix

8 CONCLUSION AND FUTURE WORK ... 102

8.1 Results and major findings .. 103

8.2 Research contribution ... 105

8.3 Directions for future work .. 108

APPENDIX 1. THE FUNCTIONAL PROGRAMMING LANGUAGE HASKELL.. 109

A1.1 The Functional programming language Haskell ... 109

A1.2. Functions ... 109

A1.3 Lambda expressions ... 110

A1.4 Data types ... 111

A1.5 Lists .. 112

A1.6 Pattern matching .. 115

A1.7 Classes and instances ... 115

APPENDIX 2. THE HASKELL CODE ... 117

BIBLIOGRAPHY ... 148

 x

LIST OF FIGURES

Figure 1.1. Using lifting S2M to extend static spatial analyses to their moving counterparts 5

Figure 1.2. The research design .. 6

Figure 2.1. 2D and 3D Delaunay triangulations. .. 11

Figure 2.2. 2D and 3D Voronoi diagram. ... 12

Figure 2.3. Duality of Delaunay triangulation and Voronoi diagram 12

Figure 2.4. The star of a vertex v in DT .. 13

Figure 2.5. Example of ears of a DT. .. 13

Figure 2.6. Two possible triangulations of four 2D points ... 14

Figure 2.7. A big triangle that contains all of the vertexes ... 14

Figure 2.8. Position of a point with respect to a line segment .. 15

Figure 2.9. Walking algorithm to detect the triangle contains the new vertex 16

Figure 2.10. Inserting a new vertex into a triangle ... 16

Figure 2.11. Flipping algorithm to insert a vertex in a DT ... 17

Figure 2.12. A big tetrahedron that contains all of the vertexes ... 18

Figure 2.13. Position of a point respect to a tetrahedron .. 19

Figure 2.14. Inserting a new vertex into a tetrahedron ... 19

Figure 2.15. Two possible tetrahedralizations of five 3D points .. 20

Figure 2.16. A situation when the union of two tetrahedra is concave, so not flippable 20

Figure 2.17. A vertex is added to DT. ... 21

Figure 2.18. Deleting a vertex v from a DT .. 22

Figure 2.19. Heller algorithm to delete a vertex from DT. ... 23

Figure 2.20. 2-ear and 3-ear .. 24

Figure 2.21. Delete a vertex from DT. .. 25

Figure 2.22. The opposite triangles of a vertex. ... 27

Figure 2.23. A point moves in the circum-circle of an opposite triangle 28

Figure 2.24. A point moves out of the circum-circle of an imaginary triangle 28

Figure 2.25. Relation between different times defined for topological events 30

Figure 3.1. Abstract data type as a many-to-one mapping .. 35

Figure 3.2. Mapping elements and + operation of Roman numbers to their correspondences

in Arabic numbers .. 37

Figure 3.3. Mapping R
+
 to R through homomorphism log ... 38

 xi

Figure 3.4. A homomorphism h between two concepts A and B with the same algebra 38

Figure 3.5. A simplicial complex that consists of 0-, 1- and 2-simplexes 41

Figure 4.1. The research approach to extend spatial analyses to n-dimensional static and

moving objects ... 55

Figure 4.2. The hierarchy of spatial analyses and operations to define the case studies 59

Figure 5.1. A 2D vector P represented by its Cartesian coordinates 60

Figure 5.2. Addition of vectors and multiplication of a vector with a scalar 61

Figure 5.3. Functionality of the addVertex .. 70

Figure 5.4. Functionality of the border for a set of connected 2-simplexes 70

Figure 7.1. Delaunay triangulation of static points ... 80

Figure 7.2. Voronoi diagram of 2D static points .. 80

Figure 7.3. Delaunay triangulation of 2D moving points for some time instants 81

Figure 7.4. Delaunay triangulation of 3D moving points for some time instants 82

Figure 7.5. Voronoi diagram of 2D moving points for some time instants 83

Figure 7.6. Intensional and extensional definition of a function ... 84

Figure 7.7. Map of the street network ... 84

Figure 7.8. Paths of the simulated moving points on the street network 85

Figure 7.9. Delaunay triangulation of the simulated moving points on the street network for

some time instants .. 86

Figure 7.10. Voronoi diagram of the simulated moving points on the street network for some

time instants ... 87

Figure 7.11. Running time as a function of number of input points for 2D and 3D static and

moving Delaunay triangulation ... 88

Figure 7.12. Number of reductions for applying different analyses on 2D/3D static/moving

points.. 91

Figure 7.13. Number of reductions for applying Sort and DT on 2D/3D slow moving points

 ... 93

Figure 7.14. Number of reductions for applying DT on 2D and3D moving points for

multiple time instants where different number of points move 94

Figure 7.15. 2D and 3D non-convex polytop .. 94

Figure 7.16. AHD representation of the polytop of Figure 7.15.a .. 95

Figure 7.17. AHD representation of the polytop of Figure 7.15.b .. 96

Figure 7.18. Satellite image of Latyan dam and its reservoir ... 97

Figure 7.19. 3D view of Latyan dam and its reservoir ... 97

 xii

Figure 7.20. Points resulted from hydrography of Latyan dam reservoir 98

Figure 7.21. 3D TIN of Latyan dam reservoir .. 98

Figure 7.22. 3D TIN and surface of Latyan dam reservoir at water level of 1570m 99

Figure 7.23. Level-Surface-Volume diagram of Latyan dam reservoir 100

Figure 7.24. Using the Voronoi diagram for sensor network placement 101

 xiii

LIST OF TABLES

Table 2.1. Some research to perform Delaunay triangulation in different dimensions 32

Table 3.1. 0- to 3-simplexes and their common names, representations and geometric

configurations .. 41

Table 7.1. Running time as a function of number of input points for 2D/3D static/moving

DT/CH ... 88

Table 7.2. Number of reductions for applying different analyses on 2D/3D static/moving

points.. 90

Table 7.3. Number of reductions for applying Sort and DT on 2D/3D slow moving points 92

Table 7.4. Number of reductions for applying DT on 2D and3D moving points for multiple

time instants where different number of points move ... 93

Table A1.1. Some standard manipulating functions over lists .. 114

Chapter 1. Introduction 1

1 INTRODUCTION

This chapter starts by describing the motivation for the work done in this thesis. The

research goal, hypothesis and assumptions are presented. Both our general approach and the

specific research design for verifying the research hypothesis are discussed. Expected results

and the intended audience are explained. Finally, we present the organization of the thesis.

1.1 Motivation

“Position in space and time are fundamental for a GIS. They allow connecting other

observations to locations in space and time” (Frank 2007, p. 86). Early geospatial

information systems (GIS) dealt with position in a simple 2D Euclidean space. To handle

real world phenomena, however, some applications need 3D and temporal objects.

Extending the realm of GIS to these higher dimensional spaces has a wide range of

requirements from data storage and data structure considerations to visualization strategies

(Langran, 1989; Oosterom et al., 2008; Peuquet, 1999; Raper, 2000). Extension of 2D

spatial analyses to higher dimensions is a major requirement in this regard. An spatial

analysis is a set of operations applied on a spatial data set that result in a new data set, a

value, etc.. Computing convex hull of a set of points, determining the position of a point

with respect to a line, and computing the volume of a polytop are examples of spatial

analyses that respectively result in a point set, Boolean value, and a numerical value.

Extension of 2D spatial analyses to higher dimensions has been the subject of many

studies each has introduced a technical solution to extend a certain spatial analysis to a new

multi-dimensional space with the least increase in complexity and speed. Complexity and

speed are the parameters usually used for evaluating the efficiency of algorithms in

computational geometry. “Computational geometry is defined as the systematic study of

algorithms and data structures for geometric objects, with a focus on exact algorithms that

are asymptotically fast” (Berg et al., 2008, p. 2). There are several successful results,

considering complexity and speed as the evaluating parameters. In practice, however, almost

no general solution has been introduced to interact with multi-dimensional, say, 3D and

temporal, data. The main reason is that the extension techniques highly depend on the

specific case studies. It has resulted in developments that cannot be generalized. In other

Chapter 1. Introduction 2

words, to extend a certain 2D spatial analysis to a new multi-dimensional space, a technical

solution based on the characteristics of the analysis as well as the destination space must be

designed. For instance, although several methods have been introduced to construct

Delaunay triangulation and Voronoi diagram of 2D moving points (Albers et al., 1998;

Bajaj and Bouma, 1990; Guibas et al., 1992; Mostafavi et al., 2003; Roos, 1991, 1993; Roos

and Noltemeier, 1991; Vomacka, 2008), they have been modified to construct these

structures for 3D moving points (Albers, 1991; Albers and Roos, 1992; Hashemi-Beni et al.,

2007; Ledoux, 2008; Schaller and Meyer-Hermann, 2004). The result of following such an

approach in the software development stage is recoding each spatial analysis, separately, for

each dimension. Thus, the code for a, say, general 2D/3D static and moving objects

supporting GIS is nearly four times the current code size, offering four variants: static 2D,

moving 2D, static 3D, and moving 3D. The complexity of such a growth of code written in

one of the currently popular programming languages, say, C++ is hard to manage, resulting

in numerous bugs. The sheer size of the task explains why no commercial GIS has a

comprehensive offer for treatment of 3D and moving objects.

Current approaches differentiate the same spatial analysis in different spaces despite

their unification in the real world: to calculate the distance between two points, there are

different methods depend on the type of the points (2D or 3D, static or moving, etc.),

although the concept of distance in all of these multi-dimensional spaces are the same. GI

science deals with the formal modeling of spatial process and interaction of humans with the

environment in space and time (Frank, 2000). Thus, it is to have such a unified view point

(Egenhofer and Mark, 1995). However, the space-based view of current approaches causes

separation in how they deal with spatial analyses in different multi-dimensional spaces.

This research provides an integrated framework for spatial analyses in multi-

dimensional spaces. Here, we study spatial analyses based on their dimension independent

properties. This is similar to the approach proposed by Felix Klein in 1872 to study

geometries via their invariants, which are independent of dimension (Klein, 1939). The

framework will be independent of the dimension of the objects to which the analyses are

applied and spatial analyses are formally defined by combinations of the elements of this

integrated framework.

The proposed approach needs a more abstract view that ignores those properties of

analyses that depend on the objects they are applied to. It enables us to have abstract

descriptions of analyses. The required abstraction is the subject of algebra, which describes

Chapter 1. Introduction 3

an abstract class of objects and their behaviors. Structure of operations in algebra is

independent of implementation. Thus, behavior of many things can be described by the

same algebra as long as their behavior is structurally equivalent.

The multi-dimensional spaces a GIS must support are structurally equivalent, so they

can be described using the same algebra and the required mappings between these spaces

are defined. Having implemented the dimensionally independent data types and operations,

they all will be extended to a specific space (e.g., moving points) by applying the mapping

defined between the spaces.

In abstract, this research intends to integrate spatial analyses of multi-dimensional

spaces through incorporation of algebraic specifications as formal abstractions. The research

is based on the formalizations provided in GI science and GI theory (Bittner and Frank,

1997).

1.2 Goal and hypothesis

The goal of this research is to provide an integrated framework for spatial analyses of multi-

dimensional spaces based on their dimension independent properties. This foundation can be

used to formally define spatial analyses based on the elements of the framework. It intends

to contribute the abstraction and algebraic specifications as indispensable concepts to

provide the required abstraction which “captures the essence of the semantics of operations

and objects” (Frank, 2007, p. 55). Our concentration is on mathematical validation of the

proposed approach. However, we implement the approach for some case studies.

Complexity and speed are performance factors in most of the current research in

computer science and computational geometry. However, the main concern of this research

is on the mathematical validation of the conceptual framework and investigation of its

implementation issues, so performance is not a key factor for evaluation of the results.

“Performance” is one of the four areas (the others are “ontology and semantics”, “user

interface” and “error and uncertain data”) that link the formal treatment of geospatial data to

its use and should be excluded in developing a theory for geospatial data processing.

“Without this clear separation, we taint the description of the things we presently understand

with our ignorance in other areas” (Frank, 2007, pp. 24-25).

More specifically, we want to answer these questions:

Chapter 1. Introduction 4

1. What are the dimension independent properties of spatial analyses in different multi-

dimensional spaces? Does this knowledge suffice to construct an abstract integrated

framework based on which spatial analyses in any multi-dimensional space are

described?

2. Having formally defined a spatial analysis as a combination of the elements of this

abstract integrated framework, can it be extended to higher dimensions through the

connections between the spaces?

3. How does it impact the performance comparing to the current approaches?

4. What are the barriers, if any, of implementation of this mathematically provable

integration in a programming environment (here, Haskell)?

The hypothesis of the research is:

“Studying spatial analyses via their dimension independent properties leads to

a consistent solution toward multi-dimensional GIS”.

1.3 Assumptions

As this research is done in the field of GIS, the investigated spaces are limited to those

interesting for GI science, which are Euclidean 2D static, 3D static, 2D temporal and 3D

temporal. On the other hand, the temporal data are divided into kinetic and dynamic. In the

kinetic or moving case, the continuous movement of objects is considered. It means there is

a fixed set of objects whose position change over time. In the dynamic case, the position of

the objects is fixed, but new elements may be inserted or deleted over time. In this research,

we concentrate only on moving objects, but this does not limit the approach to such cases.

Nonetheless, methods for applying spatial analyses on dynamic objects are introduced in

chapter 2.

1.4 Approach and scientific background

This research provides an integrated framework for spatial analyses in different multi-

dimensional spaces through concentration on dimension independent structural properties of

the spatial analyses. It proposes that abstract algebraic presentations provide the minimum

Chapter 1. Introduction 5

information about spatial analyses in a general context that can further be extended to a

more specific space.

Delaunay triangulation is selected as the particular case study to answer the research

questions posed and to verify our hypothesis. The proposed approach of the research will be

used to develop this spatial analysis for points of different dimensions. Focusing on this

particular analysis does not affect the general validity of the results, but it allows us to

concentrate on validation of the proposed conceptual framework of the research.

Algebraic specifications provide the required formal abstraction of the research. The

adopted approach is based on representation of spatial analyses in different multi-

dimensional spaces using the same algebra. We formally express spatial analyses

hierarchically where each analysis is defined as a combination of simpler ones. These

definitions are independent of dimension and the hierarchy ends in a set of primary

operations, which are not further decomposed. A set of required data types are also

identified. Having implemented the dimensionally independent data types and operations,

they all will be extended to a specific space (e.g., moving points) by applying the mappings

defined between spaces. As an example, Figure 1.1 shows the general scheme of the

described approach to extend static spatial analyses to their moving counterparts.

Figure 1.1. Using the lifting S2M to extend static spatial analyses to their moving counterparts

The proposed formalization approach is a generalization of Guting’s τ operation

(Erwing et al., 1999; Guting et al., 2000; Guting et al., 2003; Guting and Schneider, 2005),

which provides a mapping between analyses of static and moving points. However that

mapping does not consider the concept of formalization and algebraic structures. The result

Static primitive operations Static data types

Moving primitive operations Moving data types

Static spatial analyses

Moving spatial analyses

Lifting S2M

Chapter 1. Introduction 6

is the same if we limit the research to construct a mapping between spatial analyses of static

and moving points, which has been implemented in the previous steps of this research

(Karimipour, 2005; Karimipour et al., 2005a; Karimipour et al., 2005b; Karimipour et al.,

2006). Navratil et al. used this formalization to lift the distance operation of two fixed points

to points with different types of uncertainty (Navratil, 2006; Navratil et al., 2008).

1.5 Research design

The research adopts a five step methodology, which is shown in Figure 1.2 and described in

the following subsections:

Figure 1.2. The research design

1.5.1 Construction of the abstract conceptual framework

The underlying strategy of the process starts with investigating the spatial analyses in

different multi-dimensional spaces in order to define them based on their dimension

independent structural properties. It leads to construct the abstract integrated framework of

spatial analyses and operations. This framework, then, plays the role of a conceptual

underline on which the GIS desired multi-dimensional spaces are constructed. It

decomposes the spatial analyses to a set of data types and primitive operations that are not

Construction of the abstract

conceptual framework

Development Evaluation

algebraic

specification

case studies

Formal definition of the

spatial analyses

Definition of mappings

Chapter 1. Introduction 7

further decomposed. Further spatial analyses will be defined according to combinations of

these data types and primitive operations.

1.5.2 Formal definition of spatial analyses

The conceptual framework defined in the previous step, is formalized using algebraic

specifications. The behavior of analyses are formally described as combinations of the

elements of the integrate framework.

Algebraic specifications connect the conceptual framework to its implementation. The

purpose is to formally describe the behavior of analyses. For this reason, we use them to

describe the behavior of the analyses.

1.5.3 Definition of mappings

Spatial analyses are described based on the elements of the integrated framework, so

mappings are defined to extend the spatial analyses to the desired multi-dimensional spaces.

Different spaces are considered structurally equivalent and their mappings (liftings) are

defined. This step will mathematically prove the proposed extension.

1.5.4 Development

The elements (i.e., operations) of the integrated framework are extended to a certain multi-

dimensional space by applying the mappings provided in the previous step.

1.5.5 Evaluation

The constructed integrated frameworks and defined mappings will be evaluated using

Delaunay triangulation to examine the implementation feasibility of the mathematically

provable idea, to identify probable technical barriers, and to investigate the performance of

the implementations. Without losing the generality, we assume the data are in general

position. It helps us to focus on the main concern of the thesis — which is the mathematical

validation of the approach and its implementation issues — and prevents from struggling

with the subtleties of how to handle the degenerate cases, which is not our main concern.

Chapter 1. Introduction 8

The implementations were used in some applications, i.e., convex decomposition of

polytops and optimum placement of a sensor network based on the moving Voronoi

diagram, to see how the implementation can be practically used.

The evaluation code is written in the functional programming language Haskell (Peyton

Jones, 1987; Peyton Jones and Hughes, 1999; Thompson, 1999). Definitions are built in the

form of functions. Functional programming languages use a similar syntax and have similar

mathematical foundations as algebraic specifications. It defines each element as a function

and also defines their relations explicitly as algebra (Hughes, 1989).

1.6 Major expected results

This thesis proposes a formal approach to implement dimension independent spatial

analyses. The major expected results of this research are:

1. Introduction of a mathematical approach to construct an abstract integrated

framework that expresses the essence of spatial analyses independent of the

objects to which they are applied

2. Definition of the framework into a mathematical model with executable

specifications in functional programming paradigm (Bird and Wadler, 1988;

Thompson, 1999). This model will be independent of implementation details.

3. Identification of the barriers to implement the mathematically provable proposed

idea in a programming environment (here, Haskell) through the selected case

study (i.e., Delaunay triangulation) and investigation of the performance of the

implementations.

1.7 Intended audience

Scholars in GIScience and related disciplines (e.g. computer science), who search for

developing 2D spatial analyses to support higher dimensions, are the intended audience of

this research. They can use the defined framework as a core and extend it by adding new

elements of their own specific applications. We use this approach to implement spatial

analyses for objects moving on a network, spatial analyses for non-convex polytops of any

dimension by convex decomposition of them (Bulbul, 2011; Karimipour, 2009; Karimipour

Chapter 1. Introduction 9

et al., 2010a; Karimipour et al., 2010b), and optimum placement of a sensor network based

on the moving Voronoi diagram (Argany et al., 2010).

1.8 Organization of the thesis

The next chapter reviews previous approach concerning the extension of spatial analyses to

higher dimensions and shows how they are applied to extend 2D Delaunay triangulation to

support 3D and moving points. A discussion on comparing the current approach with the

proposed approach of the research is then presented.

Chapter 3 introduces the formal methods that will be used in the proposed approach of

the research. The concepts of abstraction, algebraic structures and simplicial complexes are

presented in this regards. The functional programming languages are introduced and the

reasons of using such an environment are presented.

Chapter 4 describes the proposed approach of the research to extend spatial analyses to

different multi-dimensional spaces. It explains how the spatial analyses are decomposed and

how the data types and primitive operations are defined. Different geometric and topological

operations needed for the implementation of the case study is presented.

Chapters 5 and 6 describe the extension of spatial analyses to higher dimensions. In

chapter 5, we use n-simplexes as an n-dimensional data type. A set of operations are defined

on simplexes based on the concept of vector algebra. In chapter 6 we show how to extend

the n-dimensional static spatial analyses to support moving objects. The required mappings

are presented and discussed. The Haskell implementations of the theories are presented in

these chapters.

Chapter 7 presents the implementation results for extending Delaunay triangulation to

different dimensions. We then evaluate and discuss the performance of the implementations.

At the end of this chapter, two applications developed upon the implementation are

presented to show how the proposed approach can be practically used.

Chapter 8 summarizes the work done in this thesis. We present the results and major

contribution as well as the research achievements. The chapter concludes with the possible

directions for future work.

The proposed approach of the thesis has been implemented in the functional

programming language Haskell. In Appendix 1, the main concepts and syntax of Haskell are

described. The complete Haskell code of the implementations is given in Appendix 2.

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 10

2 EXTENDING SPATIAL ANALYSES TO HIGHER

DIMENSIONS: STATE-OF-THE-ART

This chapter reviews the state-of-the-art in extending spatial analyses to higher dimensions

and shows how the current approaches are applied to Delaunay triangulation, as the case

study of the research. For this, Delaunay triangulation is introduced and some methods to

construct this structure are presented. Current approaches to extend spatial analyses to

higher dimensions are reviewed and their applications to Delaunay triangulation are

explained. We use this information at the end of the chapter to compare the current

approaches with the proposed approach of the research.

2.1 Delaunay triangulation

Delaunay Triangulation (DT) is a fundamental structure in computational geometry. This

structure is commonly used in several applications, from computer graphics, visualization,

computer vision, robotics, and image synthesis to mathematical and natural sciences

(Cignoni et al., 1998).

Delaunay Triangulation is well known in geosciences for many years (Gold, 1979,

1994, 1998; Gold et al., 1977; Ledoux, 2008). It is the basic structure for many geoscientific

applications such as terrain modeling, spatial interpolation and geological mapping problem.

It is also widely used in 3D geoscientific modeling. ‘‘3D Delaunay triangulation is used in

many geoscientific applications that collect data about spatial objects and domains such as

features of the solid earth (aquifers), oceans (currents) or atmosphere (weather fronts),

which fill 3D space’’(Lattuada and Raper, 1995). Furthermore, there are several applications

in geosciences for which constructing the 3D Delaunay triangulation is the basis, e.g.,

surface modeling, iso-surface extraction (Ledoux and Gold, 2007) and reconstruction of 3D

complex geological objects (Yong et al., 2004).

2.1.1 Definition

Given a point set P in the plane, the Delaunay triangulation is a unique triangulation of the

points in P (if the points are in general position), which satisfies the empty circum-circle

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 11

property: the circum-circle of each triangle does not contain any other point p∈P

(Delaunay, 1934; Guibas and Stolfi, 1985; Okabe et al., 2000; Stolfi, 1989a, b). This

structure for a set of 3D points is the tetrahedralization of the points in which the circum-

sphere of each tetrahedron does not contain any other point of the point set. Figure 2.1

shows Delaunay triangulation of some 2D and 3D points.

(a) (b)

Figure 2.1. 2D and 3D Delaunay triangulations. (a) 2D: some of the circum-circles are shown (b) 3D: one of the

tetrahedra is highlighted.

Delaunay triangulation is the dual structure of Voronoi diagram. The Voronoi diagram

(VD) of a set of points is defined as follows: Let P be a set of points in an n-dimensional

Euclidean space R
n
. The Voronoi cell of a point p∈P, noted Vp(P), is the set of points x∈R

n

that are closer to p than to any other point in P:

(2-1) Vp (P) = {x∈R
n
 | ||x-p|| ≤ ||x-q||, q∈P, q ≠ p}

The union of the Voronoi cells of all points p∈P form the Voronoi diagram of P, noted

VD(P):

(2-2)
VD (P) = U Vp (P), p∈P

Figure 2.2 shows 2D and 3D examples. The Voronoi diagram is a very simple structure

and is used in many real-world applications (Ledoux, 2008). For an exhaustive surveys on

Voronoi diagram and their applications, see (Aurenhammer, 1991; Okabe et al., 2000).

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 12

(a) (b)

Figure 2.2. 2D and 3D Voronoi diagram: (a) VD of a set of points in the plane. (b) Two Voronoi cells adjacent to

each other in R3 (they share the grey face).

Delaunay triangulation and Voronoi diagram are dual structures: the center of circum-

circles (-spheres) of Delaunay triangulation are the Voronoi vertexes; and joining the

adjacent generator points in a Voronoi diagram yield their Delaunay triangulation (Figure

 2.3). This duality is very useful because construction, manipulation and storage of the

Voronoi diagram is more difficult than Delaunay triangulation, so all the operations can be

performed on Delaunay triangulation, and the Voronoi diagram is extracted on demand

(Ledoux, 2008).

Figure 2.3. Duality of Delaunay triangulation (solid lines) and Voronoi diagram (dashed lines)

2.1.2 Star and ears of a Delaunay triangulation

Among the concepts to interact with the topology of the Delaunay triangulation, here we

explain the star and ears of a Delaunay triangulation, which will be used later for moving or

deleting a vertex in a Delaunay triangulation.

Consider a vertex v in an n-dimensional Delaunay triangulation. All the triangles

(tetrahedra in 3D) that contain v form the star(v), which has a star shape (Figure 2.4). For

example, in 2D, the star(v) contains the vertex v itself, and all the triangles and edges

incident to v.

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 13

Let all the elements of dimension (n-1) be a face in T, which are edges in 2D and

triangles in 3D. An imaginary triangle (tetrahedron in 3D) that is formed by the vertexes of

adjacent faces is an Ear of T:

• In 2D, an ear is constructed by three vertexes spanning two adjacent edges of two

neighboring triangles (Figure 2.5.a).

• In 3D, an ear is constructed by four vertexes spanning either two adjacent faces

(2-ear), or three faces incident to a vertex (3-ear) (Figure 2.5.b).

(a) (b)

Figure 2.4. The star of a vertex v in DT: (a) 2D (b) 3D (Ledoux, 2008)

(a) (b)

Figure 2.5. Example of ears of a DT: (a) 2D (b) 3D. In 2D, two adjacent edges (bold lines) form an ear. In 3D,

two adjacent triangular faces (light grey) form a 2-ear, and three triangular faces incident to a vertex (dark grey)

form a 3-ear (Ledoux, 2008).

2.1.3 Constructing Delaunay triangulation in 2 and 3 dimensions

The construction of the Delaunay triangulation is a classical problem of computational

geometry. Many algorithms were proposed to construct the Delaunay triangulation of a set

of points of different dimensions. Based on the paradigm used, they are classified into

incremental (Bowyer, 1981; Edelsbrunner and Shah, 1992; Field, 1986; Joe, 1991; Lawson,

1977; Mucke, 1988; Watson, 1981), divide and conquer (Cignoni et al., 1998), and sweep-

ear

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 14

line (Fortune, 1987) algorithms. There are also some other algorithms such as wrapping

(Dwyer, 1991; Maus, 1984; Tanemura et al., 1983) and convex hull based (Brown, 1979;

Edelsbrunner and Seidel, 1986) algorithms.

In the following, two incremental algorithms to construct Delaunay triangulation of a

set of 2D points are introduced. Then, we show how they are adopted to support 3D points.

2.1.3.1 Flipping algorithm

This is an incremental algorithm that was originally introduced by Lawson (Lawson, 1977).

It is based on the fact that there are two possible triangulations for four points in 2D, only

one of which satisfies the circum-circle property (Figure 2.6). Replacing one configuration

with the other one is called flipping. In 2D case, it is called flip22 because there are two

triangles before and after the flip operation.

(a) (b)

Figure 2.6. Two possible triangulations of four 2D points. Triangulation in (b) satisfies the circum-circle

property.

Incremental algorithms start with the minimum number of points with a known

structure. Here, we start with a big triangle that contains all of the vertexes (Figure 2.7).

Other vertexes are inserted into the structure one by one and after each insertion, the

structure is updated. To insert a vertex in a 2-dimensional Delaunay triangulation using the

flipping algorithm, three steps are taken:

Figure 2.7. A big triangle that contains all of the vertexes

flip22

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 15

2.1.3.1.1 Finding the containing triangle

First step is to find the triangle that contains the new vertex. This is done through

determining the position of the new vertex with respect to the edges of the triangle.

To determine the position of the point p with respect to a line segment ab, the

following determinant is used (Figure 2.8):

1

1

1

a a

b b

p p

x y

D x y

x y

= (2-3)

If D is positive, then abp is clockwise (i.e., p is on right side of ab); otherwise abp is

counter-clockwise (i.e., p is on left side of ab). A point p is inside a triangle abc (where abc

is clockwise), if it is located on right side of all line segments ab, bc and ca.

(a) (b)

Figure 2.8. Position of a point with respect to a line segment: (a) positive (b) negative

To find a triangle that contains the new vertex, we can simply check all the triangles in

order, until the containing triangle is reached. However, by using an algorithm called

walking, this triangle can be found faster. As Figure 2.9 shows, this algorithm walks directly

through the containing triangle. For this, if the new vertex is not in a triangle T, the next

triangle to be checked is the one sharing the edge with T that makes a counter-clockwise

order with the new vertex (Guibas and Stolfi, 1985; Stolfi, 1989a, b).

_

a

b

p

+

a

b
p

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 16

Figure 2.9. Walking algorithm to detect the triangle contains the new vertex

2.1.3.1.2 Insertion

In this step, the containing triangle is replaced with three new triangles that pass through the

new vertex (Figure 2.10).

Figure 2.10. Inserting a new vertex into a triangle

2.1.3.1.3 Update

The three new triangles, created by the insertion process in the previous step, are pushed in a

stack. Each element of the stack is checked against the circum-circle property. For a triangle

T = < a, b, c > and a point p, the circum-circle property is satisfied, if the point p does not lie

in the circum-circle of the triangle T. Its extension to 3D, called circum-sphere property,

estates that the point p does not lie in the circum-sphere of the tetrahedron T = < a, b, c, d >.

The following determinants are used to test the circum-circle and circum-sphere properties

for 2D and 3D cases, respectively (Guibas and Stolfi, 1985):

insertion

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 17

(2-4)

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1

1

1

1

1

a a a a a a

b b b b b b

c c c c c c

d d d d d d

p p p p p p

x y z x y z

x y z x y z

h x y z x y z

x y z x y z

x y z x y z

+ +

+ +

= + +

+ +

+ +

2 2

2 2

2 2

2 2

1

1

1

1

a a a a

b b b b

c c c c

p p p p

x y x y

x y x y
h

x y x y

x y x y

+

+
=

+

+

 3D 2D

A positive value for h indicates that p is inside the triangle abc, while it is outside if h

is negative. If this property is not satisfied, then the triangle and its adjacent are flipped and

the new triangles are pushed in the stack. This process continues until there is no element

left in the stack. Figure 2.11 shows the entire process of inserting a new vertex into a

Delaunay triangulation using the flipping algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.11. Flipping algorithm to insert a vertex in a DT: (a) Initial DT and the new vertex. (b) Detecting the

triangle that contains the new vertex and (c) inserting the new vertex into it. (d) to (h) Checking the circum-circle

property and applying flipping if required. (i) new DT that contains the inserted vertex (Ledoux, 2007).

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 18

The complexity of flipping algorithms is O(n log n) in 2D, where n is the number of

input points: The number of triangles is k*n (k is a constant); The procedure runs for each

point and in each iteration, the walking algorithm finds the containing triangle in k*log n (k

is a constant); and a constant number of adjacent triangles are updated, which altogether

make the complexity O(n log n).

2.1.3.1.4 Extension to 3D

The general steps of flipping algorithm for 3D points are the same as 2D, but the details

must be adopted:

• A big tetrahedron that contains all of the vertexes is created (Figure 2.12).

Figure 2.12. A big tetrahedron that contains all of the vertexes

• To find the tetrahedron that contains a new vertex, the walking algorithm is

adopted to interact with tetrahedra instead of triangles. The following determinant

is used to determine the position of the new vertex respect to the triangular faces of

each tetrahedron (Figure 2.13).

1

1

1

1

a a a

b b b

c c c

p p p

x y z

x y z
D

x y z

x y z

=

(2-5)

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 19

(a) (b)

Figure 2.13. Position of a point respect to a tetrahedron: (a) positive (b) negative

• To insert a vertex into a tetrahedron, it is replaced with three new tetrahedra that

pass through the new vertex (Figure 2.14).

Figure 2.14. Inserting a new vertex into a tetrahedron

• To update the tetrahedralization, the push-and-pop process as 2D is performed, and

the concept of flipping is generalized. Flipping, however, is different in 3D (Joe,

1989, 1991; Lawson, 1986), which prevents a dimension independent

implementation. To tetrahedralize five 3D points, there are two possible solutions:

one has two tetrahedra and the other has three (Figure 2.15). Flipping between the

two configurations are called flip23 and flip32, regarding the number of tetrahedra

exist before and after the flip operation. Moreover, according to the geometry of a

tetrahedron in the Delaunay triangulation with its adjacent, it is not always possible

to perform a flip. It is the case when the union of two tetrahedra is concave (Figure

 2.16). In such cases, no action is taken because the required flip will be performed

by a later element in the stack. For more information, see (Edelsbrunner and Shah,

1992; Ledoux, 2006, 2007; Shewchuk, 2003).

-

a

b

c

p

+

a

b

c

p

insertion

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 20

Figure 2.15. Two possible tetrahedralizations of five 3D points (Ledoux, 2007)

Figure 2.16. A situation when the union of two tetrahedra is concave, so not flippable

The triangulation of n points in 3D have k*n
2
tetrahedra (Ledoux, 2007). After insertion

of each point, the walking algorithm finds the containing tetrahedron in k*n (k is a constant);

and a constant number of adjacent tetrahedra are updated, which altogether make the

complexity O(n2).

2.1.3.2 Bowyer-Watson algorithm

This is a dimension independent incremental algorithm introduced by Bowyer and Watson

(Bowyer, 1981; Kanaganathan and Goldstein, 1991; Watson, 1981). To add a vertex in a 2-

dimensional Delaunay triangulation, all the triangles that violate the circum-circle property,

i.e., whose circum-circle contains the new vertex (Figure 2.17.a), are deleted from the

construction (Figure 2.17.b). This creates a hole, which is filled by new triangles that are

created by joining the new vertex to each edge of the boundary of the hole (Figure 2.17.c).

flip23

flip32

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 21

(a) (b) (c)

Figure 2.17. Inserted vertex, indicated as white, is added to DT: (a) and (b) all triangles whose circum-circle

contains the new vertex are detected and deleted (c) The created hole is filled by new triangles, which are created

by joining the new vertex to each edge of the boundary of the hole (Ledoux 2006).

2.1.3.2.1 Extension to 3D

To construct the Delaunay triangulation of a set of 3D points using the Bower-Watson

algorithm, after each insertion, all the tetrahedra whose circum-sphere contain the new

vertex are deleted, and the hole is filled by new tetrahedra that are created by joining the

new vertex to each triangle of the boundary of the hole (Field, 1986; Watson, 1981).

The complexity of the Bowyer-Watson algorithms is O(n log n) in 2D and O(n2) in 3D,

where n is the number of input points: The number of triangles is k*n (k is a constant) in 2D

and k*n
2

in 3D. The procedure runs for each point and in each iteration, the walking

algorithm finds the triangle that contains the new point in k*log n and k*n iterations for 2D

and 3D, respectively (k is a constant). Regarding the fact that the violating triangles are

connected, after detecting the first violating triangle, its adjacent triangles are checked and it

continues until all of the adjacent triangles satisfy the test. Thus, the complexity of the

Bowyer-Watson algorithm is O(n log n) in 2D and O(n
2
) in 3D.

2.2 Dynamic spatial analyses

In a dynamic set of points, the position of the points is fixed, but the number of the points

may change over time, i.e., points may be inserted into or deleted from the point set.

Suppose that a structure, say, Delaunay triangulation is constructed for a set of objects.

If a new object is inserted into or deleted from the set, the straightforward approach to

update the structure is to reconstruct the whole structure from the scratch. Although this is

simple, it is very inefficient; because usually inserting or deleting an object leaves a

significant part of the structure unchanged, so most of the previous calculations are

unnecessarily repeated.

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 22

A more efficient approach is to locally update the structure. In other words, only that

part of the structure affected by the insertion or deletion is reconstructed. It is obvious that

the affected part is different from an analysis to another, so each analysis needs its own

updating strategy. In the following, we show how to locally update the Delaunay

triangulation after insertion or deletion of a vertex.

2.2.1 Dynamic Delaunay triangulation

To insert a vertex in a Delaunay triangulation, the incremental algorithms proposed to

construct the Delaunay triangulation, i.e., flipping and Bowyer-Watson algorithms can be

properly used. These algorithms insert a vertex to an existing Delaunay triangulation and

locally update the structure.

Deleting a vertex v from a Delaunay triangulation can be considered as the inverse

problem of inserting a vertex in a Delaunay triangulation: The vertex v and all triangles

incident to v are removed and the created hole is re-triangulated (Figure 2.18).

(a) (b) (c)

Figure 2.18. Deleting a vertex v from a DT: (a) DT Before deletion (b) The hole created by deleting the incident

triangles (c) Re-triangulating the hole (Ledoux et al., 2005)

Heller (1990) proposed an algorithm to delete a vertex from a 2-dimensional Delaunay

triangulation. In his algorithm, the ears of the vertex v are examined in counter-clockwise

order (Figure 2.19.b) and the one with the smallest circum-circle (Figure 2.19.c) is flipped

with its adjacent triangle with which it shares a link edge (Figure 2.19.d). This reduces the

number of neighbors of v by one. The process continues until only three triangles left

(Figure 2.19.e). Then, v is removed and the three triangles merged into one (Figure 2.19.f)

(Heller, 1990).

v

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 23

(a) (b) (c)

(d) (e) (f)

Figure 2.19. Heller algorithm to delete a vertex, indicated as white, from DT: (a) The initial DT. (b) Circum-

circles of the triple neighboring vertexes that form an imaginary triangle. (c) and (d) Flipping the imaginary

triangle with the smallest circum-circle with its adjacent triangle. (e) Repeating the process until only three

triangles left. (f) Removing the vertex and merging the three triangles into one.

Heller assumption was that among all the potential ears, the one with the smallest

circum-circle has no other vertex inside and so could become a real triangle. However,

Dellivers (2002) showed, through a counter-example, that this assumption is wrong. Instead,

he suggested ordering the ears (imaginary triangles) based on the power of the vertex to be

removed with respect to that ear. This parameter is computed as follow (Devillers, 2002):

(, , ,)
(, , ,)

(, ,)

H a b c v
power a b c v

D a b c

< >
< > = (2-6)

where

1

(, ,) 1

1

a a

b b

c c

x y

D a b c x y

x y

=

2 2

2 2

2 2

2 2

1

1
(, , ,)

1

1

a a a a

b b b b

c c c c

v v v v

x y x y

x y x y
H a b c v

x y x y

x y x y

+

+
< > =

+

+

 (2-7)

It is proved that Dellivers algorithm works for any dimensions (Devillers and Teillaud,

2003).

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 24

Mostafavi et al. (2003) proposed an algorithm that does not apply any order on the

imaginary triangles. Instead, they test the imaginary triangles one by one, and if it is a valid

imaginary triangle, it is flipped with its adjacent. An imaginary triangle T = (v1, v2, v3) is

invalid if at least one of the following statements hold:

• D(v1, v2, v3) is negative. It means that T does not form an ear.

• D(v1, v3, v) is negative, where v is the vertex to be deleted. It means that T encloses

v.

• H(<v1, v2, v3>, x) is positive for at least one of the neighboring vertexes x. It means

that there is, at least, one neighboring vertex that lies inside the circum-circle of T.

Although this algorithm is simpler, it becomes less efficient as the number of neighbors

increases. However, this algorithm is equally efficient up to eight neighbors, which is

mostly the case (Mostafavi et al., 2003).

To extend this algorithm to 3D, recall that there are two types of ears in 3D: 2-ears and

3-ears. Let P be a polyhedron that is made up of triangular faces. A 2-ear is formed by two

adjacent triangular faces abc and bcd sharing the edge bc (Figure 2.20.a); and a 3-ear is

formed by three adjacent triangular faces abd, acd and bcd sharing the vertex d (Figure

 2.20.b). A 2-ear is valid if and only if the line segment ad is inside P; and a 3-ear is valid if

and only if the triangular face abc is inside P. In the case of the deletion of a vertex v in a

Delaunay triangulation, P is a star-shaped polyhedron star(v). An ear of star(v) is valid if it

is convex outwards from v.

(a) (b)

Figure 2.20. (a) 2-ear (b) 3-ear

Now, to delete a vertex v from a 3-dimensional Delaunay triangulation, all the ears of

star(v) are built and stored in a simple list. An ear e from the list (any ear) is popped. The

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 25

ear e is flipped if respects these three conditions: e is valid, flippable and locally Delaunay

(Ledoux et al., 2005). For more details on a flippable tetrahedron, see (Ledoux, 2007). An

ear e is locally Delaunay if its circum-sphere does not contain any other points on the

boundary of star(v).

Another approach suggested by Schaller and Meyer-Hermann (2004) moves the vertex

to be deleted towards its nearest neighbor gradually and update the structure until the

triangles between the two vertexes are very flat and can be clipped out of the triangulation

without harming its validity. Figure 2.21 illustrates the idea of this algorithm. The updates

are performed using the existing algorithms for kinetic Delaunay triangulation, which will

be presented in the next section.

(a) (b) (c)

Figure 2.21. Delete a vertex from DT: (a) The vertex to be deleted (large hatched point) is moved gradually

toward it nearest neighbor (large black point) and the DT is updated by flipping when required. (b) The

movement continues until the inner simplexes (shaded region) can be safely deleted. (c) The two vertexes are

simply merged and the remaining opposing simplexes are connected as neighbors.

2.3 Kinetic spatial analyses

A kinetic or moving point is a point whose position changes over time, i.e., its position is a

function of time:

P = (p1, p2, …, pn) = (f1(t), f2(t), …, fn(t)) (2-8)

Once insertion and deletion of an object have been implemented for a structure, the

intuition to handle a moving object is that the object is deleted from the current position and

re-inserted at the new position; after each deletion and insertion, the structure is updated.

Although it is a very simple approach, it is computationally expensive because several

unnecessary deletions and insertions are performed: an object is deleted and re-inserted,

while this movement may not affect the topology of the structure, so it is not really kinetic.

This approach nevertheless is an appropriate solution for many applications where the

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 26

intermediate states are not important (just the start and end states are of interest): the object

is deleted from the start and re-inserted at the end.

A more efficient approach is using event-based methods. They are based on the

concept of topological events, which is defined as “for a structure D consisting of moving

elements S, a topological event t is the moment when the movement of elements S change

the topology of D”. Based on this concept, to handle the movement of an object in a

structure, the topology of the structure is updated at topological events; elsewhere, only the

geometry of the structure is modified, which does not need any computations. It is obvious

that the topological events are different for each analysis, so each analysis needs its own

movement handling strategy. In the following, some methods for moving the points in the

Delaunay triangulation are presented.

2.3.1 Kinetic Delaunay triangulation

De Fabritiis and Coveney (2003) presented an approach to move the vertexes of a Delaunay

triangulation: they gradually move the vertexes toward their destinations. After each

movement, the triangles that violate the circum-circle property are detected and flipped. In

2D, each triangle T is checked with all of its neighbors. If the opposite vertex of a

neighboring triangle T' lies in the circum-circle of T, then T and T' are flipped and put in a

stack to be checked with their new neighbors. This process continues until there is no

element left in the stack.

The idea of this approach is based on “delete and re-insert”, but it has some level of

intelligence: a simple check is applied on all elements (triangles or tetrahedra here), but

further operations (i.e., flip) are applied only when it is required. However, the main

drawback is still there: This method uses a fixed time step to move all of the vertexes, no

matter if this movement topologically affects the structure or not.

Extension of this method to 3D needs two types of check because two types of flips

(flip23 and flip32) are possible (Schaller and Meyer-Hermann, 2004):

• Each tetrahedron T is checked with its neighbor T' and a flip23 is performed if the

following two conditions are met:

- The opposite vertex of the neighbor T' lies within the circum-sphere of T.

- The five union vertexes of T and T' form a convex polyhedron.

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 27

• Each tetrahedron T is checked with two of its neighbors T1 and T2 and a flip32 is

performed if the following two conditions are met:

- All of the pairs TT1, TT2 and T1T2 violate the circum-sphere property.

- T1 and T2 are also respective neighbors.

Another extension of this approach to 3D is that instead of performing a sequence of

flips on the tetrahedra in order to locally restore the circum-sphere property, the validity of

this property is checked for all the tetrahedra. The vertexes for which this property fails are

moved back to the preceding position and then “delete and re-insert” is applied (De Fabritiis

and Coveney, 2003).

To use the event-based update to move a vertex in a Delaunay triangulation, let p be a

vertex in a Delaunay triangulation DT and P be the set of its neighboring vertexes, in

clockwise order. Let Tr be the set of opposite triangles (tetrahedra in 3D) of p, i.e.,

neighbors of incident triangles (tetrahedra in 3D) to p, and Ti be the set of imaginary

triangles (tetrahedra in 3D) that could be drawn from three (four in 3D) successive elements

of P (Figure 2.22). Then, the topological events of DT caused by the point p are defined as

follows (Albers et al., 1998; Ledoux, 2008; Mostafavi, 2002; Roos, 1991):

• If p moves in the circum-circle (-sphere in 3D) of an element of Tr (Figure 2.23), a

flip is performed and the new triangles (tetrahedra in 3D) are updated (i.e., they are

checked with their neighbors against the circume-circle (-sphere in 3D) property).

• If p moves out of the circum-circle (-sphere in 3D) of an element of Ti (Figure

 2.24), a flip is performed and the new triangles (tetrahedra in 3D) are updated.

Figure 2.22. Hashed triangles are the opposite triangles of p. Shaded triangle is one of the imaginary triangles

that could be drawn from three successive neighbors of p.

p

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 28

(a) (b) (c)

Figure 2.23. (a) The white point moves in the circum-circle of an opposite triangle. (b) The two triangles are

flipped. (c) Final DT

(a) (b) (c)

Figure 2.24. (a) The white point moves out of the circum-circle of an imaginary triangle (b) The two triangles are

flipped. (c) Final DT

Roos (1991) proposed an algorithm to update a 2-dimensional Delaunay triangulation

based on the concept of topological events. All the topological events for all the

quadrilaterals (pair of adjacent triangles in the Delaunay triangulation) are computed and put

in a priority queue, sorted according to the time they will arise. The time is computed by

finding the zeros of the circum-circle equation developed into a polynomial. Then, the first

topological event is popped from the queue, the Delaunay triangulation is modified with a

flip22, and the queue is updated because the flip has changed locally some triangles. The

algorithm continues until there are no topological events left in the queue (Guibas et al.,

1992; Roos, 1991, 1993; Roos and Noltemeier, 1991). Similar algorithms have been

proposed in (Bajaj and Bouma, 1990; Imai et al., 1989).

This algorithm has been extended to 3-dimensional Delaunay triangulation in (Albers,

1991; Albers et al., 1998; Albers and Roos, 1992). However, it is not very efficient in 3D

because calculating the zeros of the circum-sphere equations cannot be done analytically, as

is the case for the circum-circle equations (Gavrilova and Rokne, 2003; Vomacka, 2008).

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 29

Indeed, the polynomial for the 3-dimensional case has a high degree (8th degree) and

iterative numerical solutions must be sought. That results in a much slower implementation,

and it could also complicate the update of the Delaunay triangulation when the set of points

contains degeneracies.

Mostafavi (2001) proposes a different algorithm and gives more implementation

details. He focuses on the operations necessary to move a single point p, and then explain

how to move many points (see section 2.4). In this algorithm, the topological events caused

by a single point p are detected by intersecting the trajectory of the point p with the opposite

and imaginary circum-circles, which were explained above (Gold, 1990; Gold et al., 1995;

Mostafavi, 2002; Mostafavi and Gold, 2004). This algorithm has been equally extended to

3-dimensional Delaunay triangulation in (Ledoux, 2008).

2.4 Event based approach to move several objects

To move several objects in a structure based on the event based approach, the topological

events of all objects must be determined and sorted based on the event time. Then, they are

applied in the structure in order.

Note that objects may start moving at different times and so the events have different

time origins. Therefore, they must be synchronized before sorting. For this, a global time

scale G is considered whose origin is the occurrence of the first event. Then, three types of

time are defined for topological events (Hashemi-Beni et al., 2007; Ledoux, 2008):

• e t t
i
: The time between the topological event e and the topological event i. If d is

the distance of the current position of the object to the topological event i, and the

object is moving with a constant velocity v, then e t t
i = d / v.

• e t g
i : The time, in the time scale G, of the occurrence of the topological event i.

• e t c

: The time, in the time scale G, passed from the start of the movement of the

object.

The relation between the above times defined for topological events is (Figure 2.25):

etg
i
 = etc + ett

i
 (2-9)

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 30

Figure 2.25. Relation between different times defined for topological events

Now, etg
i
 is a synchronized event time that can be computed for all topological events

using the Equation (2-9).

2.5 Discussion

The algorithms to perform spatial analyses can be classified as follows:

• Dimension specific algorithms: These algorithms are designed for a specific

dimension and use the characteristics of the objects of that dimension in their

definition, so they cannot be extended to any other dimension. The Graham-scan

algorithm to compute the convex hull of 2D points (Berg et al., 2008; Karimipour

et al., 2008) is an example of such algorithms.

• n-dimensional algorithms: These algorithms can be developed for objects of

different dimensions. The general procedure is similar for any dimension, but the

details are different. For example, in the flipping algorithm, presented in section

 2.1.3.1, to construct Delaunay triangulation, the three step procedure walk-insert-

update is applied to each 2D and 3D vertex, but the details are different in each

dimension, especially for flipping. Because of such differences, they are separately

implemented for each dimension.

• Dimension independent algorithms: These algorithms are dimension independent

in their definition, such as Bower-Watson algorithms to construct Delaunay

triangulation, presented in section 2.1.3.2. Although the definitions are independent

of dimension, the data types and operational details are different. Therefore,

because of lack of efficient geometric data structures, they are still implemented

separately for each dimension. From an implementation point of view, there is no

advantage in using dimension independent algorithms comparing to n-dimensional

algorithms.

etc ett
i

etg
i

tG=0 i

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 31

On the other hand, investigating the approaches presented in sections 2.2 and 2.3 to

delete, insert or move an object in a structure, they efficiently update the structure so that the

effected part is detected and locally updated. However, the detection and updating strategies

differ for each analysis, which results in a new technique for extension of each analysis

(Guibas, 1998; Guibas et al., 2004).

Considering the above discussion, the current approaches to extend spatial analyses to

higher dimensions depend on the dimension and analysis, and aim to find the fastest

algorithm to perform a certain analysis in a specific dimension (Boissonnat et al., 1998;

Edelsbrunner, 1987; Goodman and Orourke, 1997; Skiena, 1998) (Table 2.1). The

advantage is that the characteristics of the analysis and the dimension at hand are considered

in designing the algorithm, so the ultimate simplicity and a fast implementation is achieved

(CGAL website).

To establish a practical GIS, that supports a variety of spatial analyses, performance

evaluation should not be limited to speed because it leads to extension strategies that depend

on the dimension and the analysis, which results in recoding each spatial analysis for each

dimension in the software development stage.

This research focuses on how to extend the spatial analyses to different dimensions

with the smallest amount of recoding. That is, here the evaluation is on how much recoding

is needed to extend an implemented spatial analysis to another dimension. Of course, this

approach will cause losing a significant amount of information available for specific

dimensions, so it may not provide the simplest and fastest solutions. In other words, this

research believes that it is better to have a working comprehensive system, even if it is slow,

than waiting for a fast system created in unknown future. Note that base on the Moor’s law,

computer speed doubles every 18 months on average!

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 32

Table 2.1. Some research to perform Delaunay triangulation in different dimensions

Data type Title of the research Reference

2
D

S
ta

ti
c

Computing dirichlet tessellation (Bowyer, 1981)

Numerical stability of algorithms for 2D Delaunay triangulations (Fortune, 1992)

A fast divide and conquer Delaunay triangulation algorithm (Cignoni et al., 1998)

A sweepline algorithm for Voronoi diagrams (Fortune, 1987)

D
y
n
am

ic
 Dynamic Voronoi diagrams and Delaunay triangulations (Bajaj and Bouma, 1990)

Delete and insert operations in Voronoi/Delaunay (Mostafavi et al., 2003)

Triangulation algorithms for adaptive terrain modelling (Heller, 1990)

Fully dynamic constrained Delaunay triangulations (Kallmann et al., 2003)

M
o
v
in

g

Delaunay triangulation of moving points (Vomacka, 2008)

Voronoi diagrams of moving points (Albers et al., 1998)

Voronoi diagrams of moving points in the plane (Guibas et al., 1992)

Voronoi diagrams of moving points in the plane (Fu and Lee, 1991)

Point location in the moving VD and related problems (Devillers and Golin, 1993)

Dynamic Voronoi diagrams in motion planning (Roos and Noltemeier, 1991)

3
D

S
ta

ti
c

Implementing Watson’s algorithm in three dimensions (Field, 1986)

Computing the 3D Voronoi diagram robustly (Ledoux, 2007)

Fully Incremental 3D Delaunay Refinement Mesh Generation (Miller et al., 2002)

A comparison of five implementations of 3D DT (Liu and Snoeyink, 2005)

D
y

n
am

ic

Three-dimensional dynamic Voronoi diagrams (Albers, 1991)

Kinetic and dynamic Delaunay tetrahedralizations in three

dimensions

(Schaller and Meyer-

Hermann, 2004)

Dynamic Voronoi diagrams (Roos, 1991)

On deletion in Delaunay triangulations (Devillers, 2002)

Flipping to robustly delete a vertex in a Delaunay

tetrahedralization
(Ledoux et al., 2005)

Perturbations and vertex removal in a 3D Delaunay triangulation (Devillers and Teillaud, 2003)

M
o
v
in

g

Voronoi diagrams of moving points in higher dimensions (Albers and Roos, 1992)

The kinetic 3D Voronoi diagram (Ledoux, 2008)

Kinetic and dynamic Delaunay tetrahedralizations in 3D
(Schaller and Meyer-

Hermann, 2004)

The kinetic 3D Voronoi diagram: a tool for simulating

environmental processes
(Ledoux, 2008)

Moving objects management in a 3D dynamic environment (Hashemi-Beni et al., 2007)

Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 33

2.6 Summary

In this chapter we reviewed the state-of-the-art in extending spatial analyses to higher

dimensions and show how the current approach is applied to Delaunay triangulation, as the

case study of the research. The current approach and the proposed approach of the research

were compared.

Current approach to extend spatial analyses to higher dimensions depends on the

dimension and analysis and aims to find the fastest algorithm to perform a certain analysis

in a specific dimension. The result of following such an approach in the software

development stage is recoding each spatial analysis for each dimension. We believe it is

better to have a working comprehensive system, even if it is slow, than waiting for a fast

system created in unknown future!

Chapter 3. Formal Methods 34

3 FORMAL METHODS

This chapter explains the formal methods used in this thesis to extend spatial analyses to

different multi-dimensional spaces:

• The abstraction concepts needed to construct an integrated framework of spatial

analyses are introduced, which leads to define spatial analyses based on their

dimension independent properties.

• We explain the algebraic structures as the required abstraction to formally define

spatial analyses as combination of the elements of an integrated framework.

• The simplicial complexes are introduced as an n-dimensional data type that enables

dimension independent implementations.

• Finally, we introduce the functional programming languages and explain why they

are used in this thesis. The main concepts of functional programming languages

(especially their evaluation strategies) are described to an extent necessary for

argue the implementations provided in the thesis.

3.1 Abstraction

In a broad meaning, abstraction is the process of generalizing a concept through reducing its

information content. In computer science, abstraction is defined as removing the behavioral

details of different objects to the lowest common denominator so that they can be interacted

in the same manner. It is achieved by ignoring those characteristics that depends on the data

types. The processes of this abstract level can be performed similarly because all the data

types have similar characteristics in this level (Liskov and Guttag, 1988; Nordstrom et al.,

1990; Pierce, 2005; Pierce, 2002). As shown in Figure 3.1, abstraction could be considered

as a many-to-one mapping that maps different data types to a representative abstract data

type, abbreviated ADT (Liskov and Guttag, 1988; Loeckx et al., 1996).

Chapter 3. Formal Methods 35

Figure 3.1. Abstract data type as a many-to-one mapping

3.1.1 Types of Abstraction

There are three type of abstraction and they are presented in the followings:

3.1.1.1 Procedural abstraction

Procedural abstraction specifies the number, types and the order of the inputs and output of

a process. For example:

sort: a list of type a → a list of type a

 equality and order are defined on the elements of type a

 effect: sorts the elements of the input list

(3-1)

says that the sort function sorts the elements of an input list on which equality and

order are defined. However, it does not determine how to compute it. In procedural

abstraction, the definition represented for application of a process is independent of

characteristics of its elements and operations. For instance, using each of the definitions

represented for equality and order in Equations (3-2) and (3-3) has no effect on the abstract

definition of the sort function.

(,) (,)

(,) (,)

(,) (,)

a b c d a c b d

a b c d a c b d

a b c d a c

= ⇔ = ∧ =

= ⇔ = ∨ =

= ⇔ =

 (3-2)

(,) (,) and

(,) (,)

(,) (,)

a b c d a c b d

a b c d a c

a b c d a b c d

< ⇔ < <

< ⇔ <

< ⇔ + < +

 (3-3)

Abstract data type

Data type 1 Data type 2 Data type n ...

Chapter 3. Formal Methods 36

3.1.1.2 Data abstraction

Data abstraction defines a data type, a set of operations upon that data type, and specifies the

relation between the data type and the operations. These together represent the characteristic

of that data type.

The characteristic of a data type is specified through operations that can be applied on

the objects of that data type. For instance, for the data type queue, the operations push (to

add an element to the end of the queue), pop (to take the head of the queue), size (to get the

number of elements of the queue), and isNull (to test if the queue is null) are defined.

3.1.1.3 Iterative abstraction

Iterative abstraction is used to avoid details of applying a process on iterative data types

(e.g., sets, queues, lists, etc.). In other words, iterative abstraction specifies the elements of

an iterative data type on which a process must be applied, but it does not specify the order of

elements to be processed and how they are affected. For example, both “apply a function on

all elements of a list” and “filtering those elements of a list that satisfy a certain criterion”

can be defined using the following abstract representation:

for all elements of the set

 do action

(3-4)

3.2 Algebraic structures

This section introduces algebraic structures and their related concepts. Definition of algebra

and algebraic structures as well as their mappings are presented.

3.2.1 Definition of algebra

An algebra consists of a collection of elements, operations upon those elements, and axioms

which are capable of expressing the interaction between operations and elements (Loeckx et

al., 1996; MacLane and Birkhoff, 1999). An algebra G with elements S and operations W is

denoted as G[S, W].

An algebraic structure is a set of elements and operations that obey the rules of a

certain algebra. i.e., these elements and operations can be substituted with their

corresponding in the algebra. Algebraic structures describe structure independently of any

Chapter 3. Formal Methods 37

implementation and prior understanding. Thus, the same algebraic structure can describe the

behavior of different things if their behavior is structurally equivalent (Dorst et al., 2007;

MacLane and Birkhoff, 1999). For instance, although Roman numbers (I, II, III, …) and

Arabic numbers (1, 2, 3, …) are two different representations of natural numbers, their

elements and operations are structurally equivalent and so natural numbers algebra can

describe both. Sets, Groups, Rings, Fields, and Boolean algebra are examples of algebraic

structures. For more details, see (MacLane and Birkhoff, 1999).

3.2.2 Mappings between algebras

Two different concepts with equivalent structures could be mapped together through a

mapping, called homomorphism. Homomorphisms are structure preserving mappings, i.e., a

homomorphism maps corresponding elements and operations while preserving the structure

(MacLane and Birkhoff, 1999). For instance, f in Figure 3.2 maps the elements and the +

operation of Roman numbers to their corresponding in Arabic numbers; and the structure of

operation + is preserved through this mapping.

Figure 3.2. Mapping elements and + operation of Roman numbers to their correspondences in Arabic numbers

Homomorphisms are commutative (Frank, 2007; MacLane and Birkhoff, 1999): for

certain origin and destination, the result of mappings is independent of the path. As Figure

 3.2 shows, adding two Roman numbers by +RN and then applying the mapping f gives the

same result with applying the mapping f on the two Roman numbers first and adding them

by +N.

Note that homomorphisms do not necessarily map similar elements and operations

(Frank, 2007; MacLane and Birkhoff, 1999). For example, logarithm (log) could be

considered as a homomorphism that maps R
+
 to R, × to +, and to 1

2
× (Figure 3.3).

R N R N× N N×
f f×

RN N
f

R N+ N+

Chapter 3. Formal Methods 38

Figure 3.3. Mapping R
+
 to R through homomorphism log

Definition: Mathematically, a homomorphism, also called lifting, is defined as follows:

Let A and B be two different concepts represented by G[S, W]. Then, a homomorphism

h: A → B is a set of mappings ()w w Wh
∈

 , where:

: , w A Bh w w w W→ ∈ (3-5)

and for any two corresponding operations

1

1

, : (...) , 0

, : (...) , 0

A A k

B B k

w W w s s s k

w W w s s s k

∈ × × → ≥

∈ × × → ≥

(3-6)

the following equation is hold (Figure 3.4):

1 1((,...,)) ((),..., ())A k B kh w s s w h s h s= (3-7)

Figure 3.4. A homomorphism h between two concepts A and B with the same algebra

R R+ +
×

R R×

R + R

l o g

×

+

 1
2

×

1() ... ()kA s A s× × 1() ... ()kB s B s× ×

()A s ()B s
h

Aw Bw

h

Chapter 3. Formal Methods 39

Equation (3-7) means that the result of applying the operation WA on elements of A and

then applying the mapping h yields the same result as applying the mapping h on elements

of B and then applying the corresponding operation WB, i.e., homomorphisms are

commutative. For instance, Equation (3-7) for the homomorphism log presented in Figure

 3.3 is written as:

log() log() log()

log()
log()

2

x y x y

x
x

× = +

=

(3-8)

Homomorphisms are functions, so they can be injective and surjective (Lawvere and

Schanuel, 2005). Many of the homomorphisms studied in algebraic structures are bijective

homomorphism, called isomorphism. If two structures A and B are related through an

isomorphism, then A and B are isomorphic, denoted A B≅ . For isomorphic structures, the

following relation holds:

 and A G A B B G∈ ≅ ⇒ ∈

(3-9)

where G represents a certain algebraic structure. It means that for two structures A and

B and an algebraic structure G, if A can be represented by G and the elements and operations

of A and B are equivalent (i.e., A and B are isomorphic), then G can represent B, too.

3.2.3 Algebraic representation of an abstract data type

Above discussion leads to algebraic definition of an abstract data type as follow (Guttag and

Horning, 1978):

“An abstract data type is a collection of different structures all of which are

represented by the same algebra G and so they are isomorphic”.

This definition expresses that an abstract data type is a set of elements and operations

of different data types that can be mapped together through an isomorphism. Regarding the

Equation (3-9), if the elements and operations of a data type A represented by an abstract

Chapter 3. Formal Methods 40

data type D, are equivalent with the elements and operations of another data type B, then the

abstract data type D can represent B, too.

3.3 n-simplexes: an abstract data type for geometry

An n-simplex Sn is formally defined as “the smallest convex set in an Euclidian space

(denoted as R
m
, with n ≤ m), containing n+1 points v0, …, vn that do not lie in a hyperplane

of dimension less than n” (Hatcher, 2002). A simpler definition describes an n-simplex Sn as

the simplest spanning geometric figure in the n-dimensional Euclidean space that contains

n+1 points v0, …, vn of dimension n, providing that the vectors v1−v0, …, vn−v0 are linearly

independent. An n-simplex Sn is represented by the list of its vertexes as:

Sn = <v0, …, vn> (3-10)

Each vertex itself is an n-dimensional point, so a detailed representation of an

n-simplex is:

Sn = <(e01, …, e0n), …, (en1, …, enn)>

(3-11)

in which eij is the jth defining coordinate of the ith vertex. The n-simplexes are defined

for any dimension. Table 3.1 shows 0- to 3-simplexes and their common names,

representations and geometric configurations.

The concept of n-simplexes is extensively studied in the late 19th century by Henri

Poincaré. It is the basis of the simplicial homology field, which is a part of algebraic or

combinatorial topology (Hatcher, 2002).

For a given dimension n, an n-simplex is the elementary spatial object from which

other complex objects of that dimension are constructed. Any subset of the vertexes of Sn

represents a face of Sn. A simplicial complex C is a finite set of simplexes that satisfies the

following conditions (Figure 3.5):

• Any face of a simplex from C is also in C.

• The intersection of any two simplexes s1, s2 ∈C is either empty or a face of both s1

and s2.

Chapter 3. Formal Methods 41

Table 3.1. 0- to 3-simplexes and their common names, representations and geometric configurations

Dimension Name Representation
Geometric

Configuration

0 0-simplex Point S0 = <v0>

1 1-simplex
Line

segment
S1 = <v0, v1>

2 2-simplex Triangle S2 = <v0, v1, v2>

3 3-simplex Tetrahedron S3 = <v0, v1, v2, v3>

Simplicial complexes have several properties (Alexandroff, 1961; Hatcher, 2002).

They have been considered as a basic data type in developing spatial database systems

(Penninga, 2008; Penninga and Oosterom, 2008; Schneider, 1997).

Simplicial complexes may consist of simplexes of different dimensions (Figure 3.5a).

A homogeneous simplicial k-complex is a simplicial complex where every simplex of

dimension less than k is the face of some simplex of dimension exactly k (Alexandroff,

1961; Hatcher, 2002). For example, a triangulation of a set of 2D points is a homogeneous

simplicial 2-complex.

(a) (b)

Figure 3.5. (a) A simplicial complex that consists of 0-, 1- and 2-simplexes. (b) Some configurations of

simplexes that are not simplicial complex, because they violate axioms.

v0

v0
v1

v0

v3

v2

v1

v0 v1

v2

Chapter 3. Formal Methods 42

3.3.1.1 Orientation of an n-simplex

Vertexes of an n-simplex are ordered, which induces an orientation (either positive or

negative) on the n-simplex. By convention, the orientation of a 0-simplex (point) is positive.

The orientation of a 1-simplex (line segment) is positive from vertex v0 to vertex v1 and

negative from vertex v1 to vertex v0. For a 2-simplex (triangle), the orientation is defined

based on the order in which the vertexes are listed: clockwise order is positive and counter-

clockwise order is negative. The orientation of a 3-simplex (tetrahedron) is the sign of the

volume constructed by its ordered vertexes (Alexandroff, 1961): based on the right-hand

rule, a positive volume means that if the first three points are ordered so that they follow the

direction of the curled fingers, then the thumb is pointing towards the 4
th
 point.

The orientation of an n-simplex can be specified using the sign of the determinant of a

matrix constructed as follows: for an n-simplex with vertexes <v0, …, vn>, an element 1 is

added to the end of each vertex and then they are arranged as the rows of a square matrix.

For an n-simplex with vertexes <(e01, …, e0n), …, (en1, …, enn)>, the result is:

01 0

11 01 1 0

11 1

1 01 0

1

... 1
...

... 1
...

...
...

... 1

n

n n

n

n nn n

n nn

e e
e e e e

e e

e e e e
e e

− −

=

− −

(3-12)

Non-negative values for this determinant indicate a positive orientation, while negative

values mean a negative orientation. Similar to the determinant of a matrix, odd numbers of

permutations of the vertexes of an n-simplex change the orientation, while even numbers of

permutations maintain it unchanged. For instance, for the n-simplexes of Table 3.1:

S0 = <v0>

S1 = <v0, v1> = − <v1, v0>

S2 = <v0, v1, v2> = − <v0, v2, v1> = <v2, v0, v1> = …

S3 = <v0, v1, v2, v3> = − <v0, v1, v3, v2> = <v0, v3, v1, v2> = …

(3-13)

Chapter 3. Formal Methods 43

3.3.1.2 Canonical representation of n-simplexes

Representation of an n-simplex by its vertexes is a situation where there are multiple

representations for the same value. For a unified representation, we select a single preferred

representation for each value, among the many equivalent ones, which is called canonical

representation. We use a pair (vertexes, orientation) as the canonical representation in

which the first element is the sorted list of its vertexes and the second element is the

orientation of the n-simplex. For the vertexes of type (e1, …, en), they are sorted by e1–

coordinate; in the case of equality of e1s, they are sorted by e2–coordinate, and so forth. For

2D points, this is sorting the points from left to right and from bottom up.

3.3.1.3 Faces of an n-simplex

For an n-simplex Sn = <v0, …, vn>, any non-empty subset of vertexes {v0, …, vn} is called a

face of Sn. For example, all of the faces of the 3-simplex S3 = <v0, v1, v2, v3> are:

<v0>, <v1>, <v2>, <v3>,

<v0, v1>, <v0, v2>, <v0, v3>, <v1, v2>, <v1, v3>, <v2, v3>,

<v0, v1, v2>, <v0, v1, v3>, <v0, v2, v3>, <v1, v2, v3>,

<v0, v1, v2, v3>

(3-14)

A face constructed from an improper subset is called an improper face. Thus, all of the

faces illustrated in Equation (3-14), except the last one, are improper faces of S3. An

n-simplex Sn = <v0, …, vn> has 1

1

n

m

+

+

 m-dimensional faces (0 ≤ m < n) and 2
(n+1)

-1 of

improper faces altogether.

3.3.1.4 Boundary of an n-simplex

The boundary of the n-simplex Sn = <v0, …, vn>, which is written as nS∂ , is defined as

follows:

0

0

(1) ,..., ,...,
n

i

n i n

i

S v v v
=

∂ = − < >∑

(3-15)

Chapter 3. Formal Methods 44

where iv means omitting the vertex iv from the vertex list. The boundary of an

n-simplex is n+1 of (n-1)-simplexes:

• The boundary of a 0-simplex (point) is an empty set;

• The boundary of a 1-simplex (line segment) is two 0-simplexes (points);

• The boundary of a 2-simplex (triangle) is three 1-simplexes (line segments);

• The boundary of a 3-simplex (tetrahedron) is four 2-simplexes (triangles).

For instance, for the n-simplexes of Table 3.1:

0S∂ = φ

1S∂ = <v1> − <v0>

2S∂ = <v1, v2> − <v0, v2> + <v0, v1>

3S∂ = <v1, v2, v3> − <v0, v2, v3> + <v0, v1, v3> − <v0, v1, v2>

(3-16)

3.4 Functional programming languages

Functional programming is a paradigm in which functions are the central model components

and are used as data; each parameter is considered as a function that is evaluated through a

simplified form. Here, the focus is on function application, unlike the imperative

programming languages that change the states (Hughes, 1989). Programming languages are

classified by orders based on the variables used. A zero order language has no variables,

only constants. A first order language has variables, which stand for objects, but not for

predicates or functions. A second order language has variables that can stand for objects,

predicates, or functions (sometimes called higher order). Functional programming languages

fall in the category of second order, so they easily model processes; A process applies a set

of defined functions to change the state of objects, which can be directly simulated by

functional languages (Frank, 1997; Gunter, 1993).

Chapter 3. Formal Methods 45

3.4.1 Why we use functional programming languages in this thesis?

In this thesis, we focus on the properties of operations, instead of objects they are applied to.

Functional languages are a direct solution to this purpose.

To construct the integrated framework of spatial analyses proposed in this research, we

formally describe spatial analyses in a hierarchal way as combinations of simpler ones, until

a set of primary un-decomposable operations are reached. Similarly, in a functional

paradigm, a main function is defined through subsidiary functions, which are again defined

through other subsidiary functions, and so on, until at the bottom level the functions, i.e.,

language primitives (called canonical expressions) are reached, which are not further

simplified (Bird and Wadler, 1988). Therefore, the proposed integrated framework can be

explicitly simulated in functional programming languages. In other words, functional

programming languages are convenient tools to express algebraic specifications because

both of them use a similar syntax and have similar mathematical foundations (Frank, 2000;

Frank, 1999; Raubal, 2001).

Finally, in the proposed approach of the thesis, a spatial analysis is extended to a higher

dimension using mappings (liftings) that maps different spaces to each other (e.g., 2D static

to 2D moving). These liftings defined between functions are second order functions and can

be modeled in functional programming languages.

It is essentially a formalization in a (dialect) of lambda calculus. Haskell — the

functional programming language that we use — introduces “syntactic sugar” to abbreviate

rewriting complex constructions and allows checking the results for syntactic completement

of definitions and semantic checking of the results.

3.4.2 Functional vs. structured programming languages

In structured programming languages – like C++, Pascal, Fortran and Java – a program

consists of a set of blocks. A set of procedures are applied on input(s) of the block to

produce an output.

Unlike unstructured languages (like Basic), blocks do not have multiple entries or

exits. Therefore, commands like goto, which freely refer to any line of code, are not

allowed. It enforces modular programming, which makes the programs simple, reusable and

tractable (Bird and de More, 1997; Hughes, 1989).

Chapter 3. Formal Methods 46

In structured programming languages, a certain variable stands for a value that can be

changed during the running time. i.e., the value assigned to a variable may change

somewhere else. For example, assignments such as a=a+1 are allowed. It causes side effects

in the programs. It means that re-assigning a variable in a block may affect the results of

running another block. Thus, the order of running is important. For example, considering the

following blocks A and B, the result of applying A then B is 13, while B then A yields 16:

x = 5

Block A
{

x = 2 * x

}

Block B
{

x = x + 3

}

(3-17)

B(A(x)) = 13

A(B(x)) = 16

Functional programming is another programming paradigm that is constructed based

on function calls. Here, a program is a function that calls other functions. For example, in

the following expression:

output = function 3 (function2 (function 1)) (3-18)

function3 calls function2, which calls function1. Thus, the function1 is evaluated first

and passed to function2. Finally, function3 applies on the result and produces the output.

Purely functional programming languages are based on λ-calculus — a mathematical

theory of functions (Hankin, 2004; Michaelson, 1989). Like mathematics, functions produce

only one result value and it is not changed, so there is no side effect. An expression always

produces the same result because values can only be assigned once to a parameter (it is

called referential transparency). Moreover, the final result is independent of the order of

running the expressions. Functional programs are succinct because more than 90% of

expressions in structured languages are assignments (Hughes, 1989), which do not exist in

functional languages. Forbidding re-assignment enables lazy evaluation, which will be

described in the following section.

On the other hand, loop expressions that are frequently used in structured languages are

not allowed in functional languages because it is a re-assignment. Instead, the concept of

Chapter 3. Formal Methods 47

recursion is used, where definition of a function refers to itself. For example, the factorial

function over natural numbers is demonstrated by the following definition (Thompson,

1999):

factorial (n) = if (n==0) then 1 else (n * factorial (n-1))

3.4.3 Evaluation of expressions in functional programming languages

In functional programming languages, expressions are evaluated through a complex and

accurate mechanism that provides the maximum efficiency (Jeuring and Meijer, 1995;

Peyton Jones, 1987). Following, we describe the main concepts, principals and rules used

for expression evaluation in functional programming languages to an extent necessary for

the implementations.

3.4.3.1 Free and bound variables

If t is a lambda term, and x is a variable, then ”λx.t” is called a lambda abstraction. For

example λx.+ x 3 is a function that adds 3 to its input x.

The abstraction operator, λ, is said to bind its variable wherever it occurs in the body of

the expression. Variables that fall within the scope of a lambda are said to be bound. All

other variables are called free. For example, in the expression λy.x x y, the variable y is a

bound variable and x is free. Also note that a variable binds to its "nearest" lambda. For

example, in the expression λx.y (λx.z x), one single occurrence of x is bound by the

second lambda.

3.4.3.2 Reduction

Suppose that the function f is defined as

f x = (x + 1) * (x – 1)

and we are required to evaluate f(4). We can think of the program like this:

Chapter 3. Formal Methods 48

where the @ stands for function application. Applying f to 4 gives:

Applying the addition and the subtraction (in either order) gives:

Finally, we can execute the multiplication to get the result:

This simple example shows that executing a functional program consists of evaluating

an expression; and the evaluation proceeds by means of a sequence of simple steps, called

reduction. Each reduction performs a local transformation. Evaluation is complete when

there are no further reducible expressions (called redex).

3.4.3.3 β-Reduction

Suppose the following lambda expression is given:

(λx. + x 1) 4

15

*

5 3

*

+

4 1

-

4 1

@

f 4

Chapter 3. Formal Methods 49

In lambda calculus syntax, it denotes the application of a certain function, indicated by

the lambda abstraction, to the argument 4. The rule for such function application is very

simple: The result of applying a lambda expression to an argument is an instance of the

body of the lambda abstraction in which occurrences of the formal parameter in the body are

replaced with (copies of) the argument. Thus, the result of applying the lambda expression

(λx. + x 1) to the argument 4 is:

+ 4 1

The (+ 4 1) is an instance of the body (+ x 1) in which occurrences of the formal

parameter x are replaced with the argument 4. We write the reduction using the arrow →:

(λx. + x 1) 4 → + 4 1

This operation is called β-reduction (Peyton Jones, 1987). Here are a few more examples of

β-reduction:

If (not true) f g → if false f g → g

(λx. If (x > 0) f g) 2 → If (2 > 0) f g → f

head (cons 2 nil) → 2

(λx. head (cons (x+2) nil)) 2 → head (cons 4 nil) → 4

If an expression contains more than one redex, the order of reduction is from outer

most to inner most expression (see section A1.1.3.7).

3.4.3.4 Normal Form

If an expression contains no redexes, then the evaluation is complete and the expression is

said to be in normal form. Thus, the evaluation of an expression consists of successively

reducing redexes until the expression is in normal form.

3.4.3.5 Weak head normal form

A lambda expression is in weak head normal form (WHNF) if and only if it is of the form

Chapter 3. Formal Methods 50

F E1 E2 . . . En

where n ≥ 0 and (F E1 E2 . . . Em) is not a redex for any m ≤ n. An expression has no

top-level redex if and only if it is in weak head normal from (Peyton Jones, 1987). For

example, the following expressions are in weak head normal form:

3

+ (- 4 3) top-level + does not have enough arguments

The latest example is in weak head normal form, but not in normal form, since it

contains inner redexes.

3.4.3.6 Head normal form

A lambda expression is in head normal form (HNF) if and only if it is of the form

λx1. λx2. . . λxn . (v M1 M2 . . . Mm)

where n, m ≥ 0 and (v M1 M2 . . . Mp) is not a redex for any p ≤ m.

Anything in HNF is also in WHNF, but not vice versa (Peyton Jones, 1987). For example:

λx.((λy. y) 3)

We can think of it like this:

Original expression

Weak head normal form (not top-level redex)

Normal form (no redex at all)

Chapter 3. Formal Methods 51

3.4.3.7 Lazy evaluation

In ordinary imperative languages, arguments to a function are evaluated before the function

is called (call by value). However, it is possible that the argument passed is never used in

the body of the function, so that the work done in evaluating is wasted. This suggests that a

better scheme might be to postpone the evaluation of the argument until its value is actually

required (call be need). Call by need is in fact rarely implemented in imperative languages,

because the evaluation of an argument may cause some side-effects to take place, and may

produce a result which depends on the side effects (e.g., assignments) of other parts of the

program. Hence, the exact time at which the argument is evaluated is crucial to the correct

application of the program. However, it can be quite tricky to work out exactly when the

argument be needed (and hence evaluated).

The order of execution of expressions is not important in functional languages.

Therefore, the evaluation of an expression can be postponed till its value is actually needed

to compute the overall result. On the other hand, if the value of an already evaluated

expression is required again, the evaluated value can be safely used, because it has not been

changed.

In the context of functional languages, call by need is often called lazy evaluation,

since it postpones work until it becomes unavoidable. Any implementation of lazy

evaluation has two ingredients (Peyton Jones, 1987):

• Arguments to functions should be evaluated only when their value is needed, not

when the function is applied.

• Arguments should only be evaluated once; further uses of the argument within the

function should use the value computed the first time. Since the language is

functional and has no side-effect, this scheme gives the same results as

re-evaluating the argument.

In a nutshell, arguments should be evaluated at most once and, if possible, not at all.

3.4.3.8 Outer-to-inner evaluation

A general form of an expression in functional languages is:

output = fn (fn-1 (… f2 (f1))) (3-19)

Chapter 3. Formal Methods 52

The value of fk is dependent to the values of f1 to fk-1. However, fk may not depend on

some of the fis. 1<i<k-1. For example, if f1 = ((x+2)2*3+4 and f2 = 3, then the value of

f2(f1(5)), which is equal to 3, is achievable without evaluating f1(5). To satisfy the lazy

evaluation rule, the expressions must be evaluated from the most outer to the most inner

ones. This can be expressed as “first, the most outer expression is evaluated and the next

level expression is evaluated only if it is needed through achieving the normal form”. It is

called outer-to-inner evaluation (Peyton Jones, 1987).

3.4.3.9 Currying mechanism

This mechanism transforms a function with multiple variables into multiple functions with

single argument. In other words, consider the following function of n variables:

output = f (x1, x2, …, xn) (3-20)

Suppose that k of these variables are known. Substitution of the known variables in f

results in a function of n-k variables, which is the normal form of fn. Further reductions need

introducing the unknown variables. This mechanism is called currying in the functional

programming.

For example, f(x, y) = x+y is a binary function. However, if y=5, then f(x) = x + 5 is a

unary function:

plus(x, y) = x+y

y=5 → plus5(x) = x+5
(3-21)

3.5 Summary

In this chapter we explained the formal methods used in this thesis to extend spatial analyses

to different multi-dimensional spaces. We started by introducing the abstraction concepts

needed to construct an integrated framework of spatial analyses based on their dimension

independent properties. Then, we explained the algebraic structures as the required

abstraction to formally define spatial analyses as combinations of the elements of the

integrated framework. The simplicial complexes were introduced as an n-dimensional data

type that is needed for dimension independent implementations. We will develop the

geometric and topological operations on n-simplexes in chapter 5. At the end of this chapter,

Chapter 3. Formal Methods 53

we introduced the functional programming languages and explain why they are used in this

thesis. The main concepts of functional programming language, especially their evaluation

strategies, were described to an extent necessary for arguing the implementations provided

in the thesis.

Chapter 4. Proposed Approach of the Research 54

4 PROPOSED APPROACH OF THE RESEARCH

This chapter describes the proposed approach of the research to extend spatial analyses to

different dimensions. We explain how to formally define dimension independent spatial

analyses, which leads to an abstract integrated framework of spatial analyses. This idea is

applied on the Delaunay triangulation, as the case study of the research. This framework

will be the basis to develop the n-dimensional static and moving analyses in the next

chapters.

4.1 A review on the proposed approach

This research proposes a formal approach to implement dimension independent spatial

analyses. It studies spatial analyses based on their dimension independent characteristics and

formally describes them using algebraic structures.

Figure 4.1 illustrates the research approach to extend spatial analyses to n-dimensional

static and moving objects. First, the procedural abstraction is used to formally describe

spatial analyses based on a set of primary operations, which are not further decomposed.

These definitions are independent of dimension and results in a hierarchy that relates the

spatial analyses and operations. In the next step, data abstraction is used to build

n-dimensional data types in order to model objects of different dimensions. The operations

to interact with these n-dimensional data types are also developed using the iterative

abstraction and mapping to n-dimensional space. Then, all of the spatial analyses of the

hierarchy, which are defined as combinations of primary operations, are immediately

available in n-dimensional space, without any further efforts. Finally, the relevant mappings

are applied to map these n-dimensional data types and primary operations to support

n-dimensional moving objects, which provide spatial analyses for n-dimensional moving

objects.

The rest of this chapter describes the formalization process to construct the abstract

integrated framework and, as an example, uses it for the Delaunay triangulation as the case

study of the research. Extension of the framework to n-dimensional and moving objects will

be presented in the next two chapters.

Chapter 4. Proposed Approach of the Research 55

Figure 4.1. The research approach to extend spatial analyses to n-dimensional static and moving objects

Spatial analyses

Integrated framework

 of spatial analyses

Data types Primitive operations

nD moving

data types

nD moving

primitive operations

Lifting

MakeMoving

nD spatial analyses

nD moving

spatial analyses

nD data types nD primitive operations

Procedural

abstraction

Lifting

MakeND
Data

abstraction

Iterative

abstraction

Chapter 4. Proposed Approach of the Research 56

4.2 Formal definition of spatial analyses

To formally define a spatial analysis, it is expressed independent of the characteristics of the

objects to which it is applied. We describe the overall process that is applied on the inputs to

produce the outputs, which is procedural abstraction of spatial analyses. For instance, the

formal definition of the Delaunay triangulation says that a set of input points is triangulated

(by connecting points with lines, faces, etc.) so that the triangles satisfy the circum-circle

property. This formal definition may have several implementations based on the algorithm

used (e.g., flipping, Bowyer-Watson, etc.).

The above formal definition is then detailed by specifying an implementation

algorithm. This algorithm must be multi-dimensional so that it can be later implemented

independent of dimension. In section 2.5, we classified the multi-dimensional algorithms to

n-dimensional (i.e., can be adopted to support different dimensions) and dimension

independent (i.e., independent of dimension in their definition). Although the n-dimensional

algorithms are developed for objects of any dimension, they cannot be used in our approach:

in the abstract definition, an n-dimensional algorithm similarly works for different

dimensions (i.e., the overall procedure is the same). However, the implementation details

are different from one dimension to another. We are interested in dimension independent

algorithms, which are independent of dimension in both definition and implementation.

For example, the abstract description of the flipping algorithm for the Delaunay

triangulation (section 2.1.3.1) is as follows:

1- Construct an initial n-simplex that contains all of the vertexes

2- Incrementally insert the vertexes and update the structure as follows:

2-1- Find the containing n-simplex S (Walk)

2-2- Replace the S with new n-simplexes passing through the new vertex (Insert)

2-3- Check the new n-simplexes with their neighbors against the circum-circle

property (and apply flipping in case of failure) until this property is satisfied by all

n-simplexes (Update)

This abstract description is valid for constructing the Delaunay triangulation of 2D and 3D

points, but the details of flipping is different in 2D and 3D: there are two possible

triangulations for four points in 2D (Figure 2.6). However, to tetrahedralize five 3D points,

there are two possible solutions: one has two tetrahedra and the other has three (Figure

Chapter 4. Proposed Approach of the Research 57

 2.15). Moreover, according to the geometry of a tetrahedron in the 3D Delaunay

triangulation with its adjacent, it is not always possible to perform a flip (Figure 2.16) and it

must be left to be performed by a later element. These differences prevent a dimension

independent implementation of flipping algorithm.

The abstract description of the Bowyer-Watson algorithm for the Delaunay

triangulation (section 2.1.3.2) is as follows:

1- Construct an initial n-simplex that contains all of the vertexes

2- Incrementally insert the vertexes and update the structure as follows:

2-1- Delete all the n-simplexes whose circum-circle contain the new vertex

2-2- Join the new vertex to the nodes of the deleted part

This description is applicable to both 2D and 3D points with the same implementation

details and so can be used in our approach.

The abstract description of the Voronoi diagram is as follows:

1- Construct the Delaunay triangulation of the point set

2- Compute the center of the circum-circles of the n-simplexes

3- Join the centers of the neighboring n-simplexes

4.3 Constructing an abstract hierarchical framework of spatial

analyses

We describe a spatial analysis as a combination of some simpler analyses and operations.

For instance, the convex hull calculation consists of determining the faces that have all of

the other points of the set at one side (Berg et al., 2008). This later operation can be

described as a repetitive determination of the position of a point with respect to a face,

which can be described as a determinant calculation, and so forth. Eventually, this procedure

provides a hierarchy of spatial analyses and operations in which, the elements of each level

are described as combinations of elements of the lower levels. More precisely, if fi,j denotes

the ith element of the jth level, then:

, ,(), 0 , 0i j p qf F f q j p= ≤ < ≥

(4-1)

Chapter 4. Proposed Approach of the Research 58

The elements of the lowest level of this hierarchy are primitive operations. All of the

analyses and operations of the hierarchy are described as combinations of these primitive

operations. On the other hand, a set of data types are needed for definition of these primitive

operations.

4.3.1 Example: Constructing the hierarchical framework for Delaunay

triangulation

In this section, we construct an abstract hierarchical framework for the Delaunay

triangulation and Voronoi diagram, and identify the data types and primitive operations.

Regarding the formal description of the Bowyer-Watson algorithm presented in section 4.2,

the following spatial analyses and operations are needed:

• Constructing the Voronoi diagram needs the Delaunay triangulation to construct

the Delaunay triangulation and circle-center that computes the center of the

circum-circle of an n-simplex.

• Constructing the Delaunay triangulation needs point-simplex-test that identifies the

position of a point with respect to an n-simplex, point-circle-test that identifies the

position of a point with respect the circum-circle of an n-simplex, and vertex-

simplex-join that joins a vertex to an n-simplex.

• All of the circle-center, point-simplex-test and point-circle-test are described based

on the determinant calculations.

• The Determinant calculation consists of operators “+”, “-“ and “*”.

The above descriptions result in the hierarchy illustrated in Figure 4.2. The only data

types required for the analyses and operations of this hierarchy are numbers, and a data type

to represent a point.

Chapter 4. Proposed Approach of the Research 59

Figure 4.2. The hierarchy of spatial analyses and operations to define the case studies

4.4 Summary

This chapter presented the proposed approach of the research to extend spatial analyses to

different dimensions. We described the process of formal definition of spatial analyses and

construction of an abstract hierarchical framework of spatial analyses in which analyses and

operations are defined as combinations of primitive operations.

Delaunay triangulation

vertex-face-join point-circle-test point-face-test

Det

sq sum -

* + negate

Voronoi Diagram

circle-center

Chapter 5. Extension to n-Dimensions 60

5 EXTENSION TO N-DIMENSIONS

This chapter describes the extension of the formal integrated framework of spatial analyses

– built in the previous chapter – to support n-dimensional objects. We use the n-simplexes

as an n-dimensional data type and implement the operations on the n-simplexes based on

vector algebra. As an example, we show how to use this approach to implement an

n-dimensional Delaunay triangulation and its dual, Voronoi diagram.

We use the syntax of functional programming language Haskell, which is our

implementation environment. In Appendix 1, the main concepts and syntax of Haskell are

described. The complete Haskell code of the implementations is given in Appendix 2.

5.1 Vector Algebra

A vector V in an n-dimensional space is an arrow that is determined by its length, denoted

|V| and its direction, denoted by →. Figure 5.1 shows a vector P in 2D space described by its

Cartesian coordinates. Two arrows represent the same vector if they have the same length

and are parallel. Vectors represent entities that are described by magnitude and direction. An

object moving in space has, at any given time, a direction of motion, and a speed. This is

represented by the velocity vector of the motion. The success and importance of vector

algebra derives from the interplay between geometric interpretation and algebraic

calculation.

Figure 5.1. A 2D vector P represented by its Cartesian coordinates

a

b

P(a, b)

|P| 2 2| |P a b= +

Chapter 5. Extension to n-Dimensions 61

Vectors are added by adding their corresponding elements (Figure 5.2.a). Addition of

vectors is commutative (a+b=b+a). Therefore, they form a group with the zero vector as

the unit. Multiplication of a vector with a scalar k extends the vector k times, keeping the

direction (Figure 5.2.b). This multiplication is distributive over addition, etc.

Figure 5.2. (a) Addition of vectors (b) Multiplication of a vector with a scalar

A vector space is a module over a field that consists of two kinds of things: vectors,

which are a commutative group, and scalars, which form a ring with unit. These vectors and

scalars are combined with an external operator scalar multiplication “·” (MacLane and

Birkhoff, 1999) with the following axioms:

Module <.> with group <M, +, 0> and Ring with unit <Q, +, *, 0, 1>

 , ,

 . () . .

 () . . .

 (*) · · (·)

 1 ·

for all p q Q and all a b M

p a b p a p b

p q a p a q a

p q a p q a

∈ ∈

+ = +

+ = +

=

 a a=

(5-1)

5.1.1 Operations on vectors

An n-dimensional point is described as a vector in the n-dimensional Cartesian coordinate

system. Then, geometric properties can be represented as operation on vectors. Apart from

addition and scalar multiplication presented above, the inner (dot), cross and triple products

of vectors are very often used.

p(a, b)

q(c, d)

p+q(a+c, b+d)

p(a, b)

kp(ka, kb)

(a) (b)

Chapter 5. Extension to n-Dimensions 62

5.1.1.1 Inner product

For the n-dimensional vectors U(u1, u2, …, u3) and V(v1, v2, …, v3), the inner product is a

scalar defined as:

1 2 1 2 1 1 2 2. (, ,...,).(, ,...,)n n n nUV u u u v v v u v u v u v= = + + + (5-2)

The inner product is defined for all dimensions. For 2D and 3D vectors, it has some

geometric properties:

• The inner product of a 2D or 3D vector with itself is the square of its length

(called norm):

2 2 2 2

1 2 1 2 1 2| | . (, ,...,).(, ,...,) ...n n nU U U u u u u u u u u u= = = + + + (5-3)

Then, the unit vector in the direction of a given vector is:

| |
U

U
e

U
=

(5-4)

• The angle θ between two 2D or 3D vectors can be obtained using their inner

product and their norms:

.
cos

| || |

U V

U V
θ =

(5-5)

Then, two 2D or 3D vectors are orthogonal if their inner product is zero:

. 0U V U V= ↔ ⊥

(5-6)

Chapter 5. Extension to n-Dimensions 63

5.1.1.2 Cross product

For the 3D vectors U(u1, u2, u3) and V(v1, v2, v3), the cross product is a vector orthogonal on

both U and V and is defined as:

1 2 3 1 2 3 2 3 3 2 3 1 1 3 1 2 2 1(, ,) (, ,) (, ,)U V u u u v v v a b a b a b ab ab a b× = × = − − − (5-7)

The length of U V× is twice the area of the triangle built from the two vectors:

| |

2
OUV

U V
A

×
=

(5-8)

Two vectors are collinear if their cross product is zero.

5.1.1.3 Triple product

For the 3D vectors U(u1, u2, u3), V(v1, v2, v3) and W(w1, w2, w3), the triple product is a

combination of a cross product and an inner product results in a scalar:

11 3

1 2 3

1 2 3

, , .()

, ,

U V W U V W

u u u

U V W v v v

w w w

< >= ×

< >=

 (5-9)

The triple product gives six times the volume of the parallelepiped built from the three

vectors.

Vector algebra is used explicitly and implicitly in many of our calculations. The

circum-circle test (Equation 2-4), clockwise and counter-clockwise tests (Equations 2-3 and

2-5) and orientation of an n-simplex (Equation 3-12) are examples of using vector algebra in

geometric operations.

Chapter 5. Extension to n-Dimensions 64

5.1.2 Lifting MakeND to extend data types and primary operations to

n-dimensional objects

To define a lifting MakeND to extend data types and primary operations of the hierarchy to

support n-dimensional objects, the following observations are considered:

• A point in the n-dimensional Euclidean space is a vector represented by n

numerical elements. Then, the operations on points become vector operations.

• An n-simplex is represented as a set of n+1 points of dimension n and operations

on simplexes are defined as vector operations.

Considering the above observations, a lifting to develop the vectors and their

operations is defined as follow:

• The data type a must be mapped to a vector of data type a.

• An operation of m variables (m ≥ 0) with the input
1(, ...,)mX x x= must be

mapped to an operation that is applied to every elements of a set of input vectors,

each of which consists of m elements.

Therefore, the lifting MakeND denoted as N is mathematically defined as:

1

1

 [,...,]

() [(),..., ()]

N

n

N

n

a a a

f X f X f X

→

→

(5-10)

As mentioned in chapter 3, this mapping must be commutative in order to be a lifting:

1 1((,...,)) ((),..., ())A k B kN f s s f N s N s=

(5-11)

It is satisfied, because:

Chapter 5. Extension to n-Dimensions 65

1

1 1

1 1

1

, : ((). ()) [,...,]

(()) (() [,...,]) (()) [(),..., ()]

[(()),..., (())] [. (),..., . ()]

((.)) [,...,]

n

n n

n n

n

f g N f N g X X

N f N g X X N f g X g X

f g X f g X f g X f g X

N f g X X

∀ =

= =

= =

(5-12)

5.2 Definition of data types and classes

We start by defining a class Ring to support numerical values and their operations. The

class Ring has three basic operations + and * and neg (negation) as well as other operations

-, sq and sum, which are described based on the basic operations:

class Ring q where

 (+), (-), (*) :: q -> q -> q

 neg, sq :: q -> q

 sum :: [q] -> q

 a - b = a + (neg b)

 sq a = a * a

 sum ls = foldl (+) zero ls

Instances of this class are defined for different data types (here, Int and Float):

instance Ring Int where

 neg = Prelude.negate

 a + b = a Prelude.+ b

 a * b = a Prelude.* b

instance Ring Float where

 neg = Prelude.negate

 a + b = a Prelude.+ b

 a * b = a Prelude.* b

2D and 3D points are represented as a pair (x, y) or triple (x, y, z), respectively. To have

an n-dimensional representation, we represent a point as a vector, which is a list of its

elements in the Cartesian coordinate system.

Chapter 5. Extension to n-Dimensions 66

type Vec a = [a]

type StaticPt a = Vec a

To develop the n-simplex data type, we start by defining a vertex. A vertex is the same

as a point, i.e., the Vec data type can be used equally for a vertex. However, their equality is

explicitly indicated here, for the sake of clarity:

Vertex = Vec

Then an n-simplex is a list of vertexes:

Simplex :: [Vertex]

The canonical representation of an n-simplex is a pair of the sorted list of its vertexes

and its orientation. We use a Boolean value for the orientation: true for positive and false for

negative orientations.

CnSimplex :: (Simplex, Bool)

Dealing with n-simplexes and their operations is a case where the number of elements

is not known:

• An n-dimensional point in the Euclidean space is represented by n numbers.

• An n-simplex is represented by n+1 points of dimension n.

• The operations on an n-simplex can take any number of points as input each of

which can have any number of elements, per se. The same applies to the output.

The situation is even worse if a number of operations are composed.

Here we use the list as an abstract data type that can model efficiently both of

n-dimensional points and n-simplexes as well as their operations. A list is a collection of any

number of elements of the same type. The advantages of using the list data type are:

Chapter 5. Extension to n-Dimensions 67

• Elements of a list can be from any type, so a list can model a point, an n-simplex

(as a set of points), or even any other data structure that may be needed (e.g., a pair

whose first and second elements are a point and a list of simplexes, respectively).

• A list can have any number of elements, so it can be used to model points and

simplexes of any dimension.

• List operations are independent of the number and type of the elements of the list,

so the operations on points and simplexes can be equally used in any dimension.

Lists are very important and frequently used in functional programming languages. A

complete description of lists and their operations is presented in Appendix 1.

5.3 Operations of n-simplexes

The first operation we define is the dimension of an n-simplex. It is the number of its

vertexes, and so it is equal to length of the list:

simpDim = length

and dimension of a canonical n-simplex is the number of its vertexes:

cnSimpDim s = (length.vertexes) s

The orientation of an n-simplex uses the determinant of the matrix introduced in

Equation (3-13). We create the required matrix and calculate its determinant:

getOrn s = det mat > 0

 where

 mat = map (1:) s

where det is a function that calculates the determinant of an square matrix.

Chapter 5. Extension to n-Dimensions 68

To convert the primary representation of an n-simplex (i.e., list of its vertexes) to its

canonical representation, we make a pair whose first and second elements are the sorted list

of vertexes and the orientation of the n-simplex, respectively:

simp2cnSimp s = (sort s, getOrn s)

To convert the canonical to the primary representation, we apply the sign (orientation)

to the list of the vertexes: If the sign is positive, no change is needed; if it is negative,

however, the orientation of the simplex must be changed, which is achieved by swapping

the first and the second elements:

cnSimp2simp ([v], b) = [v]

cnSimp2simp (vs, b) = if (b == true) then vs else swap vs

 where

 swap [] = []

 swap [v] = [v]

 swap (v1:v2:vs) = (v2:v1:vs)

The operations to get the vertexes and orientation of an n-simplex are trivial:

vertexes (vs, b) = vs

orn (vs, b) = b

Changing the orientation of an n-simplex is simply changing its sign:

changeOrn (vs, b) = (vs, not b)

The checks whether two n-simplexes have the same vertexes or orientation are:

eqVs s1 s2 = vertexes s1 == vertexes s2

eqOrn s1 s2 = orn s1 == orn s2

Thus, the equality of two n-simplexes (i.e. consisting of the same vertexes and having

the same orientation) is defined as follows:

Chapter 5. Extension to n-Dimensions 69

eqSimps s1 s2 = eqVs s1 s2 & eqOrn s1 s2

The faces of dimension n of an n-simplex are the n combinations of its vertexes. Then,

the function simp2cnSimp must be applied to all of them in order to have a canonical

n-simplex:

faceN s n = (map simp2cnSimp) . (combine n) . vertexes $ s

To extract all of the faces of an n-simplex, we compute all of the faces of dimension i,

and concatenates them:

faces s = concatMap faceN s [1.. n]

 where

 n = cnSimpDim s

The boundary operation for an n-simplex is implemented as:

boundary vs b = zip (removeEach vs) (cycle [b, not b])

In this definition, removeEach vs makes a list of all possible (n-1)-simplex and

cycle [b, not b] provides their corresponding sign. The two lists are zipped to make

the final boundary.

To add a vertex to an n-simplex, we get the vertexes of the input simplex, add the new

vertex to the front of the resultant vertex list and finally convert it to the canonical

representation. Figure 5.3 shows the functionality of this operation for 2- and 3-simplexes.

addVertex v s = simp2cnSimp . (v:) . vertexes $ s

Chapter 5. Extension to n-Dimensions 70

(a)

(b)

Figure 5.3. Functionality of the addVertex: a new vertex is added to a (a) 1-simplex (b) 2-simplex

The next is the border operation (we need this operation to extract the border of the

hole created by removing the violating n-simplexes in the Bowey-Watson algorithm). As

Figure 5.4 shows, this operation extracts the bordering (n-1)-simplexes from a set of

connected n-simplexes (a set of n-simplexes S = {s1, s2, …, sm} are connected if and only if

for each
is S∈ , there is at least one ()js S i j∈ ≠ such that

i js s∩ is an (n-1)-simplex). Note

the difference between this operation and the boundary operation, which extracts the

boundary of an individual n-simplex.

To implement this operation, we use the fact that bordering simplexes appear once and

only once. Thus, to get the bordering simplexes, first we extract and concatenate the

boundaries of all n-simplexes and then take the simplexes that appear once in this list:

border s = once . (concatMap boundary) $ s

Figure 5.4. Functionality of the border for a set of connected 2-simplexes (dotted triangles), which results in

their bordering 1-simplexes (bold edges)

The test whether three 2D points are in counter-clockwise (ccw) or clockwise (cw)

order is often used in geometric algorithms (Knuth, 1992). Its extension to 3D checks

Chapter 5. Extension to n-Dimensions 71

whether a point is on the right or left side of a plane goes through three points. The ccw and

cw tests are implemented, generally, by adding the given n-dimensional point to the

n-simplex and determining the orientation of the resultant (n+1)-simplex:

ccw pt s = orn . (addVertex pt) $ s

cw pt s = not (ccw s pt)

The test whether an n-dimensional point is inside the n-dimensional circum-sphere of

an n-simplex is achieved by implementing the Equation (2-4):

inSphere p s = det (mat) >= 0 where

 mat = map (tr (s))

 tr x = dx ++ [sum . map (sq (dx))]

 dx = x - p

 sum (x) = fold ((+), 0, x)

5.4 Implementation of spatial analyses

To implement the spatial analysis, we use the n-simplexes to convert their formal

description to implementable algorithms. For our case studies, it is as follows:

Algorithm Bowyer-Watson-DT (P)

Input. A set P={p0, …, pm} of n-dimensional points (m ≥ n)

Output. A homogenous simplicial n-complex D that is the n-dimensional DT of P

1. D ← A big n-simplex that contains all of the points {p0, …, pm}

2. for all points p∈P

3. S ← Set of all n-simplexes e∈D whose circum-sphere contains p

4. B ← Set of (n-1)-simplexes that make the border of S

5. N ← Set of n-simplexes constructed by adding p to all (n-1)-simplexes b∈B

6. D ← { \ }D S N∪

7. return D

Chapter 5. Extension to n-Dimensions 72

Algorithm Voronoi (P)

Input. A set P={p0, …, pm} of n-dimensional points (m ≥ n)

Output. The Voronoi diagram of P

1. D ← The Delaunay triangulation of the points {p0, …, pm}

2. C ← The centers of the circum-spheres of the n-simplexes D

3. VD = {}

4. for all s∈D

5. l ← the lines connecting the center of the n-simplex s to the center of all of its

neighboring n-simplexes ns∈D

6. VD ← VD l∪

7. return D

Implementations of these algorithms in Haskell are as follows (for complete

implementation details, see Appendix 2):

delaunay :: [PtF] -> [CnSimplex]

delaunay pts = fold updateDT bigSimp pts

 where

 bigSimp = simple computations presented in appendix 2

updateDT dt pt = (dt \\ s) ++ n

 where

 s = filter inSphere pt dt

 n = map (addVertex pt) (border s)

Voronoi :: [PtF] -> [CnSimplex]

voronoi = connectNeighbors . map (center . delaunay)

where updateDT inserts a new vertex into a Delaunay triangulation and updates its

structure, center computes the center of the circum-circles of a triangle, and

connectNeighbors connects the center of the circum-circles of the neighboring triangles

in a triangulation.

Chapter 5. Extension to n-Dimensions 73

5.5 Summary

In this chapter we extended the formal integrated framework to support n-dimensional

objects. We used the n-simplexes as an n-dimensional data type and implemented the

operations on the n-simplexes based on the vector algebra. As an example, we showed how

to use this approach to implement the n-dimensional Delaunay triangulation and Voronoi

diagrams. The implementations in Haskell were presented.

Chapter 6. Extension to Moving Objects 74

6 EXTENSION TO MOVING OBJECTS

This chapter introduces a mapping called MakeMoving that extends the n-dimensional data

types and operations developed in the previous chapter to moving objects.

6.1 Definition of the lifting MakeMoving

The moving data types and operations is structurally the same as their static corresponding

elements, except that these data types as well as the input of the operations of moving

objects are functions of time and the result is a function of time (Frank and Gruenbacher,

2001). The lifting to do this mapping is defined as follows:

• The data type a must be mapped to a data type at that is a function of time.

• An operation of m variables (m ≥ 0) with the input 1(,...,)
m

X x x= must be

mapped to an operation all of whose inputs are functions of time.

Therefore, the lifting MakeMoving denoted as T is mathematically defined as:

 ()

() () ()

T

t

T

t t

a t a a

f X f X f X

→ → =

→ =

(6-1)

As expected, this lifting is commutative because:

, : ((). ()) ()

(()) (() ()) (()) (())

((())) (. ()) ((.)) ()

t

t t

t t t

f g T f T g X

T f T g X T f g X

f g X f g X T f g X

∀

= =

= = =

(6-2)

In the hierarchical framework constructed in section 4.2 for spatial analyses, each

analysis is defined as a combination of primary operations. These definitions are

independent of dimension, so they are valid for any dimension. Thus, having implemented

Chapter 6. Extension to Moving Objects 75

the data types and primary operations for n-dimensional objects, the lifting MakeMoving

will extend them to n-dimensional moving objects.

6.2 Implementation of the mappings (liftings)

First we define a class lifting to lift the data types and operations:

class Lifting f a where

 lift0 :: a -> f a

 lift1 :: (a -> b) -> f a -> f b

 lift2 :: (a -> b -> c) -> f a -> f b -> f c

 lift3 :: (a -> b-> c-> d) -> f a -> f b -> f c -> f d

The lift0 lifts the data types and the lift1, lift2 and lift3 are used to lift operations

with one, two, and three arguments, respectively. Lifting the operations with more

arguments is done in a similar way.

A time instant is considered as a floating number. Then, a changing version of a value

of type v is a function of time (instant) to that value:

type Instant = Float

type Changing v = Instant -> v

For example:

type MovingInt = Changing (Int)

type MovingPt a = Changing (Pt a)

An instance of the class lifting is implemented for extension to moving values:

instance Lifting ((->) Instant) a where

 lift0 a = \t -> a

 lift1 op a = \t -> op (a t)

 lift2 op a b = \t -> op (a t) (b t)

 lift3 op a b c = \t -> op (a t) (b t) (c t)

Chapter 6. Extension to Moving Objects 76

6.3 Extension of primitive operations to moving objects

In this section, the primitive operations defined in the previous chapter are extended to

moving objects using the lifting MakeMoving.

6.3.1 Extension of operations on Ring

The operations on Ring are extended to changing values by applying the above liftings:

instance Ring a => Ring (Changing a) where

 (+) = lift2 (+)

 (*) = lift2 (*)

 neg = lift1 neg

 sq = lift1 sq

Note that only the primitive operations are lifted; the combined operations (i.e., -, sq

and sum) are automatically lifted.

6.3.2 Extension of operations with list arguments

To extend the list operations to support moving objects, we customize the above liftings to

support functions with list(s) as argument(s): the parameter t must be added to all the

elements of the list argument(s). For other elements, it is a simple lifting:

convert2Ft x = \t -> x t

lift0L a = map convert2Ft a

lift1L op a = op (map convert2Ft a)

lift2L op a b = op (map convert2Ft a) (convert2Ft b)

lift2LL op a b = op (map convert2Ft a) (map convert2Ft b)

For example:

Chapter 6. Extension to Moving Objects 77

sort = lift1L sort

cw = lift2L cw

In this case, all the elements of the list are functions of time, waiting for a time instant

to be further processed, i.e., these liftings (referred to as convert2Ft lifts hereafter) result in a

list of changing elements: [\t-> x1 t, \t-> x2 t, \t-> x3 t, ...].

Although the semantic of convert2Ft lifts is true, their executions do not terminate in

some cases. The reason is that the process reaches a point that needs making a final decision

for which the time instant must be specified: These are the cases where not only the values,

but also the order or the number of elements of the list is changing, i.e., depends on the time

instant (e.g., sorting and filtering the changing elements of a list). In lambda calculus

language, in such cases, the process ends up in a weak head normal form (WHNF)

expression that cannot be further reduced until the time instant is given (see section 3.4.3).

A solution to this problem is that the list of changing elements is converted to a

changing list of elements, i.e., \t -> [x1 t, x2 t, x3 t, ...]. In this case, the

order and the number of elements of the list after applying the function is specified, which is

in head normal form (HNF), nevertheless it is still a function of time (these set of liftings is

referred to as lc2cl lifts hereafter):

lc2cl :: [Changing a] -> Changing [a]

lc2cl ma = \t -> lift1 (\a -> a t) ma

lift0L a = lc2cl a

lift1L op a = lift1 op (lc2cl a)

lift2L op a b = lift2 op (lc2cl a) b

lift2LL op a b = lift2 op (lc2cl a) (lc2cl b)

For example:

head (IF (t>3) (λt. cons (t+1) nil) (λt. cons (t-2) nil)) 2

Chapter 6. Extension to Moving Objects 78

is in WHNF and so cannot be further processed, because the outer most expression

cannot be β-reduced. However, after applying lc2cl, it will become:

λt. head (IF (t>3) (cons (t+1) nil) (cons (t-2) nil)) 2

that can be reduced to

head (IF (2>3) (cons (2+1) nil) (cons (2-2) nil)) 2 →

(cons (2-2) nil) → (cons 0 nil)

which is in HNF. These new types of liftings work well. However, their efficiency still

needs to be evaluated.

6.4 Summary

This chapter introduced a mapping called MakeMoving that extends the n-dimensional data

types and operations developed in the previous chapters to moving objects.

Chapter 7. Results and Evaluation 79

7 RESULTS AND EVALUATION

This chapter presents the implementation results for extending the Delaunay triangulation to

different dimensions. We then evaluate and discuss the performance of the implementations.

Finally, two applications developed upon the implementations are presented to show how

the proposed approach can be practically used.

7.1 Implementation results

The implementation of the dimension independent Delaunay triangulation and its dual,

Voronoi diagram, was applied on a data set, given in Appendix 2 under the heading

“Samples”, consists of four collections of twenty 2D static, 3D static, 2D moving and 3D

moving points. For example:

pt2D = [3, 4] -- 2D static point

pt3D = [1, 2, 1] -- 3D static point

mpt2D t = [(7-5*t), (2+5*t)] -- 2D moving point

mpt3D t = [(3+2*t), (1-4*t), (2+3*t)] -- 3D moving point

Figures Figure 7.1 to Figure 7.5 illustrate the results of applying the implemented

spatial analyses to data of different dimensions. In the case of moving points, the results for

some time instants are presented. The Voronoi diagrams of 3D data sets are not shown

because their representation in 2D is not informative.

Chapter 7. Results and Evaluation

(a)

Figure 7.1. Delaunay triangulation of static points

Figure

Results and Evaluation

(b)

Delaunay triangulation of static points (a) 2D (b) 3D (projected)

Figure 7.2. Voronoi diagram of 2D static points

80

Chapter 7. Results and Evaluation

t = 0s

t = 20s

Figure 7.3. Delaunay triangulation of

Results and Evaluation

t = 10s

t = 30s

Delaunay triangulation of 2D moving points for some time instants

81

Chapter 7. Results and Evaluation

t = 0s

t = 20s

Figure 7.4. Delaunay triangulation of

Results and Evaluation

t = 10s

t = 30s

Delaunay triangulation of 3D moving points for some time instants (projected)

82

(projected)

Chapter 7. Results and Evaluation

t = 0s

t = 20s

Figure 7.5. Voronoi diagram

In the above examples, the moving points were models as continuous functions of time.

In this case, a value f(t) is available for each time insta

definition (Figure 7.6.a). In contrast, in

defined for a set of discrete

2007). Although there are examples of deploying intensionally defined functions in GIS

(Mostafavi, 2002), moving objects are usually defined by extensional functi

collected by navigation systems for a moving car is an example of such data in which the

positioning is accomplished at certain time intervals.

Results and Evaluation

t = 10s

t = 30s

Voronoi diagram of 2D moving points for some time instants

In the above examples, the moving points were models as continuous functions of time.

) is available for each time instant t. It is called intensional

.a). In contrast, in extensional definition of a function, the function is

defined for a set of discrete values (Figure 7.6.b), between which we interpolate

. Although there are examples of deploying intensionally defined functions in GIS

, moving objects are usually defined by extensional functions. The data

collected by navigation systems for a moving car is an example of such data in which the

positioning is accomplished at certain time intervals.

83

In the above examples, the moving points were models as continuous functions of time.

ional function

definition of a function, the function is

.b), between which we interpolate (Frank,

. Although there are examples of deploying intensionally defined functions in GIS

ons. The data

collected by navigation systems for a moving car is an example of such data in which the

Chapter 7. Results and Evaluation

f(x) = 3x
2
 + sin x

(a)

Figure 7.6. (a)

To provide a continuous representation of an extensional function

interpolation method: The position of each moving point is given for a set of discrete time

instants results in a list of time

instant t, if t is not available in

its neighbors in P. The implementations were applied on ten moving points simulated on a

street network (Figures Figure

the result of applying the Delaunay triangulation

at some time instants.

(a)

Figure 7.7. The study area (a) Map of the

Results and Evaluation

 – 3
x 1 3 6 8 14 19

f(x) 4 8 15 18 13 9

(b)

(a) Intensional and (b) extensional definition of a function

To provide a continuous representation of an extensional function we developed an

interpolation method: The position of each moving point is given for a set of discrete time

instants results in a list of time-position pairs
1 1 2 2{(,), (,),..., (,)}n nP t p t p t p=

is not available in P, then the position of the point is linearly interpolated using

The implementations were applied on ten moving points simulated on a

Figure 7.7 and Figure 7.8). Figures Figure 7.9 and Figure

the result of applying the Delaunay triangulation and Voronoi diagram on the moving points

(b)

The study area (a) Map of the street network (b) Model of the street network

100m

N

100

84

 25 34 …

7 3 …

we developed an

interpolation method: The position of each moving point is given for a set of discrete time

{(,), (,),..., (,)} . For a time

f the point is linearly interpolated using

The implementations were applied on ten moving points simulated on a

Figure 7.10 show

on the moving points

network

100m

N

Chapter 7. Results and Evaluation

(a)

(d)

(g)

(j)

Results and Evaluation

(b)

(e)

(h)

Figure 7.8. Paths of the simulated moving points on the

85

(c)

(f)

(i)

Paths of the simulated moving points on the street network

N

200m

Chapter 7. Results and Evaluation

t = 0s

t = 20s

Figure 7.9. Delaunay triangulation of the simulated moving points on the

Results and Evaluation

t = 10s

t = 30s

Delaunay triangulation of the simulated moving points on the street network for some time instants

100

86

network for some time instants

100m
N

Chapter 7. Results and Evaluation

t = 0s

t = 20s

Figure 7.10. Voronoi diagram

Results and Evaluation

t = 10s

t = 30s

Voronoi diagram of the simulated moving points on the street network for some time instants

100

87

network for some time instants

100m
N

Chapter 7. Results and Evaluation 88

7.2 Evaluation

The goal of this research is to extend spatial analysis to different dimensions without

recoding. Our main concern is on the mathematical validation of the conceptual framework

and investigation of its implementation issues. The discussion presented in chapters 4 to 6 as

well as the above implementations and results show that our goal is achieved.

This section evaluates the efficiency of the implementations and results. Table 7.1 and

Figure 7.11 illustrate the running time as a function of number of input points for the 2D/3D

static and moving Delaunay triangulation. Their investigation shows that the complexity of

implementing the Bowyer-Watson algorithm to compute the Delaunay triangulation is

O(n log n) and O(n2) respectively for 2D and 3D points, which was expected.

Table 7.1. Running time (in sec.) as a function of number of input points for 2D/3D static/moving DT/CH

No. of pints 10 50 250 500 1000 2000 4000 8000 16000 32000 64000

Static DT
2D 0.01 0.07 0.47 1.08 2.43 5.45 12.02 25.61 56.02 120.10 255.28

3D 0.02 0.18 0.49 1.04 3.83 9.04 24.71 70.33 198.41 696.92 2859.35

Moving DT
2D 0.01 0.09 0.50 1.03 2.48 5.29 13.03 23.13 62.05 128.38 272.45

3D 0.02 0.20 0.52 1.03 3.87 9.18 25.00 70.51 189.85 712.67 2777.85

(a) (b)

Figure 7.11. Running time as a function of number of input points for 2D and 3D static and moving Delaunay

triangulation: (a) static (b) moving

On the other hand, for the same number of points, the running time to compute the

Delaunay triangulation of 3D points is greater than 2D. This is because of the more and

Number of points

R
u

n
n

in
g
 t

im
e

(S
ec

.)

Number of points Number of points

R
u

n
n

in
g
 t

im
e

(S
ec

.)

Chapter 7. Results and Evaluation 89

bigger size of the matrixes that must be dealt with in 3D. Note that the complexity of matrix

calculations depend on the size of the matrix (e.g., the complexity of determinant calculation

is O(n
3
) (Kaltofen and Villard, 2004)). For instance, to check if a point is inside a

tetrahedron (the case for 3D) it computes four 4 4× matrixes, while this is three 3 3×

matrixes for a point against a triangle (the case for 2D); or to check if a point is inside the

circum-sphere of a tetrahedron (the case for 3D) it computes a 4 4× matrix, while this is a

3 3× matrix for a point against the circum-circle of a triangle (the case for 2D). In abstract,

the running time is a function of the number of n-simplexes as well as the size of the

computation units, which depends on the dimension.

Finally, the running times to apply the Delaunay triangulation on the same number of

static or moving points are quite similar. Note that the presented running times for moving

points is the time needed to reduce the analyses to their simplest form, which are functions

of time. To determine the final result for a certain time instant t, this t must be given to the

time dependent function.

To compare the efficiency of the implementations to be applied on moving points at

multiple time instants, we applied some spatial analyses on a data set containing 20 moving

points. The analyses used in this evaluation are:

• Distance between two points

• The area (volume) of a triangle (tetrahedron) constructed by three (four) points.

• Clock-wise (CW) order test

• InSphere test

• Sorting a set of points

• Delaunay triangulation of a set of points

In the case of moving points – where the outputs of applying analyses to the moving

points are functions of time – each analysis was applied for 1, 5, 10 and 20 different time

instants. To evaluate the efficiency, GHC profiler was used. Among other detailed

information, it gives the time and the number of reductions (number of steps to get the

simplest form – see chapter 3) for running the code. The time parameter is not discussed

here, because the running times are too short and not very informative. Moreover, the

relationship of the number of reductions and running time is quite linear. Table 7.2 and

Figure 7.12 illustrate the number of reductions for different cases. These results show that

Chapter 7. Results and Evaluation 90

the number of reductions for "static points" and "moving points for 1 time instant" are quite

similar. It means that points with constant elements (static points) are treated the same as

points with functional elements (moving points). It is because of this characteristic of

functional languages that all values are functions: "3" is a constant function, while "2x" is a

function of one parameter x.

Table 7.2. Number of reductions for applying different analyses on 2D/3D static/moving points. In the case of

moving, the analyses are applied for multiple time instants

Analysis Dim

Number of reductions

Static Points
Moving Points

1 time 5 times 10 times 20 times

Distance
2D 8,143 8,600 13,912 20,192 30,372

3D 8,235 8,912 15,064 21,220 32,252

Volume
2D 10,694 11,084 25,936 42,384 77,776

3D 17,682 18,348 61,040 114,400 221,120

CW test
2D 9,534 9,932 34,004 65,592 122,952

3D 13,894 14,328 48,288 86,944 173,228

InSphere test
2D 40,745 41,172 132,040 260,696 497,036

3D 86,559 87,172 284,152 551,628 1,070,580

Sort
2D 48,251 50,596 234,256 456,316 902,940

3D 70,904 72,700 340,756 688,806 1,297,972

Delaunay

triangulation

2D 12,684,532 12,693,748 62,968,188 123,809,361 244,840,892

3D 28,800,201 28,811,448 140,345,336 270,689,236 571,929,332

Chapter 7. Results and Evaluation 91

(a) (b)

(c) (d)

(e) (f)

Figure 7.12. Number of reductions for applying different analyses on 2D/3D static/moving points. In the case of

moving, the analyses are applied for multiple time instants (a) Distance (b) Volume (c) CW test (d) InSphere test

(e) Sort (f) DT

For the Distance, Volume, CW test and InSpher test, if we consider applying the

analysis on moving points for n1 and n2 number of time instants (e.g., n1 = 5 and n2 = 20), the

increase of the number of reductions is less than n2/n1 (e.g., n2/n1 = 20/5 = 4). It shows that

the lifting process works as we expected: the result is calculated as a function of time, and

its value for a specific time instant, t0, is calculated through replacing the parameter t in the

final function with t0.

Chapter 7. Results and Evaluation 92

For the Sort and Delaunay triangulation, if we consider applying the analysis on

moving points for n1 and n2 number of time instants (e.g., n1 = 5 and n2 = 20), the increase of

the number of reductions is about n2/n1 (e.g., n2/n1 = 20/5 = 4). The reason is that in the first

event that a final decision is needed, lc2cl calculates the elements of the input list for the

desired time instant and from now on it is processed as a list of static values.

The above observation seems disappointing, but actually it is not, because the concept

of our approach is true; and if the convert2Ft lifts worked, we would get the same results for

the Sort and Delaunay triangulation as well. In other words, the concept of the approach is

true, but the development environment is not completely supportive yet to interact with

complex types of changing (e.g., changing the order or the number of the elements of a list).

On the other hand, the lc2cl lifts enabled us to avoid rewriting the whole algorithms again;

and in the worst case, it works as efficient as current approaches that recode each algorithm

for each data type.

On the other hand, detection of topological events and locally updating the data

structure in an imperative programming language must be handled manually. However, no

effort is needed for such update in our implementation, because of the lazy evaluation

(second ingredient of lazy evaluation in chapter 3). To certify this, we did two tests:

In the first test, the selected analyses were applied on some points move slower than

the first data set. The results are shown in Table 7.3 and Figure 7.13. In this case, the

increase in the number of reductions is less comparing to the first data set that moves faster

(Table 7.2 and Figure 7.12). It means that the occurrence of the topological events is truly

detected and the updates perform on these events; because if the points move slower, it takes

longer time for the topological events to occur. Therefore, in a certain time interval, the

number of topological events decrease, which results in less updates.

Table 7.3. Number of reductions for applying Sort and DT on 2D/3D slow moving points

Analysis Dim
Number of reductions

1 time 5 times 10 times 20 times

Sort
2D 50,596 162,740 300,902 502,737

3D 72,700 267,834 431,132 745,362

Delaunay

triangulation

2D 12,693,748 49,569,245 84,893,407 144,673,912

3D 28,811,448 103,604,529 180,512,763 340,523,480

Chapter 7. Results and Evaluation 93

(a) (b)

Figure 7.13. Number of reductions for applying Sort and DT on 2D/3D slow moving points

In the second test, instead of all points, we moved one and two points of the point set.

In the case of moving all points, it is most likely that the structure must be thoroughly

updated. However, when only one or two points move, most of the structure is not affected

after a movement and a local update would be enough. As shown in Table 7.4 and Figure

 7.14, if one or two points move, the increase of the number of reductions for n1 and n2

number of time instants is significantly less than n2/n1. It means that those parts of the

structure that is not affected after the movement has been reused for updating. Note that the

number of reductions when one point moves is less than the case of moving two points,

because moving two points affects the structure more that moving one point.

Table 7.4. Number of reductions for applying DT on 2D and3D moving points for multiple time instants where

different number of points move

Dim Case
Number of reductions

1 time 5 times 10 times 20 times

2D

All points move 12,693,748 62,968,188 123,809,361 244,840,892

Two points move 12,693,748 39,798,093 73,498,820 143,452,905

One point moves 12,693,748 16,544,532 24,662,760 39,620,932

3D

All points move 28,811,448 140,345,336 270,689,236 571,929,332

Two points move 28,811,448 98,809,453 201,045,832 400,004,561

One point moves 28,811,448 42,345,336 76,893,415 151,116,732

Chapter 7. Results and Evaluation

(a)

Figure 7.14. Number of reductions for applying DT on

different number of points move

7.3 Applications

This section presents two application

how the proposed approach can be practically used.

We implement the convex decomposition of non

based on a method called Alternate Hierarchical Decomposition

an iterative procedure to represent a polytop as a tree of convex components. The root of

this tree is the convex hull of the vertexes of the polytop, and other convex components are

located at the next levels with alternate signs (posit

The algorithm and the implementation details are described in

2009). Figures Figure 7.16

non-convex polytops of Figure

(a)

Figure

Results and Evaluation

(b)

Number of reductions for applying DT on 2D and3D moving points for multiple time instants where

different number of points move (a) 2D (b) 3D

This section presents two applications developed upon the implementations in order to show

how the proposed approach can be practically used.

implement the convex decomposition of non-convex polytops of any dimension

Alternate Hierarchical Decomposition (AHD). This method uses

an iterative procedure to represent a polytop as a tree of convex components. The root of

this tree is the convex hull of the vertexes of the polytop, and other convex components are

located at the next levels with alternate signs (positive for even and negative for odd levels).

The algorithm and the implementation details are described in (Bulbul, 2011;

 and Figure 7.17 show the AHD representations of the

Figure 7.15.

 (b)

Figure 7.15. (a) 2D and (b) 3D non-convex polytop

94

moving points for multiple time instants where

ions in order to show

convex polytops of any dimension,

. This method uses

an iterative procedure to represent a polytop as a tree of convex components. The root of

this tree is the convex hull of the vertexes of the polytop, and other convex components are

ive for even and negative for odd levels).

; Karimipour,

s of the 2D and 3D

Chapter 7. Results and Evaluation

 Figure

Figure 7.16. AHD representation of the polytop of Figure 7.15.a

95

Chapter 7. Results and Evaluation

Figure 7.

We developed a method to calculate the volume of

the convex decomposition and

Karimipour et al., 2010b). It

dam at different water levels, which leads to a level

al., 2010a; Karimipour et al

consumption and monitoring the dam construct

diagram is used to estimate the surface area and water amount of the reservoir. This

information helps the decision makers in applications like water usage allocation, dam

deformation control and managing water re

The Latyan dam − located in North East of Tehran, Iran

study (Figures Figure 7.18 an

hydrographic process (Figure

Results and Evaluation

.17. AHD representation of the polytop of Figure 7.15.b

We developed a method to calculate the volume of n-dimensional polytops based on

the convex decomposition and Delaunay triangulation (Karimipour et al

It was used to calculate the area and volume of the reservoir of a

dam at different water levels, which leads to a level-surface-volume diagram (Karimipour et

Karimipour et al., 2010b). This diagram is important for managing the water

consumption and monitoring the dam construction: observing the daily water level, this

diagram is used to estimate the surface area and water amount of the reservoir. This

information helps the decision makers in applications like water usage allocation, dam

deformation control and managing water release behind the dam.

located in North East of Tehran, Iran − was selected as the case

and Figure 7.19). The bed of the dam reservoir was surveyed in a

Figure 7.20) and its 3D TIN was produced (Figure 7.21).

96

dimensional polytops based on

Karimipour et al., 2010a;

was used to calculate the area and volume of the reservoir of a

(Karimipour et

. This diagram is important for managing the water

ion: observing the daily water level, this

diagram is used to estimate the surface area and water amount of the reservoir. This

information helps the decision makers in applications like water usage allocation, dam

was selected as the case

). The bed of the dam reservoir was surveyed in a

).

Chapter 7. Results and Evaluation 97

Figure 7.18. Satellite image of Latyan dam and its reservoir

Figure 7.19. 3D view of Latyan dam and its reservoir

Latyan

Dam

N

100m

Latyan Dam
N 100m

Chapter 7. Results and Evaluation 98

Figure 7.20. Points resulted from hydrography of Latyan dam reservoir

Figure 7.21. 3D TIN of Latyan dam reservoir

N

N 100m

Chapter 7. Results and Evaluation 99

To calculate the area and volume of the reservoir at a certain water level, say h, the 3D

TIN was intersected with the plan z=h, which results in the volume of the reservoir where

z<h and the surface of the reservoir at z=h. Figure 7.22 shows the results for the water level

of 1570m. To calculate the area and volume of the results, the implemented n-dimensional

Delaunay triangulation was used: For a convex n-dimensional structure, it is triangulated to

a set of n-simplexes and then sum of the nD-volume (i.e., area for 2D, volume for 3D, etc.)

of the components are calculated. The absolute value of the determinant used to specify the

orientation of an n-simplex yields its nD-volume:

vSimp s = abs . det . map (1:) $ s

vConv p = sum . map vSimp . dt $ p

(a) (b)

Figure 7.22. 3D TIN and surface of Latyan dam reservoir at water level of 1570m

As Figure 7.22 shows, our structures are non-convex. Therefore, first they must be

decomposed to a set of convex components and then the above calculation is applied

separately to each component. For this, the dimension independent decomposition of

polytopes was used. Each component is triangulated using the implemented n-dimensional

Delaunay triangulation. Calculating the area/volume of each component and summing up

the results will provide the total area/volume of the reservoir at the desired water level. The

function that takes an n-dimensional polytope and calculates its nD-volume as follow:

N

10

N

Chapter 7. Results and Evaluation 100

vPoly p = sum . map vConv . decompose $ p

By applying the explained process to different water levels, the level-surface-volume

diagram was produced for the reservoir of the Latyan dam,which shows the surface area and

volume of the reservoir at different water levels (Figure 7.23).

Figure 7.23. Level-Surface-Volume diagram of Latyan dam reservoir

As another application, we implemented an optimum placement algorithm proposed in

(Ghosh and Das, 2008; Wang and LaPorta, 2004) to increase the coverage of a sensor

network based on the moving Voronoi diagram: The Voronoi diagram of the sensors is

constructed and each sensor moves toward its furthest Voronoi vertex (Figure 7.24.a) or it is

placed at the center of the smallest enclosing circle of its Voronoi cell (Figure 7.24.b)

(Argany et al., 2010). It changes the structure of the Voronoi diagram, so this process is

applied iteratively till a certain threshold is reached.

0.00.10.20.30.40.50.60.70.80.9

1545

1555

1565

1575

1585

1595

1605

0 5 10 15 20 25 30

Area of reservoir (milliom m2)

Volume of the reservoir (million m3)

Volume

Area

Chapter 7. Results and Evaluation 101

(a) (b)

Figure 7.24. Using the Voronoi diagram for sensor network placement (a) Moving the sensors toward the

furthest Voronoi vertexes (b) Placing the sensors at the center of the smallest enclosing circle of their Voronoi

cells

7.4 Summary

In this chapter we implemented the proposed approach for the selected case studies in

Haskell and evaluated the results. We applied the implementations to sample data sets and

evaluated and discussed efficiency of the results. The results confirm that the concept of the

proposed approach is true and works for analyses with individual inputs; but the

development environment is not yet completely ready to support more complex types of

changing inputs (e.g., lists). In other words, although the current implementation of

functional programming languages support the changing values, but there are some cases of

changing (e.g., changing the number and order of values in a list) that are not supported.

Nevertheless, even in such cases, our implementation has two advantages: Firstly, we could

extend the analyses to moving points without recoding the algorithm. Secondly, the lazy

evaluation of Haskell helps us to be more efficient and prevent redoing the unchanged

calculations.

We presented two applications developed upon the implementations in order to show

how the proposed approach can be practically used. The achieved results certify the

hypothesis of the research which says “studying spatial analyses based on their dimension-

independent characteristics leads to a consistent solution toward implementation of a multi-

dimensional GIS“.

S0

S1

S2

S3

S5

S0

S1

S2

S3

S5

Chapter 8. Conclusion and Future Work 102

8 CONCLUSION AND FUTURE WORK

This chapter summarizes the research of this thesis. It describes all stages through

developing and testing the proposed approach to implement dimension independent spatial

analyses. We then present the results and major findings of our work, as well as the research

contribution. Finally, we propose directions for future research.

The goal of this research was to provide an integrated framework for spatial analyses of

multi-dimensional spaces. The proposed approach is to formally define spatial analyses

based on their dimension-independent properties. It leads to an integrated framework of

spatial analyses, which will further be extended to different dimensions. This extension will

be accomplished through the mappings between the spaces, which are independent of

analyses. The abstraction and algebraic specifications were used as the formal methods to

provide the required abstraction. We described these principals in more details in chapter 1.

To present the state-of-the art of extending spatial analyses to different dimensions, in

chapter 2 we reviewed existing solutions to extend the Delaunay triangulation, as the case

study of the research, to different dimensions. This information was used to compare the

current approach with the proposed approach of the research to extend spatial analyses to

different dimensions.

The formal methods used in this thesis were presented in chapter 3. Principals of

abstraction, algebraic structures and n-simplexes were presented. The functional

programming languages, as the programming environment in this thesis, were introduced

and their principals were presented.

These principals were used in chapters 4 to 6 to develop the proposed approach of the

research. We used the abstraction methods to develop the integrated framework of spatial

analyses based on their dimension-independent properties. In this framework, spatial

analyses are formally expressed in a hierarchical way in which each analysis is defined as a

combination of simpler ones. These definitions are independent of dimension and the

hierarchy ends in a set of primary operations, which are not further decomposed. The data

types used in the operations of this hierarchy were also identified. Next, algebraic

specification was used to formalize this conceptual integrated framework. It formally

Chapter 8. Conclusion and Future Work 103

describes the characteristic of analyses as combinations of the elements of the framework.

On the other hand, as the spatial analyses are structurally equivalent in the required spaces,

mappings (liftings) were defined between different spaces, independent of data types and

analyses. Thus, having implemented the dimensionally independent data types and

operations, they all will be extended to a specific space by applying the mapping function.

The proposed approach was evaluated through implementation of the Delaunay

triangulation for 2D/3D static and moving points in the functional programming language

Haskell. Having this spatial analysis at top of a hierarchy, it was decomposed to simpler

operations till the primitive operations were achieved. The data types used in the operations

of the hierarchy were also identified. On the other hand, the mappings between spaces were

defined, which later were used to extend data types, operations and spatial analyses to points

of different dimensions. The detailed explanation of the implementation was presented in

chapter 7. We evaluated and discussed the performance of the implementations and

presented two examples of using the implementations in practice.

8.1 Results and major findings

In this research we investigated studying spatial analyses based on their dimension-

independent characteristics. This can be considered as an effort along the goal of GI science

to model the interaction of human with the environment. This is different from the approach

of current research that extends spatial analyses based on their dimension dependent

characteristics. Although such an approach results in extensions with the minimum increase

in complexity and speed, they must be implemented separately for each dimension. Here,

we study spatial analyses based on their dimension-independent characteristics, and to

develop the data types and operations of a space to another, mappings are defined between

spaces. These mappings are independent of data types and analyses and only depend on the

origin and target spaces. Thus, having implemented the dimensionally independent data

types and operations, they all will be extended to a specific space by applying the mapping

function. The results of using this approach for the case study verified the validity of the

approach.

To construct the integrated framework, the concepts of abstraction and abstract data

types were deployed. These concepts were used to define the required data types and data

structures in a way that they can support objects of different dimensions. The operations to

manipulate these data types and structures were developed independent of dimension, too.

Chapter 8. Conclusion and Future Work 104

This abstract viewpoint is a simulation of how people understand the environment. Thus,

these concepts could be used for other GI related research.

An algebraic approach was used to define spatial analyses. It considers the unified

nature of our unique physical reality when handling the included context and permits to

combine the developed simple components to create a complex system. Using an algebraic

approach, we constructed an integrated hierarchical framework that defines each spatial

analysis as a combination of simpler ones, which eventually leads to set of primary

operations that are not further decomposed. This hierarchy is independent of the space and

only depends on conceptual relationships of spatial analyses. Thus, having developed the

operations of a level to a certain dimension, all of the operations and analyses of the higher

levels are immediately available in the new dimension. This shows the beauty and capability

of algebraic views to interact with a complex system.

To interact with different dimensions, the algebraic structures were used. Different

spaces were defined structurally equivalent and extension of the elements of a space to

another was accomplished using mappings (liftings) defined between the spaces.

The achieved results of implementing the proposed approach certify the hypothesis of

the research which says “studying spatial analyses based on their dimension-independent

characteristics leads to a consistent solution toward implementation of a multi-dimensional

GIS“. Of course, this abstraction applied in definition of data types, data structures and

operations will cause losing a significant amount of information available for specific

dimensions, so this approach may not provide the simplest and fastest solutions. Though, it

does not harm the goal of this research, because our major goal is to present an approach to

extend spatial analyses to higher dimensions with the minimum amount of recoding, so

simplicity and speed are not our evaluating parameters. In other words, this research

believes that it better to have a working comprehensive system, even if it is slow, than

waiting for a fast system created in unknown future. Note that base on the Moor’s law,

computer speed doubles every 18 months on average. Nevertheless, the results show that the

proposed approach does not affect the big O complexity and speed for applying the spatial

analyses on objects of higher dimensions.

The manipulations occurred in the environment are the results of processes that change

the state of the real world objects. Although the goal of GI science is to study the process of

the real world, because of deficiencies of the tools (e.g., modeling and programming

environments) in practice, the focus of the current research is on studying the state of the

Chapter 8. Conclusion and Future Work 105

spatial objects (Hofer and Frank, 2008). A model of the reality is a collection of states that

are converted to each other by processes. These conversions can be considered as functions

that convert a state to another. To interact with the objects, the imperative programming

languages can be used, but direct interaction with the processes and modeling their relations

is possible through functional programming languages. The results of implementing the

proposed approach of this research in Haskell certify this claim.

8.2 Research contribution

The major contribution of the research is providing a formal approach to implement spatial

analyses in different dimensions, which eventually proves the hypothesis of the research,

which says “studying spatial analyses based on their dimension independent characteristics

leads to a consistent solution toward implementation of a multi-dimensional GIS“. We

introduced a pure mathematical concept as an efficient tool to model and solve GI problems.

More specifically, the major contributions of the research are as follows:

• Providing an exhaustive review on existing solutions to extend the 2D Delaunay

triangulation to 3D, dynamic and kinetic points.

• Developing a mathematically provable framework to integrate spatial analyses via

their dimension-independent properties, which can be extended to different multi-

dimensional spaces (e.g., 3D, temporal, etc.):

- Providing an abstract view to spatial analyses and formalizing this view

using algebraic structures.

- Providing a hierarchical framework of spatial analyses that eventually ends

in a set of primitive operations.

• Constructing a strict connection between different multi-dimensional spaces that

can be used to extend the program of an already implemented 2D spatial analysis to

higher dimensions (e.g., 3D, moving, etc.) without recoding the whole process.

• Definition of the framework into a mathematical model with executable

specifications in the functional programming paradigm. It introduces functional

programming as a relevant and efficient environment to study spatial processes and

their interactions.

Chapter 8. Conclusion and Future Work 106

• Identifying the barriers to implement the mathematically provable proposed idea in

the programming language Haskell through the selected case study, i.e., Delaunay

triangulation.

The contributions of the research has resulted in several articles, papers and reports

published in different scientific journals, international conferences and symposiums as well

as periodicals, including:

• Karimipour, F. and Ledoux, H. (2011). Dynamic and Kinetic Delaunay

Triangulation in 2D and 3D: A Survey, Submitted to the Journal of

Geoinformatica.

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2010). A Simplex-Based

Approach to Implement Dimension Independent Spatial Analyses, Journal of

Computer and Geosciences, 36: 1223-1134.

• Karimipour, F., Delavar, M.R. and A.U. Frank, A.U. (2010). n-Dimensional

Volume Calculation for Non-Convex Polytops, 18th edition of the Haskell

Communities and Activities Report, May 2010.

• Karimipour, F. (2009). n-Dimensional Convex Decomposition of Polytopes, 16th

edition of the Haskell Communities and Activities Report, May 2009.

• Bulbul, R., Karimipour, F. and Frank, A.U. (2009). A Simplex-based Dimension

Independent Approach for Convex Decomposition of Nonconvex Polytopes, In

Proceedings of the GeoComputation 2009 Conference, Sydney, Australia,

November 30 - December 2, 2009, pp. Unpaginated.

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2008). A Mathematical Tool to

Extend 2D Spatial Operations to Higher Dimensions, In: O. Gervasi et al. (Eds.)

Proceedings of the International Conference on Computational Science and Its

Applications (ICCSA 2008), Perugia, Italy, June 30 - July 3, 2008, Lecture Notes

in Computer Science (LNCS), Vol. 5072, Springer-Verlag, pp. 153-167.

• Karimipour, F., Frank, A.U. and Delavar, M.R. (2008). An Operation-

Independent Approach to Extend 2D Spatial Operations to 3D and Moving

Objects, In: H. Sammet, C. Shahabi and W.G. Aref (Eds.) Proceedings of the 16th

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (ACM GIS 2008), Irvine, CA, USA, November 5-7, 2008.

Chapter 8. Conclusion and Future Work 107

• Karimipour, F. and Delavar, M.R. (2008). Extension of Spatial Operations for

Multi-dimensional GIS, In: G. Navratil (Ed.) Proceedings of the Colloquium for

Andrew U. Frank's 60th Birthday, Vienna, Austria, June 30 - July 1, 2008, Geoinfo

Series, Vol. 39, pp. 117-123.

• Karimipour, F. (2008). Simplex-Based Spatial Operations, 15th edition of the

Haskell Communities and Activities Report, November 2008.

• Rezayan, H., Frank, A.U., Karimipour, F. and Delavar, M.R. (2007). Temporal

Topological Relationships of Convex Spaces in Space Syntax Theory, In: X. Tang,

Y. Liu, Z. Jixian and W. Kainz (Eds.), Advances in Spatio-Temporal Analysis,

Taylor and Francis, pp. 85-100.

• Karimipour, F., Rezayan, H. and Delavar, M.R. (2006). Formalization of Moving

Objects Spatial Analyses Using Algebraic Structures, In: W. Kuhn and M. Rabaul

(Eds.) Proceedings of Extended Abstracts of GIScience 2006, Münster, Germany,

September 20-23, 2006, IfGI Prints, Vol. 28, pp. 105-111.

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2005). Applications of Category

Theory for Dynamic GIS Analysis, In Digital Proceedings of GIS Planet 2005,

Estoril, Portugal, May 30- June 2, 2005.

• Karimipour, F., Delavar, M.R., Frank, A.U. and Rezayan, H. (2005). Point in

Polygon Analysis for Moving Objects, In: C. Gold (Ed.) Proceedings of the 4th

Workshop on Dynamic & Multi-dimensional GIS (DMGIS 2005), Pontypridd,

Wales, UK, September 5-8, 2005, ISPRS Working Group II/IV, International

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,

pp. 68-72.

Some of the above publications were included in the achievements of the 3D

topography project (3D topography project, 2007) as the contribution of Technical

University of Vienna, which was a partner of the project
1
.

1
 RGI-011, 3D topography is an EU project that aims to enforce a major break-through in the application

of 3D topography and the requirements of such a system such as data acquisition, data model, data

storage, data analyses and database management.

Chapter 8. Conclusion and Future Work 108

8.3 Directions for future work

This research took a step toward deploying abstraction and algebraic structures to solve GI

problems. It showed how to use these mathematical concepts to implement dimension-

independent spatial analyses. The same manner of this research may be used for extension

of other requirements of a multi-dimensional GIS (e.g. data structure, data model, etc.).

The proposed approach of the research was implemented for the Delaunay triangulation

as well as some applications that use this analysis in their definitions. Using the proposed

approach in implementation of further spatial analyses with more complex structures will

evaluate this approach in terms of possibility and efficiency.

One of the major goals of this research was studying spatial processes independent of

objects to which they are applied. It results in a better understanding of changes happen in

our environment. However, the focus of most of current research is on studying spatial

objects and how they are change from a state to another. A main reason is the modeling and

programming environments, which are incapable of direct interacting with processes. This

research introduced functional programming languages as an efficient environment to fill

this gap. Using such functional environments in other GI research may help toward

achieving more efficient models and simulations of the interaction of human with the

environment in space and time.

Appendix 1. The Functional programming Haskell 109

APPENDIX 1. THE FUNCTIONAL PROGRAMMING LANGUAGE

HASKELL

This Appendix introduces the functional programming language Haskell, which has been

employed as the environment to implement the proposed approach of this thesis. The main

concepts and syntax are described to an extent necessary to understand the implementations

provided in the thesis.

A1.1 The Functional programming language Haskell

The Haskell is a functional programming language used to implement the proposed

approach of this thesis. It is named after Haskell B. Curry who was one of the pioneers of

the λ−calculus (Michaelson, 1989). Haskell is purely functional, strongly typed, and uses

lazy evaluation. A variety of Haskell implementations is available; here we use the Glasgow

Haskell Compiler (GHC). This section gives a short introduction to the syntax and

functionality of Haskell. A detailed tutorial can be found in (Hudak et al., 2000; Peyton

Jones and Hughes, 1999; Thompson, 1999).

A1.2. Functions

Functions in Haskell are defined as a series of declarations. As Haskell is typed strict, the

order and types of the input parameter(s) and the output parameter of the function must be

specified first. This is called type signature. The syntax of a type signature is as follow:

function name :: type of input 1 -> … > type of input n -> type of output (A1-1)

Similar to any functional language, Haskell obeys the outer-to-inner reduction rule in

evaluating expressions. This is explicitly shown by removing the parentheses around the

variables and the expression is evaluated from left to right:

y = f(x) → y = f x

y = f(x, y) → y = f x y
(A1-2)

Appendix 1. The Functional programming Haskell 110

For example, the function add that adds two integers is defined as:

add :: Int -> Int -> Int

add x y = x + y

Similar to the mathematics, function composition is possible in Haskell. It improves the

structure of a program and thus its readability. The top-level functions are often specified by

composing a number of functions together. Each part is designed and implemented

separately – following a top-down approach. The output of one function becomes the input

of another function, and so on. Therefore, the order plays an important role. The constraint

by which functions can be composed is given by the signature of the function composition

operator (.):

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(f . g) x = f (g x)

The following example increments it input then multiplies it by 2:

f = ((*2) . (+1)) x

A1.3 Lambda expressions

Anonymous functions can be made using lambda expressions. For example:

\x -> x + 1

is a function with one parameter that adds one to its input. In general:

\pattern1 pattern2 ... patternn -> expression (n>=1)

Lambda expressions are useful in defining in-line functions. For example map is

defined as:

Appendix 1. The Functional programming Haskell 111

map (\xs -> zip xs [1..]) list

A1.4 Data types

Data types classify the variables based on their properties. A major strength of functional

programming languages such as Haskell is that they are typed strict. It means every object

has a particular type and only the operations of that type can be applied on that object. It

assures that the program runs correctly and prevents the conceptual deviation in the results

(Doets and Jan Eijck, 2004).

The following syntax is used in Haskell to assign a data type to a variable:

variable name :: data type (A1-3)

The “::” is read as “has type”. Haskell has several predefined types such as characters

(Char), integers (Int), floating point numbers (Float), Double precision numbers

(Double), rational numbers (Ratio), Booleans (Bool), strings (String), tuples ((a,b)),

and lists ([a]).

‘f’ :: Char

4 :: Int

4.7 :: Float

4.73 :: Double

2 % 3 :: Ratio

True, False :: Bool

“gis” :: String

(4,’f’) :: (Int,Char)

[1,2,3,4] :: [Int]

As we frequently use the lists and their operations, they are more discussed separately

in section A1.5.

User-defined data types are introduced with the keyword data and defined by the

constructors of the type. For example, the data type Point2D in Cartesian space is defined

by applying the constructor function Pt2 to an integer (as the identity of the points) and

two floating-point numbers (as the coordinates of the point):

Appendix 1. The Functional programming Haskell 112

data Point2D = Pt2 ID Float Float

Commonly used types can be assigned a synonym. In Haskell, it is called type

synonyms and created with a type declaration. For example, the type Dimension behaves

as the predefined type Int.

type Dimension = Int

A1.5 Lists

A list is a collection of any number of elements of the same type. For instance, all of the

following collections are lists:

[1, 2, 7, 5, 1, 4] :: [Int]

['a', 'c', 'a', 'd', 'k'] :: [Char]

[(1, 'c'), (5, 'b'), (9, 'k'), (6, 'e')] :: [(Int, Char)]

[True, True, False, True, False, False] :: [Bool]

[[1, 2, 7], [5, 1], [8, 5, 2, 9], [3], [5, 1]] :: [[Int]]

where [a] means a list of values of type ‘a’. The order of elements in a list is

significant: [1, 2, 3] is different from [3, 2, 1], so we can talk about the first, the second, …

and the last elements of a list. The number of occurrences of an element does also matter:

[3] contains one element and [3, 3] contains two, which happen to be the same.

The operator ‘:’, called list constructor, builds a list from an element and a list. Thus:

[1, 2, 7] = 1:[2, 7] = 1:2:[7] = 1:2:7:[]

The example shows that every non-empty list is built from an empty list [] by the

repeated use of the list constructor ‘:’. This characteristic is used to define most of the

functions over list, recursively. Table A1.1 presents a set of manipulating functions defined

over lists and their implementations. A complete list of standard manipulating functions

over lists and their implementations can be found in (Peyton Jones and Hughes, 1999).

Not that Haskell incorporates higher-order functions – functions that use functions as

arguments and return functions as a result. The map function is an instructive example in

Appendix 1. The Functional programming Haskell 113

this respect. It takes a function and applies it to all elements in a list, such as incrementing

the elements in a list as shown in Table A1.1.

Similar to the mathematics, it is possible to generate lists in Haskell using list

comprehension. For example:

{(x, y) | x ∈{1,2,3}, y ∈{4,5}}

[(x,y)| x <- [1,2,3], y <- [4,5]]

{(1,4), (2,4), (3,4), (1,5), (2,5), (3,5)}

Definition in mathematics

Definition in Haskell

Results

(A1-4)

Haskell incorporates polymorphic types – types that are universally quantified in some

way over all types, also called parametric polymorphism. This allows for defining functions

applicable to various types. For example, the function length presented in table A1.1 to

count the number of elements in a list can be applied to a list of integers, characters, etc..

Haskell uses the built-in infinite lists [n ..], [n, m ..] so that [0 ..] = [0, 1, 2,

3, ..]. Regarding the lazy evaluation rule, an element of the list is evaluated only if its

value is needed. One can extract finite portions from an infinite list by applying one of the

predefined functions in Haskell such as head, take, etc.:

head [0,1,2 ..] = 1

take 5 [0,1,2 ..] = [1,2,3,4,5]

Appendix 1. Functional programming and Haskell 114

Table A1.1. Some standard manipulating functions over lists

Function and Syntax Description Example Implementation

length x returns the number of elements in the

list x

length [2,3,4] = 3

length [] = 0

length [] = 0

length (x:xs) = a + length xs

x ++ y concatenates two lists [2,3,4] ++ [4,5] = [2,3,4,4,5]

[2,3,4] ++ [] = [2,3,4]

[] ++ y = y

(x:xs) ++ y = x : (xs+y)

concat x for the list of lists x, puts all elements

together in a single list

concat [[1,2], [2,3,4],

[3,4,5,6], [7,8]] =

[1,2,2,3,4,3,4,5,6,7,8]

concat x = fold (++) [] x

concatMap f x for the list of lists x, applies the function

f to all elements of x and then puts them

together in a single list

concatMap sum [[1,2], [3,4,5],

[5,6]] = [3,12,11]

concatMap f x = concat.map f x

sum x calculates the sum of all elements of the

list x

sum [1,2,3,4] = 10 sum x = fold (+) 0 x

map f x applies the function f to every elements

of the list x

map (+1) [1,2,3] = [2,3,4] map f [] = []

map f (x:xs) = f x : map f xs

filter c x returns all elements of the list x that

fulfill the condition c

filter (>2) [1,2,3,4] = [3,4]

filter (==2) [1,2,3,4] = [2]

filter f, [] = []

filter f, (x:xs) = if f x == true

 then x : filter f xs

 else filter f xs

fold f a x combines the elements of the list x with

the specified function f and the start

value a (e.g., add all elements)

fold (+) 0 [1,2,3,4] = 10

fold (*) 1 [1,2,3,4] = 24

fold f a [] = a

fold f a (x:xs) = fold f (f a x) xs

x \\ y drops elements of the list x that exist in

the list y, i.e., x – y

[1,2,3,4] \\ [3,4,5] = [1,2] x \\ y = [a | a <-x and (not (a <- y))]

sort x sorts the elements of the list x sort [3,4,5,1,2,3,1,5,6,3] =

[1,1,2,3,3,3,4,5,5,6]

sort (x:xs) = sort (filter (<x) xs) ++

 filter (==x) xs ++

 sort (filter (>x) xs)

Appendix 1. Functional Programming Language Haskell 115

A1.6 Pattern matching

Pattern matching is a concept in Haskell to define functions. The left-hand sides of the

equation contain patterns, which are matched against actual parameters during the

application of the function. The process of pattern matching is sequential. If the match of an

equation succeeds, the right-hand side gets evaluated and returned as the result of the

function. If the match fails, the next equation is tried, and so on. If all equations fail, the

result is an error. As an example for pattern matching we use the function length:

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

When applying this function, the patterns [] and (x:xs) are matched against actual

parameters, whereby [] matches only the empty list and (x:xs) matches any list with at

least one argument — x being the first argument and xs the rest of the list. In general,

patterns can be literal values, variables, wildcards, tuples, and constructors (Thompson,

1999).

A1.7 Classes and instances

A typical feature of Haskell is another type of polymorphism, called ad hoc polymorphism

or overloading. Overloaded functions can be used for a variety of types – with different

definitions being used for different types. Overloading therefore allows for the reuse of

existing function names. In Haskell, classes are a mechanism for assigning types to

overloaded functions.

A class is a collection of types over which a set of functions are defined. For example,

the equality class Eq contains a set of types over which the equality operator (==) is

defined:

class Eq a where

(==) :: a -> a -> Bool

Appendix 1. Functional Programming Language Haskell 116

One then needs to define the members of the class – i.e., which types are instances of

the class – and the actual behavior of the functions on each of these types. In other words,

the class specifies the functions and their signature. Instances, however, define the functions

applications. For example, following we define a 2D point as an instance of class Eq:

instance Eq Point where

 (==) (Point2D x1 y1) (Point2D x2 y2) = (x1==x2) && (y1==y2)

 (==) (Point3D x1 y1 z1) (Point3D x2 y2 z2) =

(x1==x2) && (y1==y2) && (z1==z2)

Appendix 2. The Haskell Code 117

APPENDIX 2. THE HASKELL CODE

This Appendix contains the complete code of the implementations of this thesis in Haskell

programming language. Different modules of the program are presented.

Lifting

-- *** Definition of the required functors (Listing and Moving functors)

module Lifting where

import Prelude

-- Listing functors

-- Class "Functor" to lift operations with different number of operands

class Lifting f a where

 lift0 :: a -> f a

 lift1 :: (a -> b) -> f a -> f b

 lift2 :: (a -> b -> c) -> f a -> f b -> f c

 lift3 :: (a -> b-> c-> d) -> f a -> f b -> f c -> f d

-- Moving liftings

-- Type for changing (moving) values

type Instant = Float

type Changing v = Instant -> v

Appendix 2. The Haskell Code 118

-- Liftings to lift operations with static values to operations with

-- changing values

instance Lifting ((->) Instant) a where

 lift0 a = \t -> a

 lift1 op a = \t -> op (a t)

 lift2 op a b = \t -> op (a t) (b t)

 lift3 op a b c = \t -> op (a t) (b t) (c t)

-- Convert a list of changing values to a changing list of values

lc2cl :: [Changing a] -> Changing [a]

lc2cl ma = \t -> lift1 (\a -> a t) ma

-- Liftings to lift operations with list(s) of changing values as operand(s)

-- Lift of a function with no operands (constant value)

lift0L a = lc2cl a

-- Lift of a function with one operand

lift1L op a = lift1 op (lc2cl a)

-- Lift of a function with two operands

lift2L op a b = lift2 op (lc2cl a) b -- 1st operand is list

lift2LL op a b = lift2 op (lc2cl a) (lc2cl b) -- both operands are list

-- Lift of a function with three operands

lift3L op a b c = lift3 op (lc2cl a) b c -- 1st operand is list

lift3LL op a b c = lift3 op (lc2cl a) (lc2cl b) c -- 1st and 2nd operands are list

lift3LLL op a b c = lift3 op (lc2cl a) (lc2cl b) (lc2cl c) -- all operands are list

Appendix 2. The Haskell Code 119

Ring

-- *** Definition of the class "Ring" contains primitive operations on numbers

module Ring where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import Lifting

infixl 6 +, -

infixl 7 *

-- Definition of the class "Ring" for primitive operations on individual values

class Ring q where

 (+), (-), (*) :: q -> q -> q

 neg, sq :: q -> q

 sum :: [q] -> q

 sq a = a * a

 a - b = a + (neg b)

 sum ls = foldl (+) zero ls

-- Instance of the class "Ring" for Integer values

instance Ring Int where

 neg = Prelude.negate

 a + b = a Prelude.+ b

 a * b = a Prelude.* b

-- Instance of the class "Ring" for Floating values

instance Ring Float where

 neg = Prelude.negate

 a + b = a Prelude.+ b

 a * b = a Prelude.* b

Appendix 2. The Haskell Code 120

-- Lifting operations of the class "Ring" from individuals to lists

instance (Ring a) => Ring [a] where

 neg = lift1 neg

 (+) = lift2 (+)

 (*) = lift2 (*)

-- Lifting operations of the class "Ring" from static to changing values

instance Ring a => Ring (Changing a) where

 neg = lift1 neg

 (+) = lift2 (+)

 (*) = lift2 (*)

Appendix 2. The Haskell Code 121

Vector

-- *** Definition of n-dimensional points with some additional

-- *** operations for 2D and 3D points

module Vector where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import Lifting

import Ring

import Samples

import MyList

-- Definition of an n-dimensional point as a list of numbers

type Pt a = [a]

-- Types for static and moving points

type StaticPt a = Pt a

type MovingPt a = Changing (Pt a)

--

-- Definition of square distance between two n-dimensional points

-- and some operations for 2D and 3D points (x, y, z, xy, xyz)

class Ring c => Points p c where

 sqDist :: p -> p -> c

-- Instance of the class "Points" for n-dimensional static points

instance Ring a => Points (StaticPt a) a where

 sqDist p1 p2 = sum.sq $ (p1 - p2)

-- Lifting operations of the class "Points" from static to changing values

instance Ring a => Points (MovingPt a) (Changing a) where

 sqDist = lift2 sqDist

Appendix 2. The Haskell Code 122

--

-- Convert a list of coordinates to a list of different elements

-- [[x1, y1, ...], [x2, y2, ...], ...] ==> [[x1, x2, ...], [y1, y2, ...], ...]

coord2List :: [Pt a] -> [[a]]

coord2List a = init.c2l $ a where

 c2l ([]:_) = [[]]

 c2l ps = concatMap headL ps: c2l (map tail ps)

 headL a = [head a]

-- Convert a list of different elements to a list of coordinates

-- [[x1, x2, ...], [y1, y2, ...], ...] ==> [[x1, y1, ...], [x2, y2, ...], ...]

list2Coord :: [[a]] -> [Pt a]

list2Coord ([]:_) = []

list2Coord l = e1 : list2Coord e2

 where

 e1 = map head l

 e2 = map tail l

-- Type for points with Integer, Floating and Rational elements

type PtI = StaticPt Int

type PtF = StaticPt Float

-- Definition of the class "PointTests" contains some tests on points

class PointTests p bool where

 cw :: [p] -> p -> bool

 ccw :: [p] -> p -> bool

 inSphere :: [p] -> p -> bool

-- Instance of the class "PointTests" for n-dimensional static points

instance PointTests (StaticPt Float) Bool where

 cw ps p = (zero) <= (det $ map tr ps)

 where

 tr x = (x - p)

 ccw ps p = not.(cw ps) $ p

 -- Note: ps must be in cw order

 inSphere ps p = (zero) >= (det $ map tr allPts)

 where

 tr x = x ++ [sum.map sq $ x] ++ [one]

 allPts = p:ps

Appendix 2. The Haskell Code 123

-- Lifting operations of the class "PointTests" to n-dimensional moving points

instance PointTests (MovingPt Float) (Changing Bool) where

 ccw = lift2L ccw

 cw = lift2L cw

 inSphere = lift2L inSphere

Appendix 2. The Haskell Code 124

Samples

-- *** Some sample 2D static, 2D moving, 3D static and 3D moving points

-- *** (Elements of the moving points are continuous functions of time)

module Samples where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import Lifting

import Ring

import Point

-- 2D static points

pt21, pt22, pt23, pt24, pt25, pt26, pt27, pt28, pt29, pt210, pt211,

pt212, pt213, pt214, pt215, pt216, pt217, pt218, pt219, pt220 :: StaticPt Float

pt21 = [3, 4]

pt22 = [1, 3]

pt23 = [4, 1]

pt24 = [8, 1]

pt25 = [7, 2]

pt26 = [9, 2]

pt27 = [5, 3]

pt28 = [8, 4]

pt29 = [6, 3]

pt210 = [5, 1]

pt211 = [4, 4]

pt212 = [6, 7]

pt213 = [6, 6]

pt214 = [8, 6]

pt215 = [3, 5]

pt216 = [4, 0]

pt217 = [7, 1]

pt218 = [2, 3]

pt219 = [3, 6]

pt220 = [9, 4]

Appendix 2. The Haskell Code 125

pt2s = [pt21, pt22, pt23, pt24, pt25, pt26, pt27, pt28, pt29, pt210,

pt211, pt212, pt213, pt214, pt215, pt216, pt217, pt218, pt219, pt220]

-- 2D moving points

mpt21, mpt22, mpt23, mpt24, mpt25, mpt26, mpt27, mpt28, mpt29,

mpt210, mpt211, mpt212, mpt213, mpt214, mpt215, mpt216, mpt217, mpt218,

mpt219, mpt220 :: (MovingPt Float)

mpt21 t = [(7-5*sin t), (2+5*cos t)]

mpt22 t = [(5-3*sin t), (3-5*cos t)]

mpt23 t = [(4-3*cos t), (1-1*sin t)]

mpt24 t = [(2+7*cos t), (3+3*cos t)]

mpt25 t = [(3+9*sin t), (4+1*cos t)]

mpt26 t = [(6+1*sin t), (3+2*cos t)]

mpt27 t = [(1+1*sin t), (3-1*cos t)]

mpt28 t = [(8+6*cos t), (4-1*sin t)]

mpt29 t = [(9+4*sin t), (1-3*cos t)]

mpt210 t = [(5-3*sin t), (1+4*cos t)]

mpt211 t = [(3+1*sin t), (4-1*cos t)]

mpt212 t = [(6-2*sin t), (7-5*cos t)]

mpt213 t = [(6-5*cos t), (3+1*sin t)]

mpt214 t = [(8+6*cos t), (6-9*cos t)]

mpt215 t = [(3-3*sin t), (5+2*cos t)]

mpt216 t = [(4+2*sin t), (0-2*cos t)]

mpt217 t = [(7+2*sin t), (1-2*cos t)]

mpt218 t = [(9-3*cos t), (1+7*sin t)]

mpt219 t = [(3+5*sin t), (6-4*cos t)]

mpt220 t = [(4-2*sin t), (6+1*cos t)]

mpt2s = [mpt21, mpt22, mpt23, mpt24, mpt25, mpt26, mpt27, mpt28,

mpt29, mpt210, mpt211, mpt212, mpt213, mpt214, mpt215, mpt216, mpt217,

mpt218, mpt219, mpt220]

-- 3D static points

pt31, pt32, pt33, pt34, pt35, pt36, pt37, pt38, pt39, pt310, pt311,

pt312, pt313, pt314, pt315, pt316, pt317, pt318, pt319, pt320 :: StaticPt Float

pt31 = [1, 2, 1]

pt32 = [6, 2, 1]

pt33 = [4, 2, 5]

Appendix 2. The Haskell Code 126

pt34 = [4, 5, 6]

pt35 = [3, 3, 2]

pt36 = [3, 1, 2]

pt37 = [1, 3, 4]

pt38 = [8, 4, 2]

pt39 = [9, 1, 4]

pt310 = [4, 5, 4]

pt311 = [8, 6, 7]

pt312 = [5, 4, 3]

pt313 = [9, 2, 6]

pt314 = [5, 6, 8]

pt315 = [3, 1, 4]

pt316 = [2, 8, 6]

pt317 = [8, 4, 2]

pt318 = [1, 6, 8]

pt319 = [9, 3, 9]

pt320 = [9, 1, 1]

pt3s = [pt31, pt32, pt33, pt34, pt35, pt36, pt37, pt38, pt39, pt310,

pt311, pt312, pt313, pt314, pt315, pt316, pt317, pt318, pt319, pt320]

-- 3D moving points

mpt31, mpt32, mpt33, mpt34, mpt35, mpt36, mpt37, mpt38, mpt39 :: (MovingPt Float)

mpt31 t = [(7-5*sin t), (2+5*cos t), (1+5*sin t)]

mpt32 t = [(5-3*cos t), (3-5*sin t), (3+4*cos t)]

mpt33 t = [(4-3*sin t), (1-1*cos t), (1-2*cos t)]

mpt34 t = [(2+7*cos t), (3+3*sin t), (3+4*sin t)]

mpt35 t = [(3+9*cos t), (4+1*sin t), (2-2*cos t)]

mpt36 t = [(6+1*sin t), (3+2*cos t), (5-3*sin t)]

mpt37 t = [(1+1*cos t), (3-1*sin t), (2+3*sin t)]

mpt38 t = [(8+6*sin t), (4-1*cos t), (4+2*cos t)]

mpt39 t = [(9+4*cos t), (1-3*sin t), (3-2*sin t)]

mpt3s = [mpt31, mpt32, mpt33, mpt34, mpt35, mpt36, mpt37, mpt38, mpt39]

Appendix 2. The Haskell Code 127

n-Simplexes

-- *** Definition of n-dimensional points and n-simplexes based on

-- *** list data structure and then spatial operations as list

-- *** manipulating functions

module CnSimplex where

import List (sort, nub, (\\), inits, tails, union)

import Random

-- Data

type for points, n-simplexes and their operations

--

-- Define a vertex as a list of Floating numbers

type Vertex = [Float]

-- Define a n-simplex as a list of vertexes

type Simplex = [Vertex]

-- Determine the dimension of a point

ptDim :: Vertex -> Int

ptDim = length

-- Determine the dimension of a n-simplex

simpDim :: Simplex -> Int

simpDim = length

-- Test if a list of points is a valid n-simplex

isSimplex :: [Vertex] -> Bool

isSimplex vs = (length vs == 1 + ptDim (head vs)) &&

 (allEq.map ptDim $ vs)

 where

 allEq x = all (==(head x)) x

-- Determine the orientation of a n-simplex "s" using the sign of

-- the determinant of area, volume, ...

getOrn :: Simplex -> Bool

getOrn s = (det $ map (1:) s) > 0

--

-- Data type for canonical n-simplexes and their primary operations

--

Canonical representation of a n-simplex

type CnSimplex = (Simplex, Bool)

-- Change the canonical representation of a n-simplex "s" to

-- its primary representation

simp2cnSimp :: Simplex -> CnSimplex

simp2cnSimp s = (sort s, getOrn s)

Appendix 2. The Haskell Code 128

-- Change the primary representation of a n-simplex to

-- its canonical representation

cnSimp2simp :: CnSimplex -> Simplex

cnSimp2simp ([v], b) = [v]

cnSimp2simp (vs , b) = if b then vs else swap vs

swap [] = []

swap [v] = [v]

swap (v1:v2:vs) = v2:v1:vs

-- Test if an input is a valid canonical n-simplex

isCnSimplex :: ([Vertex], Bool) -> Bool

isCnSimplex (vs, b) = isSimplex vs

-- Get the vertexes of a canonical n-simplex

vertexes :: CnSimplex -> Simplex

vertexes = fst

-- Get the orientation of a canonical n-simplex

orn :: CnSimplex -> Bool

orn = snd

-- Determine the dimension of a canonical n-simplex

cnSimpDim :: CnSimplex -> Int

cnSimpDim = length.vertexes

-- Change the orientation of a canonical n-simplex

changeOrn :: CnSimplex -> CnSimplex

changeOrn (vs, b) = (vs, not b)

-- Check if two canonical n-simplexes "cs1" and "cs2"

-- have the same vertexes

eqVs :: CnSimplex -> CnSimplex -> Bool

eqVs cs1 cs2 = vertexes cs1 == vertexes cs2

-- Check if two canonical n-simplexes "cs1" and "cs2"

-- have the same orientation

eqOrn :: CnSimplex -> CnSimplex -> Bool

eqOrn cs1 cs2 = orn cs1 == orn cs2

-- Check if two n-simplexes "cs1" and "cs2" are equal

eqSimps :: CnSimplex -> CnSimplex -> Bool

eqSimps cs1 cs2 = (eqOrn cs1 cs2) &&

 (eqVs cs1 cs2)

-- For a n-simplex "cs", give the faces of dimension "n"

faceN :: CnSimplex -> Int -> [CnSimplex]

faceN cs n = map simp2cnSimp.(flip combine n).vertexes $ cs

-- Give all faces of a n-simplex "cs"

faces :: CnSimplex -> [CnSimplex]

faces cs = concatMap (faceN cs) [1.. n]

 where

 n = cnSimpDim cs

Appendix 2. The Haskell Code 129

-- Extract the boundary of a canonical n-simplex

boundary :: CnSimplex -> [CnSimplex]

boundary (vs , b) = zip (removeEach vs) (cycle [b, not b])

--

Required operations on canonical n-simplexes

-- Note: Hereafter, we mean 'canonical n-simplex'

-- by n-simplex

-- Add

a vertex "v" to a n-simplex "cs"

addVertex :: Vertex -> CnSimplex -> CnSimplex

addVertex v cs = simp2cnSimp.(v:).cnSimp2simp $ cs

-- Extract the bordering (n-1)-simplexes from a list of connected n-

simplexes

border :: [CnSimplex] -> [CnSimplex]

border = foldr op [] . concatMap boundary

 where

 op x [] = [x]

 op x (y:xs) = if eqVs x y then xs else y:op x xs

-- Join two lists of n-simplexe

join :: [CnSimplex] -> [CnSimplex] -> [CnSimplex]

join = (++)

-- Determine the position of an n-dimensional point "pt" resepect to

-- an (n-1)-simplex "cs"

ccw, cw :: CnSimplex -> Vertex -> Bool

ccw cs pt = orn.(addVertex pt) $ cs

cw cs pt = not (ccw cs pt)

-- Change the order of the vertexes of a n-simplex "cs" such that it

-- makes a ccw order respect to the vertexes of a given list of

-- n-simplexes "css"

mkCCWsimp :: [CnSimplex] -> CnSimplex -> CnSimplex

mkCCWsimp css cs = if ccw cs v then cs else changeOrn cs

 where

 v = aVertexIn css cs

-- Find a vertex in a list of n-simplexes "css" which is not a

-- vertex of a given n-simplex "cs"

aVertexIn :: [CnSimplex] -> CnSimplex -> Vertex

aVertexIn css cs = head ((nub (concatMap vertexes css)) \\ (vertexes cs))

-- Change the order of the vertexes of a n-simplex "css" such that

-- it makes a ccw order respect to the vertexes of other

-- n-simplexes in another list

mkCCWsimps :: [CnSimplex] -> [CnSimplex]

mkCCWsimps css = map (mkCCWsimp css) css

-- Determine the (n-1)-simplexes in a list "css" that make cw order

-- respect to a given vertex "v"

cwSimps :: [CnSimplex] -> Vertex -> [CnSimplex]

cwSimps css v = filter ((flip cw v).(mkCCWsimp css)) css

Appendix 2. The Haskell Code 130

-- Determine the vertexes in a list of vertexes "vs" that make cw

-- order respect to a given (n-1)-simplex "cs"

cwVerts :: [Vertex] -> CnSimplex -> [Vertex]

cwVerts vs cs = filter (cw cs) vs

Appendix 2. The Haskell Code 131

MyList

-- *** Some new operations on lists

module MyList where

import List (elemIndices, (\\), inits, tails)

-- Intersection of two lists "l1" and "l2"

intersect :: Eq a => [a] -> [a] -> [a]

intersect l1 l2 = [t | t <- l1, elem t l2]

-- Drop the elements of a list "l1" which are in a list "l2" (l1 - l2)

dropElems :: (Eq a) => [a] -> [a] -> [a]

dropElems l1 l2 = [x | x <- l1, notElem x l2]

-- Drop the elements of a list "l" which have a given value "v"

dropElem :: (Eq a) => [a] -> a -> [a]

dropElem l v = dropElems l [v]

-- Drop the Nth element of a list "l"

dropNthElem :: Int -> [a] -> [a]

dropNthElem n l = l1 ++ tail l2

 where

 (l1, l2) = splitAt n l

-- Check if the list "l1" is a subset of the list "l2"

isSubset :: Eq a => [a] -> [a] -> Bool

isSubset l1 l2 = null (l1 \\ l2)

-- Replace a given value "v1" with "v2" in a list "l"

replace :: (Eq a) => a -> a -> [a] -> [a]

replace v1 v2 l = map (rep v1 v2) l

 where

 rep v1 v2 v = if (v == v1) then v2 else v

Appendix 2. The Haskell Code 132

-- Split a list "l" from the first appearance of a given value "v"

splitAtElem :: Eq a => a -> [a] -> ([a], [a])

splitAtElem v l = (flip splitAt l).head.(elemIndices v) $ l

-- Group all elements of a list respect a given "eq" function

groupAllBy :: Eq a => (a -> a -> Bool) -> [a] -> [[a]]

groupAllBy _ [] = []

groupAllBy eq (x:xs) = (x:ys) : groupAllBy eq zs

 where

 ys = [t | t <- xs, eq t x]

 zs = xs \\ ys

-- Group all elements of a list with (==) definition for equality

groupAll :: Eq a => [a] -> [[a]]

groupAll = groupAllBy (==)

-- Average of a numerical list "l"

ave :: (Fractional a) => [a] -> a

ave l = (sum l) / (fromIntegral.length $ l)

-- Repaet elements of a list "l"

repeatList :: [a] -> [a]

repeatList l = concat.repeat $ l

-- For two lists "l1" and "l2", find elements of "l2" whose corresponding

-- element in "l1" satisfies the condition "cond"

findByCond :: [a] -> [b] -> (a -> Bool) -> [b]

findByCond l1 l2 cond = map snd.(filter (cond.fst)) $ (zip l1 l2)

-- Determinant calculation

det :: (Num a) => [[a]] -> a

det [] = 1

det m = sum (alternate

 (zipWith (*) (map head m) (map det (removeEach (map tail m)))))

Appendix 2. The Haskell Code 133

alternate :: (Num a) => [a] -> [a]

alternate = zipWith id (cycle [id, negate])

removeEach :: [a] -> [[a]]

removeEach xs = zipWith (++) (inits xs) (tail (tails xs))

--

-- Code for permutation

--

(.^) = (.) . (.) -- (.^) uf bf x y = uf (bf x y)

(.^^) = (.) . (.) . (.) -- (.^^) uf tf x y z = uf (tf x y z)

(^.) = (.) . flip (.) -- (^.) f g = (. f) . g

shuffle :: [a] -> [[a]]

shuffle [] = [[]]

shuffle (x:xs) = concatMap (insertAll x) (shuffle xs)

 where

 insertAll :: a -> [a] -> [[a]]

 insertAll e [] = [[e]]

 insertAll e (x:xs) = (e:x:xs) : map (x:) (insertAll e xs)

combine, permute :: [a] -> Int -> [[a]]

combine _ r | r < 0 = error "Zero or more elements should be extracted."

combine _ 0 = [[]]

combine [] _ = []

combine (x:xs) r = map (x:) (combine xs (r - 1)) ++ combine xs r

permute = concatMap shuffle .^ combine

Appendix 2. The Haskell Code 134

Polyhedron

-- *** Definition of a type for polyhedron and some operations on it

module Polyhedron where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import List ((\\))

import Lifting

import Ring

import Vector

import MyList

-- Definition of a type for polyhedron

type PH = [PtF]

-- Dimension of a polyhedron

dimPH :: PH -> Int

dimPH = length

-- Check if two polyhedrons are equal (i.e., consists of the same points)

isEqPH :: PH -> PH -> Bool

isEqPH ph1 ph2 = null (ph1 \\ ph2)

-- Make the points of a polyhedron in a cw order

mkCW :: PH -> PH

mkCW pts = [pt] ++ mkCW2 pt pts'

 where

 (pt, pts') = (head pts, tail pts)

-- Make the points of a polyhedron in cw order respect to a given point "pt"

mkCW2 :: PtF -> PH -> PH

mkCW2 pt ph@(p1:p2:ps) = if cw ph pt then ph else (p2:p1:ps)

Appendix 2. The Haskell Code 135

-- Make cw sub-polyhedrons of a given polyhedron

subCWphs :: PH -> [PH]

subCWphs ph = map (mkCWph ph) ph

 where

 mkCWph l p = takeAcwPH (pairPtPHs l p)

 takeAcwPH (p, phs) = head.filter (flip cw p).shuffle $ phs

 pairPtPHs l p = (p, dropElem l p)

-- Make sub-polyhedrons of a given polyhedron "ph"

subPHs :: PH -> [PH]

subPHs ph = map (dropElem ph) ph

-- Extract the extreme sub-polyhedrons from a list of connected polyhedrons

borderPHs :: [PH] -> [PH]

borderPHs = concat.filter (\x -> length x == 1).(groupAllBy isEqPH).concat.map subPHs

-- Test if a point is in a polyhedron

ptInPH :: PtF -> [PH] -> Bool

ptInPH p ch = null.filter (flip ccw p) $ ch

Appendix 2. The Haskell Code 136

PolyhedronDS

-- *** A data structure to store polyhedrones and some operations on them

module PolyhedronDS where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import List (elemIndices)

import Lifting

import Ring

import Vector

import MyList

import Polyhedron

-- A data structure that stores the information of a polyhedron

-- PHds = (id, [points], [id of the adjacent polyhedron respect to points]

type PHds a = (Int, [Pt a], [Int])

type PHdsF = PHds Float

--

Operations on PHds

--

-- Get the id of a polyhedron

getPHid :: PHds a -> Int

getPHid (idPH, _, _) = idPH

-- Get the points of a polyhedron

getPts :: PHds a -> [Pt a]

getPts (_, pts, _) = pts

-- Get the adjacent polyhedrons of a given polyhedron

getAdjs :: PHds a -> [Int]

getAdjs (_, _, ths) = ths

Appendix 2. The Haskell Code 137

-- Get the information of a polyhedron given an id and a PHds

getPHinfo :: Int -> [PHdsF] -> PHdsF

getPHinfo idPH ds = ds!!r

 where

 r = findPHbyID idPH ds

-- Update the information of a polyhedron in a given data structure

updatePHds :: PHdsF -> [PHdsF] -> [PHdsF]

updatePHds dsPH ds = dsNew

 where

 dsNew = if (rPH == (-2))

 then ds ++ [dsPH]

 else ds' ++ [dsPH] ++ (tail ds'')

 (ds', ds'') = splitAt rPH ds

 rPH = findPHbyID idPH ds

 idPH = getPHid dsPH

-- Update the information of a list of polyhedrons in a given data structure

updatePHdss :: [PHdsF] -> [PHdsF] -> [PHdsF]

updatePHdss [] ds = ds

updatePHdss (d:dd) ds = updatePHdss dd dsNew

 where

 dsNew = updatePHds d ds

-- Update the adjacency information of a list of polyhedrons

updateAdjcency :: ([PHdsF], [PHdsF]) -> [PHdsF]

updateAdjcency (ds0, ds) = dsNew

 where

 ids = map getPHid ds0

 pts = map getPts ds0

 adjs = map (findAdjsofPH ds) ds0

 dsNew = zip3 ids pts adjs

Appendix 2. The Haskell Code 138

-- Find the adjacent polyhedrons of a given polyhedron

findAdjsofPH :: [PHdsF] -> PHdsF -> [Int]

findAdjsofPH ds ds0 = map (findAdjofPH ds idPH) phs

 where

 idPH = getPHid ds0

 ptsPH = getPts ds0

 phs = concatMap oppPH ptsPH

 oppPH = (\x -> [x]).(dropElem ptsPH)

-- Find the adjacent polyhedrons of a given polyhedron

findAdjofPH :: [PHdsF] -> Int -> PH -> Int

findAdjofPH ds n ph = if null adjPH then (-1) else getPHid.head $ adjPH

 where

 adjPH = filter (isAdjPH ph n) ds

 isAdjPH ps i th = ((/= i).getPHid $ th) && ((isSubset ps).getPts $ th)

 isSubset xs ls = all (== True).map (flip elem ls) $ xs

-- Change the adjacency information of a given polyhedron in a data structure

changeAdjPH :: [PHdsF] -> Int -> Int -> Int -> [PHdsF]

changeAdjPH ds t adjTOld adjTNew = dsNew

 where

 dsNew = if (t == -1) then ds else updatePHds dsTnew ds

 dsTnew = (t, pts, adjsTnew)

 pts = getPts dsT

 adjsTnew = replace adjTOld adjTNew adjsT

 adjsT = getAdjs dsT

 dsT = getPHinfo t ds

-- Find the row number of a polyhedron in a given data structure

findPHbyID :: Int -> [PHdsF] -> Int

findPHbyID idPH ds = if null r then (-2) else head r

 where

 r = (elemIndices idPH).map getPHid $ ds

Appendix 2. The Haskell Code 139

-- Find the opposite polyhedron to a point in a given data structure

findOppPH :: Eq a => PHds a -> Pt a -> Int

findOppPH ds p = head (findByCond pts adj (==p))

 where

 pts = getPts ds

 adj = getAdjs ds

-- Find the opposite point to a polyhedron in a given data structure

findOppPt :: PHds a -> Int -> Pt a

findOppPt ds n = head (findByCond adj pts (==n))

 where

 pts = getPts ds

 adj = getAdjs ds

-- Make a single list of all edges of a polyhedron

mkEdgesOfPHs :: [PHdsF] -> PH -> [[PH]]

mkEdgesOfPHs ds ph = map edgesOfPH ds

 where

 edgesOfPH d = combine (thPts d) 2

 thPts d = filter isIntPt (getPts d)

 isIntPt x = elem x ph

-- Make a single list of all edges of a list of polyhedrons

mkListofAllEdges :: [PHdsF] -> PH -> [PH]

mkListofAllEdges ds ph = concat.(mkEdgesOfPHs ds) $ ph

-- Make a single list of all sub-polyhedrons of a polyhedron

mkSubPHs :: [PHdsF] -> PH -> [PH]

mkSubPHs ds ph = innerSimps ds

 where

 innerSimps d = filter isInnerSimp (map getPts d)

 isInnerSimp x = all (==True) (map (elem' ph) x)

 elem' a b = elem b a

-- Make a single list of all sub-polyhedrons of a list of polyhedrons

mkListofAllSubPHs :: [PHdsF] -> PH -> [PH]

mkListofAllSubPHs ds ph = mkSubPHs ds ph

Appendix 2. The Haskell Code 140

Delaunay

-- *** Delaunay Triangulation for n-dimensional static and moving points

-- *** (Bowyer/Watson algorithm)

module Delaunay where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import List (sort, nub, (\\))

import Lifting

import Ring

import Vector

import Samples

import MyList

import Polyhedron

import PolyhedronDS

-- Delaunay polyhedronization for a given list of points and a data

-- structure (initially []). The output is the data structure

delaunay :: [PtF] -> [PHdsF] -> [PHdsF]

delaunay [] ds = ds

delaunay ps [] = delaunay ps (boundingPH ps)

delaunay (p:ps) ds = delaunay ps dsNew

 where

 container = walk p ds

 dsNew = if container == (-1)then ds else insert p ds container

-- Find the polyhedron that contains the inserted point

walk :: PtF -> [PHdsF] -> Int

walk p [] = -1

walk p (t:ts) = if ptInPH' p t then getPHid t else walk p ts'

 where

 idCCWph = head (findByCond (ptRelPH p t) (getAdjs t) (== False))

 rowCCWph = findPHbyID idCCWph ts

 (ts1, ts2) = splitAt rowCCWph ts

 ts' = ts2 ++ ts1

Appendix 2. The Haskell Code 141

-- Insert the inserted point in the data structure

insert :: PtF -> [PHdsF] -> Int -> [PHdsF]

insert p ds container = dsNew

 where

 dsNew = updatePHdss dsAdjAfterUpdateAdj dsHoleAfterUpdateAdj

 dsAdjAfterUpdateAdj = updateAdjcency (dsAdjs, dsHoleAfterUpdateAdj)

 dsHoleAfterUpdateAdj = updatePHdss dsHole ds

 dsHole = updateAdjcency (dsHole0, dsUpToAdjs)

 (dsHole0, dsUpToAdjs) = fill (ds, deletedIDs, borderPHs, idBorderPHs, p, [])

 (deletedIDs, borderPHs, idBorderPHs) =

 mkHole (ds, p, [container], [], [])

 dsAdjs = map (flip getPHinfo ds) idBorderPHs

--

-- Initial bounding polyhedron

--

-- Create an initial bounding polyhedron that contains all the points

boundingPH :: [PtF] -> [PHdsF]

boundingPH pts = [(1, boundingPts, replicate (dim+1) (-1))]

 where

 boundingPts = ([p1, p2] ++ ps)

 p1 = minimum' firstPt : map minimum' restPts

 p2 = maximum' firstPt : map minimum' restPts

 ps = tail.map (mkAboundingPt coorList) $ coorList

 ([firstPt], restPts) = splitAt 1 coorList

 coorList = coord2List pts

 dim = length.head $ pts

-- Make a bounding point

-- (average of the previouse elements ++ max of the current element

-- ++ min of the next element)

mkAboundingPt :: [[Float]] -> [Float] -> [Float]

mkAboundingPt l p = map ave l1 ++ [maximum' l2] ++ map minimum' l3

 where

 (l1, l2, l3) = (fst s, head.snd $ s, tail.snd $ s)

 s = splitAtElem p l

Appendix 2. The Haskell Code 142

-- Expand the minimum and maximum respect

minimum' l = minimum l - scale * rangeL l

maximum' l = maximum l + scale * rangeL l

rangeL l = abs (maximum l - minimum l)

scale = 10

--

-- Walk

--

-- Position of a point respect to all ccw polyhedrons of a polyhedron

ptRelPH :: PtF -> PHdsF -> [Bool]

ptRelPH p ds = map (flip cw p) s

 where

 s = subCWphs (getPts ds)

-- Test if a point is inside a polyhedron

ptInPH' :: PtF -> PHdsF -> Bool

ptInPH' p ds = and.ptRelPH p $ ds

--

-- Insertion

--

-- Delete all the polyhedrons that violate the Delaunay condition

mkHole (_, _, [], deletedIDs, borderPHs) =

 (sortedDeletedIDs, borderPHs, idBorderPHs)

 where

 idBorderPHs = nub ([t | (t, _) <- borderPHs, t /= (-1)])

 sortedDeletedIDs = sort deletedIDs

mkHole (ds, p, (t:ts), deletedIDs, borderPHs) =

 mkHole (ds, p, tsNew, deletedIDsNew, borderPHsNew)

 where

 dsT = getPHinfo t ds

 pts = getPts dsT

 isInSphere = inSphere (mkCW pts) p

Appendix 2. The Haskell Code 143

 (tsNew, deletedIDsNew, borderPHsNew) =

 if not isInSphere

 then (ts, deletedIDs, borderPHs)

 else (tsNew2, deletedIDsNew2, borderPHsNew2)

 deletedIDsNew2 = deletedIDs ++ [t]

 adjs = getAdjs dsT

 idBorderPHs = dropElems adjs (deletedIDsNew2)

 idPHsToCheck = dropElems idBorderPHs ((-1):ts)

 tsNew2 = ts ++ idPHsToCheck

 borderPHsNew2 = (dropBorder borderPHs t) ++ newBorderPHs

 newBorderPHs = zip idBorderPHs cph

 cph = if all (==(-1)) idBorderPHs

 then combine pts dim

 else map findPH idBorderPHs

 findPH t = if t == (-1)

 then dropElem pts oppPt

 else intersect pts.getPts.flip getPHinfo ds $ t

 oppPt = findOppPt dsT (-1)

 dropBorder l n = [(t, phs) | (t, phs) <- l, t /=n]

 dim = (length pts) - 1

-- Fill the hole created in the mkHole process

fill (ds, _, [], idBorderPHs, _, dsHole) =

 (dsHole, dsUpToAdjs)

 where

 dsUpToAdjs = dsHole ++ dsAdjs

 dsAdjs = map (flip getPHinfo ds) idBorderPHs

Appendix 2. The Haskell Code 144

fill (ds, deletedIDs, (ph:phs), idBorderPHs, p, dsHole) =

 fill (ds, deletedIDsNew, phs, idBorderPHs, p, dsHoleNew)

 where

 (insPH_id, deletedIDsNew) = if null deletedIDs

 then (lastId+1, [])

 else (head deletedIDs, tail deletedIDs)

 lastId = maximum (map getPHid (dsHole ++ ds))

 insPH_pts = mkCW.(p:).snd $ ph

 dsHoleNew = dsHole ++ [(insPH_id, insPH_pts, [])]

-- Delaunay polyhedronization for a given list of points and a data

-- structure (initially []). The output is the edges of the polyhedrons

delaunay_Edges :: [PtF] -> [[PtF]]

delaunay_Edges pts = mkListofAllEdges (delaunay pts []) pts

-- Delaunay polyhedronization for a given list of points and a data

-- structure (initially []). The output is the polyhedrons

delaunay_PHs :: [PtF] -> [PH]

delaunay_PHs pts = mkListofAllSubPHs (delaunay pts []) pts

-- Definition of the class "Delaunay"

class Delaunay p1 p2 where

 delaunayPH :: p1 -> p2

-- Instance of the class "Deluaney" for n-dimensional static points

instance Delaunay [PtF] [PH] where

 delaunayPH = delaunay_Edges

-- Lifting the class "Deluaney" for n-dimensional moving points

instance Delaunay [Changing PtF] (Changing [PH]) where

 delaunayPH = lift1L delaunayPH

Appendix 2. The Haskell Code 145

Voronoi

-- *** Create the Voronoi Diagram of a list of points

-- *** using their Delaunay Triangulation

module Voronoi where

import qualified Prelude

import Prelude hiding ((+), (-), (*), sum, map)

import List (nub)

import Lifting

import Ring

import Vector

import Samples

import MyList

import Polyhedron

import PolyhedronDS

import Delaunay

-- Voronoi diagram of a list of points

voronoi :: [PtF] -> [PH]

voronoi pts = map (replaceIdPHByCenter centers).voronoiEdges $ dt

 where

 dt = delaunay pts []

 centers = findAllCenters dt

-- Create a list of all voronoi edges

voronoiEdges :: [PHdsF] -> [[Int]]

voronoiEdges ds = filter dropOuter.nub.concatMap link $ ds

 where

 dropOuter l = not (any (==(-1)) l)

-- Make a list of all neighbor polyhedrons

link :: PHds a -> [[Int]]

link ds = map (linkOrder idPH) idAdjs

 where

 idPH = getPHid ds

 idAdjs = getAdjs ds

 linkOrder p1 p2 = if p1 < p2 then [p1, p2] else [p2, p1]

Appendix 2. The Haskell Code 146

-- Find centers of a list of polyhedrons and make a list of [(id, center)]

findAllCenters :: [PHds Float] -> [(Int, PtF)]

findAllCenters = map pairIdCenter

 where

 pairIdCenter d = (getPHid d, center.getPts $ d)

-- Replace id of a polyhedron by its center point

replaceIdPHByCenter :: Eq a => [(a, b)] -> [a] -> [b]

replaceIdPHByCenter centers ids = map findCenter ids

 where

 findCenter t = snd.head $ (filter ((==t).fst) centers)

-- Find the center of a list of points

center :: [PtF] -> PtF

center p = init (map (mkElem p2') p2)

 where

 p2 = coord2PabList p

 p2' = zip (repeatList [1,(-1)]) p2

 mkElem x e = (coff x e) * (a x e) / b

 a x e = det $ map tr1 (list2Coord (dropElem (map snd x) e))

 coff x e = fst.head $ (filter ((== e).snd) x)

 b = ((-1)^dim) * (-2) * (det $ map tr2 (list2Coord p2))

 tr1 x = x ++ [one]

 tr2 x = (init $ x) ++ [one]

 dim = length.head $ p

-- Convert a list of coordinates to a list of different elements plus their

-- lifting to a paraboloid

-- [[x1, y1, ...], [x2, y2, ...], ...] ==>

-- [[x1, x2, ...], [y1, y2, ...], ..., [x1^2+y1^2+..., x2^2+y2^2+..., ...]

coord2PabList :: (Ring a) => [[a]] -> [[a]]

coord2PabList = coord2List.map liftToHyperB

 where

 liftToHyperB x = x ++ [sum.map sq $ x]

-- Definition of the class "Voronoi"

class Voronoi p1 p2

 where

 voronoiDiagram :: p1 -> p2

Appendix 2. The Haskell Code 147

-- Instance of the class "Voronoi" for n-dimensional static points

instance Voronoi [PtF] [PH]

 where

 voronoiDiagram = voronoi

-- Lifting the class "Voronoi" to n-dimensional moving points

instance Voronoi [Changing PtF] (Changing [PH])

 where

 voronoiDiagram = lift1L Voronoi

Bibliography 148

BIBLIOGRAPHY

Albers, G. (1991). Three-Dimensional Dynamic Voronoi Diagrams, Ph.D. Thesis,

University of Wurzburg, Wurzburg, Germany, (In German).

Albers, G., Mitchell, J.S.B., Guibas, L.J. and Roos, T. (1998). Voronoi Diagrams of Moving

Points, International Journal of Computational Geometry and Applications, 8: 365-

380.

Albers, G. and Roos, T. (1992). Voronoi Diagrams of Moving Points in Higher Dimensional

Spaces, In Proceedings of the 3rd Scandinavian Workshop On Algorithm Theory

(SWAT 92), Helsinki, Finland, Lecture Notes in Computer Science (LNCS), Vol.

621, Springer-Verlag, pp. 399-409.

Alexandroff, P. (1961). Elementary Concepts of Topology, Dover Publications.

Argany, M., Mostafavi, M.A. and Karimipour, F. (2010). Voronoi-based Approaches for

Geosensor Networks Coverage Determination and Optimisation: A Survey, In

Proceedings of the 7th International Symposium on Voronoi Diagrams in Science

and Engineering (ISVD 2010), Quebec, Canada, June 28 - 30, 2010, pp. 115-123.

Aurenhammer, F. (1991). Voronoi Diagrams - A Survey of a Fundamental Geometric Data

Structure, ACM Computing Surveys, the Association for Computing Machinery,

23(3): 345-405.

Bajaj, C. and Bouma, W. (1990). Dynamic Voronoi Diagrams and Delaunay

Triangulations, In Proceedings of the 2nd Annual Canadian Conference on

Computational Geometry, Ottawa, Canada, pp. 273-277.

Berg, M.D., Cheong, O., Van-Kreveled, M. and Overmars, M. (2008). Computational

Geometry: Algorithms and Applications (3rd Edition), Springer-Verlag.

Bird, R. and de More, O. (1997). Algebra of Programming, Prentice Hall.

Bird, R. and Wadler, P. (1988). Introductiuon to Functional Programming, Prentice Hall.

Bittner, T. and Frank, A.U. (1997). An Introduction to the Application of Formal Theories to

GIS, In: F. Dollinger and J. Strobl (Eds.) Proceedings of Angewandte

Geographische Information sverarbeitung IX (AGIT), Salzburg, Austria, pp. 11-22.

Boissonnat, J.D., Yvinec, M. and Bronniman, H. (1998). Algorithmic Geometry, Cambridge

University Press.

Bowyer, A. (1981). Computing Dirichlet Tessellation, The Computer Journal, Oxford,

24(2): 162-166.

Bibliography 149

Brown, K.Q. (1979). Voronoi Diagrams from Convex Hulls, Information Processing

Letters, 9(5): 223–228.

Bulbul, R. (2011). AHD: Alternate Hierarchical Decomposition - Towards LoD Based

Dimension Independent Geometric Modeling, PhD Thesis, Advisor: A.U. Frank,

Department of Geoinformation, Technical University of Vienna, Vienna, Austria.

Cignoni, P., Montani, C. and Scopigno, R. (1998). A Fast Divide and Conquer Delaunay

Triangulation Algorithm, Computer-Aided Design, Elsevier, 30(5): 333-341.

De Fabritiis, G. and Coveney, P.V. (2003). Dynamical Geometry for Multiscale Dissipative

Particle Dynamics, Computer Physics Communications, 153: 209-226.

Delaunay, B.N. (1934). Sur la Sphere Vide (On the Empty Spher), Izvestia Akademia Nauk

SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7:793–800.

Devillers, O. (2002). On Deletion in Delaunay Triangulations, International Journal of

Computational Geometry and Applications, World Scientific, 12(3): 193-205.

Devillers, O. and Golin, M. (1993). Dog Bites Postman: Point Location in the Moving

Voronoi Diagram and Related Problems, In Proceedings of the 1st Annual

European Symposium on Algorithms (ESA'93), Honnef, Germany, September 30 -

October 2, 1993, Lecture Notes in Computer Science (LNCS), Vol. 726, pp. 133-

144.

Devillers, O. and Teillaud, M. (2003). Perturbations and Vertex Removal in a 3D Delaunay

Triangulation, In Proceedings of the ACM-SIAM symposium on Discrete
Algorithms, Baltimore, USA January 12-14, 2003, pp. 313–319.

Doets, K. and Jan Eijck, v. (2004). The Haskell Road to Logic, Maths and Programming,

College Publications.

Dorst, L., Fontijne, D. and Mann, S. (2007). Geometric Algebra for Computer Science: An

Object-Oriented Approach to Geometry, Morgan Kaufmann.

Dwyer, R.A. (1991). Higher-dimensional Voronoi Diagrams in Linear Expected Time,

Discrete and Computational Geometry, 6: 343–367.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry, Springer-Verlag.

Edelsbrunner, H. and Seidel, R. (1986). Voronoi Diagrams and Arrangements, Discrete &

Computational Geometry 1: 25–44.

Edelsbrunner, H. and Shah, N.R. (1992). Incremental Topological Flipping Works for

Regular Triangulations, In Proceedings of the 8th Annual Computational

Geometry, Berlin, Germany, pp. 43-52.

Egenhofer, M.J. and Mark, D.M. (1995). Naïve Geography, Technical Report, National

Center for Geographic Information and Analysis.

Bibliography 150

Erwing, M., Guting, R.H., Schneider, M. and Vazirgiannis, M. (1999). Spatio-Temporal

Data Types: An Approach to Modeling and Querying Moving Objects in Databases,

Journal of GeoInformatica, 3(3): 269-296.

Field, D.A. (1986). Implementing Watson’s Algorithm in Three Dimensions, In Proceedings

of the 2nd Annual Symposium on Computational Geometry, Yorktown Heights,

New York, USA, pp. 246-259.

Fortune, S. (1987). A Sweepline Algorithm for Voronoi Diagrams, Algorithmica, 2: 153-

174.

Fortune, W. (1992). Numerical Stability of Algorithms for 2D Delaunay Triangulations, In

Proceedings of the 8th Annual Computational Geometry, Berlin, Germany, pp. 83-

92.

Frank, A. (2000). Geographic Information Science: New Method and Technology, Journal

of Geographical Systems, 2(1): 99-105.

Frank, A.U. (1997). Higher Order Functions Necessary for Spatial Theory Development, In

Proceedings of 13th International Auto-Carto Conference, Seattle, USA, 7-10 April,

1997, pp. 11-22.

Frank, A.U. (1999). One Step Up the Abstraction Ladder: Combining Algebras – From

Functional Pieces to a Whole, In: C. Freksa and D. Mark (Eds.) Proceedings of the

International Conference COSIT'99, Stade, Germany, August 25-29, 1999, Lecture

Notes in Computer Science (LNCS), Vol. 1661, Springer-Verlag, pp. 95-107.

Frank, A.U. (2007). Practical Geometry - Mathematics for Geographic Information

Systems, Course Manuscript.

Frank, A.U. and Gruenbacher, A. (2001). Temporal Data: 2nd Order Concepts Lead to an

Algebra for Spatio-Temporal Objects, In Proceedings of the Workshop on Complex

Reasoning on Geographical Data, Cyprus, December 1, 2001.

Fu, J.-J. and Lee, C.T. (1991). Voronoi Diagrams of Moving Points in the Plane, Journal of

Computational Geometry & Applications, 1(1): 23-32.

Gavrilova, M.L. and Rokne, J. (2003). Updating the Topology of the Dynamic Voronoi

Diagram for Spheres in Euclidean d-Dimensional Space, Computer Aided

Geometric Design, 20: 231-242.

Ghosh, A. and Das, S.K. (2008). Coverage and Connectivity Issues in Wireless Sensor

Networks: A survey, Pervasive and Mobile Computing, 4: 303–334.

Gold, C. (1979). Triangulation based Terrain Modelling - Where Are We Now?, In: R.T.

Aangeenburg (Ed.) Proceedings of Auto-Carto 4, International Symposium on

Cartography and Computing, Baltimore, MD, USA, Vol. 2, pp. 104-111.

Gold, C. (1990). Spatial Data Structures - the Extension from One to Two Dimensions,

Mapping and Spatial Modeling for Navigation, 65: 11-39.

Bibliography 151

Gold, C. (1994). A Review of Potential Applications of Voronoi Methods in Geomatics, In

Proceedings of Canadian Conference on GIS, Ottawa, ON, Canada, pp. 1647-1656

Gold, C. (1998). The Use of the Dynamic Voronoi Data Structure in Autonomous Marine

Navigation, In Proceedings of the 29th International Symposium on Robotics

(ISR98), Birmingham, England, pp. 217-220.

Gold, C., Charters, T.D. and Ramsden, J. (1977). Automated Contour Mapping using

Triangular Element Data Structures and an Interpolant over Each Triangular

Domain, In: J. George (Ed.) Proceedings of Sigraph '77, San Francisco, USA,

Computer Graphics, Vol. 11, pp. 170-175.

Gold, C.M., Remmele, P.R. and Roos, T. (1995). Voronoi Diagrams of Line Segments Made

Easy, In In Proceedings 7th Canadian Conference on Computational Geometry,

Quebec City, Canada, pp. 223-228.

Goodman, G.E. and Orourke, J. (1997). Handbook of Discrete and Computational

Geometry, CRC Press.

Guibas, L. (1998). Kinetic Data Structures: A State of the Art Report, In Proceedings of the

3rd Workshop on the Algorithmic Foundations of Robotics: The Algorithmic

Perspective, Texas, USA, August 1998, Houston, pp. 191-209.

Guibas, L., Karaveles, M. and Russel, D. (2004). A Computational Framework for Handling

Motion, In Proceedings of the 6th Workshop on Algorithm Engineering and

Experiments, New Orleans, USA, January 10, 2004, pp. 129-141.

Guibas, L. and Stolfi, J. (1985). Primitives for the Manipulation of General Subdivisions

and the Computation of Voronoi Diagrams, ACM Transactions on Graphics, 4(2):

74-123.

Guibas, L.J., Mitchell, J.S. and Roos, T. (1992). Voronoi Diagrams of Moving Points in the

Plane, In Proceedings of the 17th International Workshop, June 17-19, 1991, pp.

113-125.

Gunter, C.A. (1993). Semantics of Programming Languages, The MIT Press.

Guting, R.H., Bohlen, M., Erwig, M., Jensen, C., Lorentzos, N., Schneider, M. and

Vazirgiannis, M. (2000). A Foundation for Representing and Querying Moving

Objects, ACM Transaction on Database Systesms, 25: 1-42.

Guting, R.H., Bohlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N., Nardelli, E., Schneider,

M. and Viqueira, J.R.R. (2003). Spatio-temporal Models and Languages: An

Approach Based on Constraints, In: M. Koubarakis and T. Sellis (Eds.),

Spatiotemporal Databases: The Chorochronos Approach, Lecture Notes in

Computer Science (LNCS), Vol. 2520, Springer-Verlag, pp. 117-176.

Guting, R.H. and Schneider, M. (2005). Moving Objects Databases, Elsevier.

Guttag, J.V. and Horning, J.J. (1978). The Algebraic Specification of Abstract Data Types,

Acta Informatica, 10: 27-52.

Bibliography 152

Hankin, C. (2004). An Introduction to Lambda Calculi for Computer Scientists, King's

College Publications.

Hashemi-Beni, L., Mostafavi, M.A. and Gavrilova, M.L. (2007). Moving Objects

Management in a 3D Dynamic Environment, In Proceedings of the Geocomputation

2007, NUI Maynooth, Ireland, September 3-5, 2007.

Hatcher, A. (2002). Algebraic Topology, Available

at:http://www.math.cornell.edu/~hatcher/ (Accessed: June 2010).

Heller, M. (1990). Triangulation Algorithms for Adaptive Terrain Modelling, In

Proceedings of the 4th International Symposium on Spatial Data Handling, Zurich,

Switzerland, July 23-27, 1990, pp. 163–174.

Hofer, B. and Frank, A. (2008). Towards a Method to Generally Describe Physical Spatial

Processes, In Proceedings of the 13th Symposium on Spatial Data Handling (SDH

2008), Montpellier, France, June 23-25, 2008.

Hudak, P., Peterson, J. and Fasel, J. (2000). A Gentle Introduction to Haskell - Version 98,

Available at:http://www.haskell.org/tutorial/ (Accessed:

Hughes, J. (1989). Why Functional Programming Matters?, The Computer Journal, Special

Issue on Lazy Functional Programming, 32(2): 98-107.

Imai, K., Sumino, S. and H, H.I. (1989). Geometric Fitting of Two Corresponding Sets of

Points, In Proceedings 5th Annual Symposium on Computational Geometry,

Saarbrucken, Germany, ACM Press, pp. 266-275.

Jeuring, J. and Meijer, E. (1995). Advanced Functional Programming, In First International

Spring School on Advanced Functional Programming Techniques, Bastad, Sweden,

May 1995, Lecture Note in Computer Sceince (LNCS), Vol. 925, Springer-Verlag.

Joe, B. (1989). Three-dimensional Triangulations from Local Transformations, SIAM

Journal on Scientific and Statistical Computing, 10(4): 718–741.

Joe, B. (1991). Construction of Three-dimensional Delaunay Triangulations using Local

Transformations, Computer Aided Geometric Design 8: 123–142.

Kallmann, M., Bieri, H. and Thalmann, D. (2003). Fully Dynamic Constrained Delaunay

Triangulations, In: G. Brunnett, B. Hamann, H.Mueller and L. Linsen (Eds.),

Geometric Modelling for Scientific Visualization, pp. 241-257.

Kaltofen, E. and Villard, G. (2004). On the Complexity of Computing Determinants,

Computational Complexity, 13(3-4): 91-130.

Kanaganathan, S. and Goldstein, N.B. (1991). Comparison of Four-point Adding Algorithms

for Delaunay-type 3-Dimensional Mesh Generators, IEEE Transaction on

Magnetics, 27(3): 3444-3451.

Karimipour, F. (2005). Formalization of Spatial Analyses of Moving Objects Using

Algebraic Structures, M.Sc. Thesis, Advisors: M.R. Delavar and A.U. Frank,

Bibliography 153

Department of Surveying and Geomatics Engineering, College of Engineering,

University of Tehran, Tehran, Iran, (In Persian).

Karimipour, F. (2009). n-Dimensional Convex Decomposition of Polytopes, 16th edition of

the Haskell Communities and Activities Report, May 2009, Available

at:http://www.haskell.org/communities/ (Accessed: June 2010).

Karimipour, F., Delavar, M.R. and A.U. Frank, A.U. (2010a). n-Dimensional Volume

Calculation for Non-Convex Polytops, 18th edition of the Haskell Communities and

Activities Report, May 2010, Available at:http://www.haskell.org/communities/

(Accessed: June 2010).

Karimipour, F., Delavar, M.R. and Frank, A.U. (2005a). Applications of Category Theory

for Dynamic GIS Analysis, In Digital Proceedings of GIS Planet 2005, Estoril,

Portugal, May 30- June 2, 2005.

Karimipour, F., Delavar, M.R. and Frank, A.U. (2010b). A Simplex-Based Approach to

Implement Dimension Independent Spatial Analyses, Journal of Computer and

Geosciences, 36: 1223-1134.

Karimipour, F., Delavar, M.R., Frank, A.U. and Rezayan, H. (2005b). Point in Polygon

Analysis for Moving Objects, In: C. Gold (Ed.) Proceedings of the 4th Workshop on
Dynamic & Multi-dimensional GIS (DMGIS 2005), Pontypridd, Wales, UK,

September 5-8, 2005, ISPRS Working Group II/IV, International Archives of

Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 68-72.

Karimipour, F., Frank, A.U. and Delavar, M.R. (2008). An Operation-Independent

Approach to Extend 2D Spatial Operations to 3D and Moving Objects, In: H.

Sammet, C. Shahabi and W.G. Aref (Eds.) Proceedings of the 16th ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (ACM GIS 2008), Irvine, CA, USA, November 5-7, 2008.

Karimipour, F., Rezayan, H. and Delavar, M.R. (2006). Formalization of Moving Objects

Spatial Analyses Using Algebraic Structures, In: W. Kuhn and M. Rabaul (Eds.)

Proceedings of Extended Abstracts of GIScience 2006, Münster, Germany,

September 20-23, 2006, IfGI Prints, Vol. 28, pp. 105-111.

Klein, F. (1939). Elementary Mathematics from an Advanced Standpoint: Geometry, Dover

Publications, Reprinted 2004.

Knuth, D.E. (1992). Axioms and Hulls, Lecture Notes in Computer Science (LNCS), Vol.

606, Springer-Verlag.

Langran, G. (1989). Time in Geographic Information Systems, Ph.D. Thesis, University of

Washington, Washington DC, USA.

Lattuada, R. and Raper, J. (1995). Applications of 3D Delaunay Triangulation Algorithms in

Geoscientific Modeling., In Proceedings of the 3rd National Conference on GIS

Research UK, Newcastle, UK, pp. 150–153.

Bibliography 154

Lawson, C. (1986). Properties of n-Dimensional Triangulations, Computer Aided

Geometric Design, 3: 231-246.

Lawson, C.L. (1977). Software for C1 Surface Interpolation, In: J.R. Rice (Ed.),

Mathematical Software III, Academic Press, pp. 161–194.

Lawvere, F.W. and Schanuel, S.H. (2005). Conceptual Mathematics: A First Introduction to

Categories, Cambridge University Press.

Ledoux, H. (2006). Modelling Three-dimensional Fields in Geo-Science with the Voronoi

Diagram and its Dual, Ph.D. Thesis, Advisor: C. Gold, School of Computing,

University of Glamorgan, Pontypridd, Wales, UK.

Ledoux, H. (2007). Computing the 3D Voronoi Diagram Robustly: An Easy Explanation, In

Proceedings of the 4th International Symposium on Voronoi Diagrams in Science

and Engineering, Pontypridd, Wales, UK, July 9-12, 2007, pp. 117-129.

Ledoux, H. (2008). The Kinetic 3D Voronoi Diagram: A Tool for Simulating Environmental

Processes, In: P.V. Oosterom, S. Zlatanova, F. Penninga and E. Fendel (Eds.)

Advances in 3D Geo Information Systems, Proceedings of the 2nd International

Workshop on 3D Geoinformation, Delft, the Netherlands, December 12-14, 2007,

Lecture Notes in Geoinformation and Cartography (LNCG), Springer-Verlag, pp.
361-380.

Ledoux, H. and Gold, C. (2007). The 3D Voronoi Diagram: A Tool for the Modelling of

Geoscientific Datasets, In Proceedings of the GeoCongres 2007, Quebec, Canada

(/http://www.gdmc.nl/publications/2007/3D_Voronoi_Diagram_Tool.pdf), octobre

2-5, 2007.

Ledoux, H., Gold, C. and Baciu, G. (2005). Flipping to Robustly Delete a Vertex in a

Delaunay Tetrahedralization, In Proceedings International Conference on

Computational Science and its Applications (ICCSA 2005), Singapore, Lecture

Notes in Computer Science (LNCS), Vol. 3480, Springer-Verlag, pp. 737-747.

Liskov, B. and Guttag, J. (1988). Abstraction and Specification in Programming

Developement, The MIT Press.

Liu, Y. and Snoeyink, J. (2005). A Comparison of Five Implementations of 3D Delaunay

Tessellation, Journal of Combinatorial and Computational Geometry, 52: 439-458.

Loeckx, J., Ehrich, H.D. and Wolf, M. (1996). Specification of Abstract Data Types, John

Wiley.

MacLane, S. and Birkhoff, G. (1999). Algebra (3rd Edition), AMS Chelsea Publishing.

Maus, A. (1984). Delaunay Triangulation and the Convex Hull of n Points in Expected

Linear Time, Journal of BIT, 24: 151-163.

Michaelson, G. (1989). An Itroduction to Functional Programming through Lambda

Calculus, Addison Wesley.

Bibliography 155

Miller, G.L., Steven, E.P. and Walkington, N.J. (2002). Fully Incremental 3D Delaunay

Refinement Mesh Generation, In Proceedings of the 11th International Meshing

Roundtable, Ithaca, New York, USA, September 15-18 2002, pp. 75-86.

Mostafavi, M.A. (2002). Development of a Global Dynamic Data Structure, Ph.D. Thesis,

Advisor: C. Gold, University of Laval, Laval, Canada.

Mostafavi, M.A., C.Gold and Dakowiczb, M. (2003). Delete and Insert Operations in

Voronoi/Delaunay: Methods and Applications, Journal of Computers and

Geosciences, 29: 523-530.

Mostafavi, M.A. and Gold, C. (2004). A Global Kinetic Spatial Data Structure for a Marine

Simulation, International Journal of Geographical Information Science (IJGIS),

18(3): 211-228.

Mucke, E. (1988). A Robust Implementation for Three-Dimensional Delaunay

Triangulations, International Journal of Computational Geometry and

Applications, 8(2): 255–276.

Navratil, G. (2006). Error Propagation for Free?, In: W. Kuhn and M. Rabaul (Eds.)

Proceedings of Extended Abstracts of GIScience 2006, Münster, Germany,

September 20-23, 2006, IfGI Prints, Vol. 28, pp. 133-136.

Navratil, G., Karimipour, F. and Frank, A.U. (2008). Lifting Imprecise Values, In: L.

Bernard, A. Friis-Christensen and H. Pundt (Eds.) The European Information

Society: Taking Geoinformation Science One Step Further, Proceedings of the 11th

AGILE International Conference on Geographic Information Science (AGILE

2008), Girona, Spain, May 5-8, 2008, Lecture Notes in Geoinformation and

Cartography (LNGC), Springer-Verlag, pp. 79-94.

Nordstrom, B., Petersson, K. and Smith, J.M. (1990). Programming in Martin-Lof’s Type

Theory: An Introduction, Oxford University Press.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N. (2000). Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams (2nd Edition), John Wiley.

Oosterom, P.V., Zlatanova, S., Penninga, F. and Fendel, E. (Eds.), 2008. Advances in 3D

Geo Information Systems, Proceedings of the 2nd International Workshop on 3D

Geoinformation, Lecture Notes in Geoinformation and Cartography (LNCG).

Springer-Verlag, Delft, the Netherlands, December 12-14, 2007.

Penninga, F. (2008). A Simplcial Complex-based Solution in a Spatial DBMS, Ph.D. Thesis,

Advisor: P.V. Oosterom, Delft University of Technology, Delft, the Netherlands.

Penninga, F. and Oosterom, P.V. (2008). A Simplicial Complex-based DBMS Approach to

3D Topographic Data Modeling, Intentaional Journal of Geographical Information

Science (IJGIS), 22(6-7): 751-779.

Peuquet, D.J. (1999). Time in GIS and Geographical Databases, In: P.A. Longley, M.F.

Goodchild, D.J. Maguire and D.W. D.W. Rhind (Eds.), Geographical Information

Bibliography 156

System, Principals and Technical Issues (2nd Edition), John Wiley & Sons, pp. 91-

103.

Peyton Jones, S.L. (1987). The Implementation of Functional Programming Languages,

Prentice Hall Int.

Peyton Jones, S.L. and Hughes, J. (1999). Haskell 98: A Non-Strict, Purely Functional

Language, Available at:http://www.haskell.org/onlinereport/ (Accessed: June

2010).

Pierce, B. (2005). Advanced Topics in Types and Programming Languages, The MIT Press.

Pierce, B.C. (2002). Types and Programming Languages, The MIT Press.

Raper, J. (2000). Multi-dimensional Geographic Information Science, Taylor & Francis.

Raubal, M. (2001). Agent-Based Simulation of Human Wayfinding: A Perceptual Model for

Unfamiliar Buildings, Ph.D. Thesis, Advisors: A.U. Frank and W. Kuhn, Institute

for Goeinformation, Department of Geoinformation and Cartography, Vienna

University of Technology, Vienna, Austria.

Roos, T. (1991). Dynamic Voronoi Diagrams, Ph.D. Thesis, University of Wurzburg,

Wurzburg, Germany.

Roos, T. (1993). Voronoi Diagrams Over Dynamic Scenes, Discrete Applied Mathematics,

43(3): 243-259.

Roos, T. and Noltemeier, H. (1991). Dynamic Voronoi Diagrams in Motion Planning, In

Computational Geometry: Methods, Algorithms and Applications, Proceedings of

International Workshop on Computational Geometry (CG 91), Bern, Switzerland,

March 21-22, 1991, Lecture Notes in Computer Science (LNCS), Vol. 553,
Springer-Verlag, pp. 227-236.

Schaller, G. and Meyer-Hermann, M. (2004). Kinetic and Dynamic Delaunay

Tetrahedralizations in Three Dimensions, Journal of Computer Physics

Communications, 162(1): 9–23.

Schneider, M. (Ed.), 1997. Spatial Data Types for Database Systems - Finite Resolution

Geometry for Geographic Information Systems, Lecture Notes in Computer

Sciences, 1288. Springer-Verlag, Berlin-Heidelburg, 275 pp.

Shewchuk, J.R. (2003). Updating and Constructing Constrained Delaunay and Constrained

Regular Triangulations by Flips, In Proceedings of the 19th Annual Symposium on

Computational Geometry, San Diego, USA, ACM Press, pp. 181–190.

Skiena, S.S. (1998). The Algorithm Design Manual, Springer-Verlag.

Stolfi, J. (1989a). Primitives for Computational Geometry, Ph.D. Thesis, Computer Science

Department, Stanford University, Palo Alto, USA.

Stolfi, J. (1989b). Primitives for Computational Geometry, Digital Equipment Corporation.

Bibliography 157

Tanemura, M., Ogawa, T. and Ogita, N. (1983). A New Algorithm for Three Dimensional

Voronoi Tessellation, Journal of Computational Physics, 51: 191–207.

Thompson, S. (1999). Haskell: The Craft of Functional Programming, Addison Wesley.

Vomacka, T. (2008). Delaunay Triangulation of Moving Points, In Proceedings of the 12th

Central European Seminar on Computer Graphics, Budmerice Castle, Slovakia,

April 24-26, 2008, pp. 67–74.

Wang, G.C. and LaPorta, T. (2004). Movement-Assisted Sensor Deployment, In Proceedings

of IEEE Infocom, INFOCOM’04, Hong Kong, March 2004, pp. 81-90.

Watson, D.F. (1981). Computing the n-Dimensional Delaunay Tessellation with Application

to Voronoi Polytops, The Computer Journal, 24(2): 167-172.

Yong, X., Sun, M. and Ma, A. (2004). On the Reconstruction of Three-Dimensional

Complex Geological Objects using Delaunay Triangulation, Journal of Future

Generation Computer Systems, 20: 1227–1234.

3D Topography Project, (2007): http://www.rgi-otb.nl/3dtopo/ (Accessed: June 2011).

CGAL Website: http://www.cgal.org/ (Accessed: June 2011).

