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ABSTRACT 

Extension of 2D spatial analyses — i.e., a set of operations applied on a spatial data set — 

to higher dimensions, e.g., 3D and temporal, is one of the requirements to handle real world 

phenomena in GIS. The current approach is to design a technical solution to extend a certain 

2D spatial analysis to a new multi-dimensional space with the least increase in complexity 

and speed. This technical approach has resulted in developments that cannot be generalized. 

The result of following such an approach in the software development stage is recoding each 

spatial analysis, separately, for each dimension. Therefore, the code for a, say, general 

2D/3D static and moving objects supporting GIS is nearly four times the current code size, 

offering four variants: static 2D, moving 2D, static 3D, and moving 3D. The complexity of 

such a growth of code written in one of the currently popular programming languages, say, 

C++ is hard to manage, resulting in numerous bugs. 

This thesis investigates spatial analyses based on their dimension independent 

characteristics (i.e., independent of the objects to which the analyses are applied), toward 

achieving a general solution. It intends to provide an integrated framework for spatial 

analyses of different multi-dimensional spaces a GIS should support. This framework will 

be independent of the objects to which the analyses are applied and spatial analyses are 

formally defined by combinations of the elements of this integrated framework. 

To implement this approach, spatial analyses are formally expressed hierarchically 

where each analysis is defined as a combination of simpler ones. These definitions are 

independent of dimension and the hierarchy ends in a set of primary operations, which are 

not further decomposed. A set of required data types are also identified. Having 

implemented the dimensionally independent data types and operations, they all will be 

extended to a specific space (e.g., moving points) by applying the mappings between 

defined the spaces. 

The required abstraction of the proposed approach is the subject of algebra that ignores 

those properties of operations that depend on the objects they are applied to. The desired 

spaces are structurally equivalent, so they are described by the same algebra. Having 

implemented the required data types and operations, their extension to a specific space is 

viable by applying the (structure preserving) mapping. 
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The proposed approach has been evaluated through implementation of Delaunay 

triangulation for 2D and 3D static and moving points in the functional programming 

language Haskell and their efficiency has been evaluated. The implementations were used in 

two applications, i.e., convex decomposition of polytops and optimum placement of a sensor 

network based on the moving Voronoi diagram, in order to show how the proposed 

approach can be practically used. The achieved results certify the hypothesis of the research 

says that “studying spatial analyses based on their dimension independent characteristics 

leads to a consistent solution toward implementation of a multi-dimensional GIS“. 

Complexity and speed are factors used to evaluate the performance of an extension 

technique in current research. However, the aim here is to avoid recoding each spatial 

analysis for each dimension. Thus, the main concern of this research is on the mathematical 

validation of the conceptual framework and investigation of its implementation issues. 

Nevertheless, the results show that the proposed approach does not affect the big O 

complexity and speed for applying the spatial analyses on objects of higher dimensions. 

 

KEYWORDS 

Multi-dimensional spatial analyses, 3D spatial data, Moving objects, Formal theories, 

Abstraction, Algebraic structures, Algebraic specifications, Lifting, Delaunay triangulation, 

Voronoi diagram, Functional programming languages, Haskell 
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1 INTRODUCTION 

This chapter starts by describing the motivation for the work done in this thesis. The 

research goal, hypothesis and assumptions are presented. Both our general approach and the 

specific research design for verifying the research hypothesis are discussed. Expected results 

and the intended audience are explained. Finally, we present the organization of the thesis. 

1.1 Motivation 

“Position in space and time are fundamental for a GIS. They allow connecting other 

observations to locations in space and time” (Frank 2007, p. 86). Early geospatial 

information systems (GIS) dealt with position in a simple 2D Euclidean space. To handle 

real world phenomena, however, some applications need 3D and temporal objects. 

Extending the realm of GIS to these higher dimensional spaces has a wide range of 

requirements from data storage and data structure considerations to visualization strategies 

(Langran, 1989; Oosterom et al., 2008; Peuquet, 1999; Raper, 2000). Extension of 2D 

spatial analyses to higher dimensions is a major requirement in this regard. An spatial 

analysis is a set of operations applied on a spatial data set that result in a new data set, a 

value, etc.. Computing convex hull of a set of points, determining the position of a point 

with respect to a line, and computing the volume of a polytop are examples of spatial 

analyses that respectively result in a point set, Boolean value, and a numerical value. 

Extension of 2D spatial analyses to higher dimensions has been the subject of many 

studies each has introduced a technical solution to extend a certain spatial analysis to a new 

multi-dimensional space with the least increase in complexity and speed. Complexity and 

speed are the parameters usually used for evaluating the efficiency of algorithms in 

computational geometry. “Computational geometry is defined as the systematic study of 

algorithms and data structures for geometric objects, with a focus on exact algorithms that 

are asymptotically fast” (Berg et al., 2008, p. 2). There are several successful results, 

considering complexity and speed as the evaluating parameters. In practice, however, almost 

no general solution has been introduced to interact with multi-dimensional, say, 3D and 

temporal, data. The main reason is that the extension techniques highly depend on the 

specific case studies. It has resulted in developments that cannot be generalized. In other 
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words, to extend a certain 2D spatial analysis to a new multi-dimensional space, a technical 

solution based on the characteristics of the analysis as well as the destination space must be 

designed. For instance, although several methods have been introduced to construct 

Delaunay triangulation and Voronoi diagram of 2D moving points (Albers et al., 1998; 

Bajaj and Bouma, 1990; Guibas et al., 1992; Mostafavi et al., 2003; Roos, 1991, 1993; Roos 

and Noltemeier, 1991; Vomacka, 2008), they have been modified to construct these 

structures for 3D moving points (Albers, 1991; Albers and Roos, 1992; Hashemi-Beni et al., 

2007; Ledoux, 2008; Schaller and Meyer-Hermann, 2004). The result of following such an 

approach in the software development stage is recoding each spatial analysis, separately, for 

each dimension. Thus, the code for a, say, general 2D/3D static and moving objects 

supporting GIS is nearly four times the current code size, offering four variants: static 2D, 

moving 2D, static 3D, and moving 3D. The complexity of such a growth of code written in 

one of the currently popular programming languages, say, C++ is hard to manage, resulting 

in numerous bugs. The sheer size of the task explains why no commercial GIS has a 

comprehensive offer for treatment of 3D and moving objects.  

Current approaches differentiate the same spatial analysis in different spaces despite 

their unification in the real world: to calculate the distance between two points, there are 

different methods depend on the type of the points (2D or 3D, static or moving, etc.), 

although the concept of distance in all of these multi-dimensional spaces are the same. GI 

science deals with the formal modeling of spatial process and interaction of humans with the 

environment in space and time (Frank, 2000). Thus, it is to have such a unified view point 

(Egenhofer and Mark, 1995). However, the space-based view of current approaches causes 

separation in how they deal with spatial analyses in different multi-dimensional spaces. 

This research provides an integrated framework for spatial analyses in multi-

dimensional spaces. Here, we study spatial analyses based on their dimension independent 

properties. This is similar to the approach proposed by Felix Klein in 1872 to study 

geometries via their invariants, which are independent of dimension (Klein, 1939). The 

framework will be independent of the dimension of the objects to which the analyses are 

applied and spatial analyses are formally defined by combinations of the elements of this 

integrated framework. 

The proposed approach needs a more abstract view that ignores those properties of 

analyses that depend on the objects they are applied to. It enables us to have abstract 

descriptions of analyses. The required abstraction is the subject of algebra, which describes 
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an abstract class of objects and their behaviors. Structure of operations in algebra is 

independent of implementation. Thus, behavior of many things can be described by the 

same algebra as long as their behavior is structurally equivalent. 

The multi-dimensional spaces a GIS must support are structurally equivalent, so they 

can be described using the same algebra and the required mappings between these spaces 

are defined. Having implemented the dimensionally independent data types and operations, 

they all will be extended to a specific space (e.g., moving points) by applying the mapping 

defined between the spaces. 

In abstract, this research intends to integrate spatial analyses of multi-dimensional 

spaces through incorporation of algebraic specifications as formal abstractions. The research 

is based on the formalizations provided in GI science and GI theory (Bittner and Frank, 

1997). 

1.2 Goal and hypothesis 

The goal of this research is to provide an integrated framework for spatial analyses of multi-

dimensional spaces based on their dimension independent properties. This foundation can be 

used to formally define spatial analyses based on the elements of the framework. It intends 

to contribute the abstraction and algebraic specifications as indispensable concepts to 

provide the required abstraction which “captures the essence of the semantics of operations 

and objects” (Frank, 2007, p. 55). Our concentration is on mathematical validation of the 

proposed approach. However, we implement the approach for some case studies.  

Complexity and speed are performance factors in most of the current research in 

computer science and computational geometry. However, the main concern of this research 

is on the mathematical validation of the conceptual framework and investigation of its 

implementation issues, so performance is not a key factor for evaluation of the results. 

“Performance” is one of the four areas (the others are “ontology and semantics”, “user 

interface” and “error and uncertain data”) that link the formal treatment of geospatial data to 

its use and should be excluded in developing a theory for geospatial data processing. 

“Without this clear separation, we taint the description of the things we presently understand 

with our ignorance in other areas” (Frank, 2007, pp. 24-25). 

More specifically, we want to answer these questions:  
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1. What are the dimension independent properties of spatial analyses in different multi-

dimensional spaces? Does this knowledge suffice to construct an abstract integrated 

framework based on which spatial analyses in any multi-dimensional space are 

described? 

2. Having formally defined a spatial analysis as a combination of the elements of this 

abstract integrated framework, can it be extended to higher dimensions through the 

connections between the spaces?  

3. How does it impact the performance comparing to the current approaches? 

4. What are the barriers, if any, of implementation of this mathematically provable 

integration in a programming environment (here, Haskell)? 

 

The hypothesis of the research is: 

 

“Studying spatial analyses via their dimension independent properties leads to 

a consistent solution toward multi-dimensional GIS”. 

1.3 Assumptions 

As this research is done in the field of GIS, the investigated spaces are limited to those 

interesting for GI science, which are Euclidean 2D static, 3D static, 2D temporal and 3D 

temporal. On the other hand, the temporal data are divided into kinetic and dynamic. In the 

kinetic or moving case, the continuous movement of objects is considered. It means there is 

a fixed set of objects whose position change over time. In the dynamic case, the position of 

the objects is fixed, but new elements may be inserted or deleted over time. In this research, 

we concentrate only on moving objects, but this does not limit the approach to such cases. 

Nonetheless, methods for applying spatial analyses on dynamic objects are introduced in 

chapter 2. 

1.4 Approach and scientific background 

This research provides an integrated framework for spatial analyses in different multi-

dimensional spaces through concentration on dimension independent structural properties of 

the spatial analyses. It proposes that abstract algebraic presentations provide the minimum 



Chapter 1. Introduction 5 

 

information about spatial analyses in a general context that can further be extended to a 

more specific space.  

Delaunay triangulation is selected as the particular case study to answer the research 

questions posed and to verify our hypothesis. The proposed approach of the research will be 

used to develop this spatial analysis for points of different dimensions. Focusing on this 

particular analysis does not affect the general validity of the results, but it allows us to 

concentrate on validation of the proposed conceptual framework of the research. 

Algebraic specifications provide the required formal abstraction of the research. The 

adopted approach is based on representation of spatial analyses in different multi-

dimensional spaces using the same algebra. We formally express spatial analyses 

hierarchically where each analysis is defined as a combination of simpler ones. These 

definitions are independent of dimension and the hierarchy ends in a set of primary 

operations, which are not further decomposed. A set of required data types are also 

identified. Having implemented the dimensionally independent data types and operations, 

they all will be extended to a specific space (e.g., moving points) by applying the mappings 

defined between spaces. As an example, Figure  1.1 shows the general scheme of the 

described approach to extend static spatial analyses to their moving counterparts. 

 

 
Figure  1.1. Using the lifting S2M to extend static spatial analyses to their moving counterparts 

The proposed formalization approach is a generalization of Guting’s τ operation 

(Erwing et al., 1999; Guting et al., 2000; Guting et al., 2003; Guting and Schneider, 2005), 

which provides a mapping between analyses of static and moving points. However that 

mapping does not consider the concept of formalization and algebraic structures. The result 

Static primitive operations Static data types 

Moving primitive operations Moving data types 

Static spatial analyses 

Moving spatial analyses 

Lifting S2M 
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is the same if we limit the research to construct a mapping between spatial analyses of static 

and moving points, which has been implemented in the previous steps of this research 

(Karimipour, 2005; Karimipour et al., 2005a; Karimipour et al., 2005b; Karimipour et al., 

2006). Navratil et al. used this formalization to lift the distance operation of two fixed points 

to points with different types of uncertainty (Navratil, 2006; Navratil et al., 2008). 

1.5 Research design 

The research adopts a five step methodology, which is shown in Figure  1.2 and described in 

the following subsections: 

 

Figure  1.2. The research design 

1.5.1 Construction of the abstract conceptual framework 

The underlying strategy of the process starts with investigating the spatial analyses in 

different multi-dimensional spaces in order to define them based on their dimension 

independent structural properties. It leads to construct the abstract integrated framework of 

spatial analyses and operations. This framework, then, plays the role of a conceptual 

underline on which the GIS desired multi-dimensional spaces are constructed. It 

decomposes the spatial analyses to a set of data types and primitive operations that are not 

Construction of the abstract 

conceptual framework 

Development Evaluation 

algebraic 

specification 

case studies 

Formal definition of the 

spatial analyses 

Definition of mappings 
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further decomposed. Further spatial analyses will be defined according to combinations of 

these data types and primitive operations. 

1.5.2 Formal definition of spatial analyses 

The conceptual framework defined in the previous step, is formalized using algebraic 

specifications. The behavior of analyses are formally described as combinations of the 

elements of the integrate framework. 

Algebraic specifications connect the conceptual framework to its implementation. The 

purpose is to formally describe the behavior of analyses. For this reason, we use them to 

describe the behavior of the analyses. 

1.5.3 Definition of mappings 

Spatial analyses are described based on the elements of the integrated framework, so 

mappings are defined to extend the spatial analyses to the desired multi-dimensional spaces. 

Different spaces are considered structurally equivalent and their mappings (liftings) are 

defined. This step will mathematically prove the proposed extension. 

1.5.4 Development 

The elements (i.e., operations) of the integrated framework are extended to a certain multi-

dimensional space by applying the mappings provided in the previous step. 

1.5.5 Evaluation 

The constructed integrated frameworks and defined mappings will be evaluated using 

Delaunay triangulation to examine the implementation feasibility of the mathematically 

provable idea, to identify probable technical barriers, and to investigate the performance of 

the implementations. Without losing the generality, we assume the data are in general 

position. It helps us to focus on the main concern of the thesis — which is the mathematical 

validation of the approach and its implementation issues — and prevents from struggling 

with the subtleties of how to handle the degenerate cases, which is not our main concern. 
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The implementations were used in some applications, i.e., convex decomposition of 

polytops and optimum placement of a sensor network based on the moving Voronoi 

diagram, to see how the implementation can be practically used. 

The evaluation code is written in the functional programming language Haskell (Peyton 

Jones, 1987; Peyton Jones and Hughes, 1999; Thompson, 1999). Definitions are built in the 

form of functions. Functional programming languages use a similar syntax and have similar 

mathematical foundations as algebraic specifications. It defines each element as a function 

and also defines their relations explicitly as algebra (Hughes, 1989). 

1.6 Major expected results 

This thesis proposes a formal approach to implement dimension independent spatial 

analyses. The major expected results of this research are: 

1. Introduction of a mathematical approach to construct an abstract integrated 

framework that expresses the essence of spatial analyses independent of the 

objects to which they are applied 

2. Definition of the framework into a mathematical model with executable 

specifications in functional programming paradigm (Bird and Wadler, 1988; 

Thompson, 1999). This model will be independent of implementation details. 

3. Identification of the barriers to implement the mathematically provable proposed 

idea in a programming environment (here, Haskell) through the selected case 

study (i.e., Delaunay triangulation) and investigation of the performance of the 

implementations. 

1.7 Intended audience 

Scholars in GIScience and related disciplines (e.g. computer science), who search for 

developing 2D spatial analyses to support higher dimensions, are the intended audience of 

this research. They can use the defined framework as a core and extend it by adding new 

elements of their own specific applications. We use this approach to implement spatial 

analyses for objects moving on a network, spatial analyses for non-convex polytops of any 

dimension by convex decomposition of them (Bulbul, 2011; Karimipour, 2009; Karimipour 
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et al., 2010a; Karimipour et al., 2010b), and optimum placement of a sensor network based 

on the moving Voronoi diagram (Argany et al., 2010). 

1.8 Organization of the thesis 

The next chapter reviews previous approach concerning the extension of spatial analyses to 

higher dimensions and shows how they are applied to extend 2D Delaunay triangulation to 

support 3D and moving points. A discussion on comparing the current approach with the 

proposed approach of the research is then presented. 

Chapter 3 introduces the formal methods that will be used in the proposed approach of 

the research. The concepts of abstraction, algebraic structures and simplicial complexes are 

presented in this regards. The functional programming languages are introduced and the 

reasons of using such an environment are presented.  

Chapter 4 describes the proposed approach of the research to extend spatial analyses to 

different multi-dimensional spaces. It explains how the spatial analyses are decomposed and 

how the data types and primitive operations are defined. Different geometric and topological 

operations needed for the implementation of the case study is presented. 

Chapters 5 and 6 describe the extension of spatial analyses to higher dimensions. In 

chapter 5, we use n-simplexes as an n-dimensional data type. A set of operations are defined 

on simplexes based on the concept of vector algebra. In chapter 6 we show how to extend 

the n-dimensional static spatial analyses to support moving objects. The required mappings 

are presented and discussed. The Haskell implementations of the theories are presented in 

these chapters. 

Chapter 7 presents the implementation results for extending Delaunay triangulation to 

different dimensions. We then evaluate and discuss the performance of the implementations. 

At the end of this chapter, two applications developed upon the implementation are 

presented to show how the proposed approach can be practically used. 

Chapter 8 summarizes the work done in this thesis. We present the results and major 

contribution as well as the research achievements. The chapter concludes with the possible 

directions for future work. 

The proposed approach of the thesis has been implemented in the functional 

programming language Haskell. In Appendix 1, the main concepts and syntax of Haskell are 

described. The complete Haskell code of the implementations is given in Appendix 2. 
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2 EXTENDING SPATIAL ANALYSES TO HIGHER 

DIMENSIONS: STATE-OF-THE-ART 

This chapter reviews the state-of-the-art in extending spatial analyses to higher dimensions 

and shows how the current approaches are applied to Delaunay triangulation, as the case 

study of the research. For this, Delaunay triangulation is introduced and some methods to 

construct this structure are presented. Current approaches to extend spatial analyses to 

higher dimensions are reviewed and their applications to Delaunay triangulation are 

explained. We use this information at the end of the chapter to compare the current 

approaches with the proposed approach of the research. 

2.1 Delaunay triangulation 

Delaunay Triangulation (DT) is a fundamental structure in computational geometry. This 

structure is commonly used in several applications, from computer graphics, visualization, 

computer vision, robotics, and image synthesis to mathematical and natural sciences 

(Cignoni et al., 1998).  

Delaunay Triangulation is well known in geosciences for many years (Gold, 1979, 

1994, 1998; Gold et al., 1977; Ledoux, 2008). It is the basic structure for many geoscientific 

applications such as terrain modeling, spatial interpolation and geological mapping problem. 

It is also widely used in 3D geoscientific modeling. ‘‘3D Delaunay triangulation is used in 

many geoscientific applications that collect data about spatial objects and domains such as 

features of the solid earth (aquifers), oceans (currents) or atmosphere (weather fronts), 

which fill 3D space’’(Lattuada and Raper, 1995). Furthermore, there are several applications 

in geosciences for which constructing the 3D Delaunay triangulation is the basis, e.g., 

surface modeling, iso-surface extraction (Ledoux and Gold, 2007) and reconstruction of 3D 

complex geological objects (Yong et al., 2004).  

2.1.1 Definition 

Given a point set P in the plane, the Delaunay triangulation is a unique triangulation of the 

points in P (if the points are in general position), which satisfies the empty circum-circle 
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property: the circum-circle of each triangle does not contain any other point p∈P 

(Delaunay, 1934; Guibas and Stolfi, 1985; Okabe et al., 2000; Stolfi, 1989a, b). This 

structure for a set of 3D points is the tetrahedralization of the points in which the circum-

sphere of each tetrahedron does not contain any other point of the point set. Figure  2.1 

shows Delaunay triangulation of some 2D and 3D points. 

 

  

(a) (b) 

Figure  2.1. 2D and 3D Delaunay triangulations. (a) 2D: some of the circum-circles are shown (b) 3D: one of the 

tetrahedra is highlighted. 

Delaunay triangulation is the dual structure of Voronoi diagram. The Voronoi diagram 

(VD) of a set of points is defined as follows: Let P be a set of points in an n-dimensional 

Euclidean space R
n
. The Voronoi cell of a point p∈P, noted Vp(P), is the set of points x∈R

n
 

that are closer to p than to any other point in P: 

 

(2-1) Vp (P) = {x∈R
n
 | ||x-p|| ≤ ||x-q||, q∈P, q ≠ p} 

 

The union of the Voronoi cells of all points p∈P form the Voronoi diagram of P, noted 

VD(P): 

 

(2-2) 
VD (P) = U Vp (P), p∈P 

 

Figure  2.2 shows 2D and 3D examples. The Voronoi diagram is a very simple structure 

and is used in many real-world applications (Ledoux, 2008). For an exhaustive surveys on 

Voronoi diagram and their applications, see (Aurenhammer, 1991; Okabe et al., 2000). 
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(a) (b) 

Figure  2.2. 2D and 3D Voronoi diagram: (a) VD of a set of points in the plane. (b) Two Voronoi cells adjacent to 

each other in R3 (they share the grey face). 

Delaunay triangulation and Voronoi diagram are dual structures: the center of circum-

circles (-spheres) of Delaunay triangulation are the Voronoi vertexes; and joining the 

adjacent generator points in a Voronoi diagram yield their Delaunay triangulation (Figure 

 2.3). This duality is very useful because construction, manipulation and storage of the 

Voronoi diagram is more difficult than Delaunay triangulation, so all the operations can be 

performed on Delaunay triangulation, and the Voronoi diagram is extracted on demand 

(Ledoux, 2008). 

 

  

Figure  2.3. Duality of Delaunay triangulation (solid lines) and Voronoi diagram (dashed lines) 

2.1.2 Star and ears of a Delaunay triangulation 

Among the concepts to interact with the topology of the Delaunay triangulation, here we 

explain the star and ears of a Delaunay triangulation, which will be used later for moving or 

deleting a vertex in a Delaunay triangulation.  

Consider a vertex v in an n-dimensional Delaunay triangulation. All the triangles 

(tetrahedra in 3D) that contain v form the star(v), which has a star shape (Figure  2.4). For 

example, in 2D, the star(v) contains the vertex v itself, and all the triangles and edges 

incident to v.  



Chapter 2. Extending Spatial Analyses to Higher Dimensions: State-of-the-art 13 

 

Let all the elements of dimension (n-1) be a face in T, which are edges in 2D and 

triangles in 3D. An imaginary triangle (tetrahedron in 3D) that is formed by the vertexes of 

adjacent faces is an Ear of T: 

• In 2D, an ear is constructed by three vertexes spanning two adjacent edges of two 

neighboring triangles (Figure  2.5.a). 

• In 3D, an ear is constructed by four vertexes spanning either two adjacent faces    

(2-ear), or three faces incident to a vertex (3-ear) (Figure  2.5.b). 

 

  
 

(a) (b) 

Figure  2.4. The star of a vertex v in DT: (a) 2D (b) 3D (Ledoux, 2008) 

 

 

 

(a) (b) 

Figure  2.5. Example of ears of a DT: (a) 2D (b) 3D. In 2D, two adjacent edges (bold lines) form an ear. In 3D, 

two adjacent triangular faces (light grey) form a 2-ear, and three triangular faces incident to a vertex (dark grey) 

form a 3-ear (Ledoux, 2008). 

2.1.3 Constructing Delaunay triangulation in 2 and 3 dimensions 

The construction of the Delaunay triangulation is a classical problem of computational 

geometry. Many algorithms were proposed to construct the Delaunay triangulation of a set 

of points of different dimensions. Based on the paradigm used, they are classified into 

incremental (Bowyer, 1981; Edelsbrunner and Shah, 1992; Field, 1986; Joe, 1991; Lawson, 

1977; Mucke, 1988; Watson, 1981), divide and conquer (Cignoni et al., 1998), and sweep-

ear 
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line (Fortune, 1987) algorithms. There are also some other algorithms such as wrapping 

(Dwyer, 1991; Maus, 1984; Tanemura et al., 1983) and convex hull based (Brown, 1979; 

Edelsbrunner and Seidel, 1986) algorithms.  

In the following, two incremental algorithms to construct Delaunay triangulation of a 

set of 2D points are introduced. Then, we show how they are adopted to support 3D points.  

2.1.3.1 Flipping algorithm 

This is an incremental algorithm that was originally introduced by Lawson (Lawson, 1977). 

It is based on the fact that there are two possible triangulations for four points in 2D, only 

one of which satisfies the circum-circle property (Figure  2.6). Replacing one configuration 

with the other one is called flipping. In 2D case, it is called flip22 because there are two 

triangles before and after the flip operation. 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure  2.6. Two possible triangulations of four 2D points. Triangulation in (b) satisfies the circum-circle 

property. 

Incremental algorithms start with the minimum number of points with a known 

structure. Here, we start with a big triangle that contains all of the vertexes (Figure  2.7). 

Other vertexes are inserted into the structure one by one and after each insertion, the 

structure is updated. To insert a vertex in a 2-dimensional Delaunay triangulation using the 

flipping algorithm, three steps are taken: 

  

Figure  2.7. A big triangle that contains all of the vertexes 

flip22 
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2.1.3.1.1 Finding the containing triangle 

First step is to find the triangle that contains the new vertex. This is done through 

determining the position of the new vertex with respect to the edges of the triangle.  

To determine the position of the point p with respect to a line segment ab, the 

following determinant is used (Figure  2.8): 

 

1

1

1

a a

b b

p p

x y

D x y

x y

=  (2-3)

 

If D is positive, then abp is clockwise (i.e., p is on right side of ab ); otherwise abp is 

counter-clockwise (i.e., p is on left side of ab).  A point p is inside a triangle abc (where abc 

is clockwise), if it is located on right side of all line segments ab, bc  and ca. 

  

(a) (b) 

Figure  2.8. Position of a point with respect to a line segment: (a) positive (b) negative 

To find a triangle that contains the new vertex, we can simply check all the triangles in 

order, until the containing triangle is reached. However, by using an algorithm called 

walking, this triangle can be found faster. As Figure  2.9 shows, this algorithm walks directly 

through the containing triangle. For this, if the new vertex is not in a triangle T, the next 

triangle to be checked is the one sharing the edge with T that makes a counter-clockwise 

order with the new vertex (Guibas and Stolfi, 1985; Stolfi, 1989a, b). 
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Figure  2.9. Walking algorithm to detect the triangle contains the new vertex 

2.1.3.1.2 Insertion 

In this step, the containing triangle is replaced with three new triangles that pass through the 

new vertex (Figure  2.10). 

 

 
 

 

Figure  2.10. Inserting a new vertex into a triangle 

2.1.3.1.3 Update 

The three new triangles, created by the insertion process in the previous step, are pushed in a 

stack. Each element of the stack is checked against the circum-circle property. For a triangle 

T = < a, b, c > and a point p, the circum-circle property is satisfied, if the point p does not lie 

in the circum-circle of the triangle T. Its extension to 3D, called circum-sphere property, 

estates that the point p does not lie in the circum-sphere of the tetrahedron T = < a, b, c, d >. 

The following determinants are used to test the circum-circle and circum-sphere properties 

for 2D and 3D cases, respectively (Guibas and Stolfi, 1985): 

 

insertion 
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 3D 2D 

A positive value for h indicates that p is inside the triangle abc, while it is outside if h 

is negative. If this property is not satisfied, then the triangle and its adjacent are flipped and 

the new triangles are pushed in the stack. This process continues until there is no element 

left in the stack. Figure  2.11 shows the entire process of inserting a new vertex into a 

Delaunay triangulation using the flipping algorithm. 

      

(a)  (b)  (c)  

      

(d)  (e)  (f)  

      

(g)  (h)  (i)  

Figure  2.11. Flipping algorithm to insert a vertex in a DT: (a) Initial DT and the new vertex. (b) Detecting the 

triangle that contains the new vertex and (c) inserting the new vertex into it. (d) to (h) Checking the circum-circle 

property and applying flipping if required. (i) new DT that contains the inserted vertex (Ledoux, 2007). 
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The complexity of flipping algorithms is O(n log n) in 2D, where n is the number of 

input points: The number of triangles is k*n (k is a constant); The procedure runs for each 

point and in each iteration, the walking algorithm finds the containing triangle in k*log n (k 

is a constant); and a constant number of adjacent triangles are updated, which altogether 

make the complexity O(n log n). 

2.1.3.1.4 Extension to 3D 

The general steps of flipping algorithm for 3D points are the same as 2D, but the details 

must be adopted: 

• A big tetrahedron that contains all of the vertexes is created (Figure  2.12). 

 

  

Figure  2.12. A big tetrahedron that contains all of the vertexes 

• To find the tetrahedron that contains a new vertex, the walking algorithm is 

adopted to interact with tetrahedra instead of triangles. The following determinant 

is used to determine the position of the new vertex respect to the triangular faces of 

each tetrahedron (Figure  2.13).  
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(a) (b) 

Figure  2.13. Position of a point respect to a tetrahedron: (a) positive (b) negative 

• To insert a vertex into a tetrahedron, it is replaced with three new tetrahedra that 

pass through the new vertex (Figure  2.14). 

 
 

 

Figure  2.14. Inserting a new vertex into a tetrahedron 

• To update the tetrahedralization, the push-and-pop process as 2D is performed, and 

the concept of flipping is generalized. Flipping, however, is different in 3D (Joe, 

1989, 1991; Lawson, 1986), which prevents a dimension independent 

implementation. To tetrahedralize five 3D points, there are two possible solutions: 

one has two tetrahedra and the other has three (Figure  2.15). Flipping between the 

two configurations are called flip23 and flip32, regarding the number of tetrahedra 

exist before and after the flip operation. Moreover, according to the geometry of a 

tetrahedron in the Delaunay triangulation with its adjacent, it is not always possible 

to perform a flip. It is the case when the union of two tetrahedra is concave (Figure 

 2.16). In such cases, no action is taken because the required flip will be performed 

by a later element in the stack. For more information, see (Edelsbrunner and Shah, 

1992; Ledoux, 2006, 2007; Shewchuk, 2003). 
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Figure  2.15. Two possible tetrahedralizations of five 3D points (Ledoux, 2007) 

  

Figure  2.16. A situation when the union of two tetrahedra is concave, so not flippable 

The triangulation of n points in 3D have k*n
2 
tetrahedra (Ledoux, 2007). After insertion 

of each point, the walking algorithm finds the containing tetrahedron in k*n (k is a constant); 

and a constant number of adjacent tetrahedra are updated, which altogether make the 

complexity O(n2). 

2.1.3.2 Bowyer-Watson algorithm 

This is a dimension independent incremental algorithm introduced by Bowyer and Watson 

(Bowyer, 1981; Kanaganathan and Goldstein, 1991; Watson, 1981). To add a vertex in a 2-

dimensional Delaunay triangulation, all the triangles that violate the circum-circle property, 

i.e., whose circum-circle contains the new vertex (Figure  2.17.a), are deleted from the 

construction (Figure  2.17.b). This creates a hole, which is filled by new triangles that are 

created by joining the new vertex to each edge of the boundary of the hole (Figure  2.17.c). 

 

flip23 

flip32 
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(a) (b) (c) 

Figure  2.17. Inserted vertex, indicated as white, is added to DT: (a) and (b) all triangles whose circum-circle 

contains the new vertex are detected and deleted (c) The created hole is filled by new triangles, which are created 

by joining the new vertex to each edge of the boundary of the hole (Ledoux 2006). 

2.1.3.2.1 Extension to 3D 

To construct the Delaunay triangulation of a set of 3D points using the Bower-Watson 

algorithm, after each insertion, all the tetrahedra whose circum-sphere contain the new 

vertex are deleted, and the hole is filled by new tetrahedra that are created by joining the 

new vertex to each triangle of the boundary of the hole (Field, 1986; Watson, 1981).  

The complexity of the Bowyer-Watson algorithms is O(n log n) in 2D and O(n2) in 3D, 

where n is the number of input points: The number of triangles is k*n (k is a constant) in 2D 

and k*n
2 

in 3D. The procedure runs for each point and in each iteration, the walking 

algorithm finds the triangle that contains the new point in k*log n and k*n iterations for 2D 

and 3D, respectively (k is a constant). Regarding the fact that the violating triangles are 

connected, after detecting the first violating triangle, its adjacent triangles are checked and it 

continues until all of the adjacent triangles satisfy the test. Thus, the complexity of the 

Bowyer-Watson algorithm is O(n log n) in 2D and O(n
2
) in 3D. 

2.2 Dynamic spatial analyses  

In a dynamic set of points, the position of the points is fixed, but the number of the points 

may change over time, i.e., points may be inserted into or deleted from the point set.  

Suppose that a structure, say, Delaunay triangulation is constructed for a set of objects. 

If a new object is inserted into or deleted from the set, the straightforward approach to 

update the structure is to reconstruct the whole structure from the scratch. Although this is 

simple, it is very inefficient; because usually inserting or deleting an object leaves a 

significant part of the structure unchanged, so most of the previous calculations are 

unnecessarily repeated. 
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A more efficient approach is to locally update the structure. In other words, only that 

part of the structure affected by the insertion or deletion is reconstructed. It is obvious that 

the affected part is different from an analysis to another, so each analysis needs its own 

updating strategy. In the following, we show how to locally update the Delaunay 

triangulation after insertion or deletion of a vertex. 

2.2.1 Dynamic Delaunay triangulation 

To insert a vertex in a Delaunay triangulation, the incremental algorithms proposed to 

construct the Delaunay triangulation, i.e., flipping and Bowyer-Watson algorithms can be 

properly used. These algorithms insert a vertex to an existing Delaunay triangulation and 

locally update the structure. 

Deleting a vertex v from a Delaunay triangulation can be considered as the inverse 

problem of inserting a vertex in a Delaunay triangulation: The vertex v and all triangles 

incident to v are removed and the created hole is re-triangulated (Figure  2.18). 

 

   

(a) (b) (c) 

Figure  2.18. Deleting a vertex v from a DT: (a) DT Before deletion (b) The hole created by deleting the incident 

triangles (c) Re-triangulating the hole (Ledoux et al., 2005) 

Heller (1990) proposed an algorithm to delete a vertex from a 2-dimensional Delaunay 

triangulation. In his algorithm, the ears of the vertex v are examined in counter-clockwise 

order (Figure  2.19.b) and the one with the smallest circum-circle (Figure  2.19.c) is flipped 

with its adjacent triangle with which it shares a link edge (Figure  2.19.d). This reduces the 

number of neighbors of v by one. The process continues until only three triangles left 

(Figure  2.19.e). Then, v is removed and the three triangles merged into one (Figure  2.19.f) 

(Heller, 1990). 

 

 

v 
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(a) (b) (c) 

      

(d) (e) (f) 

Figure  2.19. Heller algorithm to delete a vertex, indicated as white, from DT: (a) The initial DT. (b) Circum-

circles of the triple neighboring vertexes that form an imaginary triangle. (c) and (d) Flipping the imaginary 

triangle with the smallest circum-circle with its adjacent triangle. (e) Repeating the process until only three 

triangles left. (f) Removing the vertex and merging the three triangles into one. 

Heller assumption was that among all the potential ears, the one with the smallest 

circum-circle has no other vertex inside and so could become a real triangle. However, 

Dellivers (2002) showed, through a counter-example, that this assumption is wrong. Instead, 

he suggested ordering the ears (imaginary triangles) based on the power of the vertex to be 

removed with respect to that ear. This parameter is computed as follow (Devillers, 2002): 
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 (2-7) 

 

It is proved that Dellivers algorithm works for any dimensions (Devillers and Teillaud, 

2003).  
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Mostafavi et al. (2003) proposed an algorithm that does not apply any order on the 

imaginary triangles. Instead, they test the imaginary triangles one by one, and if it is a valid 

imaginary triangle, it is flipped with its adjacent. An imaginary triangle T = (v1, v2, v3) is 

invalid if at least one of the following statements hold: 

• D(v1, v2, v3) is negative. It means that T does not form an ear. 

• D(v1, v3, v) is negative, where v is the vertex to be deleted. It means that T encloses 

v. 

• H(<v1, v2, v3>, x) is positive for at least one of the neighboring vertexes x. It means 

that there is, at least, one neighboring vertex that lies inside the circum-circle of T. 

 

Although this algorithm is simpler, it becomes less efficient as the number of neighbors 

increases. However, this algorithm is equally efficient up to eight neighbors, which is 

mostly the case (Mostafavi et al., 2003). 

To extend this algorithm to 3D, recall that there are two types of ears in 3D: 2-ears and 

3-ears. Let P be a polyhedron that is made up of triangular faces. A 2-ear is formed by two 

adjacent triangular faces abc and bcd sharing the edge bc (Figure  2.20.a); and a 3-ear is 

formed by three adjacent triangular faces abd, acd and bcd sharing the vertex d (Figure 

 2.20.b). A 2-ear is valid if and only if the line segment ad is inside P; and a 3-ear is valid if 

and only if the triangular face abc is inside P. In the case of the deletion of a vertex v in a 

Delaunay triangulation, P is a star-shaped polyhedron star(v). An ear of star(v) is valid if it 

is convex outwards from v. 

 

 

 
 

 

(a) (b) 

Figure  2.20. (a) 2-ear (b) 3-ear 

Now, to delete a vertex v from a 3-dimensional Delaunay triangulation, all the ears of 

star(v) are built and stored in a simple list. An ear e from the list (any ear) is popped. The 
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ear e is flipped if respects these three conditions: e is valid, flippable and locally Delaunay 

(Ledoux et al., 2005). For more details on a flippable tetrahedron, see (Ledoux, 2007). An 

ear e is locally Delaunay if its circum-sphere does not contain any other points on the 

boundary of star(v). 

Another approach suggested by Schaller and Meyer-Hermann (2004) moves the vertex 

to be deleted towards its nearest neighbor gradually and update the structure until the 

triangles between the two vertexes are very flat and can be clipped out of the triangulation 

without harming its validity. Figure  2.21 illustrates the idea of this algorithm. The updates 

are performed using the existing algorithms for kinetic Delaunay triangulation, which will 

be presented in the next section. 

 

   

(a) (b) (c) 

Figure  2.21. Delete a vertex from DT: (a) The vertex to be deleted (large hatched point) is moved gradually 

toward it nearest neighbor (large black point) and the DT is updated by flipping when required. (b) The 

movement continues until the inner simplexes (shaded region) can be safely deleted. (c) The two vertexes are 

simply merged and the remaining opposing simplexes are connected as neighbors. 

2.3 Kinetic spatial analyses  

A kinetic or moving point is a point whose position changes over time, i.e., its position is a 

function of time:  

 

P = (p1, p2, …, pn) = (f1(t), f2(t), …, fn(t)) (2-8)

 

Once insertion and deletion of an object have been implemented for a structure, the 

intuition to handle a moving object is that the object is deleted from the current position and 

re-inserted at the new position; after each deletion and insertion, the structure is updated. 

Although it is a very simple approach, it is computationally expensive because several 

unnecessary deletions and insertions are performed: an object is deleted and re-inserted, 

while this movement may not affect the topology of the structure, so it is not really kinetic. 

This approach nevertheless is an appropriate solution for many applications where the 
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intermediate states are not important (just the start and end states are of interest): the object 

is deleted from the start and re-inserted at the end. 

A more efficient approach is using event-based methods. They are based on the 

concept of topological events, which is defined as “for a structure D consisting of moving 

elements S, a topological event t is the moment when the movement of elements S change 

the topology of D”. Based on this concept, to handle the movement of an object in a 

structure, the topology of the structure is updated at topological events; elsewhere, only the 

geometry of the structure is modified, which does not need any computations. It is obvious 

that the topological events are different for each analysis, so each analysis needs its own 

movement handling strategy. In the following, some methods for moving the points in the 

Delaunay triangulation are presented. 

2.3.1 Kinetic Delaunay triangulation 

De Fabritiis and Coveney (2003) presented an approach to move the vertexes of a Delaunay 

triangulation: they gradually move the vertexes toward their destinations. After each 

movement, the triangles that violate the circum-circle property are detected and flipped. In 

2D, each triangle T is checked with all of its neighbors. If the opposite vertex of a 

neighboring triangle T' lies in the circum-circle of T, then T and T' are flipped and put in a 

stack to be checked with their new neighbors. This process continues until there is no 

element left in the stack. 

The idea of this approach is based on “delete and re-insert”, but it has some level of 

intelligence: a simple check is applied on all elements (triangles or tetrahedra here), but 

further operations (i.e., flip) are applied only when it is required. However, the main 

drawback is still there: This method uses a fixed time step to move all of the vertexes, no 

matter if this movement topologically affects the structure or not.  

Extension of this method to 3D needs two types of check because two types of flips 

(flip23 and flip32) are possible (Schaller and Meyer-Hermann, 2004): 

• Each tetrahedron T is checked with its neighbor T' and a flip23 is performed if the 

following two conditions are met: 

- The opposite vertex of the neighbor T' lies within the circum-sphere of T. 

- The five union vertexes of T and T' form a convex polyhedron. 
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• Each tetrahedron T is checked with two of its neighbors T1 and T2 and a flip32 is 

performed if the following two conditions are met: 

- All of the pairs TT1, TT2 and T1T2 violate the circum-sphere property. 

- T1 and T2 are also respective neighbors. 

 

Another extension of this approach to 3D is that instead of performing a sequence of 

flips on the tetrahedra in order to locally restore the circum-sphere property, the validity of 

this property is checked for all the tetrahedra. The vertexes for which this property fails are 

moved back to the preceding position and then “delete and re-insert” is applied (De Fabritiis 

and Coveney, 2003). 

To use the event-based update to move a vertex in a Delaunay triangulation, let p be a 

vertex in a Delaunay triangulation DT and P be the set of its neighboring vertexes, in 

clockwise order. Let Tr be the set of opposite triangles (tetrahedra in 3D) of p, i.e., 

neighbors of incident triangles (tetrahedra in 3D) to p, and Ti be the set of imaginary 

triangles (tetrahedra in 3D) that could be drawn from three (four in 3D) successive elements 

of P (Figure  2.22). Then, the topological events of DT caused by the point p are defined as 

follows (Albers et al., 1998; Ledoux, 2008; Mostafavi, 2002; Roos, 1991): 

• If p moves in the circum-circle (-sphere in 3D) of an element of Tr (Figure  2.23), a 

flip is performed and the new triangles (tetrahedra in 3D) are updated (i.e., they are 

checked with their neighbors against the circume-circle (-sphere in 3D) property). 

• If p moves out of the circum-circle (-sphere in 3D) of an element of Ti (Figure 

 2.24), a flip is performed and the new triangles (tetrahedra in 3D) are updated. 

 

 

 

Figure  2.22. Hashed triangles are the opposite triangles of p. Shaded triangle is one of the imaginary triangles 

that could be drawn from three successive neighbors of p. 

p 
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(a)  (b)  (c)  

Figure  2.23. (a) The white point moves in the circum-circle of an opposite triangle. (b) The two triangles are 

flipped. (c) Final DT 

      

(a)  (b)  (c)  

Figure  2.24. (a) The white point moves out of the circum-circle of an imaginary triangle (b) The two triangles are 

flipped. (c) Final DT 

Roos (1991) proposed an algorithm to update a 2-dimensional Delaunay triangulation 

based on the concept of topological events. All the topological events for all the 

quadrilaterals (pair of adjacent triangles in the Delaunay triangulation) are computed and put 

in a priority queue, sorted according to the time they will arise. The time is computed by 

finding the zeros of the circum-circle equation developed into a polynomial.  Then, the first 

topological event is popped from the queue, the Delaunay triangulation is modified with a 

flip22, and the queue is updated because the flip has changed locally some triangles. The 

algorithm continues until there are no topological events left in the queue (Guibas et al., 

1992; Roos, 1991, 1993; Roos and Noltemeier, 1991). Similar algorithms have been 

proposed in (Bajaj and Bouma, 1990; Imai et al., 1989). 

This algorithm has been extended to 3-dimensional Delaunay triangulation in (Albers, 

1991; Albers et al., 1998; Albers and Roos, 1992). However, it is not very efficient in 3D 

because calculating the zeros of the circum-sphere equations cannot be done analytically, as 

is the case for the circum-circle equations (Gavrilova and Rokne, 2003; Vomacka, 2008). 
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Indeed, the polynomial for the 3-dimensional case has a high degree (8th degree) and 

iterative numerical solutions must be sought. That results in a much slower implementation, 

and it could also complicate the update of the Delaunay triangulation when the set of points 

contains degeneracies.  

Mostafavi (2001) proposes a different algorithm and gives more implementation 

details. He focuses on the operations necessary to move a single point p, and then explain 

how to move many points (see section  2.4). In this algorithm, the topological events caused 

by a single point p are detected by intersecting the trajectory of the point p with the opposite 

and imaginary circum-circles, which were explained above (Gold, 1990; Gold et al., 1995; 

Mostafavi, 2002; Mostafavi and Gold, 2004). This algorithm has been equally extended to 

3-dimensional Delaunay triangulation in (Ledoux, 2008). 

2.4 Event based approach to move several objects  

To move several objects in a structure based on the event based approach, the topological 

events of all objects must be determined and sorted based on the event time. Then, they are 

applied in the structure in order. 

Note that objects may start moving at different times and so the events have different 

time origins. Therefore, they must be synchronized before sorting. For this, a global time 

scale G is considered whose origin is the occurrence of the first event. Then, three types of 

time are defined for topological events (Hashemi-Beni et al., 2007; Ledoux, 2008): 

• e t t
i 
: The time between the topological event e and the topological event i. If d is 

the distance of the current position of the object to the topological event i, and the 

object is moving with a constant velocity v, then e t t
i = d / v. 

• e t g
i : The time, in the time scale G, of the occurrence of the topological event i. 

• e t c
 
: The time, in the time scale G, passed from the start of the movement of the 

object. 

 

The relation between the above times defined for topological events is (Figure  2.25):  

 

etg
i
 = etc + ett

i
 (2-9)
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Figure  2.25. Relation between different times defined for topological events 

Now, etg
i
 is a synchronized event time that can be computed for all topological events 

using the Equation (2-9). 

2.5 Discussion 

The algorithms to perform spatial analyses can be classified as follows: 

• Dimension specific algorithms: These algorithms are designed for a specific 

dimension and use the characteristics of the objects of that dimension in their 

definition, so they cannot be extended to any other dimension. The Graham-scan 

algorithm to compute the convex hull of 2D points (Berg et al., 2008; Karimipour 

et al., 2008) is an example of such algorithms. 

• n-dimensional algorithms: These algorithms can be developed for objects of 

different dimensions. The general procedure is similar for any dimension, but the 

details are different. For example, in the flipping algorithm, presented in section 

 2.1.3.1, to construct Delaunay triangulation, the three step procedure walk-insert-

update is applied to each 2D and 3D vertex, but the details are different in each 

dimension, especially for flipping. Because of such differences, they are separately 

implemented for each dimension. 

• Dimension independent algorithms: These algorithms are dimension independent 

in their definition, such as Bower-Watson algorithms to construct Delaunay 

triangulation, presented in section  2.1.3.2. Although the definitions are independent 

of dimension, the data types and operational details are different. Therefore, 

because of lack of efficient geometric data structures, they are still implemented 

separately for each dimension. From an implementation point of view, there is no 

advantage in using dimension independent algorithms comparing to n-dimensional 

algorithms. 

etc ett
i
 

etg
i
 

tG=0 i 
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On the other hand, investigating the approaches presented in sections  2.2 and  2.3 to 

delete, insert or move an object in a structure, they efficiently update the structure so that the 

effected part is detected and locally updated. However, the detection and updating strategies 

differ for each analysis, which results in a new technique for extension of each analysis 

(Guibas, 1998; Guibas et al., 2004). 

Considering the above discussion, the current approaches to extend spatial analyses to 

higher dimensions depend on the dimension and analysis, and aim to find the fastest 

algorithm to perform a certain analysis in a specific dimension (Boissonnat et al., 1998; 

Edelsbrunner, 1987; Goodman and Orourke, 1997; Skiena, 1998) (Table  2.1). The 

advantage is that the characteristics of the analysis and the dimension at hand are considered 

in designing the algorithm, so the ultimate simplicity and a fast implementation is achieved 

(CGAL website). 

To establish a practical GIS, that supports a variety of spatial analyses, performance 

evaluation should not be limited to speed because it leads to extension strategies that depend 

on the dimension and the analysis, which results in recoding each spatial analysis for each 

dimension in the software development stage.  

This research focuses on how to extend the spatial analyses to different dimensions 

with the smallest amount of recoding. That is, here the evaluation is on how much recoding 

is needed to extend an implemented spatial analysis to another dimension. Of course, this 

approach will cause losing a significant amount of information available for specific 

dimensions, so it may not provide the simplest and fastest solutions. In other words, this 

research believes that it is better to have a working comprehensive system, even if it is slow, 

than waiting for a fast system created in unknown future. Note that base on the Moor’s law, 

computer speed doubles every 18 months on average! 
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Table  2.1. Some research to perform Delaunay triangulation in different dimensions 

Data type Title of the research Reference 

2
D

 

S
ta

ti
c 

Computing dirichlet tessellation (Bowyer, 1981) 

Numerical stability of algorithms for 2D Delaunay triangulations (Fortune, 1992) 

A fast divide and conquer Delaunay triangulation algorithm (Cignoni et al., 1998) 

A sweepline algorithm for Voronoi diagrams (Fortune, 1987) 

D
y
n
am

ic
 Dynamic Voronoi diagrams and Delaunay triangulations (Bajaj and Bouma, 1990) 

Delete and insert operations in Voronoi/Delaunay (Mostafavi et al., 2003) 

Triangulation algorithms for adaptive terrain modelling (Heller, 1990) 

Fully dynamic constrained Delaunay triangulations (Kallmann et al., 2003) 

M
o
v
in

g
 

Delaunay triangulation of moving points (Vomacka, 2008) 

Voronoi diagrams of moving points (Albers et al., 1998) 

Voronoi diagrams of moving points in the plane (Guibas et al., 1992) 

Voronoi diagrams of moving points in the plane (Fu and Lee, 1991) 

Point location in the moving VD and related problems (Devillers and Golin, 1993) 

Dynamic Voronoi diagrams in motion planning (Roos and Noltemeier, 1991) 

3
D

 

S
ta

ti
c
 

Implementing Watson’s algorithm in three dimensions (Field, 1986) 

Computing the 3D Voronoi diagram robustly (Ledoux, 2007) 

Fully Incremental 3D Delaunay Refinement Mesh Generation (Miller et al., 2002) 

A comparison of five implementations of 3D DT  (Liu and Snoeyink, 2005) 

D
y

n
am

ic
 

Three-dimensional dynamic Voronoi diagrams (Albers, 1991) 

Kinetic and dynamic Delaunay tetrahedralizations in three 

dimensions 

(Schaller and Meyer-

Hermann, 2004) 

Dynamic Voronoi diagrams (Roos, 1991) 

On deletion in Delaunay triangulations (Devillers, 2002) 

Flipping to robustly delete a vertex in a Delaunay 

tetrahedralization 
(Ledoux et al., 2005) 

Perturbations and vertex removal in a 3D Delaunay triangulation (Devillers and Teillaud, 2003) 

M
o
v
in

g
 

Voronoi diagrams of moving points in higher dimensions (Albers and Roos, 1992) 

The kinetic 3D Voronoi diagram (Ledoux, 2008) 

Kinetic and dynamic Delaunay tetrahedralizations in 3D 
(Schaller and Meyer-

Hermann, 2004) 

The kinetic 3D Voronoi diagram: a tool for simulating 

environmental processes 
(Ledoux, 2008) 

Moving objects management in a 3D dynamic environment (Hashemi-Beni et al., 2007) 
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2.6 Summary 

In this chapter we reviewed the state-of-the-art in extending spatial analyses to higher 

dimensions and show how the current approach is applied to Delaunay triangulation, as the 

case study of the research. The current approach and the proposed approach of the research 

were compared. 

Current approach to extend spatial analyses to higher dimensions depends on the 

dimension and analysis and aims to find the fastest algorithm to perform a certain analysis 

in a specific dimension. The result of following such an approach in the software 

development stage is recoding each spatial analysis for each dimension. We believe it is 

better to have a working comprehensive system, even if it is slow, than waiting for a fast 

system created in unknown future! 
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3 FORMAL METHODS 

This chapter explains the formal methods used in this thesis to extend spatial analyses to 

different multi-dimensional spaces: 

• The abstraction concepts needed to construct an integrated framework of spatial 

analyses are introduced, which leads to define spatial analyses based on their 

dimension independent properties.  

• We explain the algebraic structures as the required abstraction to formally define 

spatial analyses as combination of the elements of an integrated framework.  

• The simplicial complexes are introduced as an n-dimensional data type that enables 

dimension independent implementations.  

• Finally, we introduce the functional programming languages and explain why they 

are used in this thesis. The main concepts of functional programming languages 

(especially their evaluation strategies) are described to an extent necessary for 

argue the implementations provided in the thesis.  

3.1 Abstraction 

In a broad meaning, abstraction is the process of generalizing a concept through reducing its 

information content. In computer science, abstraction is defined as removing the behavioral 

details of different objects to the lowest common denominator so that they can be interacted 

in the same manner. It is achieved by ignoring those characteristics that depends on the data 

types. The processes of this abstract level can be performed similarly because all the data 

types have similar characteristics in this level (Liskov and Guttag, 1988; Nordstrom et al., 

1990; Pierce, 2005; Pierce, 2002). As shown in Figure  3.1, abstraction could be considered 

as a many-to-one mapping that maps different data types to a representative abstract data 

type, abbreviated ADT (Liskov and Guttag, 1988; Loeckx et al., 1996). 
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Figure  3.1. Abstract data type as a many-to-one mapping 

3.1.1 Types of Abstraction 

There are three type of abstraction and they are presented in the followings: 

3.1.1.1 Procedural abstraction 

Procedural abstraction specifies the number, types and the order of the inputs and output of 

a process. For example:  

 

sort: a list of type a → a list of type a 

     equality and order are defined on the elements of type a 

     effect: sorts the elements of the input list 

(3-1)

 

says that the sort function sorts the elements of an input list on which equality and 

order are defined. However, it does not determine how to compute it. In procedural 

abstraction, the definition represented for application of a process is independent of 

characteristics of its elements and operations. For instance, using each of the definitions 

represented for equality and order in Equations (3-2) and (3-3) has no effect on the abstract 

definition of the sort function. 

 

( , ) ( , )   

( , ) ( , )   

( , ) ( , )  

a b c d a c b d

a b c d a c b d

a b c d a c

= ⇔ = ∧ =

= ⇔ = ∨ =

= ⇔ =

 (3-2)

 

( , ) ( , )  and 

( , ) ( , )

( , ) ( , )

a b c d a c b d

a b c d a c

a b c d a b c d

< ⇔ < <

< ⇔ <

< ⇔ + < +

 (3-3)

Abstract data type 

Data type 1 Data type 2 Data type n ... 
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3.1.1.2 Data abstraction 

Data abstraction defines a data type, a set of operations upon that data type, and specifies the 

relation between the data type and the operations. These together represent the characteristic 

of that data type.  

The characteristic of a data type is specified through operations that can be applied on 

the objects of that data type. For instance, for the data type queue, the operations push (to 

add an element to the end of the queue), pop (to take the head of the queue), size (to get the 

number of elements of the queue), and isNull (to test if the queue is null) are defined. 

3.1.1.3 Iterative abstraction 

Iterative abstraction is used to avoid details of applying a process on iterative data types 

(e.g., sets, queues, lists, etc.). In other words, iterative abstraction specifies the elements of 

an iterative data type on which a process must be applied, but it does not specify the order of 

elements to be processed and how they are affected. For example, both “apply a function on 

all elements of a list” and “filtering those elements of a list that satisfy a certain criterion” 

can be defined using the following abstract representation: 

 

for all elements of the set

      do action 

(3-4)

3.2 Algebraic structures 

This section introduces algebraic structures and their related concepts. Definition of algebra 

and algebraic structures as well as their mappings are presented. 

3.2.1 Definition of algebra 

An algebra consists of a collection of elements, operations upon those elements, and axioms 

which are capable of expressing the interaction between operations and elements (Loeckx et 

al., 1996; MacLane and Birkhoff, 1999). An algebra G with elements S and operations W is 

denoted as G[S, W].  

An algebraic structure is a set of elements and operations that obey the rules of a 

certain algebra. i.e., these elements and operations can be substituted with their 

corresponding in the algebra. Algebraic structures describe structure independently of any 
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implementation and prior understanding. Thus, the same algebraic structure can describe the 

behavior of different things if their behavior is structurally equivalent (Dorst et al., 2007; 

MacLane and Birkhoff, 1999). For instance, although Roman numbers (I, II, III, …) and 

Arabic numbers (1, 2, 3, …) are two different representations of natural numbers, their 

elements and operations are structurally equivalent and so natural numbers algebra can 

describe both. Sets, Groups, Rings, Fields, and Boolean algebra are examples of algebraic 

structures. For more details, see (MacLane and Birkhoff, 1999). 

3.2.2 Mappings between algebras 

Two different concepts with equivalent structures could be mapped together through a 

mapping, called homomorphism. Homomorphisms are structure preserving mappings, i.e., a 

homomorphism maps corresponding elements and operations while preserving the structure 

(MacLane and Birkhoff, 1999). For instance, f in Figure  3.2 maps the elements and the + 

operation of Roman numbers to their corresponding in Arabic numbers; and the structure of 

operation + is preserved through this mapping.  

  

Figure  3.2. Mapping elements and + operation of Roman numbers to their correspondences in Arabic numbers  

Homomorphisms are commutative (Frank, 2007; MacLane and Birkhoff, 1999): for 

certain origin and destination, the result of mappings is independent of the path. As Figure 

 3.2 shows, adding two Roman numbers by +RN and then applying the mapping f gives the 

same result with applying the mapping f on the two Roman numbers first and adding them 

by +N.  

Note that homomorphisms do not necessarily map similar elements and operations 

(Frank, 2007; MacLane and Birkhoff, 1999). For example, logarithm (log) could be 

considered as a homomorphism that maps R
+
 to R, × to +, and  to 1

2
×  (Figure  3.3).  

 

R N R N×  N N×  
f f×  

RN N  
f  

R N+  N+  
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Figure  3.3. Mapping R
+
 to R through homomorphism log 

Definition: Mathematically, a homomorphism, also called lifting, is defined as follows: 

Let A and B be two different concepts represented by G[S, W]. Then, a homomorphism 

h: A → B is a set of mappings ( )w w Wh
∈

 , where: 

 

: ,    w A Bh w w w W→ ∈ (3-5)

 

and for any two corresponding operations 

 

1

1

,  : ( ... ) ,  0

,  : ( ... ) ,  0

A A k

B B k

w W w s s s k

w W w s s s k

∈ × × → ≥

∈ × × → ≥
 

(3-6)

 

the following equation is hold (Figure  3.4): 

 

1 1( ( ,..., )) ( ( ),..., ( ))A k B kh w s s w h s h s= (3-7)

 

  

Figure  3.4. A homomorphism h between two concepts A and B with the same algebra 

R R+ +
×

 
R R×  

R +  R
 

l o g  

×

 
+  

 1
2

×  

1( ) ... ( )kA s A s× ×  1( ) ... ( )kB s B s× ×  

( )A s  ( )B s  
h
 

Aw  Bw  

h
 



Chapter 3. Formal Methods 39 

 

Equation (3-7) means that the result of applying the operation WA on elements of A and 

then applying the mapping h yields the same result as applying the mapping h on elements 

of B and then applying the corresponding operation WB, i.e., homomorphisms are 

commutative. For instance, Equation (3-7) for the homomorphism log presented in Figure 

 3.3 is written as: 

 

log( ) log( ) log( )

log( )
log( )

2

x y x y

x
x

× = +

=
 

(3-8)

 

Homomorphisms are functions, so they can be injective and surjective (Lawvere and 

Schanuel, 2005). Many of the homomorphisms studied in algebraic structures are bijective 

homomorphism, called isomorphism. If two structures A and B are related through an 

isomorphism, then A and B are isomorphic, denoted A B≅ . For isomorphic structures, the 

following relation holds: 

 

 and A G A B B G∈ ≅ ⇒ ∈

 

(3-9)

 

where G represents a certain algebraic structure. It means that for two structures A and 

B and an algebraic structure G, if A can be represented by G and the elements and operations 

of A and B are equivalent (i.e., A and B are isomorphic), then G can represent B, too. 

3.2.3 Algebraic representation of an abstract data type 

Above discussion leads to algebraic definition of an abstract data type as follow (Guttag and 

Horning, 1978): 

 

“An abstract data type is a collection of different structures all of which are 

represented by the same algebra G and so they are isomorphic”. 

 

This definition expresses that an abstract data type is a set of elements and operations 

of different data types that can be mapped together through an isomorphism. Regarding the 

Equation (3-9), if the elements and operations of a data type A represented by an abstract 
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data type D, are equivalent with the elements and operations of another data type B, then the 

abstract data type D can represent B, too. 

3.3 n-simplexes: an abstract data type for geometry 

An n-simplex Sn is formally defined as “the smallest convex set in an Euclidian space 

(denoted as R
m
, with n ≤ m), containing n+1 points v0, …, vn that do not lie in a hyperplane 

of dimension less than n” (Hatcher, 2002). A simpler definition describes an n-simplex Sn as 

the simplest spanning geometric figure in the n-dimensional Euclidean space that contains 

n+1 points v0, …, vn of dimension n, providing that the vectors v1−v0, …, vn−v0  are linearly 

independent. An n-simplex Sn is represented by the list of its vertexes as: 

 

Sn = <v0, …, vn> (3-10)

 

Each vertex itself is an n-dimensional point, so a detailed representation of an             

n-simplex is: 

 

Sn =  <(e01, …, e0n), …, (en1, …, enn)> 

 

(3-11)

in which eij is the jth defining coordinate of the ith vertex. The n-simplexes are defined 

for any dimension. Table  3.1 shows 0- to 3-simplexes and their common names, 

representations and geometric configurations. 

The concept of n-simplexes is extensively studied in the late 19th century by Henri 

Poincaré. It is the basis of the simplicial homology field, which is a part of algebraic or 

combinatorial topology (Hatcher, 2002).  

For a given dimension n, an n-simplex is the elementary spatial object from which 

other complex objects of that dimension are constructed. Any subset of the vertexes of Sn 

represents a face of Sn. A simplicial complex C is a finite set of simplexes that satisfies the 

following conditions (Figure  3.5): 

• Any face of a simplex from C is also in C. 

• The intersection of any two simplexes s1, s2 ∈C is either empty or a face of both s1 

and s2. 
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Table  3.1. 0- to 3-simplexes and their common names, representations and geometric configurations 

Dimension Name Representation 
Geometric 

Configuration 

0 0-simplex Point S0 = <v0> 
 

1 1-simplex 
Line 

segment 
S1 = <v0, v1> 

 

2 2-simplex Triangle S2 = <v0, v1, v2> 

 

3 3-simplex Tetrahedron S3 = <v0, v1, v2, v3>  

 

Simplicial complexes have several properties (Alexandroff, 1961; Hatcher, 2002). 

They have been considered as a basic data type in developing spatial database systems 

(Penninga, 2008; Penninga and Oosterom, 2008; Schneider, 1997). 

Simplicial complexes may consist of simplexes of different dimensions (Figure  3.5a). 

A homogeneous simplicial k-complex is a simplicial complex where every simplex of 

dimension less than k is the face of some simplex of dimension exactly k (Alexandroff, 

1961; Hatcher, 2002). For example, a triangulation of a set of 2D points is a homogeneous 

simplicial 2-complex.  

 

 

 

 

 

 

 

 

 
 

 

(a) (b) 

Figure  3.5. (a) A simplicial complex that consists of 0-, 1- and 2-simplexes. (b) Some configurations of 

simplexes that are not simplicial complex, because they violate axioms. 

v0 

v0 
v1 

v0 

v3 

v2 

v1 

v0 v1 
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3.3.1.1 Orientation of an n-simplex 

Vertexes of an n-simplex are ordered, which induces an orientation (either positive or 

negative) on the n-simplex. By convention, the orientation of a 0-simplex (point) is positive. 

The orientation of a 1-simplex (line segment) is positive from vertex v0 to vertex v1 and 

negative from vertex v1 to vertex v0. For a 2-simplex (triangle), the orientation is defined 

based on the order in which the vertexes are listed: clockwise order is positive and counter-

clockwise order is negative. The orientation of a 3-simplex (tetrahedron) is the sign of the 

volume constructed by its ordered vertexes (Alexandroff, 1961): based on the right-hand 

rule, a positive volume means that if the first three points are ordered so that they follow the 

direction of the curled fingers, then the thumb is pointing towards the 4
th
 point. 

The orientation of an n-simplex can be specified using the sign of the determinant of a 

matrix constructed as follows: for an n-simplex with vertexes <v0, …, vn>, an element 1 is 

added to the end of each vertex and then they are arranged as the rows of a square matrix. 

For an n-simplex with vertexes <(e01, …, e0n), …, (en1, …, enn)>, the result is: 

 

01 0

11 01 1 0

11 1

1 01 0

1

... 1
...

... 1
... ... ...

... ... ... ...
...

... 1

n

n n

n

n nn n

n nn

e e
e e e e

e e

e e e e
e e

− −

=

− −  

(3-12)

 

Non-negative values for this determinant indicate a positive orientation, while negative 

values mean a negative orientation. Similar to the determinant of a matrix, odd numbers of 

permutations of the vertexes of an n-simplex change the orientation, while even numbers of 

permutations maintain it unchanged. For instance, for the n-simplexes of Table  3.1: 

 

S0 = <v0> 

S1 = <v0, v1> = − <v1, v0> 

S2 = <v0, v1, v2> = − <v0, v2, v1> = <v2, v0, v1> = … 

S3 = <v0, v1, v2, v3> = − <v0, v1, v3, v2> = <v0, v3, v1, v2> = … 

(3-13)



Chapter 3. Formal Methods 43 

 

3.3.1.2 Canonical representation of n-simplexes 

Representation of an n-simplex by its vertexes is a situation where there are multiple 

representations for the same value. For a unified representation, we select a single preferred 

representation for each value, among the many equivalent ones, which is called canonical 

representation. We use a pair (vertexes, orientation) as the canonical representation in 

which the first element is the sorted list of its vertexes and the second element is the 

orientation of the n-simplex. For the vertexes of type (e1, …, en), they are sorted by e1–

coordinate; in the case of equality of e1s, they are sorted by e2–coordinate, and so forth. For 

2D points, this is sorting the points from left to right and from bottom up.  

3.3.1.3 Faces of an n-simplex 

For an n-simplex Sn = <v0, …, vn>, any non-empty subset of vertexes {v0, …, vn} is called a 

face of Sn. For example, all of the faces of the 3-simplex S3 = <v0, v1, v2, v3> are: 

 

<v0>, <v1>, <v2>, <v3>, 

<v0, v1>, <v0, v2>, <v0, v3>, <v1, v2>, <v1, v3>, <v2, v3>, 

<v0, v1, v2>, <v0, v1, v3>, <v0, v2, v3>, <v1, v2, v3>, 

<v0, v1, v2, v3> 

 

(3-14)

 

A face constructed from an improper subset is called an improper face. Thus, all of the 

faces illustrated in Equation (3-14), except the last one, are improper faces of S3. An             

n-simplex Sn = <v0, …, vn> has 1

1

n

m

+ 
 

+ 

 m-dimensional faces (0 ≤ m < n) and 2
(n+1)

-1 of 

improper faces altogether. 

3.3.1.4 Boundary of an n-simplex 

The boundary of the n-simplex Sn = <v0, …, vn>, which is written as nS∂ , is defined as 

follows: 

 

0

0

( 1) ,..., ,...,
n

i

n i n

i

S v v v
=

∂ = − < >∑
 

(3-15)
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where iv means omitting the vertex iv  from the vertex list. The boundary of an           

n-simplex is n+1 of (n-1)-simplexes: 

 

• The boundary of a 0-simplex (point) is an empty set; 

• The boundary of a 1-simplex (line segment) is two 0-simplexes (points); 

• The boundary of a 2-simplex (triangle) is three 1-simplexes (line segments); 

• The boundary of a 3-simplex (tetrahedron) is four 2-simplexes (triangles). 

 

For instance, for the n-simplexes of Table  3.1: 

 

0S∂ = φ 

1S∂ = <v1> − <v0> 

2S∂ = <v1, v2> − <v0, v2> + <v0, v1> 

3S∂ = <v1, v2, v3> − <v0, v2, v3> + <v0, v1, v3> − <v0, v1, v2> 

(3-16)

3.4 Functional programming languages 

Functional programming is a paradigm in which functions are the central model components 

and are used as data; each parameter is considered as a function that is evaluated through a 

simplified form. Here, the focus is on function application, unlike the imperative 

programming languages that change the states (Hughes, 1989). Programming languages are 

classified by orders based on the variables used. A zero order language has no variables, 

only constants. A first order language has variables, which stand for objects, but not for 

predicates or functions. A second order language has variables that can stand for objects, 

predicates, or functions (sometimes called higher order). Functional programming languages 

fall in the category of second order, so they easily model processes; A process applies a set 

of defined functions to change the state of objects, which can be directly simulated by 

functional languages (Frank, 1997; Gunter, 1993).  
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3.4.1 Why we use functional programming languages in this thesis? 

In this thesis, we focus on the properties of operations, instead of objects they are applied to. 

Functional languages are a direct solution to this purpose.  

To construct the integrated framework of spatial analyses proposed in this research, we 

formally describe spatial analyses in a hierarchal way as combinations of simpler ones, until 

a set of primary un-decomposable operations are reached. Similarly, in a functional 

paradigm, a main function is defined through subsidiary functions, which are again defined 

through other subsidiary functions, and so on, until at the bottom level the functions, i.e., 

language primitives (called canonical expressions) are reached, which are not further 

simplified (Bird and Wadler, 1988). Therefore, the proposed integrated framework can be 

explicitly simulated in functional programming languages. In other words, functional 

programming languages are convenient tools to express algebraic specifications because 

both of them use a similar syntax and have similar mathematical foundations (Frank, 2000; 

Frank, 1999; Raubal, 2001). 

Finally, in the proposed approach of the thesis, a spatial analysis is extended to a higher 

dimension using mappings (liftings) that maps different spaces to each other (e.g., 2D static 

to 2D moving). These liftings defined between functions are second order functions and can 

be modeled in functional programming languages. 

It is essentially a formalization in a (dialect) of lambda calculus. Haskell — the 

functional programming language that we use — introduces “syntactic sugar” to abbreviate 

rewriting complex constructions and allows checking the results for syntactic completement 

of definitions and semantic checking of the results.  

3.4.2 Functional vs. structured programming languages 

In structured programming languages – like C++, Pascal, Fortran and Java – a program 

consists of a set of blocks. A set of procedures are applied on input(s) of the block to 

produce an output.  

Unlike unstructured languages (like Basic), blocks do not have multiple entries or 

exits. Therefore, commands like goto, which freely refer to any line of code, are not 

allowed. It enforces modular programming, which makes the programs simple, reusable and 

tractable (Bird and de More, 1997; Hughes, 1989). 
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In structured programming languages, a certain variable stands for a value that can be 

changed during the running time. i.e., the value assigned to a variable may change 

somewhere else. For example, assignments such as a=a+1 are allowed. It causes side effects 

in the programs. It means that re-assigning a variable in a block may affect the results of 

running another block. Thus, the order of running is important. For example, considering the 

following blocks A and B, the result of applying A then B is 13, while B then A yields 16: 

 

x = 5 

 

Block A 
{ 

x = 2 * x 

} 

Block B 
{ 

x = x + 3 

} 

(3-17)

 

B(A(x)) = 13 

A(B(x)) = 16 

 

Functional programming is another programming paradigm that is constructed based 

on function calls. Here, a program is a function that calls other functions. For example, in 

the following expression: 

 

output = function 3 (function2 (function 1)) (3-18)

 

function3 calls function2, which calls function1. Thus, the function1 is evaluated first 

and passed to function2. Finally, function3 applies on the result and produces the output. 

Purely functional programming languages are based on λ-calculus — a mathematical 

theory of functions (Hankin, 2004; Michaelson, 1989). Like mathematics, functions produce 

only one result value and it is not changed, so there is no side effect. An expression always 

produces the same result because values can only be assigned once to a parameter (it is 

called referential transparency). Moreover, the final result is independent of the order of 

running the expressions. Functional programs are succinct because more than 90% of 

expressions in structured languages are assignments (Hughes, 1989), which do not exist in 

functional languages. Forbidding re-assignment enables lazy evaluation, which will be 

described in the following section. 

On the other hand, loop expressions that are frequently used in structured languages are 

not allowed in functional languages because it is a re-assignment. Instead, the concept of 
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recursion is used, where definition of a function refers to itself. For example, the factorial 

function over natural numbers is demonstrated by the following definition (Thompson, 

1999): 

 

factorial (n) = if (n==0) then 1 else (n * factorial (n-1)) 

3.4.3 Evaluation of expressions in functional programming languages  

In functional programming languages, expressions are evaluated through a complex and 

accurate mechanism that provides the maximum efficiency (Jeuring and Meijer, 1995; 

Peyton Jones, 1987). Following, we describe the main concepts, principals and rules used 

for expression evaluation in functional programming languages to an extent necessary for 

the implementations. 

3.4.3.1 Free and bound variables 

If t is a lambda term, and x is a variable, then ”λx.t” is called a lambda abstraction. For 

example λx.+ x 3 is a function that adds 3  to its input x. 

The abstraction operator, λ, is said to bind its variable wherever it occurs in the body of 

the expression. Variables that fall within the scope of a lambda are said to be bound. All 

other variables are called free. For example, in the expression λy.x x y, the variable y is a 

bound variable and x is free. Also note that a variable binds to its "nearest" lambda. For 

example, in the expression λx.y (λx.z x), one single occurrence of x is bound by the 

second lambda.  

3.4.3.2 Reduction 

Suppose that the function f is defined as 

 

f x = (x + 1) * (x – 1) 

 

and we are required to evaluate f(4). We can think of the program like this: 
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where the @ stands for function application. Applying f to 4 gives: 

 

 

 

Applying the addition and the subtraction (in either order) gives: 

 

 

 

Finally, we can execute the multiplication to get the result: 

 

 

 

This simple example shows that executing a functional program consists of evaluating 

an expression; and the evaluation proceeds by means of a sequence of simple steps, called 

reduction. Each reduction performs a local transformation. Evaluation is complete when 

there are no further reducible expressions (called redex). 

3.4.3.3 β-Reduction 

Suppose the following lambda expression is given: 

 

(λx.  +  x  1)  4 

15 

* 

5 3 

* 

+ 

4 1 

- 

4 1 

@ 

f 4 
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In lambda calculus syntax, it denotes the application of a certain function, indicated by 

the lambda abstraction, to the argument 4. The rule for such function application is very 

simple: The result of applying a lambda expression to an argument is an instance of the 

body of the lambda abstraction in which occurrences of the formal parameter in the body are 

replaced with (copies of) the argument. Thus, the result of applying the lambda expression 

(λx. + x 1) to the argument 4 is: 

 

+ 4 1 

 

The (+ 4 1) is an instance of the body (+ x 1) in which occurrences of the formal 

parameter x are replaced with the argument 4. We write the reduction using the arrow →: 

 

(λx.  +  x  1)  4  →  +  4  1 

 

This operation is called β-reduction (Peyton Jones, 1987). Here are a few more examples of 

β-reduction: 

 

If (not true) f g → if false f g → g 

(λx. If (x > 0) f g) 2 → If (2 > 0) f g → f 

head (cons 2 nil) → 2 

(λx. head (cons (x+2) nil)) 2 → head (cons 4 nil) → 4 

 

If an expression contains more than one redex, the order of reduction is from outer 

most to inner most expression (see section A1.1.3.7). 

3.4.3.4 Normal Form 

If an expression contains no redexes, then the evaluation is complete and the expression is 

said to be in normal form. Thus, the evaluation of an expression consists of successively 

reducing redexes until the expression is in normal form. 

3.4.3.5 Weak head normal form 

A lambda expression is in weak head normal form (WHNF) if and only if it is of the form 
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F  E1  E2  . . .  En 

 

where n ≥ 0 and (F  E1  E2  . . .  Em) is not a redex for any m ≤ n. An expression has no 

top-level redex if and only if it is in weak head normal from (Peyton Jones, 1987). For 

example, the following expressions are in weak head normal form: 

 

3 

+ (- 4 3)    top-level + does not have enough arguments 

 

The latest example is in weak head normal form, but not in normal form, since it 

contains inner redexes. 

3.4.3.6 Head normal form 

A lambda expression is in head normal form (HNF) if and only if it is of the form 

 

λx1. λx2.  . . λxn . (v M1  M2  . . .  Mm) 

 

where n, m ≥ 0 and (v M1  M2  . . .  Mp) is not a redex for any p ≤ m.  

Anything in HNF is also in WHNF, but not vice versa (Peyton Jones, 1987). For example:  

 

λx.((λy. y) 3) 

 

We can think of it like this: 

 

 

Original expression 

Weak head normal form (not top-level redex) 

Normal form (no redex at all) 
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3.4.3.7 Lazy evaluation 

In ordinary imperative languages, arguments to a function are evaluated before the function 

is called (call by value). However, it is possible that the argument passed is never used in 

the body of the function, so that the work done in evaluating is wasted. This suggests that a 

better scheme might be to postpone the evaluation of the argument until its value is actually 

required (call be need). Call by need is in fact rarely implemented in imperative languages, 

because the evaluation of an argument may cause some side-effects to take place, and may 

produce a result which depends on the side effects (e.g., assignments) of other parts of the 

program. Hence, the exact time at which the argument is evaluated is crucial to the correct 

application of the program. However, it can be quite tricky to work out exactly when the 

argument be needed (and hence evaluated). 

The order of execution of expressions is not important in functional languages. 

Therefore, the evaluation of an expression can be postponed till its value is actually needed 

to compute the overall result. On the other hand, if the value of an already evaluated 

expression is required again, the evaluated value can be safely used, because it has not been 

changed. 

In the context of functional languages, call by need is often called lazy evaluation, 

since it postpones work until it becomes unavoidable. Any implementation of lazy 

evaluation has two ingredients (Peyton Jones, 1987): 

• Arguments to functions should be evaluated only when their value is needed, not 

when the function is applied. 

• Arguments should only be evaluated once; further uses of the argument within the 

function should use the value computed the first time. Since the language is 

functional and has no side-effect, this scheme gives the same results as                 

re-evaluating the argument.  

 

In a nutshell, arguments should be evaluated at most once and, if possible, not at all. 

3.4.3.8 Outer-to-inner evaluation 

A general form of an expression in functional languages is: 

 

output = fn (fn-1 (… f2 (f1 ))) (3-19)
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The value of fk is dependent to the values of f1 to fk-1. However, fk may not depend on 

some of the fis. 1<i<k-1. For example, if f1 = ((x+2)2*3+4 and f2 = 3, then the value of 

f2(f1(5)), which is equal to 3, is achievable without evaluating f1(5).  To satisfy the lazy 

evaluation rule, the expressions must be evaluated from the most outer to the most inner 

ones. This can be expressed as “first, the most outer expression is evaluated and the next 

level expression is evaluated only if it is needed through achieving the normal form”. It is 

called outer-to-inner evaluation (Peyton Jones, 1987). 

3.4.3.9 Currying mechanism 

This mechanism transforms a function with multiple variables into multiple functions with 

single argument. In other words, consider the following function of n variables:  

 

output = f (x1, x2, …, xn) (3-20)

 

Suppose that k of these variables are known. Substitution of the known variables in f 

results in a function of n-k variables, which is the normal form of fn. Further reductions need 

introducing the unknown variables. This mechanism is called currying in the functional 

programming.  

For example, f(x, y) = x+y is a binary function. However, if y=5, then f(x) = x + 5 is a 

unary function: 

 

plus(x, y) = x+y 

y=5 → plus5(x) = x+5 
(3-21)

3.5 Summary 

In this chapter we explained the formal methods used in this thesis to extend spatial analyses 

to different multi-dimensional spaces. We started by introducing the abstraction concepts 

needed to construct an integrated framework of spatial analyses based on their dimension 

independent properties. Then, we explained the algebraic structures as the required 

abstraction to formally define spatial analyses as combinations of the elements of the 

integrated framework. The simplicial complexes were introduced as an n-dimensional data 

type that is needed for dimension independent implementations. We will develop the 

geometric and topological operations on n-simplexes in chapter 5. At the end of this chapter, 
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we introduced the functional programming languages and explain why they are used in this 

thesis. The main concepts of functional programming language, especially their evaluation 

strategies, were described to an extent necessary for arguing the implementations provided 

in the thesis. 
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4 PROPOSED APPROACH OF THE RESEARCH 

This chapter describes the proposed approach of the research to extend spatial analyses to 

different dimensions. We explain how to formally define dimension independent spatial 

analyses, which leads to an abstract integrated framework of spatial analyses. This idea is 

applied on the Delaunay triangulation, as the case study of the research. This framework 

will be the basis to develop the n-dimensional static and moving analyses in the next 

chapters. 

4.1 A review on the proposed approach 

This research proposes a formal approach to implement dimension independent spatial 

analyses. It studies spatial analyses based on their dimension independent characteristics and 

formally describes them using algebraic structures.  

Figure  4.1 illustrates the research approach to extend spatial analyses to n-dimensional 

static and moving objects. First, the procedural abstraction is used to formally describe 

spatial analyses based on a set of primary operations, which are not further decomposed. 

These definitions are independent of dimension and results in a hierarchy that relates the 

spatial analyses and operations. In the next step, data abstraction is used to build                 

n-dimensional data types in order to model objects of different dimensions. The operations 

to interact with these n-dimensional data types are also developed using the iterative 

abstraction and mapping to n-dimensional space. Then, all of the spatial analyses of the 

hierarchy, which are defined as combinations of primary operations, are immediately 

available in n-dimensional space, without any further efforts. Finally, the relevant mappings 

are applied to map these n-dimensional data types and primary operations to support           

n-dimensional moving objects, which provide spatial analyses for n-dimensional moving 

objects. 

The rest of this chapter describes the formalization process to construct the abstract 

integrated framework and, as an example, uses it for the Delaunay triangulation as the case 

study of the research. Extension of the framework to n-dimensional and moving objects will 

be presented in the next two chapters. 
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Figure  4.1. The research approach to extend spatial analyses to n-dimensional static and moving objects 
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4.2 Formal definition of spatial analyses 

To formally define a spatial analysis, it is expressed independent of the characteristics of the 

objects to which it is applied. We describe the overall process that is applied on the inputs to 

produce the outputs, which is procedural abstraction of spatial analyses. For instance, the 

formal definition of the Delaunay triangulation says that a set of input points is triangulated 

(by connecting points with lines, faces, etc.) so that the triangles satisfy the circum-circle 

property. This formal definition may have several implementations based on the algorithm 

used (e.g., flipping, Bowyer-Watson, etc.). 

The above formal definition is then detailed by specifying an implementation 

algorithm. This algorithm must be multi-dimensional so that it can be later implemented 

independent of dimension. In section  2.5, we classified the multi-dimensional algorithms to 

n-dimensional (i.e., can be adopted to support different dimensions) and dimension 

independent (i.e., independent of dimension in their definition). Although the n-dimensional 

algorithms are developed for objects of any dimension, they cannot be used in our approach: 

in the abstract definition, an n-dimensional algorithm similarly works for different 

dimensions (i.e., the overall procedure is the same). However, the implementation details 

are different from one dimension to another. We are interested in dimension independent 

algorithms, which are independent of dimension in both definition and implementation. 

For example, the abstract description of the flipping algorithm for the Delaunay 

triangulation (section  2.1.3.1) is as follows: 

 

1- Construct an initial n-simplex that contains all of the vertexes 

2- Incrementally insert the vertexes and update the structure as follows: 

2-1- Find the containing n-simplex S (Walk) 

2-2- Replace the S with new n-simplexes passing through the new vertex (Insert) 

2-3- Check the new n-simplexes with their neighbors against the circum-circle 

property (and apply flipping in case of failure) until this property is satisfied by all 

n-simplexes (Update) 

 

This abstract description is valid for constructing the Delaunay triangulation of 2D and 3D 

points, but the details of flipping is different in 2D and 3D: there are two possible 

triangulations for four points in 2D (Figure  2.6). However, to tetrahedralize five 3D points, 

there are two possible solutions: one has two tetrahedra and the other has three (Figure 
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 2.15). Moreover, according to the geometry of a tetrahedron in the 3D Delaunay 

triangulation with its adjacent, it is not always possible to perform a flip (Figure  2.16) and it 

must be left to be performed by a later element. These differences prevent a dimension 

independent implementation of flipping algorithm.  

The abstract description of the Bowyer-Watson algorithm for the Delaunay 

triangulation (section  2.1.3.2) is as follows: 

 

1- Construct an initial n-simplex that contains all of the vertexes 

2- Incrementally insert the vertexes and update the structure as follows: 

2-1- Delete all the n-simplexes whose circum-circle contain the new vertex 

2-2- Join the new vertex to the nodes of the deleted part 

 

This description is applicable to both 2D and 3D points with the same implementation 

details and so can be used in our approach. 

The abstract description of the Voronoi diagram is as follows: 

 

1- Construct the Delaunay triangulation of the point set 

2- Compute the center of the circum-circles of the n-simplexes 

3- Join the centers of the neighboring n-simplexes 

4.3 Constructing an abstract hierarchical framework of spatial 

analyses 

We describe a spatial analysis as a combination of some simpler analyses and operations. 

For instance, the convex hull calculation consists of determining the faces that have all of 

the other points of the set at one side (Berg et al., 2008). This later operation can be 

described as a repetitive determination of the position of a point with respect to a face, 

which can be described as a determinant calculation, and so forth. Eventually, this procedure 

provides a hierarchy of spatial analyses and operations in which, the elements of each level 

are described as combinations of elements of the lower levels. More precisely, if fi,j denotes 

the ith element of the jth level, then: 

 

, ,( ),  0 , 0i j p qf F f q j p= ≤ < ≥

 

(4-1)
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The elements of the lowest level of this hierarchy are primitive operations. All of the 

analyses and operations of the hierarchy are described as combinations of these primitive 

operations. On the other hand, a set of data types are needed for definition of these primitive 

operations. 

4.3.1 Example: Constructing the hierarchical framework for Delaunay 

triangulation 

In this section, we construct an abstract hierarchical framework for the Delaunay 

triangulation and Voronoi diagram, and identify the data types and primitive operations. 

Regarding the formal description of the Bowyer-Watson algorithm presented in section 4.2, 

the following spatial analyses and operations are needed: 

• Constructing the Voronoi diagram needs the Delaunay triangulation to construct 

the Delaunay triangulation and circle-center that computes the center of the 

circum-circle of an n-simplex. 

• Constructing the Delaunay triangulation needs point-simplex-test that identifies the 

position of a point with respect to an n-simplex, point-circle-test that identifies the 

position of a point with respect the circum-circle of an n-simplex, and vertex-

simplex-join that joins a vertex to an n-simplex. 

• All of the circle-center, point-simplex-test and point-circle-test are described based 

on the determinant calculations. 

• The Determinant calculation consists of operators “+”, “-“ and “*”. 

 

The above descriptions result in the hierarchy illustrated in Figure  4.2. The only data 

types required for the analyses and operations of this hierarchy are numbers, and a data type 

to represent a point. 
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Figure  4.2. The hierarchy of spatial analyses and operations to define the case studies 

4.4 Summary 

This chapter presented the proposed approach of the research to extend spatial analyses to 

different dimensions. We described the process of formal definition of spatial analyses and 

construction of an abstract hierarchical framework of spatial analyses in which analyses and 

operations are defined as combinations of primitive operations.  

 

Delaunay triangulation 

vertex-face-join point-circle-test point-face-test 

Det 

sq sum - 

* + negate 

Voronoi Diagram 

circle-center 
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5 EXTENSION TO N-DIMENSIONS 

This chapter describes the extension of the formal integrated framework of spatial analyses 

– built in the previous chapter – to support n-dimensional objects. We use the n-simplexes 

as an n-dimensional data type and implement the operations on the n-simplexes based on 

vector algebra. As an example, we show how to use this approach to implement an             

n-dimensional Delaunay triangulation and its dual, Voronoi diagram. 

We use the syntax of functional programming language Haskell, which is our 

implementation environment. In Appendix 1, the main concepts and syntax of Haskell are 

described. The complete Haskell code of the implementations is given in Appendix 2. 

5.1 Vector Algebra 

A vector V in an n-dimensional space is an arrow that is determined by its length, denoted 

|V| and its direction, denoted by →. Figure  5.1 shows a vector P in 2D space described by its 

Cartesian coordinates. Two arrows represent the same vector if they have the same length 

and are parallel. Vectors represent entities that are described by magnitude and direction. An 

object moving in space has, at any given time, a direction of motion, and a speed. This is 

represented by the velocity vector of the motion. The success and importance of vector 

algebra derives from the interplay between geometric interpretation and algebraic 

calculation. 

 

 

Figure  5.1. A 2D vector P represented by its Cartesian coordinates 

a 

b 

P(a, b) 

|P| 2 2| |P a b= +
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Vectors are added by adding their corresponding elements (Figure  5.2.a). Addition of 

vectors is commutative (a+b=b+a). Therefore, they form a group with the zero vector as 

the unit. Multiplication of a vector with a scalar k extends the vector k times, keeping the 

direction (Figure  5.2.b). This multiplication is distributive over addition, etc. 

 

Figure  5.2. (a) Addition of vectors (b) Multiplication of a vector with a scalar 

A vector space is a module over a field that consists of two kinds of things: vectors, 

which are a commutative group, and scalars, which form a ring with unit. These vectors and 

scalars are combined with an external operator scalar multiplication “·” (MacLane and 

Birkhoff, 1999) with the following axioms: 

 

Module <.> with group <M, +, 0> and Ring with unit <Q, +, *, 0, 1>

  ,     ,  

        . (   )   .    . 

      (   ) .    .    . 

      ( * ) ·    · (  · )

      1 ·

for all p q Q and all a b M

p a b p a p b

p q a p a q a

p q a p q a

∈ ∈

+ = +

+ = +

=

   a a=

 

(5-1)

5.1.1 Operations on vectors 

An n-dimensional point is described as a vector in the n-dimensional Cartesian coordinate 

system. Then, geometric properties can be represented as operation on vectors. Apart from 

addition and scalar multiplication presented above, the inner (dot), cross and triple products 

of vectors are very often used. 

p(a, b) 

q(c, d) 

p+q(a+c, b+d) 

p(a, b) 

kp(ka, kb) 

(a) (b) 
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5.1.1.1 Inner product 

For the n-dimensional vectors U(u1, u2, …, u3) and V(v1, v2, …, v3), the inner product is a 

scalar defined as: 

 

1 2 1 2 1 1 2 2. ( , ,..., ).( , ,..., ) . . ...n n n nUV u u u v v v u v u v u v= = + + + (5-2)

 

The inner product is defined for all dimensions. For 2D and 3D vectors, it has some 

geometric properties: 

• The inner product of a 2D or 3D vector with itself is the square of its length 

(called norm): 

 

2 2 2 2

1 2 1 2 1 2| | . ( , ,..., ).( , ,..., ) ...n n nU U U u u u u u u u u u= = = + + + (5-3)

 

Then, the unit vector in the direction of a given vector is: 

 

| |
U

U
e

U
=

 

(5-4)

 

• The angle θ between two 2D or 3D vectors can be obtained using their inner 

product and their norms: 

 

.
cos

| || |

U V

U V
θ =

 

(5-5)

 

Then, two 2D or 3D vectors are orthogonal if their inner product is zero: 

 

. 0U V U V= ↔ ⊥

 

(5-6)
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5.1.1.2 Cross product 

For the 3D vectors U(u1, u2, u3) and V(v1, v2, v3), the cross product is a vector orthogonal on 

both U and V and is defined as: 

 

1 2 3 1 2 3 2 3 3 2 3 1 1 3 1 2 2 1( , , ) ( , , ) ( ,  ,  )U V u u u v v v a b a b a b ab ab a b× = × = − − − (5-7)

 

The length of U V×  is twice the area of the triangle built from the two vectors: 

 

| |

2
OUV

U V
A

×
=

 

(5-8)

 

Two vectors are collinear if their cross product is zero. 

5.1.1.3 Triple product 

For the 3D vectors U(u1, u2, u3), V(v1, v2, v3) and W(w1, w2, w3), the triple product is a 

combination of a cross product and an inner product results in a scalar: 

 

11 3

1 2 3

1 2 3

, , .( )

, ,

U V W U V W

u u u

U V W v v v

w w w

< >= ×

< >=

 (5-9)

 

The triple product gives six times the volume of the parallelepiped built from the three 

vectors.  

Vector algebra is used explicitly and implicitly in many of our calculations. The 

circum-circle test (Equation 2-4), clockwise and counter-clockwise tests (Equations 2-3 and 

2-5) and orientation of an n-simplex (Equation 3-12) are examples of using vector algebra in 

geometric operations. 
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5.1.2 Lifting MakeND to extend data types and primary operations to  

n-dimensional objects 

To define a lifting MakeND to extend data types and primary operations of the hierarchy to 

support n-dimensional objects, the following observations are considered: 

• A point in the n-dimensional Euclidean space is a vector represented by n 

numerical elements. Then, the operations on points become vector operations. 

• An n-simplex is represented as a set of n+1 points of dimension n and operations 

on simplexes are defined as vector operations. 

 

Considering the above observations, a lifting to develop the vectors and their 

operations is defined as follow: 

• The data type a must be mapped to a vector of data type a.  

• An operation of m variables (m ≥ 0) with the input 
1( , ..., )mX x x=  must be 

mapped to an operation that is applied to every elements of a set of input vectors, 

each of which consists of m elements. 

 

Therefore, the lifting MakeND denoted as N is mathematically defined as: 

 

1

1

  [ ,..., ]

( )  [ ( ),..., ( )]

N

n

N

n

a a a

f X f X f X

→

→  

(5-10)

 

As mentioned in chapter 3, this mapping must be commutative in order to be a lifting: 

 

1 1( ( ,..., )) ( ( ),..., ( ))A k B kN f s s f N s N s=
 

(5-11)

 

It is satisfied, because:  
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1

1 1

1 1

1

, :  ( ( ). ( )) [ ,..., ]

( ( )) ( ( ) [ ,..., ]) ( ( )) [ ( ),..., ( )]

[ ( ( )),..., ( ( ))] [ . ( ),..., . ( )]

( ( . )) [ ,..., ]

n

n n

n n

n

f g N f N g X X

N f N g X X N f g X g X

f g X f g X f g X f g X

N f g X X

∀ =

= =

= =
 

(5-12)

5.2 Definition of data types and classes 

We start by defining a class Ring to support numerical values and their operations. The 

class Ring has three basic operations + and * and neg (negation) as well as other operations 

-, sq and sum, which are described based on the basic operations: 

 

class Ring q where 

  (+), (-), (*) :: q -> q -> q 

  neg, sq       :: q -> q 

  sum           :: [q] -> q 

 

  a - b  = a + (neg b) 

  sq a   = a * a 

  sum ls = foldl (+) zero ls 

 

Instances of this class are defined for different data types (here, Int and Float):  

 

instance Ring Int where 

  neg   = Prelude.negate 

  a + b = a Prelude.+ b 

  a * b = a Prelude.* b 

 

instance Ring Float where 

  neg   = Prelude.negate 

  a + b = a Prelude.+ b 

  a * b = a Prelude.* b 

 

2D and 3D points are represented as a pair (x, y) or triple (x, y, z), respectively. To have 

an n-dimensional representation, we represent a point as a vector, which is a list of its 

elements in the Cartesian coordinate system. 
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type Vec a = [a] 

type StaticPt a = Vec a 

 

To develop the n-simplex data type, we start by defining a vertex. A vertex is the same 

as a point, i.e., the Vec data type can be used equally for a vertex. However, their equality is 

explicitly indicated here, for the sake of clarity: 

 

Vertex = Vec 

 

Then an n-simplex is a list of vertexes: 

 

Simplex :: [Vertex] 

 

The canonical representation of an n-simplex is a pair of the sorted list of its vertexes 

and its orientation. We use a Boolean value for the orientation: true for positive and false for 

negative orientations.  

 

CnSimplex :: (Simplex, Bool) 

 

Dealing with n-simplexes and their operations is a case where the number of elements 

is not known: 

• An n-dimensional point in the Euclidean space is represented by n numbers. 

• An n-simplex is represented by n+1 points of dimension n. 

• The operations on an n-simplex can take any number of points as input each of 

which can have any number of elements, per se. The same applies to the output. 

The situation is even worse if a number of operations are composed. 

 

Here we use the list as an abstract data type that can model efficiently both of              

n-dimensional points and n-simplexes as well as their operations. A list is a collection of any 

number of elements of the same type. The advantages of using the list data type are: 
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• Elements of a list can be from any type, so a list can model a point, an n-simplex 

(as a set of points), or even any other data structure that may be needed (e.g., a pair 

whose first and second elements are a point and a list of simplexes, respectively). 

• A list can have any number of elements, so it can be used to model points and 

simplexes of any dimension. 

• List operations are independent of the number and type of the elements of the list, 

so the operations on points and simplexes can be equally used in any dimension. 

 

Lists are very important and frequently used in functional programming languages. A 

complete description of lists and their operations is presented in Appendix 1. 

5.3 Operations of n-simplexes 

The first operation we define is the dimension of an n-simplex. It is the number of its 

vertexes, and so it is equal to length of the list: 

 

simpDim = length 

 

and dimension of a canonical n-simplex is the number of its vertexes: 

 

cnSimpDim s = (length.vertexes) s 

 

The orientation of an n-simplex uses the determinant of the matrix introduced in 

Equation (3-13). We create the required matrix and calculate its determinant: 

 

getOrn s = det mat > 0 

  where 

    mat = map (1:) s 

 

where det is a function that calculates the determinant of an square matrix. 
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To convert the primary representation of an n-simplex (i.e., list of its vertexes) to its 

canonical representation, we make a pair whose first and second elements are the sorted list 

of vertexes and the orientation of the n-simplex, respectively:  

 

simp2cnSimp s = (sort s, getOrn s) 

 

To convert the canonical to the primary representation, we apply the sign (orientation) 

to the list of the vertexes: If the sign is positive, no change is needed; if it is negative, 

however, the orientation of the simplex must be changed, which is achieved by swapping 

the first and the second elements:  

 

cnSimp2simp ([v], b) = [v] 

cnSimp2simp (vs, b)  = if (b == true) then vs else swap vs 

  where 

    swap []        = [] 

    swap [v]       = [v] 

    swap (v1:v2:vs) = (v2:v1:vs) 

 

The operations to get the vertexes and orientation of an n-simplex are trivial: 

 

vertexes (vs, b) = vs 

orn      (vs, b) = b 

 

Changing the orientation of an n-simplex is simply changing its sign:  

 

changeOrn (vs, b) = (vs, not b) 

 

The checks whether two n-simplexes have the same vertexes or orientation are:  

 

eqVs   s1 s2 =  vertexes s1 == vertexes s2 

eqOrn  s1 s2 =  orn s1 == orn s2 

 

Thus, the equality of two n-simplexes (i.e. consisting of the same vertexes and having 

the same orientation) is defined as follows:  
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eqSimps s1 s2 =  eqVs s1 s2 & eqOrn s1 s2 

 

The faces of dimension n of an n-simplex are the n combinations of its vertexes. Then, 

the function simp2cnSimp must be applied to all of them in order to have a canonical        

n-simplex: 

 

faceN s n = (map simp2cnSimp) . (combine n) . vertexes $ s 

 

To extract all of the faces of an n-simplex, we compute all of the faces of dimension i, 

and concatenates them: 

 

faces s = concatMap faceN s [1.. n] 

  where 

    n = cnSimpDim s 

 

The boundary operation for an n-simplex is implemented as: 

 

boundary vs b = zip (removeEach vs) (cycle [b, not b]) 

 

In this definition, removeEach vs makes a list of all possible (n-1)-simplex and 

cycle [b, not b] provides their corresponding sign. The two lists are zipped to make 

the final boundary. 

To add a vertex to an n-simplex, we get the vertexes of the input simplex, add the new 

vertex to the front of the resultant vertex list and finally convert it to the canonical 

representation. Figure  5.3 shows the functionality of this operation for 2- and 3-simplexes.   

 

addVertex v s = simp2cnSimp . (v:) . vertexes $ s 
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(a) 

 

 

 

 

 

 
(b) 

Figure  5.3. Functionality of the addVertex: a new vertex is added to a (a) 1-simplex (b) 2-simplex 

The next is the border operation (we need this operation to extract the border of the 

hole created by removing the violating n-simplexes in the Bowey-Watson algorithm). As 

Figure  5.4 shows, this operation extracts the bordering (n-1)-simplexes from a set of 

connected n-simplexes (a set of n-simplexes S = {s1, s2, …, sm} are connected if and only if 

for each 
is S∈ , there is at least one  ( )js S i j∈ ≠ such that 

i js s∩  is an (n-1)-simplex). Note 

the difference between this operation and the boundary operation, which extracts the 

boundary of an individual n-simplex. 

To implement this operation, we use the fact that bordering simplexes appear once and 

only once. Thus, to get the bordering simplexes, first we extract and concatenate the 

boundaries of all n-simplexes and then take the simplexes that appear once in this list: 

 

border s = once . (concatMap boundary) $ s 

 

 

Figure  5.4. Functionality of the border for a set of connected 2-simplexes (dotted triangles), which results in 

their bordering 1-simplexes (bold edges) 

The test whether three 2D points are in counter-clockwise (ccw) or clockwise (cw) 

order is often used in geometric algorithms (Knuth, 1992). Its extension to 3D checks 
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whether a point is on the right or left side of a plane goes through three points. The ccw and 

cw tests are implemented, generally, by adding the given n-dimensional point to the            

n-simplex and determining the orientation of the resultant (n+1)-simplex:   

 

ccw pt s = orn . (addVertex pt) $ s 

cw  pt s = not (ccw s pt) 

 

The test whether an n-dimensional point is inside the n-dimensional circum-sphere of 

an n-simplex is achieved by implementing the Equation (2-4): 

 

inSphere p s = det (mat) >= 0  where 

    mat =  map (tr (s))  

    tr x  = dx ++ [sum . map (sq (dx))] 

    dx  = x - p 

    sum (x) = fold ((+), 0, x) 

5.4 Implementation of spatial analyses 

To implement the spatial analysis, we use the n-simplexes to convert their formal 

description to implementable algorithms. For our case studies, it is as follows: 

 

Algorithm Bowyer-Watson-DT (P) 

Input. A set P={p0, …, pm} of n-dimensional points (m ≥ n) 

Output. A homogenous simplicial n-complex D that is the n-dimensional DT of P 

1.  D ← A big n-simplex that contains all of the points {p0, …, pm} 

2.  for all points p∈P 

3.     S ← Set of all n-simplexes e∈D whose circum-sphere contains p 

4.     B ← Set of (n-1)-simplexes that make the border of S 

5.     N ← Set of n-simplexes constructed by adding p to all (n-1)-simplexes b∈B 

6.     D ← { \ }D S N∪  

7. return D 
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Algorithm Voronoi (P) 

Input. A set P={p0, …, pm} of n-dimensional points (m ≥ n) 

Output. The Voronoi diagram of P 

1.  D ← The Delaunay triangulation of the points {p0, …, pm} 

2.  C ← The centers of the circum-spheres of the n-simplexes D 

3.   VD = {} 

4.  for all s∈D 

5.  l  ← the lines connecting the center of the n-simplex s to the center of all of its 

neighboring n-simplexes ns∈D 

6.  VD ← VD l∪  

7.  return D 

 

Implementations of these algorithms in Haskell are as follows (for complete 

implementation details, see Appendix 2): 

 

delaunay :: [PtF] -> [CnSimplex] 

delaunay pts = fold updateDT bigSimp pts 

  where 

    bigSimp = simple computations presented in appendix 2 

 

updateDT dt pt = (dt \\ s) ++ n 

  where 

    s = filter inSphere pt dt 

    n = map (addVertex pt) (border s) 

 

 

Voronoi :: [PtF] -> [CnSimplex] 

voronoi = connectNeighbors . map (center . delaunay) 

 

where updateDT inserts a new vertex into a Delaunay triangulation and updates its 

structure, center computes the center of the circum-circles of a triangle, and 

connectNeighbors connects the center of the circum-circles of the neighboring triangles 

in a triangulation.  
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5.5 Summary 

In this chapter we extended the formal integrated framework to support n-dimensional 

objects. We used the n-simplexes as an n-dimensional data type and implemented the 

operations on the n-simplexes based on the vector algebra. As an example, we showed how 

to use this approach to implement the n-dimensional Delaunay triangulation and Voronoi 

diagrams. The implementations in Haskell were presented.  
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6 EXTENSION TO MOVING OBJECTS 

This chapter introduces a mapping called MakeMoving that extends the n-dimensional data 

types and operations developed in the previous chapter to moving objects.  

6.1 Definition of the lifting MakeMoving 

The moving data types and operations is structurally the same as their static corresponding 

elements, except that these data types as well as the input of the operations of moving 

objects are functions of time and the result is a function of time (Frank and Gruenbacher, 

2001). The lifting to do this mapping is defined as follows: 

• The data type a must be mapped to a data type at that is a function of time.  

• An operation of m variables (m ≥ 0) with the input 1( ,..., )
m

X x x=  must be 

mapped to an operation all of whose inputs are functions of time. 

 

Therefore, the lifting MakeMoving denoted as T is mathematically defined as: 

 

  ( )

( )  ( ) ( )

T

t

T

t t

a t a a

f X f X f X

→ → =

→ =  

(6-1)

 

As expected, this lifting is commutative because: 

 

, :  ( ( ). ( )) ( )

( ( )) ( ( ) ( )) ( ( )) ( ( ) )

( ( ( ))) ( . ( )) ( ( . )) ( )

t

t t

t t t

f g T f T g X

T f T g X T f g X

f g X f g X T f g X

∀

= =

= = =  

(6-2)

 

In the hierarchical framework constructed in section  4.2 for spatial analyses, each 

analysis is defined as a combination of primary operations. These definitions are 

independent of dimension, so they are valid for any dimension. Thus, having implemented 
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the data types and primary operations for n-dimensional objects, the lifting MakeMoving 

will extend them to n-dimensional moving objects.  

6.2 Implementation of the mappings (liftings) 

First we define a class lifting to lift the data types and operations:  

 

class Lifting f a where 

  lift0 :: a -> f a 

  lift1 :: (a -> b) -> f a -> f b 

  lift2 :: (a -> b -> c) -> f a -> f b -> f c 

  lift3 :: (a -> b-> c-> d) -> f a -> f b -> f c -> f d 

 

The lift0 lifts the data types and the lift1, lift2 and lift3 are used to lift operations 

with one, two, and three arguments, respectively. Lifting the operations with more 

arguments is done in a similar way. 

A time instant is considered as a floating number. Then, a changing version of a value 

of type v is a function of time (instant) to that value: 

 

type Instant    = Float 

type Changing v = Instant -> v 

 

For example: 

 

type MovingInt = Changing (Int) 

type MovingPt a = Changing (Pt a) 

 

An instance of the class lifting is implemented for extension to moving values: 

 

instance  Lifting ((->) Instant) a where 

  lift0    a     = \t -> a 

  lift1 op a     = \t -> op (a t)  

  lift2 op a b   = \t -> op (a t) (b t) 

  lift3 op a b c = \t -> op (a t) (b t) (c t) 



Chapter 6. Extension to Moving Objects 76 

 

6.3 Extension of primitive operations to moving objects 

In this section, the primitive operations defined in the previous chapter are extended to 

moving objects using the lifting MakeMoving. 

6.3.1 Extension of operations on Ring 

The operations on Ring are extended to changing values by applying the above liftings:  

 

instance Ring a => Ring (Changing a) where 

  (+)  = lift2 (+) 

  (*)  = lift2 (*) 

  neg  = lift1 neg 

  sq   = lift1 sq 

 

Note that only the primitive operations are lifted; the combined operations (i.e., -, sq 

and sum) are automatically lifted. 

6.3.2 Extension of operations with list arguments 

To extend the list operations to support moving objects, we customize the above liftings to 

support functions with list(s) as argument(s): the parameter t must be added to all the 

elements of the list argument(s). For other elements, it is a simple lifting:  

 

convert2Ft x = \t -> x t 

 

lift0L      a     = map convert2Ft a 

 

lift1L   op a     = op (map convert2Ft a) 

 

lift2L   op a b   = op (map convert2Ft a) (convert2Ft b) 

lift2LL  op a b   = op (map convert2Ft a) (map convert2Ft b) 

 

For example: 
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sort = lift1L sort 

cw   = lift2L cw 

 

In this case, all the elements of the list are functions of time, waiting for a time instant 

to be further processed, i.e., these liftings (referred to as convert2Ft lifts hereafter) result in a 

list of changing elements: [\t-> x1 t, \t-> x2 t, \t-> x3 t, ...]. 

Although the semantic of convert2Ft lifts is true, their executions do not terminate in 

some cases. The reason is that the process reaches a point that needs making a final decision 

for which the time instant must be specified: These are the cases where not only the values, 

but also the order or the number of elements of the list is changing, i.e., depends on the time 

instant (e.g., sorting and filtering the changing elements of a list). In lambda calculus 

language, in such cases, the process ends up in a weak head normal form (WHNF) 

expression that cannot be further reduced until the time instant is given (see section  3.4.3). 

A solution to this problem is that the list of changing elements is converted to a 

changing list of elements, i.e., \t -> [x1 t, x2 t, x3 t, ...]. In this case, the 

order and the number of elements of the list after applying the function is specified, which is 

in head normal form (HNF), nevertheless it is still a function of time (these set of liftings is 

referred to as lc2cl lifts hereafter): 

 

lc2cl :: [Changing a] -> Changing [a] 

lc2cl ma  = \t -> lift1 (\a -> a t) ma 

 

lift0L      a     = lc2cl a 

   

lift1L   op a     = lift1 op (lc2cl a) 

 

lift2L   op a b   = lift2 op (lc2cl a) b    

lift2LL  op a b   = lift2 op (lc2cl a) (lc2cl b)   

 

For example: 

 

head (IF (t>3) (λt. cons (t+1) nil) (λt. cons (t-2) nil)) 2 
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is in WHNF and so cannot be further processed, because the outer most expression 

cannot be β-reduced. However, after applying lc2cl, it will become: 

 

λt. head (IF (t>3) (cons (t+1) nil) (cons (t-2) nil)) 2 

 

that can be reduced to 

 

head (IF (2>3) (cons (2+1) nil) (cons (2-2) nil)) 2 →      

(cons (2-2) nil) → (cons 0 nil) 

 

which is in HNF. These new types of liftings work well. However, their efficiency still 

needs to be evaluated. 

6.4 Summary 

This chapter introduced a mapping called MakeMoving that extends the n-dimensional data 

types and operations developed in the previous chapters to moving objects.  
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7 RESULTS AND EVALUATION 

This chapter presents the implementation results for extending the Delaunay triangulation to 

different dimensions. We then evaluate and discuss the performance of the implementations. 

Finally, two applications developed upon the implementations are presented to show how 

the proposed approach can be practically used. 

7.1 Implementation results 

The implementation of the dimension independent Delaunay triangulation and its dual, 

Voronoi diagram, was applied on a data set, given in Appendix 2 under the heading 

“Samples”, consists of four collections of twenty 2D static, 3D static, 2D moving and 3D 

moving points. For example: 

 

pt2D    = [3, 4]      -- 2D static point 

pt3D    = [1, 2, 1]      -- 3D static point 

mpt2D t = [(7-5*t), (2+5*t)]    -- 2D moving point 

mpt3D t = [(3+2*t), (1-4*t), (2+3*t)]  -- 3D moving point 

 

Figures Figure  7.1 to Figure  7.5 illustrate the results of applying the implemented 

spatial analyses to data of different dimensions. In the case of moving points, the results for 

some time instants are presented. The Voronoi diagrams of 3D data sets are not shown 

because their representation in 2D is not informative. 
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(a)  

Figure  7.1. Delaunay triangulation of static points 

 

 

Figure 
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(b)  

Delaunay triangulation of static points (a) 2D (b) 3D (projected) 

 

Figure  7.2. Voronoi diagram of 2D static points 
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t = 0s  

  

t = 20s  

Figure  7.3. Delaunay triangulation of 
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t = 10s  

  

t = 30s  

Delaunay triangulation of 2D moving points for some time instants 
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t = 0s  

  

t = 20s  

Figure  7.4. Delaunay triangulation of 
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t = 10s  

  

t = 30s  

Delaunay triangulation of 3D moving points for some time instants (projected)
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t = 0s  

  

t = 20s  

Figure  7.5. Voronoi diagram

In the above examples, the moving points were models as continuous functions of time. 

In this case, a value f(t) is available for each time insta

definition (Figure  7.6.a). In contrast, in 

defined for a set of discrete

2007). Although there are examples of deploying intensionally defined functions in GIS 

(Mostafavi, 2002), moving objects are usually defined by extensional functi

collected by navigation systems for a moving car is an example of such data in which the 

positioning is accomplished at certain time intervals.

Results and Evaluation 

  

t = 10s  

  

t = 30s  

Voronoi diagram of 2D moving points for some time instants 

In the above examples, the moving points were models as continuous functions of time. 

) is available for each time instant t. It is called intensional

.a). In contrast, in extensional definition of a function, the function is 

defined for a set of discrete values (Figure  7.6.b), between which we interpolate 

. Although there are examples of deploying intensionally defined functions in GIS 

, moving objects are usually defined by extensional functions. The data 

collected by navigation systems for a moving car is an example of such data in which the 

positioning is accomplished at certain time intervals. 
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In the above examples, the moving points were models as continuous functions of time. 

ional function 

definition of a function, the function is 

.b), between which we interpolate (Frank, 
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ons. The data 
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f(x) = 3x
2
 + sin x 

(a) 

Figure  7.6. (a) 

To provide a continuous representation of an extensional function

interpolation method: The position of each moving point is given for a set of discrete time 

instants results in a list of time

instant t, if t is not available in 

its neighbors in P. The implementations were applied on ten moving points simulated on a 

street network (Figures Figure 

the result of applying the Delaunay triangulation

at some time instants. 

 

(a) 

Figure  7.7. The study area (a) Map of the 
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(b) 

(a) Intensional and (b) extensional definition of a function 

To provide a continuous representation of an extensional function we developed an 

interpolation method: The position of each moving point is given for a set of discrete time 

instants results in a list of time-position pairs 
1 1 2 2{( , ), ( , ),..., ( , )}n nP t p t p t p=

is not available in P, then the position of the point is linearly interpolated using 

The implementations were applied on ten moving points simulated on a 

Figure  7.7 and Figure  7.8). Figures Figure  7.9 and Figure 

the result of applying the Delaunay triangulation and Voronoi diagram on the moving points 

 

(b) 

The study area (a) Map of the street network (b) Model of the street network
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Figure  7.8. Paths of the simulated moving points on the 
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t = 0s 

t = 20s 

Figure  7.9. Delaunay triangulation of the simulated moving points on the 
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t = 10s 

 

t = 30s 

Delaunay triangulation of the simulated moving points on the street network for some time instants
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t = 0s 

t = 20s 

Figure  7.10. Voronoi diagram
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t = 30s 

Voronoi diagram of the simulated moving points on the street network for some time instants
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7.2 Evaluation 

The goal of this research is to extend spatial analysis to different dimensions without 

recoding. Our main concern is on the mathematical validation of the conceptual framework 

and investigation of its implementation issues. The discussion presented in chapters 4 to 6 as 

well as the above implementations and results show that our goal is achieved.  

This section evaluates the efficiency of the implementations and results. Table  7.1 and 

Figure  7.11 illustrate the running time as a function of number of input points for the 2D/3D 

static and moving Delaunay triangulation. Their investigation shows that the complexity of 

implementing the Bowyer-Watson algorithm to compute the Delaunay triangulation is     

O(n log n) and O(n2) respectively for 2D and 3D points, which was expected. 

 

Table  7.1. Running time (in sec.) as a function of number of input points for 2D/3D static/moving DT/CH 

No. of pints 10 50 250 500 1000 2000 4000 8000 16000 32000 64000 

Static DT 
2D 0.01 0.07 0.47 1.08 2.43 5.45 12.02 25.61 56.02 120.10 255.28 

3D 0.02 0.18 0.49 1.04 3.83 9.04 24.71 70.33 198.41 696.92 2859.35 

Moving DT 
2D 0.01 0.09 0.50 1.03 2.48 5.29 13.03 23.13 62.05 128.38 272.45 

3D 0.02 0.20 0.52 1.03 3.87 9.18 25.00 70.51 189.85 712.67 2777.85 

 

 

  

(a) (b) 

Figure  7.11. Running time as a function of number of input points for 2D and 3D static and moving Delaunay 

triangulation: (a) static (b) moving 

On the other hand, for the same number of points, the running time to compute the 

Delaunay triangulation of 3D points is greater than 2D. This is because of the more and 
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bigger size of the matrixes that must be dealt with in 3D. Note that the complexity of matrix 

calculations depend on the size of the matrix (e.g., the complexity of determinant calculation 

is O(n
3
) (Kaltofen and Villard, 2004)). For instance, to check if a point is inside a 

tetrahedron (the case for 3D) it computes four 4 4× matrixes, while this is three 3 3×

matrixes for a point against a triangle (the case for 2D); or to check if a point is inside the 

circum-sphere of a tetrahedron (the case for 3D) it computes a 4 4× matrix, while this is a 

3 3× matrix for a point against the circum-circle of a triangle (the case for 2D). In abstract, 

the running time is a function of the number of n-simplexes as well as the size of the 

computation units, which depends on the dimension.  

Finally, the running times to apply the Delaunay triangulation on the same number of 

static or moving points are quite similar. Note that the presented running times for moving 

points is the time needed to reduce the analyses to their simplest form, which are functions 

of time. To determine the final result for a certain time instant t, this t must be given to the 

time dependent function. 

To compare the efficiency of the implementations to be applied on moving points at 

multiple time instants, we applied some spatial analyses on a data set containing 20 moving 

points. The analyses used in this evaluation are: 

• Distance between two points 

• The area (volume) of a triangle (tetrahedron) constructed by three (four) points. 

• Clock-wise (CW) order test 

• InSphere test 

• Sorting a set of points 

• Delaunay triangulation of a set of points 

 

In the case of moving points – where the outputs of applying analyses to the moving 

points are functions of time – each analysis was applied for 1, 5, 10 and 20 different time 

instants. To evaluate the efficiency, GHC profiler was used. Among other detailed 

information, it gives the time and the number of reductions (number of steps to get the 

simplest form – see chapter 3) for running the code. The time parameter is not discussed 

here, because the running times are too short and not very informative. Moreover, the 

relationship of the number of reductions and running time is quite linear. Table  7.2 and 

Figure  7.12 illustrate the number of reductions for different cases. These results show that 



Chapter 7. Results and Evaluation 90 

 

the number of reductions for "static points" and "moving points for 1 time instant" are quite 

similar. It means that points with constant elements (static points) are treated the same as 

points with functional elements (moving points). It is because of this characteristic of 

functional languages that all values are functions: "3" is a constant function, while "2x" is a 

function of one parameter x.  

 

Table  7.2. Number of reductions for applying different analyses on 2D/3D static/moving points. In the case of 

moving, the analyses are applied for multiple time instants 

Analysis Dim 

Number of reductions 

Static Points 
Moving Points 

1 time 5 times 10 times 20 times 

Distance 
2D 8,143 8,600 13,912 20,192 30,372 

3D 8,235 8,912 15,064 21,220 32,252 

Volume 
2D 10,694 11,084 25,936 42,384 77,776 

3D 17,682 18,348 61,040 114,400 221,120 

CW test 
2D 9,534 9,932 34,004 65,592 122,952 

3D 13,894 14,328 48,288 86,944 173,228 

InSphere test 
2D 40,745 41,172 132,040 260,696 497,036 

3D 86,559 87,172 284,152 551,628 1,070,580 

Sort 
2D 48,251 50,596 234,256 456,316 902,940 

3D 70,904 72,700 340,756 688,806 1,297,972 

Delaunay 

triangulation 

2D 12,684,532 12,693,748 62,968,188 123,809,361 244,840,892 

3D 28,800,201 28,811,448 140,345,336 270,689,236 571,929,332 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure  7.12. Number of reductions for applying different analyses on 2D/3D static/moving points. In the case of 

moving, the analyses are applied for multiple time instants (a) Distance (b) Volume (c) CW test (d) InSphere test 

(e) Sort (f) DT 

For the Distance, Volume, CW test and InSpher test, if we consider applying the 

analysis on moving points for n1 and n2 number of time instants (e.g., n1 = 5 and n2 = 20), the 

increase of the number of reductions is less than n2/n1 (e.g., n2/n1 = 20/5 = 4). It shows that 

the lifting process works as we expected: the result is calculated as a function of time, and 

its value for a specific time instant, t0, is calculated through replacing the parameter t in the 

final function with t0.  
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For the Sort and Delaunay triangulation, if we consider applying the analysis on 

moving points for n1 and n2 number of time instants (e.g., n1 = 5 and n2 = 20), the increase of 

the number of reductions is about n2/n1 (e.g., n2/n1 = 20/5 = 4). The reason is that in the first 

event that a final decision is needed, lc2cl calculates the elements of the input list for the 

desired time instant and from now on it is processed as a list of static values. 

The above observation seems disappointing, but actually it is not, because the concept 

of our approach is true; and if the convert2Ft lifts worked, we would get the same results for 

the Sort and Delaunay triangulation as well. In other words, the concept of the approach is 

true, but the development environment is not completely supportive yet to interact with 

complex types of changing (e.g., changing the order or the number of the elements of a list). 

On the other hand, the lc2cl lifts enabled us to avoid rewriting the whole algorithms again; 

and in the worst case, it works as efficient as current approaches that recode each algorithm 

for each data type. 

On the other hand, detection of topological events and locally updating the data 

structure in an imperative programming language must be handled manually. However, no 

effort is needed for such update in our implementation, because of the lazy evaluation 

(second ingredient of lazy evaluation in chapter 3). To certify this, we did two tests: 

In the first test, the selected analyses were applied on some points move slower than 

the first data set. The results are shown in Table  7.3 and Figure  7.13. In this case, the 

increase in the number of reductions is less comparing to the first data set that moves faster 

(Table  7.2 and Figure  7.12). It means that the occurrence of the topological events is truly 

detected and the updates perform on these events; because if the points move slower, it takes 

longer time for the topological events to occur. Therefore, in a certain time interval, the 

number of topological events decrease, which results in less updates.  

 

Table  7.3. Number of reductions for applying Sort and DT on 2D/3D slow moving points 

Analysis Dim 
Number of reductions 

1 time 5 times 10 times 20 times 

Sort 
2D 50,596 162,740 300,902 502,737 

3D 72,700 267,834 431,132 745,362 

Delaunay 

triangulation 

2D 12,693,748 49,569,245 84,893,407 144,673,912 

3D 28,811,448 103,604,529 180,512,763 340,523,480 
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(a) (b) 

Figure  7.13. Number of reductions for applying Sort and DT on 2D/3D slow moving points 

In the second test, instead of all points, we moved one and two points of the point set. 

In the case of moving all points, it is most likely that the structure must be thoroughly 

updated. However, when only one or two points move, most of the structure is not affected 

after a movement and a local update would be enough. As shown in Table  7.4 and Figure 

 7.14, if one or two points move, the increase of the number of reductions for n1 and n2 

number of time instants is significantly less than n2/n1. It means that those parts of the 

structure that is not affected after the movement has been reused for updating. Note that the 

number of reductions when one point moves is less than the case of moving two points, 

because moving two points affects the structure more that moving one point. 

 

Table  7.4. Number of reductions for applying DT on 2D and3D moving points for multiple time instants where 

different number of points move 

Dim Case 
Number of reductions 

1 time 5 times 10 times 20 times 

2D 

All points move 12,693,748 62,968,188 123,809,361 244,840,892 

Two points move 12,693,748 39,798,093 73,498,820 143,452,905 

One point moves 12,693,748 16,544,532 24,662,760 39,620,932 

3D 

All points move 28,811,448 140,345,336 270,689,236 571,929,332 

Two points move 28,811,448 98,809,453 201,045,832 400,004,561 

One point moves 28,811,448 42,345,336 76,893,415 151,116,732 
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(a) 

Figure  7.14. Number of reductions for applying DT on 

different number of points move 

7.3 Applications 

This section presents two application

how the proposed approach can be practically used.

We implement the convex decomposition of non

based on a method called Alternate Hierarchical Decomposition

an iterative procedure to represent a polytop as a tree of convex components. The root of 

this tree is the convex hull of the vertexes of the polytop, and other convex components are 

located at the next levels with alternate signs (posit

The algorithm and the implementation details are described in 

2009). Figures Figure  7.16 

non-convex polytops of Figure 

(a) 

Figure 

Results and Evaluation 

 

(b) 

Number of reductions for applying DT on 2D and3D moving points for multiple time instants where 

different number of points move (a) 2D (b) 3D 

This section presents two applications developed upon the implementations in order to show 

how the proposed approach can be practically used. 

implement the convex decomposition of non-convex polytops of any dimension

Alternate Hierarchical Decomposition (AHD). This method uses 

an iterative procedure to represent a polytop as a tree of convex components. The root of 

this tree is the convex hull of the vertexes of the polytop, and other convex components are 

located at the next levels with alternate signs (positive for even and negative for odd levels). 

The algorithm and the implementation details are described in (Bulbul, 2011; 

 and Figure  7.17 show the AHD representations of the 

Figure  7.15. 

 

 (b) 

Figure  7.15. (a) 2D and (b) 3D non-convex polytop
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Figure  7.16. AHD representation of the polytop of Figure  7.15.a 
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We developed a method to calculate the volume of 

the convex decomposition and 

Karimipour et al., 2010b). It 

dam at different water levels, which leads to a level

al., 2010a; Karimipour et al

consumption and monitoring the dam construct

diagram is used to estimate the surface area and water amount of the reservoir. This 

information helps the decision makers in applications like water usage allocation, dam 

deformation control and managing water re

The Latyan dam − located in North East of Tehran, Iran 

study (Figures Figure  7.18 an

hydrographic process (Figure 
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.17. AHD representation of the polytop of Figure  7.15.b 

We developed a method to calculate the volume of n-dimensional polytops based on 

the convex decomposition and Delaunay triangulation (Karimipour et al

It was used to calculate the area and volume of the reservoir of a 

dam at different water levels, which leads to a level-surface-volume diagram (Karimipour et 

Karimipour et al., 2010b). This diagram is important for managing the water 

consumption and monitoring the dam construction: observing the daily water level, this 

diagram is used to estimate the surface area and water amount of the reservoir. This 

information helps the decision makers in applications like water usage allocation, dam 

deformation control and managing water release behind the dam. 

located in North East of Tehran, Iran − was selected as the case 

and Figure  7.19). The bed of the dam reservoir was surveyed in a 

Figure  7.20) and its 3D TIN was produced (Figure  7.21). 
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Figure  7.18. Satellite image of Latyan dam and its reservoir 

 

 

Figure  7.19. 3D view of Latyan dam and its reservoir 
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Figure  7.20. Points resulted from hydrography of Latyan dam reservoir 

 

 

 

Figure  7.21. 3D TIN of Latyan dam reservoir 

N 

N 100m 
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To calculate the area and volume of the reservoir at a certain water level, say h, the 3D 

TIN was intersected with the plan z=h, which results in the volume of the reservoir where 

z<h and the surface of the reservoir at z=h. Figure  7.22 shows the results for the water level 

of 1570m. To calculate the area and volume of the results, the implemented n-dimensional 

Delaunay triangulation was used: For a convex n-dimensional structure, it is triangulated to 

a set of n-simplexes and then sum of the nD-volume (i.e., area for 2D, volume for 3D, etc.) 

of the components are calculated. The absolute value of the determinant used to specify the 

orientation of an n-simplex yields its nD-volume: 

 

vSimp s = abs . det . map (1:) $ s 

vConv p = sum . map vSimp . dt $ p 

 

 

 

 
(a) (b) 

Figure  7.22. 3D TIN and surface of Latyan dam reservoir at water level of 1570m 

As Figure  7.22 shows, our structures are non-convex. Therefore, first they must be 

decomposed to a set of convex components and then the above calculation is applied 

separately to each component. For this, the dimension independent decomposition of 

polytopes was used. Each component is triangulated using the implemented n-dimensional 

Delaunay triangulation. Calculating the area/volume of each component and summing up 

the results will provide the total area/volume of the reservoir at the desired water level. The 

function that takes an n-dimensional polytope and calculates its nD-volume as follow: 

  

N 

10

N 
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vPoly p = sum . map vConv . decompose $ p 

 

By applying the explained process to different water levels, the level-surface-volume 

diagram was produced for the reservoir of the Latyan dam,which shows the surface area and 

volume of the reservoir at different water levels (Figure  7.23). 

 

 

Figure  7.23. Level-Surface-Volume diagram of Latyan dam reservoir 

As another application, we implemented an optimum placement algorithm proposed in 

(Ghosh and Das, 2008; Wang and LaPorta, 2004) to increase the coverage of a sensor 

network based on the moving Voronoi diagram: The Voronoi diagram of the sensors is 

constructed and each sensor moves toward its furthest Voronoi vertex (Figure  7.24.a) or it is 

placed at the center of the smallest enclosing circle of its Voronoi cell (Figure  7.24.b) 

(Argany et al., 2010). It changes the structure of the Voronoi diagram, so this process is 

applied iteratively till a certain threshold is reached.  
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(a) (b) 

Figure  7.24. Using the Voronoi diagram for sensor network placement (a) Moving the sensors toward the 

furthest Voronoi vertexes (b) Placing the sensors at the center of the smallest enclosing circle of their Voronoi 

cells 

7.4 Summary 

In this chapter we implemented the proposed approach for the selected case studies in 

Haskell and evaluated the results. We applied the implementations to sample data sets and 

evaluated and discussed efficiency of the results. The results confirm that the concept of the 

proposed approach is true and works for analyses with individual inputs; but the 

development environment is not yet completely ready to support more complex types of 

changing inputs (e.g., lists). In other words, although the current implementation of 

functional programming languages support the changing values, but there are some cases of 

changing (e.g., changing the number and order of values in a list) that are not supported. 

Nevertheless, even in such cases, our implementation has two advantages: Firstly, we could 

extend the analyses to moving points without recoding the algorithm. Secondly, the lazy 

evaluation of Haskell helps us to be more efficient and prevent redoing the unchanged 

calculations. 

We presented two applications developed upon the implementations in order to show 

how the proposed approach can be practically used. The achieved results certify the 

hypothesis of the research which says “studying spatial analyses based on their dimension-

independent characteristics leads to a consistent solution toward implementation of a multi-

dimensional GIS“. 
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8 CONCLUSION AND FUTURE WORK 

This chapter summarizes the research of this thesis. It describes all stages through 

developing and testing the proposed approach to implement dimension independent spatial 

analyses. We then present the results and major findings of our work, as well as the research 

contribution. Finally, we propose directions for future research. 

 

The goal of this research was to provide an integrated framework for spatial analyses of 

multi-dimensional spaces. The proposed approach is to formally define spatial analyses 

based on their dimension-independent properties. It leads to an integrated framework of 

spatial analyses, which will further be extended to different dimensions. This extension will 

be accomplished through the mappings between the spaces, which are independent of 

analyses. The abstraction and algebraic specifications were used as the formal methods to 

provide the required abstraction. We described these principals in more details in chapter 1. 

To present the state-of-the art of extending spatial analyses to different dimensions, in 

chapter 2 we reviewed existing solutions to extend the Delaunay triangulation, as the case 

study of the research, to different dimensions. This information was used to compare the 

current approach with the proposed approach of the research to extend spatial analyses to 

different dimensions. 

The formal methods used in this thesis were presented in chapter 3. Principals of 

abstraction, algebraic structures and n-simplexes were presented. The functional 

programming languages, as the programming environment in this thesis, were introduced 

and their principals were presented.  

These principals were used in chapters 4 to 6 to develop the proposed approach of the 

research. We used the abstraction methods to develop the integrated framework of spatial 

analyses based on their dimension-independent properties. In this framework, spatial 

analyses are formally expressed in a hierarchical way in which each analysis is defined as a 

combination of simpler ones. These definitions are independent of dimension and the 

hierarchy ends in a set of primary operations, which are not further decomposed. The data 

types used in the operations of this hierarchy were also identified. Next, algebraic 

specification was used to formalize this conceptual integrated framework. It formally 
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describes the characteristic of analyses as combinations of the elements of the framework. 

On the other hand, as the spatial analyses are structurally equivalent in the required spaces, 

mappings (liftings) were defined between different spaces, independent of data types and 

analyses. Thus, having implemented the dimensionally independent data types and 

operations, they all will be extended to a specific space by applying the mapping function.  

The proposed approach was evaluated through implementation of the Delaunay 

triangulation for 2D/3D static and moving points in the functional programming language 

Haskell. Having this spatial analysis at top of a hierarchy, it was decomposed to simpler 

operations till the primitive operations were achieved.  The data types used in the operations 

of the hierarchy were also identified. On the other hand, the mappings between spaces were 

defined, which later were used to extend data types, operations and spatial analyses to points 

of different dimensions. The detailed explanation of the implementation was presented in 

chapter 7. We evaluated and discussed the performance of the implementations and 

presented two examples of using the implementations in practice. 

8.1 Results and major findings 

In this research we investigated studying spatial analyses based on their dimension-

independent characteristics. This can be considered as an effort along the goal of GI science 

to model the interaction of human with the environment. This is different from the approach 

of current research that extends spatial analyses based on their dimension dependent 

characteristics. Although such an approach results in extensions with the minimum increase 

in complexity and speed, they must be implemented separately for each dimension. Here, 

we study spatial analyses based on their dimension-independent characteristics, and to 

develop the data types and operations of a space to another, mappings are defined between 

spaces. These mappings are independent of data types and analyses and only depend on the 

origin and target spaces. Thus, having implemented the dimensionally independent data 

types and operations, they all will be extended to a specific space by applying the mapping 

function. The results of using this approach for the case study verified the validity of the 

approach.  

To construct the integrated framework, the concepts of abstraction and abstract data 

types were deployed. These concepts were used to define the required data types and data 

structures in a way that they can support objects of different dimensions. The operations to 

manipulate these data types and structures were developed independent of dimension, too. 
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This abstract viewpoint is a simulation of how people understand the environment. Thus, 

these concepts could be used for other GI related research. 

An algebraic approach was used to define spatial analyses. It considers the unified 

nature of our unique physical reality when handling the included context and permits to 

combine the developed simple components to create a complex system. Using an algebraic 

approach, we constructed an integrated hierarchical framework that defines each spatial 

analysis as a combination of simpler ones, which eventually leads to set of primary 

operations that are not further decomposed. This hierarchy is independent of the space and 

only depends on conceptual relationships of spatial analyses. Thus, having developed the 

operations of a level to a certain dimension, all of the operations and analyses of the higher 

levels are immediately available in the new dimension. This shows the beauty and capability 

of algebraic views to interact with a complex system. 

To interact with different dimensions, the algebraic structures were used. Different 

spaces were defined structurally equivalent and extension of the elements of a space to 

another was accomplished using mappings (liftings) defined between the spaces. 

The achieved results of implementing the proposed approach certify the hypothesis of 

the research which says “studying spatial analyses based on their dimension-independent 

characteristics leads to a consistent solution toward implementation of a multi-dimensional 

GIS“. Of course, this abstraction applied in definition of data types, data structures and 

operations will cause losing a significant amount of information available for specific 

dimensions, so this approach may not provide the simplest and fastest solutions. Though, it 

does not harm the goal of this research, because our major goal is to present an approach to 

extend spatial analyses to higher dimensions with the minimum amount of recoding, so 

simplicity and speed are not our evaluating parameters. In other words, this research 

believes that it better to have a working comprehensive system, even if it is slow, than 

waiting for a fast system created in unknown future. Note that base on the Moor’s law, 

computer speed doubles every 18 months on average. Nevertheless, the results show that the 

proposed approach does not affect the big O complexity and speed for applying the spatial 

analyses on objects of higher dimensions. 

The manipulations occurred in the environment are the results of processes that change 

the state of the real world objects. Although the goal of GI science is to study the process of 

the real world, because of deficiencies of the tools (e.g., modeling and programming 

environments) in practice, the focus of the current research is on studying the state of the 
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spatial objects (Hofer and Frank, 2008). A model of the reality is a collection of states that 

are converted to each other by processes. These conversions can be considered as functions 

that convert a state to another. To interact with the objects, the imperative programming 

languages can be used, but direct interaction with the processes and modeling their relations 

is possible through functional programming languages. The results of implementing the 

proposed approach of this research in Haskell certify this claim. 

8.2 Research contribution 

The major contribution of the research is providing a formal approach to implement spatial 

analyses in different dimensions, which eventually proves the hypothesis of the research, 

which says “studying spatial analyses based on their dimension independent characteristics 

leads to a consistent solution toward implementation of a multi-dimensional GIS“. We 

introduced a pure mathematical concept as an efficient tool to model and solve GI problems. 

More specifically, the major contributions of the research are as follows: 

• Providing an exhaustive review on existing solutions to extend the 2D Delaunay 

triangulation to 3D, dynamic and kinetic points. 

• Developing a mathematically provable framework to integrate spatial analyses via 

their dimension-independent properties, which can be extended to different multi-

dimensional spaces (e.g., 3D, temporal, etc.): 

- Providing an abstract view to spatial analyses and formalizing this view 

using algebraic structures. 

- Providing a hierarchical framework of spatial analyses that eventually ends 

in a set of primitive operations. 

• Constructing a strict connection between different multi-dimensional spaces that 

can be used to extend the program of an already implemented 2D spatial analysis to 

higher dimensions (e.g., 3D, moving, etc.) without recoding the whole process. 

• Definition of the framework into a mathematical model with executable 

specifications in the functional programming paradigm. It introduces functional 

programming as a relevant and efficient environment to study spatial processes and 

their interactions. 
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• Identifying the barriers to implement the mathematically provable proposed idea in 

the programming language Haskell through the selected case study, i.e., Delaunay 

triangulation. 

 

The contributions of the research has resulted in several articles, papers and reports 

published in different scientific journals, international conferences and symposiums as well 

as periodicals, including: 

• Karimipour, F. and Ledoux, H. (2011). Dynamic and Kinetic Delaunay 

Triangulation in 2D and 3D: A Survey, Submitted to the Journal of 

Geoinformatica. 

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2010). A Simplex-Based 

Approach to Implement Dimension Independent Spatial Analyses, Journal of 

Computer and Geosciences, 36: 1223-1134. 

• Karimipour, F., Delavar, M.R. and A.U. Frank, A.U. (2010). n-Dimensional 

Volume Calculation for Non-Convex Polytops, 18th edition of the Haskell 

Communities and Activities Report, May 2010. 

• Karimipour, F. (2009). n-Dimensional Convex Decomposition of Polytopes, 16th 

edition of the Haskell Communities and Activities Report, May 2009. 

• Bulbul, R., Karimipour, F. and Frank, A.U. (2009). A Simplex-based Dimension 

Independent Approach for Convex Decomposition of Nonconvex Polytopes, In 

Proceedings of the GeoComputation 2009 Conference, Sydney, Australia, 

November 30 - December 2, 2009, pp. Unpaginated. 

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2008). A Mathematical Tool to 

Extend 2D Spatial Operations to Higher Dimensions, In: O. Gervasi et al. (Eds.) 

Proceedings of the International Conference on Computational Science and Its 

Applications (ICCSA 2008), Perugia, Italy, June 30 - July 3, 2008, Lecture Notes 

in Computer Science (LNCS), Vol. 5072, Springer-Verlag, pp. 153-167. 

• Karimipour, F., Frank, A.U. and Delavar, M.R. (2008). An Operation-

Independent Approach to Extend 2D Spatial Operations to 3D and Moving 

Objects, In: H. Sammet, C. Shahabi and W.G. Aref (Eds.) Proceedings of the 16th 

ACM SIGSPATIAL International Conference on Advances in Geographic 

Information Systems (ACM GIS 2008), Irvine, CA, USA, November 5-7, 2008. 
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• Karimipour, F. and Delavar, M.R. (2008). Extension of Spatial Operations for 

Multi-dimensional GIS, In: G. Navratil (Ed.) Proceedings of the Colloquium for 

Andrew U. Frank's 60th Birthday, Vienna, Austria, June 30 - July 1, 2008, Geoinfo 

Series, Vol. 39, pp. 117-123. 

• Karimipour, F. (2008). Simplex-Based Spatial Operations, 15th edition of the 

Haskell Communities and Activities Report, November 2008. 

• Rezayan, H., Frank, A.U., Karimipour, F. and Delavar, M.R. (2007). Temporal 

Topological Relationships of Convex Spaces in Space Syntax Theory, In: X. Tang, 

Y. Liu, Z. Jixian and W. Kainz (Eds.), Advances in Spatio-Temporal Analysis, 

Taylor and Francis, pp. 85-100. 

• Karimipour, F., Rezayan, H. and Delavar, M.R. (2006). Formalization of Moving 

Objects Spatial Analyses Using Algebraic Structures, In: W. Kuhn and M. Rabaul 

(Eds.) Proceedings of Extended Abstracts of GIScience 2006, Münster, Germany, 

September 20-23, 2006, IfGI Prints, Vol. 28, pp. 105-111. 

• Karimipour, F., Delavar, M.R. and Frank, A.U. (2005). Applications of Category 

Theory for Dynamic GIS Analysis, In Digital Proceedings of GIS Planet 2005, 

Estoril, Portugal, May 30- June 2, 2005. 

• Karimipour, F., Delavar, M.R., Frank, A.U. and Rezayan, H. (2005). Point in 

Polygon Analysis for Moving Objects, In: C. Gold (Ed.) Proceedings of the 4th 

Workshop on Dynamic & Multi-dimensional GIS (DMGIS 2005), Pontypridd, 

Wales, UK, September 5-8, 2005, ISPRS Working Group II/IV, International 

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 

pp. 68-72. 

 

Some of the above publications were included in the achievements of the 3D 

topography project (3D topography project, 2007) as the contribution of Technical 

University of Vienna, which was a partner of the project
1
. 

                                                      
1
 RGI-011, 3D topography is an EU project that aims to enforce a major break-through in the application 

of 3D topography and the requirements of such a system such as data acquisition, data model, data 

storage, data analyses and database management. 
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8.3 Directions for future work 

This research took a step toward deploying abstraction and algebraic structures to solve GI 

problems. It showed how to use these mathematical concepts to implement dimension-

independent spatial analyses. The same manner of this research may be used for extension 

of other requirements of a multi-dimensional GIS (e.g. data structure, data model, etc.). 

The proposed approach of the research was implemented for the Delaunay triangulation 

as well as some applications that use this analysis in their definitions. Using the proposed 

approach in implementation of further spatial analyses with more complex structures will 

evaluate this approach in terms of possibility and efficiency. 

One of the major goals of this research was studying spatial processes independent of 

objects to which they are applied. It results in a better understanding of changes happen in 

our environment. However, the focus of most of current research is on studying spatial 

objects and how they are change from a state to another. A main reason is the modeling and 

programming environments, which are incapable of direct interacting with processes. This 

research introduced functional programming languages as an efficient environment to fill 

this gap. Using such functional environments in other GI research may help toward 

achieving more efficient models and simulations of the interaction of human with the 

environment in space and time. 
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APPENDIX 1. THE FUNCTIONAL PROGRAMMING LANGUAGE 

HASKELL 

This Appendix introduces the functional programming language Haskell, which has been 

employed as the environment to implement the proposed approach of this thesis. The main 

concepts and syntax are described to an extent necessary to understand the implementations 

provided in the thesis. 

A1.1  The Functional programming language Haskell 

The Haskell is a functional programming language used to implement the proposed 

approach of this thesis. It is named after Haskell B. Curry who was one of the pioneers of 

the λ−calculus (Michaelson, 1989). Haskell is purely functional, strongly typed, and uses 

lazy evaluation. A variety of Haskell implementations is available; here we use the Glasgow 

Haskell Compiler (GHC). This section gives a short introduction to the syntax and 

functionality of Haskell. A detailed tutorial can be found in (Hudak et al., 2000; Peyton 

Jones and Hughes, 1999; Thompson, 1999). 

A1.2. Functions 

Functions in Haskell are defined as a series of declarations. As Haskell is typed strict, the 

order and types of the input parameter(s) and the output parameter of the function must be 

specified first. This is called type signature. The syntax of a type signature is as follow: 

 

function name :: type of input 1 -> … > type of input n -> type of output (A1-1)

 

Similar to any functional language, Haskell obeys the outer-to-inner reduction rule in 

evaluating expressions. This is explicitly shown by removing the parentheses around the 

variables and the expression is evaluated from left to right: 

 

y = f(x)      → y = f x 

y = f(x, y)  → y = f x y 
(A1-2)
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For example, the function add that adds two integers is defined as: 

 

add :: Int -> Int -> Int 

add x y = x + y 

 

Similar to the mathematics, function composition is possible in Haskell. It improves the 

structure of a program and thus its readability. The top-level functions are often specified by 

composing a number of functions together. Each part is designed and implemented 

separately – following a top-down approach. The output of one function becomes the input 

of another function, and so on. Therefore, the order plays an important role. The constraint 

by which functions can be composed is given by the signature of the function composition 

operator (.): 

 

(.) :: (b -> c) -> (a -> b) -> (a -> c) 

(f . g) x = f (g x) 

 

The following example increments it input then multiplies it by 2: 

 

f = ((*2) . (+1)) x 

A1.3 Lambda expressions 

Anonymous functions can be made using lambda expressions. For example: 

 

\x -> x + 1 

 

is a function with one parameter that adds one to its input. In general: 

 

\pattern1 pattern2 ... patternn -> expression  (n>=1) 

 

Lambda expressions are useful in defining in-line functions. For example map is 

defined as: 
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map (\xs -> zip xs [1..]) list 

A1.4 Data types 

Data types classify the variables based on their properties. A major strength of functional 

programming languages such as Haskell is that they are typed strict. It means every object 

has a particular type and only the operations of that type can be applied on that object. It 

assures that the program runs correctly and prevents the conceptual deviation in the results 

(Doets and Jan Eijck, 2004). 

The following syntax is used in Haskell to assign a data type to a variable: 

 

variable name :: data type  (A1-3)

 

The “::” is read as “has type”. Haskell has several predefined types such as characters 

(Char), integers (Int), floating point numbers (Float), Double precision numbers 

(Double), rational numbers (Ratio), Booleans (Bool), strings (String), tuples ((a,b)), 

and lists ([a]).  

 

‘f’ :: Char 

4 :: Int 

4.7 :: Float 

4.73 :: Double 

2 % 3 :: Ratio 

True, False :: Bool 

“gis” :: String 

(4,’f’) :: (Int,Char) 

[1,2,3,4] :: [Int] 

 

As we frequently use the lists and their operations, they are more discussed separately 

in section A1.5. 

User-defined data types are introduced with the keyword data and defined by the 

constructors of the type. For example, the data type Point2D in Cartesian space is defined 

by applying the constructor function Pt2 to an integer (as the identity of the points) and 

two floating-point numbers (as the coordinates of the point): 
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data Point2D = Pt2 ID Float Float 

 

Commonly used types can be assigned a synonym. In Haskell, it is called type 

synonyms and created with a type declaration. For example, the type Dimension behaves 

as the predefined type Int. 

 

type Dimension = Int 

A1.5 Lists 

A list is a collection of any number of elements of the same type. For instance, all of the 

following collections are lists: 

 

[1, 2, 7, 5, 1, 4] :: [Int]  

['a', 'c', 'a', 'd', 'k'] :: [Char] 

[(1, 'c'), (5, 'b'), (9, 'k'), (6, 'e')] :: [(Int, Char)] 

[True, True, False, True, False, False] :: [Bool] 

[[1, 2, 7], [5, 1], [8, 5, 2, 9], [3], [5, 1]] :: [[Int]] 

 

where [a] means a list of values of type ‘a’. The order of elements in a list is 

significant: [1, 2, 3] is different from [3, 2, 1], so we can talk about the first, the second, … 

and the last elements of a list. The number of occurrences of an element does also matter: 

[3] contains one element and [3, 3] contains two, which happen to be the same. 

The operator ‘:’, called list constructor, builds a list from an element and a list. Thus: 

 

[1, 2, 7] = 1:[2, 7] = 1:2:[7] = 1:2:7:[] 

 

The example shows that every non-empty list is built from an empty list [] by the 

repeated use of the list constructor ‘:’. This characteristic is used to define most of the 

functions over list, recursively. Table A1.1 presents a set of manipulating functions defined 

over lists and their implementations. A complete list of standard manipulating functions 

over lists and their implementations can be found in (Peyton Jones and Hughes, 1999). 

Not that Haskell incorporates higher-order functions – functions that use functions as 

arguments and return functions as a result. The map function is an instructive example in 
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this respect. It takes a function and applies it to all elements in a list, such as incrementing 

the elements in a list as shown in Table A1.1. 

Similar to the mathematics, it is possible to generate lists in Haskell using list 

comprehension. For example: 

 

{( x, y) | x ∈{1,2,3}, y ∈{4,5}} 

[(x,y)| x <- [1,2,3], y <- [4,5]] 

{(1,4), (2,4), (3,4), (1,5), (2,5), (3,5)} 

Definition in mathematics 

Definition in Haskell 

Results 

(A1-4)

 

Haskell incorporates polymorphic types – types that are universally quantified in some 

way over all types, also called parametric polymorphism. This allows for defining functions 

applicable to various types. For example, the function length presented in table A1.1 to 

count the number of elements in a list can be applied to a list of integers, characters, etc.. 

Haskell uses the built-in infinite lists [n ..], [n, m ..] so that [0 ..] = [0, 1, 2, 

3, ..]. Regarding the lazy evaluation rule, an element of the list is evaluated only if its 

value is needed. One can extract finite portions from an infinite list by applying one of the 

predefined functions in Haskell such as head, take, etc.: 

 

head   [0,1,2 ..] = 1 

take 5 [0,1,2 ..] = [1,2,3,4,5] 
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Table A1.1. Some standard manipulating functions over lists 

Function and Syntax Description Example Implementation 

length x returns the number of elements in the 

list x 

length [2,3,4] = 3 

length [] = 0 

length []     = 0 

length (x:xs) = a + length xs 

x ++ y concatenates two lists [2,3,4] ++ [4,5] = [2,3,4,4,5] 

[2,3,4] ++ [] = [2,3,4] 

[]     ++ y = y 

(x:xs) ++ y = x : (xs+y) 

concat x for the list of lists x, puts all elements 

together in a single list 

concat [[1,2], [2,3,4],  

[3,4,5,6], [7,8]] = 

[1,2,2,3,4,3,4,5,6,7,8] 

concat x = fold (++) [] x 

concatMap f x for the list of lists x, applies the function 

f to all elements of x and  then puts them 

together in a single list 

concatMap sum [[1,2], [3,4,5],  

[5,6]] = [3,12,11] 

concatMap f x = concat.map f x 

sum x calculates the sum of all elements of the 

list x 

sum [1,2,3,4] = 10 sum x = fold (+) 0 x 

map f x applies the function f to every elements 

of the list x 

map (+1) [1,2,3] = [2,3,4] map f []     = [] 

map f (x:xs) = f x : map f xs 

filter c x returns all elements of the list x that 

fulfill the condition c 

filter (>2)  [1,2,3,4] = [3,4] 

filter (==2) [1,2,3,4] = [2] 

filter f, []     = [] 

filter f, (x:xs) = if f x == true 

                   then x : filter f xs 

                   else filter f xs 

fold f a x combines the elements of the list x with 

the specified function f and the start 

value a (e.g., add all elements) 

fold (+) 0 [1,2,3,4] = 10 

fold (*) 1 [1,2,3,4] = 24 

fold f a []     = a 

fold f a (x:xs) = fold f (f a x) xs 

x \\ y drops elements of the list x that exist in 

the list y, i.e., x – y 

[1,2,3,4] \\ [3,4,5] = [1,2] x \\ y = [a | a <-x and (not (a <- y))] 

sort x sorts the elements of the list x sort [3,4,5,1,2,3,1,5,6,3] =  

[1,1,2,3,3,3,4,5,5,6] 

sort (x:xs) = sort (filter (<x) xs) ++  

                    filter (==x) xs ++  

              sort (filter (>x) xs) 
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A1.6 Pattern matching 

Pattern matching is a concept in Haskell to define functions. The left-hand sides of the 

equation contain patterns, which are matched against actual parameters during the 

application of the function. The process of pattern matching is sequential. If the match of an 

equation succeeds, the right-hand side gets evaluated and returned as the result of the 

function. If the match fails, the next equation is tried, and so on. If all equations fail, the 

result is an error. As an example for pattern matching we use the function length: 

 

length :: [a] -> Int 

length [] = 0 

length (x:xs) = 1 + length xs 

 

When applying this function, the patterns [] and (x:xs) are matched against actual 

parameters, whereby [] matches only the empty list and (x:xs) matches any list with at 

least one argument — x being the first argument and xs the rest of the list. In general, 

patterns can be literal values, variables, wildcards, tuples, and constructors (Thompson, 

1999). 

A1.7 Classes and instances 

A typical feature of Haskell is another type of polymorphism, called ad hoc polymorphism 

or overloading. Overloaded functions can be used for a variety of types – with different 

definitions being used for different types. Overloading therefore allows for the reuse of 

existing function names. In Haskell, classes are a mechanism for assigning types to 

overloaded functions. 

A class is a collection of types over which a set of functions are defined. For example, 

the equality class Eq contains a set of types over which the equality operator (==) is 

defined: 

 

class Eq a where 

(==) :: a -> a -> Bool 
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One then needs to define the members of the class – i.e., which types are instances of 

the class – and the actual behavior of the functions on each of these types. In other words, 

the class specifies the functions and their signature. Instances, however, define the functions 

applications. For example, following we define a 2D point as an instance of class Eq:   

 

instance Eq Point where 

   (==) (Point2D x1 y1) (Point2D x2 y2) = (x1==x2) && (y1==y2) 

   (==) (Point3D x1 y1 z1) (Point3D x2 y2 z2) =     

(x1==x2) && (y1==y2) && (z1==z2) 
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APPENDIX 2. THE HASKELL CODE 

This Appendix contains the complete code of the implementations of this thesis in Haskell 

programming language. Different modules of the program are presented. 

 

 

Lifting 

 

-- *** Definition of the required functors (Listing and Moving functors)                     

 

module Lifting where 

 

import Prelude 

 

 

---------------------------------------------------------------------------

-- Listing functors 

---------------------------------------------------------------------------

-- Class "Functor" to lift operations with different number of operands 

class Lifting f a where 

  lift0 :: a -> f a 

  lift1 :: (a -> b) -> f a -> f b 

  lift2 :: (a -> b -> c) -> f a -> f b -> f c 

  lift3 :: (a -> b-> c-> d) -> f a -> f b -> f c -> f d 

 

   

---------------------------------------------------------------------------

-- Moving liftings 

---------------------------------------------------------------------------

-- Type for changing (moving) values 

type Instant    = Float 

type Changing v = Instant -> v 
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-- Liftings to lift operations with static values to operations with  

-- changing values 

instance  Lifting ((->) Instant) a where 

  lift0    a     = \t -> a 

  lift1 op a     = \t -> op (a t)  

  lift2 op a b   = \t -> op (a t) (b t) 

  lift3 op a b c = \t -> op (a t) (b t) (c t) 

   

   

-- Convert a list of changing values to a changing list of values 

lc2cl :: [Changing a] -> Changing [a] 

lc2cl ma  = \t -> lift1 (\a -> a t) ma 

 

 

-- Liftings to lift operations with list(s) of changing values as operand(s) 

-- Lift of a function with no operands (constant value) 

lift0L      a     = lc2cl a 

 

 

-- Lift of a function with one operand 

lift1L   op a     = lift1 op (lc2cl a) 

 

 

-- Lift of a function with two operands 

lift2L   op a b   = lift2 op (lc2cl a) b   -- 1st operand  is  list 

lift2LL  op a b   = lift2 op (lc2cl a) (lc2cl b)  -- both operands are list 

 

 

-- Lift of a function with three operands 

lift3L   op a b c = lift3 op (lc2cl a) b         c -- 1st operand  is  list 

lift3LL  op a b c = lift3 op (lc2cl a) (lc2cl b) c -- 1st and 2nd operands are list 

lift3LLL op a b c = lift3 op (lc2cl a) (lc2cl b) (lc2cl c) -- all operands are list 
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Ring 

 

-- *** Definition of the class "Ring" contains primitive operations on numbers 

 

module Ring where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

 

import Lifting 

 

 

infixl 6  +, - 

infixl 7  * 

 

 

-- Definition of the class "Ring" for primitive operations on individual values 

class Ring q where 

  (+), (-), (*) :: q -> q -> q 

  neg, sq       :: q -> q 

  sum           :: [q] -> q 

 

  sq a   = a * a 

  a - b  = a + (neg b) 

  sum ls = foldl (+) zero ls 

 

 

-- Instance of the class "Ring" for Integer values 

instance Ring Int where 

  neg   = Prelude.negate 

  a + b = a Prelude.+ b 

  a * b = a Prelude.* b 

 

 

-- Instance of the class "Ring" for Floating values 

instance Ring Float where 

  neg   = Prelude.negate 

  a + b = a Prelude.+ b 

  a * b = a Prelude.* b 
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-- Lifting operations of the class "Ring" from individuals to lists 

instance (Ring a) => Ring [a] where 

  neg  = lift1 neg 

  (+)  = lift2 (+) 

  (*)  = lift2 (*) 

 

 

-- Lifting operations of the class "Ring" from static to changing values 

instance Ring a => Ring (Changing a) where 

  neg  = lift1 neg 

  (+)  = lift2 (+) 

  (*)  = lift2 (*) 
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Vector 

 

-- *** Definition of n-dimensional points with some additional  

-- *** operations for 2D and 3D points 

 

module Vector where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

 

import Lifting 

import Ring 

import Samples 

import MyList 

 

 

-- Definition of an n-dimensional point as a list of numbers 

type Pt a = [a] 

 

 

-- Types for static and moving points 

type StaticPt a = Pt a 

type MovingPt a = Changing (Pt a) 

 

 

----------------------------------------------------------------------  

-- Definition of square distance between two n-dimensional points 

-- and some operations for 2D and 3D points (x, y, z, xy, xyz)  

class Ring c => Points p c where 

  sqDist  :: p -> p -> c  

 

 

-- Instance of the class "Points" for n-dimensional static points  

instance Ring a => Points (StaticPt a) a where 

  sqDist p1 p2 = sum.sq $ (p1 - p2) 

 

    

-- Lifting operations of the class "Points" from static to changing values 

instance Ring a => Points (MovingPt a) (Changing a) where 

  sqDist = lift2 sqDist  
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---------------------------------------------------------------------- 

-- Convert a list of coordinates to a list of different elements 

-- [[x1, y1, ...], [x2, y2, ...], ...] ==> [[x1, x2, ...], [y1, y2, ...], ...] 

coord2List :: [Pt a] -> [[a]] 

coord2List a = init.c2l $ a where 

   c2l ([]:_) = [[]] 

   c2l ps     = concatMap headL ps: c2l (map tail ps) 

   headL a    = [head a] 

 

 

-- Convert a list of different elements to a list of coordinates 

-- [[x1, x2, ...], [y1, y2, ...], ...] ==> [[x1, y1, ...], [x2, y2, ...], ...] 

list2Coord :: [[a]] -> [Pt a] 

list2Coord ([]:_) = [] 

list2Coord l      = e1 : list2Coord e2 

  where 

    e1 = map head l 

    e2 = map tail l 

 

-- Type for points with Integer, Floating and Rational elements 

type PtI = StaticPt Int 

type PtF = StaticPt Float 

 

-- Definition of the class "PointTests" contains some tests on points 

class PointTests p bool where 

  cw         :: [p] -> p -> bool 

  ccw        :: [p] -> p -> bool 

  inSphere   :: [p] -> p -> bool 

 

-- Instance of the class "PointTests" for n-dimensional static points 

instance PointTests (StaticPt Float) Bool where 

  cw ps p = (zero) <= (det $ map tr ps) 

    where 

      tr x = (x - p) 

   

  ccw ps p = not.(cw ps) $ p 

 

  -- Note: ps must be in cw order 

  inSphere ps p = (zero) >= (det $ map tr allPts) 

    where 

      tr x   = x ++ [sum.map sq $ x] ++ [one] 

      allPts = p:ps 
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-- Lifting operations of the class "PointTests" to n-dimensional moving points 

instance PointTests (MovingPt Float) (Changing Bool) where 

  ccw      = lift2L ccw 

  cw       = lift2L cw 

  inSphere = lift2L inSphere 
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Samples 

 

-- *** Some sample 2D static, 2D moving, 3D static and 3D moving points 

-- *** (Elements of the moving points are continuous functions of time) 

 

module Samples where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

 

import Lifting 

import Ring 

import Point 

 

 

-- 2D static points 

pt21,  pt22,  pt23,  pt24,  pt25,  pt26,  pt27,  pt28,  pt29,  pt210, pt211, 

pt212, pt213, pt214, pt215, pt216, pt217, pt218, pt219, pt220 :: StaticPt Float 

 

pt21  = [3, 4] 

pt22  = [1, 3] 

pt23  = [4, 1] 

pt24  = [8, 1] 

pt25  = [7, 2] 

pt26  = [9, 2] 

pt27  = [5, 3] 

pt28  = [8, 4] 

pt29  = [6, 3] 

pt210 = [5, 1] 

pt211 = [4, 4] 

pt212 = [6, 7] 

pt213 = [6, 6] 

pt214 = [8, 6] 

pt215 = [3, 5] 

pt216 = [4, 0] 

pt217 = [7, 1] 

pt218 = [2, 3] 

pt219 = [3, 6] 

pt220 = [9, 4] 
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pt2s = [pt21,  pt22,  pt23,  pt24,  pt25,  pt26,  pt27,  pt28,  pt29, pt210, 

pt211, pt212, pt213, pt214, pt215, pt216, pt217, pt218, pt219, pt220] 

 

 

-- 2D moving points 

mpt21, mpt22,  mpt23,  mpt24,  mpt25,  mpt26,  mpt27,  mpt28,  mpt29,  

mpt210, mpt211, mpt212, mpt213, mpt214, mpt215, mpt216, mpt217, mpt218, 

mpt219, mpt220 :: (MovingPt Float) 

 

mpt21  t = [(7-5*sin t), (2+5*cos t)] 

mpt22  t = [(5-3*sin t), (3-5*cos t)] 

mpt23  t = [(4-3*cos t), (1-1*sin t)] 

mpt24  t = [(2+7*cos t), (3+3*cos t)] 

mpt25  t = [(3+9*sin t), (4+1*cos t)] 

mpt26  t = [(6+1*sin t), (3+2*cos t)] 

mpt27  t = [(1+1*sin t), (3-1*cos t)] 

mpt28  t = [(8+6*cos t), (4-1*sin t)] 

mpt29  t = [(9+4*sin t), (1-3*cos t)] 

mpt210 t = [(5-3*sin t), (1+4*cos t)] 

mpt211 t = [(3+1*sin t), (4-1*cos t)] 

mpt212 t = [(6-2*sin t), (7-5*cos t)] 

mpt213 t = [(6-5*cos t), (3+1*sin t)] 

mpt214 t = [(8+6*cos t), (6-9*cos t)] 

mpt215 t = [(3-3*sin t), (5+2*cos t)] 

mpt216 t = [(4+2*sin t), (0-2*cos t)] 

mpt217 t = [(7+2*sin t), (1-2*cos t)] 

mpt218 t = [(9-3*cos t), (1+7*sin t)] 

mpt219 t = [(3+5*sin t), (6-4*cos t)] 

mpt220 t = [(4-2*sin t), (6+1*cos t)] 

 

mpt2s = [mpt21,  mpt22,  mpt23,  mpt24,  mpt25,  mpt26,  mpt27,  mpt28,  

mpt29,  mpt210,  mpt211, mpt212, mpt213, mpt214, mpt215, mpt216, mpt217, 

mpt218, mpt219, mpt220] 

 

 

-- 3D static points 

pt31,  pt32,  pt33,  pt34,  pt35,  pt36,  pt37,  pt38,  pt39,  pt310, pt311, 

pt312, pt313, pt314, pt315, pt316, pt317, pt318, pt319, pt320 :: StaticPt Float 

 

pt31  = [1, 2, 1] 

pt32  = [6, 2, 1] 

pt33  = [4, 2, 5] 
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pt34  = [4, 5, 6] 

pt35  = [3, 3, 2] 

pt36  = [3, 1, 2] 

pt37  = [1, 3, 4] 

pt38  = [8, 4, 2] 

pt39  = [9, 1, 4] 

pt310 = [4, 5, 4] 

pt311 = [8, 6, 7] 

pt312 = [5, 4, 3] 

pt313 = [9, 2, 6] 

pt314 = [5, 6, 8] 

pt315 = [3, 1, 4] 

pt316 = [2, 8, 6] 

pt317 = [8, 4, 2] 

pt318 = [1, 6, 8] 

pt319 = [9, 3, 9] 

pt320 = [9, 1, 1] 

 

pt3s = [pt31,  pt32,  pt33,  pt34,  pt35,  pt36,  pt37,  pt38,  pt39,  pt310, 

pt311, pt312, pt313, pt314, pt315, pt316, pt317, pt318, pt319, pt320] 

 

 

-- 3D moving points 

mpt31, mpt32, mpt33, mpt34, mpt35, mpt36, mpt37, mpt38, mpt39 :: (MovingPt Float) 

 

mpt31  t = [(7-5*sin t), (2+5*cos t), (1+5*sin t)] 

mpt32  t = [(5-3*cos t), (3-5*sin t), (3+4*cos t)] 

mpt33  t = [(4-3*sin t), (1-1*cos t), (1-2*cos t)] 

mpt34  t = [(2+7*cos t), (3+3*sin t), (3+4*sin t)] 

mpt35  t = [(3+9*cos t), (4+1*sin t), (2-2*cos t)] 

mpt36  t = [(6+1*sin t), (3+2*cos t), (5-3*sin t)] 

mpt37  t = [(1+1*cos t), (3-1*sin t), (2+3*sin t)] 

mpt38  t = [(8+6*sin t), (4-1*cos t), (4+2*cos t)] 

mpt39  t = [(9+4*cos t), (1-3*sin t), (3-2*sin t)] 

 

mpt3s = [mpt31, mpt32, mpt33, mpt34, mpt35, mpt36, mpt37, mpt38, mpt39] 
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n-Simplexes 

 

-- *** Definition of n-dimensional points and n-simplexes based on  

-- *** list data structure and then spatial operations as list  

-- *** manipulating functions  

 

module CnSimplex where 

 

import List (sort, nub, (\\), inits, tails, union) 

import Random 

 

---------------------------------------------------------------------- Data 

type for points, n-simplexes and their operations 

-------------------------------------------------------------------- 

-- Define a vertex as a list of Floating numbers 

type Vertex = [Float] 

 

 

-- Define a n-simplex as a list of vertexes 

type Simplex = [Vertex] 

 

 

-- Determine the dimension of a point 

ptDim :: Vertex -> Int 

ptDim = length 

 

 

-- Determine the dimension of a n-simplex 

simpDim :: Simplex -> Int 

simpDim = length 

 

 

-- Test if a list of points is a valid n-simplex 

isSimplex :: [Vertex] -> Bool 

isSimplex vs = (length vs == 1 + ptDim (head vs)) && 

               (allEq.map ptDim $ vs) 

  where 

    allEq x = all (==(head x)) x 

 

 

-- Determine the orientation of a n-simplex "s" using the sign of   

-- the determinant of area, volume, ... 

getOrn :: Simplex -> Bool 

getOrn s = (det $ map (1:) s) > 0 

 

 

 

----------------------------------------------------------------------  

-- Data type for canonical n-simplexes and their primary operations 

---------------------------------------------------------------------- 

Canonical representation of a n-simplex 

type CnSimplex = (Simplex, Bool) 

 

 

-- Change the canonical representation of a n-simplex "s" to  

-- its primary representation 

simp2cnSimp :: Simplex -> CnSimplex 

simp2cnSimp s = (sort s, getOrn s) 
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-- Change the primary representation of a n-simplex to  

-- its canonical representation 

cnSimp2simp :: CnSimplex -> Simplex  

cnSimp2simp ([v], b) = [v] 

cnSimp2simp (vs , b) = if b then vs else swap vs 

 

swap [] = [] 

swap [v] = [v] 

swap (v1:v2:vs) = v2:v1:vs 

 

 

-- Test if an input is a valid canonical n-simplex 

isCnSimplex :: ([Vertex], Bool) -> Bool 

isCnSimplex (vs, b) = isSimplex vs 

 

 

-- Get the vertexes of a canonical n-simplex 

vertexes :: CnSimplex -> Simplex 

vertexes = fst 

 

 

-- Get the orientation of a canonical n-simplex 

orn :: CnSimplex -> Bool 

orn = snd 

 

 

-- Determine the dimension of a canonical n-simplex 

cnSimpDim :: CnSimplex -> Int 

cnSimpDim = length.vertexes 

 

-- Change the orientation of a canonical n-simplex 

changeOrn :: CnSimplex -> CnSimplex 

changeOrn (vs, b) = (vs, not b) 

 

 

-- Check if two canonical n-simplexes "cs1" and "cs2"  

-- have the same vertexes 

eqVs :: CnSimplex -> CnSimplex -> Bool 

eqVs cs1 cs2 = vertexes cs1 == vertexes cs2 

 

 

-- Check if two canonical n-simplexes "cs1" and "cs2"  

-- have the same orientation 

eqOrn :: CnSimplex -> CnSimplex -> Bool 

eqOrn cs1 cs2 = orn cs1 == orn cs2 

 

 

-- Check if two n-simplexes "cs1" and "cs2" are equal 

eqSimps :: CnSimplex -> CnSimplex -> Bool 

eqSimps cs1 cs2 = (eqOrn cs1 cs2) && 

                  (eqVs  cs1 cs2) 

 

-- For a n-simplex "cs", give the faces of dimension "n" 

faceN :: CnSimplex -> Int -> [CnSimplex] 

faceN cs n = map simp2cnSimp.(flip combine n).vertexes $ cs 

 

 

-- Give all faces of a n-simplex "cs" 

faces :: CnSimplex -> [CnSimplex] 

faces cs = concatMap (faceN cs) [1.. n] 

  where 

    n = cnSimpDim cs 
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-- Extract the boundary of a canonical n-simplex 

boundary :: CnSimplex -> [CnSimplex] 

boundary (vs , b) = zip (removeEach vs) (cycle [b, not b]) 

 

 

---------------------------------------------------------------------- 

Required operations on canonical n-simplexes  

-- Note: Hereafter, we mean 'canonical n-simplex'  

-- by n-simplex 

---------------------------------------------------------------------- Add 

a vertex "v" to a n-simplex "cs" 

addVertex :: Vertex -> CnSimplex -> CnSimplex 

addVertex v cs = simp2cnSimp.(v:).cnSimp2simp $ cs 

 

 

-- Extract the bordering (n-1)-simplexes from a list of connected n-

simplexes 

border :: [CnSimplex] -> [CnSimplex] 

border = foldr op [] . concatMap boundary 

  where 

    op x [] = [x] 

    op x (y:xs) = if eqVs x y   then xs   else y:op x xs 

 

-- Join two lists of n-simplexe 

join :: [CnSimplex] -> [CnSimplex] -> [CnSimplex] 

join = (++) 

 

 

-- Determine the position of an n-dimensional point "pt" resepect to  

-- an (n-1)-simplex "cs" 

ccw, cw :: CnSimplex -> Vertex -> Bool 

ccw cs pt = orn.(addVertex pt) $ cs 

cw  cs pt = not (ccw cs pt) 

 

 

 

-- Change the order of the vertexes of a n-simplex "cs" such that it  

-- makes a ccw order respect to the vertexes of a given list of  

-- n-simplexes "css" 

mkCCWsimp :: [CnSimplex] -> CnSimplex -> CnSimplex 

mkCCWsimp css cs = if ccw cs v then cs else changeOrn cs 

  where 

    v = aVertexIn css cs 

 

 

-- Find a vertex in a list of n-simplexes "css" which is not a  

-- vertex of a given n-simplex "cs" 

aVertexIn :: [CnSimplex] -> CnSimplex -> Vertex 

aVertexIn css cs = head ((nub (concatMap vertexes css)) \\ (vertexes cs)) 

 

 

-- Change the order of the vertexes of a n-simplex "css" such that  

-- it makes a ccw order respect to the vertexes of other  

-- n-simplexes in another list 

mkCCWsimps :: [CnSimplex] -> [CnSimplex] 

mkCCWsimps css = map (mkCCWsimp css) css 

 

 

-- Determine the (n-1)-simplexes in a list "css" that make cw order  

-- respect to a given vertex "v" 

cwSimps :: [CnSimplex] -> Vertex -> [CnSimplex] 

cwSimps css v = filter ((flip cw v).(mkCCWsimp css)) css 
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-- Determine the vertexes in a list of vertexes "vs" that make cw  

-- order respect to a given (n-1)-simplex "cs" 

cwVerts :: [Vertex] -> CnSimplex -> [Vertex] 

cwVerts vs cs = filter (cw cs) vs 
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MyList 

 

-- *** Some new operations on lists 

 

module MyList where 

 

import List (elemIndices, (\\), inits, tails) 

 

 

-- Intersection of two lists "l1" and "l2" 

intersect :: Eq a => [a] -> [a] -> [a] 

intersect l1 l2 = [t | t <- l1, elem t l2] 

 

 

-- Drop the elements of a list "l1" which are in a list "l2" (l1 - l2) 

dropElems :: (Eq a) => [a] -> [a] -> [a] 

dropElems l1 l2 = [x | x <- l1, notElem x l2] 

 

 

-- Drop the elements of a list "l" which have a given value "v" 

dropElem :: (Eq a) => [a] -> a -> [a] 

dropElem l v = dropElems l [v] 

 

 

-- Drop the Nth element of a list "l" 

dropNthElem :: Int -> [a] -> [a] 

dropNthElem n l = l1 ++ tail l2 

  where 

    (l1, l2) = splitAt n l 

 

 

-- Check if the list "l1" is a subset of the list "l2" 

isSubset :: Eq a => [a] -> [a] -> Bool 

isSubset l1 l2 = null (l1 \\ l2) 

 

 

-- Replace a given value "v1" with "v2" in a list "l" 

replace :: (Eq a) => a -> a -> [a] -> [a] 

replace v1 v2 l = map (rep v1 v2) l 

  where  

    rep v1 v2 v = if (v == v1) then v2 else v 
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-- Split a list "l" from the first appearance of a given value "v" 

splitAtElem :: Eq a => a -> [a] -> ([a], [a]) 

splitAtElem v l = (flip splitAt l).head.(elemIndices v) $ l 

 

 

-- Group all elements of a list respect a given "eq" function 

groupAllBy :: Eq a => (a -> a -> Bool) -> [a] -> [[a]] 

groupAllBy _ []     = [] 

groupAllBy eq (x:xs) = (x:ys) : groupAllBy eq zs 

  where 

    ys  = [t | t <- xs, eq t x] 

    zs = xs \\ ys 

 

 

-- Group all elements of a list with (==) definition for equality 

groupAll :: Eq a => [a] -> [[a]] 

groupAll = groupAllBy (==) 

 

 

-- Average of a numerical list "l" 

ave :: (Fractional a) => [a] -> a 

ave l = (sum l) / (fromIntegral.length $ l) 

 

 

-- Repaet elements of a list "l" 

repeatList :: [a] -> [a] 

repeatList l = concat.repeat $ l 

 

 

-- For two lists "l1" and "l2", find elements of "l2" whose corresponding  

-- element in "l1" satisfies the condition "cond" 

findByCond :: [a] -> [b] -> (a -> Bool) -> [b] 

findByCond l1 l2 cond = map snd.(filter (cond.fst)) $ (zip l1 l2) 

 

 

-- Determinant calculation 

det :: (Num a) => [[a]] -> a 

det [] = 1 

det m  = sum (alternate 

            (zipWith (*) (map head m) (map det (removeEach (map tail m))))) 
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alternate :: (Num a) => [a] -> [a] 

alternate = zipWith id (cycle [id, negate]) 

 

removeEach :: [a] -> [[a]] 

removeEach xs = zipWith (++) (inits xs) (tail (tails xs)) 

 

--------------------------------------------------------------------  

-- Code for permutation 

--------------------------------------------------------------------  

(.^) = (.) . (.)        -- (.^) uf bf x y = uf (bf x y) 

(.^^) = (.) . (.) . (.) -- (.^^) uf tf x y z = uf (tf x y z) 

(^.) = (.) . flip (.)   -- (^.) f g = (. f) . g 

 

shuffle :: [a] -> [[a]] 

shuffle []      = [[]] 

shuffle (x:xs)  = concatMap (insertAll x) (shuffle xs) 

  where 

    insertAll :: a -> [a] -> [[a]] 

    insertAll e []          = [[e]] 

    insertAll e (x:xs)      = (e:x:xs) : map (x:) (insertAll e xs) 

 

combine, permute :: [a] -> Int -> [[a]] 

combine _ r | r < 0     = error "Zero or more elements should be extracted." 

combine _ 0             = [[]] 

combine [] _            = [] 

combine (x:xs) r        = map (x:) (combine xs (r - 1)) ++ combine xs r 

 

permute = concatMap shuffle .^ combine 

 

  



Appendix 2. The Haskell Code 134 

 

Polyhedron 

 

-- *** Definition of a type for polyhedron and some operations on it 

 

module Polyhedron where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

import List ((\\)) 

 

import Lifting 

import Ring 

import Vector 

import MyList 

 

 

-- Definition of a type for polyhedron  

type PH = [PtF] 

 

 

-- Dimension of a polyhedron 

dimPH :: PH -> Int 

dimPH = length 

 

 

-- Check if two polyhedrons are equal (i.e., consists of the same points) 

isEqPH :: PH -> PH -> Bool 

isEqPH ph1 ph2 = null (ph1 \\ ph2) 

 

 

-- Make the points of a polyhedron in a cw order 

mkCW :: PH -> PH 

mkCW pts = [pt] ++ mkCW2 pt pts' 

  where 

    (pt, pts') = (head pts, tail pts) 

 

 

-- Make the points of a polyhedron in cw order respect to a given point "pt" 

mkCW2 :: PtF -> PH -> PH 

mkCW2 pt ph@(p1:p2:ps) = if cw ph pt then ph else (p2:p1:ps) 
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-- Make cw sub-polyhedrons of a given polyhedron 

subCWphs :: PH -> [PH] 

subCWphs ph = map (mkCWph ph) ph 

  where 

    mkCWph  l p      = takeAcwPH (pairPtPHs l p) 

    takeAcwPH (p, phs) = head.filter (flip cw p).shuffle $ phs 

    pairPtPHs l p      = (p, dropElem l p) 

 

 

-- Make sub-polyhedrons of a given polyhedron "ph" 

subPHs :: PH -> [PH] 

subPHs ph = map (dropElem ph) ph 

 

 

-- Extract the extreme sub-polyhedrons from a list of connected polyhedrons 

borderPHs :: [PH] -> [PH] 

borderPHs = concat.filter (\x -> length x == 1).(groupAllBy isEqPH).concat.map subPHs 

 

 

-- Test if a point is in a polyhedron 

ptInPH :: PtF -> [PH] -> Bool 

ptInPH p ch = null.filter (flip ccw p) $ ch 
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PolyhedronDS 

 

-- *** A data structure to store polyhedrones and some operations on them 

 

module PolyhedronDS where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

import List (elemIndices) 

 

import Lifting 

import Ring 

import Vector 

import MyList 

import Polyhedron 

 

 

-- A data structure that stores the information of a polyhedron 

-- PHds = (id, [points], [id of the adjacent polyhedron respect to points] 

type PHds a = (Int, [Pt a], [Int]) 

 

type PHdsF = PHds Float 

 

 

---------------------------------------------------------------------- 

Operations on PHds 

-------------------------------------------------------------------- 

-- Get the id of a polyhedron  

getPHid :: PHds a -> Int 

getPHid (idPH, _, _) = idPH 

 

 

-- Get the points of a polyhedron  

getPts :: PHds a -> [Pt a] 

getPts (_, pts, _) = pts 

 

 

-- Get the adjacent polyhedrons of a given polyhedron  

getAdjs :: PHds a -> [Int] 

getAdjs (_, _, ths) = ths 

 



Appendix 2. The Haskell Code 137 

 

-- Get the information of a polyhedron given an id and a PHds 

getPHinfo :: Int -> [PHdsF] -> PHdsF 

getPHinfo idPH ds = ds!!r 

   where 

     r = findPHbyID idPH ds 

 

 

-- Update the information of a polyhedron in a given data structure 

updatePHds :: PHdsF -> [PHdsF] -> [PHdsF] 

updatePHds dsPH ds = dsNew  

  where    

    dsNew       = if (rPH == (-2)) 

                  then ds ++ [dsPH] 

                  else ds' ++ [dsPH] ++ (tail ds'') 

    (ds', ds'') = splitAt rPH ds 

    rPH         = findPHbyID idPH ds 

    idPH        = getPHid dsPH 

 

 

-- Update the information of a list of polyhedrons in a given data structure 

updatePHdss :: [PHdsF] -> [PHdsF] -> [PHdsF] 

updatePHdss [] ds = ds 

updatePHdss (d:dd) ds = updatePHdss dd dsNew 

  where 

    dsNew = updatePHds d ds 

 

 

-- Update the adjacency information of a list of polyhedrons 

updateAdjcency :: ([PHdsF], [PHdsF]) -> [PHdsF] 

updateAdjcency (ds0, ds) = dsNew 

  where 

    ids  = map getPHid ds0 

    pts  = map getPts ds0 

    adjs = map (findAdjsofPH ds) ds0 

 

    dsNew = zip3 ids pts adjs 
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-- Find the adjacent polyhedrons of a given polyhedron 

findAdjsofPH :: [PHdsF] -> PHdsF -> [Int] 

findAdjsofPH ds ds0 = map (findAdjofPH ds idPH) phs 

   where  

      idPH  = getPHid ds0 

      ptsPH = getPts ds0 

      phs   = concatMap oppPH ptsPH 

      oppPH = (\x -> [x]).(dropElem ptsPH) 

 

 

-- Find the adjacent polyhedrons of a given polyhedron 

findAdjofPH :: [PHdsF] -> Int -> PH -> Int 

findAdjofPH ds n ph = if null adjPH then (-1) else getPHid.head $ adjPH  

  where 

     adjPH           = filter (isAdjPH ph n) ds 

     isAdjPH ps i th = ((/= i).getPHid $ th) && ((isSubset ps).getPts $ th) 

     isSubset xs ls  = all (== True).map (flip elem ls) $ xs 

 

 

-- Change the adjacency information of a given polyhedron in a data structure 

changeAdjPH :: [PHdsF] -> Int -> Int -> Int -> [PHdsF] 

changeAdjPH ds t adjTOld adjTNew = dsNew 

   where 

      dsNew    = if (t == -1) then ds else updatePHds dsTnew ds 

      dsTnew   = (t, pts, adjsTnew) 

 

      pts      = getPts dsT  

 

      adjsTnew = replace adjTOld adjTNew adjsT  

      adjsT    = getAdjs dsT 

      dsT      = getPHinfo t ds        

 

 

-- Find the row number of a polyhedron in a given data structure 

findPHbyID :: Int -> [PHdsF] -> Int 

findPHbyID idPH ds = if null r then (-2) else head r 

  where 

    r = (elemIndices idPH).map getPHid $ ds 
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-- Find the opposite polyhedron to a point in a given data structure 

findOppPH :: Eq a => PHds a -> Pt a -> Int 

findOppPH ds p = head (findByCond pts adj (==p)) 

  where 

    pts = getPts ds 

    adj = getAdjs ds 

 

 

-- Find the opposite point to a polyhedron in a given data structure 

findOppPt :: PHds a -> Int -> Pt a 

findOppPt ds n = head (findByCond adj pts (==n)) 

  where 

    pts = getPts ds 

    adj = getAdjs ds 

 

 

-- Make a single list of all edges of a polyhedron 

mkEdgesOfPHs :: [PHdsF] -> PH -> [[PH]] 

mkEdgesOfPHs ds ph = map edgesOfPH ds 

  where  

    edgesOfPH d = combine (thPts d) 2 

    thPts d     = filter isIntPt (getPts d) 

    isIntPt x   = elem x ph 

 

 

-- Make a single list of all edges of a list of polyhedrons 

mkListofAllEdges :: [PHdsF] -> PH -> [PH] 

mkListofAllEdges ds ph = concat.(mkEdgesOfPHs ds) $ ph 

 

 

-- Make a single list of all sub-polyhedrons of a polyhedron 

mkSubPHs :: [PHdsF] -> PH -> [PH] 

mkSubPHs ds ph = innerSimps ds 

  where  

    innerSimps d  = filter isInnerSimp (map getPts d) 

    isInnerSimp x = all (==True) (map (elem' ph) x) 

    elem' a b     = elem b a 

 

 

-- Make a single list of all sub-polyhedrons of a list of polyhedrons 

mkListofAllSubPHs :: [PHdsF] -> PH -> [PH] 

mkListofAllSubPHs ds ph = mkSubPHs ds ph  
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Delaunay 

 

-- *** Delaunay Triangulation for n-dimensional static and moving points  

-- *** (Bowyer/Watson algorithm) 

 

module Delaunay where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

import List (sort, nub, (\\)) 

 

import Lifting 

import Ring 

import Vector 

import Samples 

import MyList 

import Polyhedron 

import PolyhedronDS 

 

 

-- Delaunay polyhedronization for a given list of points and a data  

-- structure (initially []). The output is the data structure 

delaunay :: [PtF] -> [PHdsF] -> [PHdsF] 

delaunay [] ds     = ds 

delaunay ps []     = delaunay ps (boundingPH ps) 

delaunay (p:ps) ds = delaunay ps dsNew 

  where 

    container = walk p ds 

    dsNew     = if container == (-1)then ds else insert p ds container 

 

 

-- Find the polyhedron that contains the inserted point 

walk :: PtF -> [PHdsF] -> Int 

walk p []     = -1 

walk p (t:ts) = if ptInPH' p t then getPHid t else walk p ts' 

  where 

    idCCWph    = head (findByCond (ptRelPH p t) (getAdjs t) (== False)) 

    rowCCWph   = findPHbyID idCCWph ts 

    (ts1, ts2) = splitAt rowCCWph ts  

    ts'        = ts2 ++ ts1 

 

 



Appendix 2. The Haskell Code 141 

 

-- Insert the inserted point in the data structure 

insert :: PtF -> [PHdsF] -> Int -> [PHdsF] 

insert p ds container = dsNew 

  where 

    dsNew                = updatePHdss dsAdjAfterUpdateAdj dsHoleAfterUpdateAdj 

    dsAdjAfterUpdateAdj  = updateAdjcency (dsAdjs, dsHoleAfterUpdateAdj) 

    dsHoleAfterUpdateAdj = updatePHdss dsHole ds 

    dsHole               = updateAdjcency (dsHole0, dsUpToAdjs) 

 

    (dsHole0, dsUpToAdjs) = fill (ds, deletedIDs, borderPHs, idBorderPHs, p, []) 

    (deletedIDs, borderPHs, idBorderPHs) =  

                            mkHole (ds, p, [container], [], []) 

 

    dsAdjs                = map (flip getPHinfo ds) idBorderPHs 

 

 

----------------------------------------------------------------------  

-- Initial bounding polyhedron 

----------------------------------------------------------------------  

-- Create an initial bounding polyhedron that contains all the points 

boundingPH :: [PtF] -> [PHdsF] 

boundingPH pts = [(1, boundingPts, replicate (dim+1) (-1))] 

  where 

    boundingPts          = ([p1, p2] ++ ps) 

    p1                   = minimum' firstPt : map minimum' restPts 

    p2                   = maximum' firstPt : map minimum' restPts 

    ps                   = tail.map (mkAboundingPt coorList) $ coorList 

    ([firstPt], restPts) = splitAt 1 coorList 

    coorList             = coord2List pts 

    dim                  = length.head $ pts 

 

 

-- Make a bounding point 

-- (average of the previouse elements ++ max of the current element  

-- ++ min of the next element) 

mkAboundingPt :: [[Float]] -> [Float] -> [Float] 

mkAboundingPt l p = map ave l1 ++ [maximum' l2] ++ map minimum' l3 

  where  

    (l1, l2, l3) = (fst s, head.snd $ s, tail.snd $ s) 

    s            = splitAtElem p l  
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-- Expand the minimum and maximum respect  

minimum' l = minimum l - scale * rangeL l 

maximum' l = maximum l + scale * rangeL l 

rangeL   l = abs (maximum l - minimum l) 

scale      = 10 

 

 

----------------------------------------------------------------------  

-- Walk 

----------------------------------------------------------------------  

-- Position of a point respect to all ccw polyhedrons of a polyhedron 

ptRelPH :: PtF -> PHdsF -> [Bool] 

ptRelPH p ds = map (flip cw p) s  

  where  

    s = subCWphs (getPts ds) 

 

 

-- Test if a point is inside a polyhedron 

ptInPH' :: PtF -> PHdsF -> Bool 

ptInPH' p ds = and.ptRelPH p $ ds  

 

 

----------------------------------------------------------------------  

-- Insertion 

----------------------------------------------------------------------  

-- Delete all the polyhedrons that violate the Delaunay condition 

mkHole (_, _, [], deletedIDs, borderPHs) = 

                       (sortedDeletedIDs, borderPHs, idBorderPHs) 

  where 

    idBorderPHs      = nub ([t | (t, _) <- borderPHs, t /= (-1)]) 

    sortedDeletedIDs = sort deletedIDs 

 

mkHole (ds, p, (t:ts), deletedIDs, borderPHs) = 

                       mkHole (ds, p, tsNew, deletedIDsNew, borderPHsNew) 

  where 

    dsT = getPHinfo t ds 

    pts = getPts dsT 

 

    isInSphere = inSphere (mkCW pts) p 
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    (tsNew, deletedIDsNew, borderPHsNew) = 

                     if   not isInSphere 

                     then (ts,     deletedIDs,     borderPHs) 

                     else (tsNew2, deletedIDsNew2, borderPHsNew2) 

 

    deletedIDsNew2 = deletedIDs ++ [t] 

 

    adjs           = getAdjs dsT 

    idBorderPHs    = dropElems adjs (deletedIDsNew2) 

    idPHsToCheck   = dropElems idBorderPHs ((-1):ts) 

 

    tsNew2         = ts ++ idPHsToCheck 

 

    borderPHsNew2  = (dropBorder borderPHs t) ++ newBorderPHs 

    newBorderPHs   = zip idBorderPHs cph 

 

    cph            = if   all (==(-1)) idBorderPHs 

                     then combine pts dim 

                     else map findPH idBorderPHs 

           

    findPH t =       if   t == (-1) 

                     then dropElem pts oppPt 

                     else intersect pts.getPts.flip getPHinfo ds $ t 

                

    oppPt          = findOppPt dsT (-1) 

    dropBorder l n = [(t, phs) | (t, phs) <- l, t /=n] 

 

    dim            = (length pts) - 1 

             

 

-- Fill the hole created in the mkHole process 

fill (ds, _, [], idBorderPHs, _, dsHole) = 

                       (dsHole, dsUpToAdjs) 

  where 

    dsUpToAdjs = dsHole ++ dsAdjs 

 

    dsAdjs     = map (flip getPHinfo ds) idBorderPHs 
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fill (ds, deletedIDs, (ph:phs), idBorderPHs, p, dsHole) =  

                       fill (ds, deletedIDsNew, phs, idBorderPHs, p, dsHoleNew)  

  where 

 

    (insPH_id, deletedIDsNew) = if   null deletedIDs 

                                then (lastId+1, []) 

                                else (head deletedIDs, tail deletedIDs) 

 

    lastId    = maximum (map getPHid (dsHole ++ ds)) 

    insPH_pts = mkCW.(p:).snd $ ph 

    dsHoleNew = dsHole ++ [(insPH_id, insPH_pts, [])] 

 

 

-- Delaunay polyhedronization for a given list of points and a data  

-- structure (initially []). The output is the edges of the polyhedrons 

delaunay_Edges :: [PtF] -> [[PtF]] 

delaunay_Edges pts = mkListofAllEdges (delaunay pts []) pts 

 

 

-- Delaunay polyhedronization for a given list of points and a data  

-- structure (initially []). The output is the polyhedrons 

delaunay_PHs :: [PtF] -> [PH] 

delaunay_PHs pts = mkListofAllSubPHs (delaunay pts []) pts 

 

 

-- Definition of the class "Delaunay" 

class Delaunay p1 p2 where 

  delaunayPH :: p1 -> p2 

     

 

-- Instance of the class "Deluaney" for n-dimensional static points 

instance Delaunay [PtF] [PH] where 

  delaunayPH = delaunay_Edges 

 

 

-- Lifting the class "Deluaney" for n-dimensional moving points 

instance Delaunay [Changing PtF] (Changing [PH]) where 

  delaunayPH = lift1L delaunayPH 
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Voronoi 

 

-- *** Create the Voronoi Diagram of a list of points  

-- *** using their Delaunay Triangulation 

 

module Voronoi where 

 

import qualified Prelude  

import Prelude hiding ((+), (-), (*), sum, map) 

import List (nub) 

 

import Lifting 

import Ring 

import Vector 

import Samples 

import MyList 

import Polyhedron 

import PolyhedronDS 

import Delaunay 

 

 

-- Voronoi diagram of a list of points 

voronoi :: [PtF] -> [PH] 

voronoi pts  = map (replaceIdPHByCenter centers).voronoiEdges $ dt 

  where 

   dt      = delaunay pts []  

   centers = findAllCenters dt 

 

 

-- Create a list of all voronoi edges 

voronoiEdges :: [PHdsF] -> [[Int]] 

voronoiEdges ds = filter dropOuter.nub.concatMap link $ ds 

  where  

    dropOuter l = not (any (==(-1)) l) 

 

-- Make a list of all neighbor polyhedrons 

link :: PHds a -> [[Int]] 

link ds = map (linkOrder idPH) idAdjs 

  where 

    idPH            = getPHid ds 

    idAdjs          = getAdjs ds 

    linkOrder p1 p2 = if p1 < p2 then [p1, p2] else [p2, p1] 
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-- Find centers of a list of polyhedrons and make a list of [(id, center)] 

findAllCenters :: [PHds Float] -> [(Int, PtF)] 

findAllCenters = map pairIdCenter 

  where 

    pairIdCenter d = (getPHid d, center.getPts $ d)  

 

    

-- Replace id of a polyhedron by its center point 

replaceIdPHByCenter :: Eq a => [(a, b)] -> [a] -> [b] 

replaceIdPHByCenter centers ids = map findCenter ids 

  where 

    findCenter t = snd.head $ (filter ((==t).fst) centers) 

 

 

-- Find the center of a list of points 

center :: [PtF] -> PtF 

center p = init (map (mkElem p2') p2) 

  where 

    p2         = coord2PabList p 

    p2'        = zip (repeatList [1,(-1)]) p2 

    mkElem x e = (coff x e) * (a x e) / b 

    a x e      = det $ map tr1 (list2Coord (dropElem (map snd x) e)) 

    coff x e   = fst.head $ (filter ((== e).snd) x) 

    b          = ((-1)^dim) * (-2) * (det $ map tr2 (list2Coord p2)) 

    tr1 x      = x ++ [one] 

    tr2 x      = (init $ x) ++ [one] 

    dim        = length.head $ p 

 

 

-- Convert a list of coordinates to a list of different elements plus their  

-- lifting to a paraboloid 

-- [[x1, y1, ...], [x2, y2, ...], ...] ==>  

-- [[x1, x2, ...], [y1, y2, ...], ..., [x1^2+y1^2+..., x2^2+y2^2+..., ...] 

coord2PabList :: (Ring a) => [[a]] -> [[a]] 

coord2PabList = coord2List.map liftToHyperB 

  where 

    liftToHyperB x = x ++ [sum.map sq $ x] 

 

 

-- Definition of the class "Voronoi" 

class Voronoi p1 p2  

  where 

    voronoiDiagram :: p1 -> p2 
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-- Instance of the class "Voronoi" for n-dimensional static points 

instance Voronoi [PtF] [PH]  

  where 

    voronoiDiagram = voronoi 

 

 

-- Lifting the class "Voronoi" to n-dimensional moving points 

instance Voronoi [Changing PtF] (Changing [PH])  

  where 

    voronoiDiagram = lift1L Voronoi 
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