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Abstract 
The modeling of Spin Crossover systems with a special focus on molecular vibrations and on the 
effect of a magnetic field is developed and discussed. Two different theoretical models are applied, 
namely: a thermodynamic model and an Ising like model including molecular vibrations. A 
combination two already existing Ising like models – one including the effect of an external magnetic 
field and the other taking molecular vibrations into account - is outlined and discussed. In all 
calculations a field dependency of the Spin Crossover transition temperature 1/2T is evident. An 

external magnetic field induces a downward shift of 1/2T . This corresponds to results of high magnetic 

field experiments and thermal expansion measurements [1, 2].  
 

Introduction 
In a series of transition metal complexes a change of the spin state of the central ion can be 

initiated by external perturbations such as temperature, light, pressure or magnetic field. 

Besides the well known change of color and magnetic properties [3-5], the spin transition is 

accompanied by an important change of the dielectric constant within a wide frequency range 

(kHz-THz-vis) [6]. Considering these properties, Spin Crossover (SCO) materials seem 

promising tools for actual technical applications like displays, data-storage [7] and even gas 
������������������������������������������������������������
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sensing devices taking into account that the absorption of gas and vapor molecules strongly 

influences the transition behavior [8]. In fact various nanostructures of these compounds have 

already been formed [9, 10].  

The application of a magnetic field on spin crossover compounds stabilizes the HS state, 

which yields to a field induced downward shift of the thermal Spin Crossover [1, 11, 12]. At 

first, Sasaki and Kambara predicted this effect for high fields with a model based on the 

cooperative Jahn Teller effect [13]. Based on these suggestions several models have been 

proposed which are discussed in [14]. The present work focuses on modeling the influence of 

an external static magnetic field on the spin transition by means of two different approaches: 

one based on the framework of the Gibbs free energy as presented in [11, 12, 15], and the 

other one is based on an Ising like model combining previously presented models including 

molecular vibrations [16-18] with the models taking the effect of an external magnetic field 

into account [19-21]. 

 

1. Thermodynamic approach within the framework of the Gibbs 
free energy 

The phenomenological Ising like Hamiltonian is appropriate for the description of both, the 

high-spin state (HS) and the low-spin state (LS) of a given SCO system.  
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Herein �9 i  is the so called fictitious spin operator with the eigenvalues 19 � � for the LS state 

and 19 � �  for the HS state. The energies and degeneracies of this 2 level system can be 

expressed as a function of the energy gap 0�  and the phenomenological parameter J, which 

comprises the intermolecular interactions. 

The application of a magnetic field removes the degeneracies of both, the HS and LS levels. 

As a result the new Hamiltonian can be written as [22, 23]: 
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where B1 is the Bohr Magneton, g the Landé factor, B the magnetic field and ZS is the 

projection of the spin moment along the field direction. 

Within the mean field approach the spin-spin interaction term becomes [21]: 

ˆ ˆ ˆi j
i j

J J9 9 9 9
�

�?  

One can now calculate an implicit expression for the field dependency of the spin transition 

temperature 1/2T  within a framework of a thermodynamic model based on Gibbs free energy. 

The spin transition temperature 1/2T is the temperature at which 0.5HS LSx x� � . A thermally 

induced Spin Crossover can be characterized by HS
HS

HS LS

n
x

n n
�

�
, representing the mole ratio 

of the HS molecules.  

   (0) (0)HS LSG G G H p V T S B M� � � � � � � � � � �    (3)
  

(0)H� and (0)S� , enthalpy and entropy difference between LS and HS state, refer to the 

properties of the system in absence of an external field. ( ) ( )HS LSM M x M x� � �  (see 

equation (4)) stands for the difference of the magnetization between the respective spin states. 

The product B M� � however represents the magnetic free energy difference between the (LS) 

state and (HS) state. 

The magnetization ( )M x (Brillouin function) can be derived from the magnetic contribution 

[18] to the canonical partition function of the Ising like Hamiltonian (2):   

 

1 1( ) coth ( ) coth
2 2 2A B

xM x N g x S S1 
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where B Z

B

g Bx
k T
1

� .  

This yields to an implicit equation for the field dependency of the transition temperature 

1/2 ( )T B  in the spin equilibrium, where 0G� � : 

     (0) (0) ( ) 0G H T S B M T� � � � � � � �       (5)
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Contrary to previous approaches as seen in [19], which are only valid for 1/2B Bg k T1 �� , and 

result in an analytic solution for equation (6) that is quadratic in the magnetic field as 
2
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, no approximations have been made for equation (4). 

Due to its complexity equation (6) was solved numerically.  

Fig. 1 presents the calculated downward shift of the transition 

temperature 1/2 1/2 1/2( ) (0)T T B T� � � for the complex Hexakis(1-

propyltetrazole)iron(II)Bis(tetrafluoroborate) - [Fe(ptz)6(BF4)2] [3]. The difference between 

these two approaches is increasing for higher magnetic fields.  
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Fig. 1 The 2 curves represent the shift of the transition temperature as a function of the applied field. The solid 
line represents an approach which is only valid for relatively small fields and high temperatures. However an 
analytical solution can be calculated [19]. The dashed line represents a numerical calculation of the transition 
temperature as presented above. The degeneration of the orbitals is completely neglected in both approaches. 
The values have been gained through caloric measurements on [Fe(ptz)6(BF4)2] [24] 6108H J� � , 

1/2 135T K�  

In fig. 2 one can see the field dependency of the Spin Crossover transition temperatures 

1/2 ( )T B  as a function of the external magnetic field for the two Spin Crossover compounds 

Tris(1,4 bis(tetrazole – 1-yl) butane) iron(II)Bis(tetrafluoroborate) - [Fe(4ditz)3(BF4)2] [25] 

and for [Fe(ptz)6(BF4)2] with the experimentally gained parameters ,H S� � and 1/2 (0)T [2, 

26]. 
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Fig. 2 Shift of transition temperature versus applied magnetic field for [Fe(ptz)6(BF4)2] with the experimentally 
gained parameters 6108 , 50.9J JH S

mol Kmol
� � � � and [Fe(4ditz)3(BF4)2] with the parameter set 

6177 , 68.63J JH S
mol Kmol

� � � �  The degeneration of the orbitals is completely neglected in this approach. 

�

The compound [Fe(4ditz)3(BF4)2] crystallizes in the space group P1 with one formula unit of 

the complex per unit cell. Three independent networks interpenetrate each other[27]. Fig. 3 

displays the structure of the [Fe(4ditz)3(BF4)2] complex. The compound [Fe(ptz)6(BF4)2] has a 

rhombohedral spacegroup R3 with a hexagonal lattice structure (Z=3). A detailed survey 

investigating the structural details of [Fe(ptz)6(BF4)2] can be found in [28].  

 
Fig. 3 Coordination environment of FeII in [Fe(4ditz)3(BF4)2] at 89K. The 4ditz – chain is colored dark grey; the 
partially occupied carbon atoms (C23 and C24) are marked with sectors. The unit cell is displayed [27]. 

-167-



 

Recent developments in theoretical modeling [29] show the importance of intermolecular 

vibrations as a driving force of thermally induced Spin Crossover. This encouraged us to 

include these vibrations in a more detailed model. 

2. Ising like model including molecular vibrations for SCO 
systems under the influence of an external magnetic field 

The consideration of molecular vibrations clearly affects the partition function. Besides the 

electronic and magnetic contributions it now also contains the vibronic contributions.  

The effect of intermolecular vibrations on SCO compounds has been extensively studied by 

Bousseksou et al. in [16].  

 

Considering each molecule as a set of (3n-6) harmonic oscillators with the “fundamental” 

vibrational frequencies i
HSG  and i

LSG . This can be interpreted as possible vibrations of a metal 

coordination center with its neighbor ligands. Here n represents the number of atoms in each 

molecule. In case of an octahedral coordinated FeII complex n=7. The partition function is 

composed of electronic, magnetic and vibronic contributions in the respective spin states. 

 

� The vibronic contributions to the partition function can be derived from the energy 

eigenvalues of the harmonic oscillator 
1
2nE nH
 
� �� �

� 	
� as [18, 29]: 
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 where S indicates the respective Spin State 

 

   

 

� The electronic increment to the partition function [30] is based on the respective 

degenerations of the orbitals and the energy term:  
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� As derived in [24] the magnetic contribution to the partition function results as:  
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Thus the whole partition function can be re-written as:  
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For equilibrium between HS and LS state the equilibrium constant K can be written as a 

function of the Gibbs energy:  

ln( ) ln( )HS HS HS LS LS LS
mag el vib mag el vib

G HS
z z z z z zHS kT

eq LS
LS

x ZK e e
x Z

�
� �� � � �

   (11)
 

 

Inserting the different increments of the partition functions and summing up the energies of 

the zero point vibrations over all vibration modes yields to [18]:
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and 0 ( )HS HS
eff G GJ J� � � � �  including the mean value of the fictitious spin operator [31] 

2 1HSn9 � �  

In order to obtain a solution for the transition temperature 1/2T  several approximations are 

necessary. Due to the fact that effr  is a (comparing LS and HS-state quite strongly) 

temperature dependent quantity one replaces the different (3n-6) frequencies of the vibrational 

modes (which are all nearly constant in HS and LS or change a little) by a mode with a big 

shift between HS HSG  and LS LSG  ( such as the Fe-N stretching mode) [18]. 

 

Under the approximation of 3n-6 equal vibration modes (i.e. Fe-N stretching mode) the 

effective degeneration ratio is written as: 
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and the energies of the zero point vibrations, summed up over all vibration modes reduce to:  
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This yields to an equilibrium constant: 
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In case of spin equilibrium, with 1eqK �  we can calculate the field dependency of the 

equilibrium temperature 1/2 ( )T B , taking the relations between the microscopic parameters 

eff� and effr  and the thermodynamic quantities S�  and H�  through: ln effS r� � , 

0( ( ))v v
A eff A HS LSH N N J J� � � � � � �  into account. 

 

Nevertheless a value of the interaction constant J is needed for simulating the whole spin 

transition curve. The 
0

lim eqT
K

�
yields to the necessary information about the value of J and 

yields for a “true” LS state (up to 100K with 0HSx � ) for the complex [Fe(ptz)6(BF4)2] to: 

J=11,8K [24]. Figure 4 depicts the effect of different magnetic fields on the spin transition – 

again a downward shift of the transition temperature. 

 

Up to our knowledge there is no analytic solution for this equation so that the solution was 

obtained numerically.  
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To explore the influence of the interaction constant on the transition calculations with a 

varying J have been carried out, which are presented in fig. 5 [32].  

 

50 100 150 200 250 300

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

[Fe(ptz)6(BF4)2] �K�LMNFOP calc. T1/2(0)=135K
x H

S

Temperature (K)

 B=1
 B=10
 B=20
 B=30
 B=40
 B=50

 
Fig. 4 Simulated Spin Transition curves for different external magnetic fields from 1T to 50T (increasing from 
right to left). The calculations have been made for [Fe(ptz)6(BF4)2] with�H=735K, T1/2=135K, J= 11.8K and 

1167HSv cm�� and 1412LSv cm�� [29]. The applied magnetic field induces a downward shift of the transition 
temperature. 
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Fig. 5 Simulated Spin Transition curves with different interaction constants J from 0K to 100K, increasing by 
steps of 10K (from no to large cooperativity). The calculations have been made for [Fe(ptz)6(BF4)2] with the 
parameter set:�H=735K, T1/2=135K, B= 1T and 1167HSv cm�� and 1412LSv cm�� [29].  
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3. Discussion and comparison with experimental data 
In the presented work we have combined two already existing models: on the one hand an 

Ising like model including a Zeeman contribution, as extensively studied in [19, 21]. On the 

other hand a model considering molecular vibrations, which clearly affect the partition 

function and which are with no doubt the driving motor for the thermal Spin Crossover  

[29, 33]. 

The main goal was the elaboration of the field dependency of the spin transition (fig.1, 2 and 

4). In thermal expansion measurements one obtains a downward shift of the transition 

temperature of 1/2 0.2T K� �  for an external magnetic field of 9T for the complex 

[Fe(ptz)6(BF4)2] (fig.6) [2]. The calculations for this complex yielded to a shift of 

1/2 0.5T K� � for a field of 9T [24], which is in  excellent agreement to the experimental 

results [2]. 
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Fig. 6 Thermal expansion measurement for a pressed pellet of polycrystalline [Fe(ptz)6(BF4)2]: a) 

/l l� measurement in a zerofield (filled dots) and in a field of B=9T (open dots). The relative change in length 
from LS to HS is about 2.0 % and the downward shift of the transition temperature is 0.2K. b) The linear 
expansion coefficient 
 for [Fe(ptz)6(BF4)2] is displayed for the respective fields. Here the influence of the 
magnetic field is even more apparent. A clear influence of the magnetic field on the transition curve can be seen 
in a) and b) [2]. 

�

The capacitive cell used for the thermal expansion measurements is described in [34]. The 

experimental error in �l/l of this cell in the used temperature range was far smaller than the 

symbol size in fig. 6 (approx. 0.5%). One should note that it is quite difficult to determine the 
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absolute error of the respective sample, as the sample length varies slightly for each 

measurement due to small cracks inside the samples. 

 

Due to the additive character of our model one can simply add up the different contributions 

of the partition functions and combine these two models (see equation(10)). Obviously this 

model is more complex due to the fact, that more experimental parameters are considered 

(enthalpy, interaction constant J, Fe-N stretching mode). Nevertheless the applicability still is 

restricted. The approximation made in (12) is not valid for bridging ligands (like the 4 di-

tetrazole) or for any kind of 3D network forming complexes as observed in several systems 

[25, 27]. Only for isolated molecules like [Fe(ptz)6(BF4)2] ligands might be considered as 

point shaped without loss of generality. To conclude, although the Ising like model is a very 

simple model it is suitable to calculate characteristic properties of spin transitions, especially 

including magnetic field dependency. Drawbacks are, that only nearest neighbors are taken 

into account, that cooperativity is considered only on a limited degree and that there is a need 

for detailed vibrational data (obtainable from IR- and far-IR measurements as well as from 

DFT calculations [35]. Nevertheless even the present model yields to a transition curve which 

is well fitting to the available experimental data [36] (fig.4-5). 
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