Fluid mechanics of lubrication I: fundamental aspects of a rigorous theory

Bernhard Scheichl

Institute of Fluid Mechanics and Heat Transfer

MINILUBES AC²Tion Day
8 June 2011
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature:
 lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics:
 asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g.
 EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

• existing gap in tribological literature:
 lubrication represented ‘unsatisfactorily accurate’ ⇒
• describing lube flows by adopting first principles of continuum mechanics:
 asymptotic theory of hydromechanical lubrication

Why is this expedient?

• rational estimate of methodical error
• rational extension of classical theory to include e.g.
 EHD, inertia, micro-scale effects (cavitation, surface roughness)
Main objectives

- existing gap in tribological literature: lubrication represented ‘unsatisfactorily accurate’ ⇒
- describing lube flows by adopting first principles of continuum mechanics: asymptotic theory of hydromechanical lubrication

Why is this expedient?

- rational estimate of methodical error
- rational extension of classical theory to include e.g. EHD, inertia, micro-scale effects (cavitation, surface roughness)
Overview

1. Phenomenon of lubrication

2. Basic assumptions

3. Classical theory
 - First principles
 - Problem formulation
 - Asymptotic theory

4. Validation of tribo-systems

5. Further outlook
Phenomenon of lubrication

Pressurised counter-sliding (tilted) solid contacts: Striebeck curve

\[\mu = \frac{\tilde{\tau}}{\tilde{\rho}} = \Pi(\text{Str}, \alpha, \ldots) \]

Str \gg 1:

\[\frac{\tilde{\tau} \tilde{C}}{\tilde{\eta} \tilde{U}} \sim \text{const} \]

\[\alpha = 0 \]

Fixed \(\tilde{\rho} > 0 \)

Relative motion \(d\tilde{\rho} < 0 \)

\[\text{boundary} \quad \text{mixed-film} \quad \text{laminar hydrodynamic} \]

\[\text{lubrication} \]

B. Scheichl (AC²T, VUT)

Fluid mechanics of lubrication I
Phenomenon of lubrication

pressurised counter-sliding (tilted) solid contacts: Strubeck curve

\[\mu = \frac{\tau}{\rho} = \Pi(\text{Str}, \alpha, \ldots) \]

\[\text{Str} \gg 1 : \frac{\tilde{\tau}\tilde{C}}{\tilde{\eta}\tilde{U}} \sim \text{const} \]

Fixed \(\rho > 0 \)

Relative motion \(d\tilde{\rho} < 0 \)

\[\text{Boundary} \quad \text{Mixed-film} \quad \text{Laminar hydrodynamic} \]

\[\text{Str} = \frac{\tilde{\eta}\tilde{U}}{\tilde{\rho}\tilde{C}} \]
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium
- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low
 temperatures
- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)
- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H\textsubscript{2}O, many gases:
 at normal conditions, even for high pressures \& shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium
- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures
- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)
- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar
- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H₂O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar
 - volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions

lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H$_2$O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Basic (realistic) assumptions
lubricant flow

- ‘simple’ fluid
 excludes multi-phase flow (binary mixture lubricant–air):
 2 (intensive) state variables define local thermodynamic equilibrium

- Newtonian fluid
 lube oils, ionic liquids (vapour pressure very low), H\textsubscript{2}O, many gases:
 at normal conditions, even for high pressures & shear rates, not for low temperatures

- laminar

- volume forces (gravity) neglected

bearing geometry

- clearance slender
 compared to typical macro-length (e.g. journal radius)

- perfectly hydrodynamic operation
 ‘hydraulically smooth’ surfaces:
 macroscopic flow description unaffected by mean asperities
Outline

3 Classical theory
 • First principles
 • Problem formulation
 • Asymptotic theory
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)

\[
\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x})
\]

continuity

\[
\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0
\]

momentum

\[
\tilde{p}\left(\tilde{x}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}\right) = \nabla \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{tr}
\]

thermal energy, 1st & 2nd law of thermodynamics

\[
\tilde{p} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0
\]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[
\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + (\nabla \tilde{u})^\text{tr} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\nabla \cdot \tilde{u}) I
\]

Fourier's law

\[
\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T}
\]
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t}
\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \]

continuity
\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0 \]

momentum
\[\tilde{\rho} \left(\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u} \right) = \nabla \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}} \]

thermal energy, 1st & 2nd law of thermodynamics
\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \]

consitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid
\[\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + \left(\nabla \tilde{u} \right)^{\text{tr}} \right] + \left(\tilde{\eta}' - \frac{2}{3} \tilde{\eta} \right) \left(\nabla \cdot \tilde{u} \right) I \]
\[\text{shear} \quad \text{bulk} \quad \text{viscosity} \]

Fourier's law
\[\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \(\mathbf{x}, \mathbf{t} \)
\[
\mathbf{D}_t := \partial_t + \mathbf{u} \cdot \nabla (\mathbf{x})
\]

continuity
\[
\mathbf{D}_t \rho + \rho \nabla \cdot \mathbf{u} = 0
\]
momentum
\[
\tilde{\rho}(\ddot{\mathbf{x}}_{\text{ref}} + 2\mathbf{\Omega}_{\text{ref}} \times \mathbf{u} + \mathbf{D}_t \mathbf{u}) = \nabla \cdot \Sigma, \quad \Sigma = -\rho I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^\text{tr}
\]
thermal energy, 1st & 2nd law of thermodynamics
\[
\tilde{\rho} \tilde{c}_P \mathbf{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \mathbf{D}_t \rho + \tilde{\Phi} - \nabla \cdot \mathbf{q}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \mathbf{u} > 0
\]
constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid
\[
\tilde{\Delta} = \tilde{\eta} [\nabla \mathbf{u} + (\nabla \mathbf{u})^{\text{tr}}] + \left(\tilde{\eta}' - \frac{2}{3} \tilde{\eta} \right) (\nabla \cdot \mathbf{u}) I
\]

shear

bulk

viscosity

Fourier's law
\[
\mathbf{q} = -\lambda \nabla \tilde{T}
\]
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)

\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \]

continuity

\[\tilde{D}_t \rho + \rho \nabla \cdot \tilde{u} = 0 \]

momentum

\[\tilde{\rho}(\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \nabla \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{tr} \]

thermal energy, 1st & 2nd law of thermodynamics

\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{q}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \eta [\nabla \tilde{u} + (\nabla \tilde{u})^T] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \tilde{u}) I \]

shear, bulk, viscosity

Fourier's law

\[\tilde{q} = -\lambda \nabla \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t}

$$\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x})$$

continuity

$$\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0$$

momentum

$$\tilde{\rho}(\tilde{x}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}}$$

thermal energy, 1st & 2nd law of thermodynamics

$$\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{\dot{q}} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0$$

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

$$\tilde{\Delta} = \tilde{\eta} [\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^{\text{tr}}] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\tilde{\nabla} \cdot \tilde{u}) I$$

Fourier's law

$$\tilde{\dot{q}} = -\tilde{\lambda} \tilde{\nabla} \tilde{T}$$
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)
\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x}) \]

continuity
\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0 \]

momentum
\[\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \nabla \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^{tr} \]

thermal energy, 1st & 2nd law of thermodynamics
\[\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{q} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid
\[\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + (\nabla \tilde{u})^{tr} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\nabla \cdot \tilde{u}) I \]

shear \quad bulk \quad \text{viscosity}

Fourier's law
\[\tilde{q} = -\tilde{\lambda} \nabla \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \), \(\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \tilde{\nabla} (\tilde{x}) \)

continuity

\(\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0 \)

momentum

\(\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2 \tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma} \), \(\tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} \), \(\tilde{\Delta} = \tilde{\Delta}^\text{tr} \)

thermal energy, 1st & 2nd law of thermodynamics

\(\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{q} \), \(\tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0 \)

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \tilde{\eta} \left[\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^\text{tr} \right] + \left(\tilde{\eta}' - \frac{2}{3} \tilde{\eta} \right) (\tilde{\nabla} \cdot \tilde{u}) I \]

shear bulk viscosity

Fourier’s law

\[\tilde{q} = -\tilde{\lambda} \tilde{\nabla} \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \tilde{x}, \tilde{t}

\[\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \tilde{\nabla}(\tilde{x}) \]

continuity

\[\tilde{D}_t \tilde{\rho} + \tilde{\rho} \tilde{\nabla} \cdot \tilde{u} = 0 \]

momentum

\[\tilde{\rho}(\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \tilde{\nabla} \cdot \tilde{\Sigma}, \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta}, \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}} \]

thermal energy, 1st & 2nd law of thermodynamics

\[\tilde{\rho} c_p \tilde{D}_t \tilde{T} = \beta \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \tilde{\nabla} \cdot \tilde{q}, \quad \tilde{\Phi} = \tilde{\Delta} \cdot \tilde{\nabla} \tilde{u} > 0 \]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid

\[\tilde{\Delta} = \tilde{\eta} \left[\tilde{\nabla} \tilde{u} + (\tilde{\nabla} \tilde{u})^{\text{tr}} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\tilde{\nabla} \cdot \tilde{u}) I \]

\[\text{shear} \quad \text{bulk} \quad \text{viscosity} \]

Fourier’s law

\[\tilde{q} = -\tilde{\lambda} \tilde{\nabla} \tilde{T} \]
Governing eqs in Eulerian representation

any reference frame \(\tilde{x}, \tilde{t} \)
\[
\tilde{D}_t := \partial_{\tilde{t}} + \tilde{u} \cdot \nabla (\tilde{x})
\]

continuity
\[
\tilde{D}_t \tilde{\rho} + \tilde{\rho} \nabla \cdot \tilde{u} = 0
\]

momentum
\[
\tilde{\rho} (\ddot{\tilde{x}}_{\text{ref}} + 2\tilde{\Omega}_{\text{ref}} \times \tilde{u} + \tilde{D}_t \tilde{u}) = \nabla \cdot \tilde{\Sigma} , \quad \tilde{\Sigma} = -\tilde{\rho} I + \tilde{\Delta} , \quad \tilde{\Delta} = \tilde{\Delta}^{\text{tr}}
\]

thermal energy, 1st & 2nd law of thermodynamics
\[
\tilde{\rho} \tilde{c}_p \tilde{D}_t \tilde{T} = \tilde{\beta} \tilde{T} \tilde{D}_t \tilde{\rho} + \tilde{\Phi} - \nabla \cdot \tilde{\dot{q}} , \quad \tilde{\Phi} = \tilde{\Delta} \cdot \nabla \tilde{u} > 0
\]

constitutive laws for deviatoric & bulk stresses & heat flux

Newtonian fluid
\[
\tilde{\Delta} = \tilde{\eta} \left[\nabla \tilde{u} + (\nabla \tilde{u})^{\text{tr}} \right] + (\tilde{\eta}' - \frac{2}{3} \tilde{\eta}) (\nabla \cdot \tilde{u}) I
\]
\[
\text{shear} \quad \text{bulk} \quad \text{viscosity}
\]

Fourier’s law
\[
\tilde{\dot{q}} = -\tilde{\lambda} \nabla \tilde{T}
\]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{p}, \tilde{T}) \]
\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{p}} \left[\frac{J}{kg \, K} \right] \]
\[\tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{p}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{p}, \tilde{T}) \]
\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{p}} \left[\frac{1}{K} \right] \]
\[\tilde{\eta} = \tilde{\eta}(\tilde{p}, \tilde{T}) \left[Pa \, s \right] \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{p}, \tilde{T}) \left[W/(m \, K) \right] \]

2nd law of thermodynamics

\(\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0 \), seldom \(\tilde{\beta} < 0 \) (H2O l)
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \quad \tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{\text{kg K}} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \quad \tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{1}{\text{K}} \right] \]

\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad \text{[Pa s]} \]

\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad \text{[W/(m K)]} \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (\text{H}_2\text{O})! \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \quad \tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{\text{kg K}} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \quad \tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{1}{\text{K}} \right] \]

\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad \text{[Pa s]} \]

\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad \text{[W/(m K)]} \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (\text{H}_2\text{O}!) \]
Thermodynamic properties of ‘simple’ fluid

caloric eq of state

\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{\text{kg K}} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

thermal eq of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \]
\[\tilde{\beta} := - \frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{T}} \left[\frac{1}{\text{K}} \right] \]
\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad [\text{Pa s}] \]
\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad [\text{W/(m K)}] \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (\text{H}_2\text{O}) ! \]
Thermodynamic properties of ‘simple’ fluid

Caloric equation of state

\[\tilde{h} = \tilde{h}(\tilde{\rho}, \tilde{T}) \]

\[\tilde{c}_p := \left(\frac{\partial \tilde{h}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{J}{kg \, K} \right], \quad \tilde{\beta} \tilde{T} = 1 - \tilde{\rho} \left(\frac{\partial \tilde{h}}{\partial \tilde{\rho}} \right)_{\tilde{T}} \]

Thermal equation of state

\[\tilde{\rho} = \tilde{\rho}(\tilde{\rho}, \tilde{T}) \]

\[\tilde{\beta} := -\frac{1}{\tilde{\rho}} \left(\frac{\partial \tilde{\rho}}{\partial \tilde{T}} \right)_{\tilde{\rho}} \left[\frac{1}{K} \right] \]

\[\tilde{\eta} = \tilde{\eta}(\tilde{\rho}, \tilde{T}) \quad [Pa \, s] \]

\[\tilde{\lambda} = \tilde{\lambda}(\tilde{\rho}, \tilde{T}) \quad [W/(m \, K)] \]

2nd law of thermodynamics

\[\tilde{\eta}, \tilde{\lambda}, \tilde{\beta}, \tilde{c}_p > 0, \quad \text{seldom } \tilde{\beta} < 0 \quad (H_2O !) \]
Outline

3 Classical theory
 - First principles
 - Problem formulation
 - Asymptotic theory
Non-dimensional quantities

kinematic quantities
\[t = \frac{\tilde{t}}{U/L}, \quad x = \frac{\tilde{x}}{L}, \quad c = \frac{\tilde{c}}{C}, \quad u = \frac{\tilde{u}}{\bar{U}} \]

reference state
\[p = \frac{\tilde{p}}{p_r}, \quad \theta = \frac{(\tilde{T} - \tilde{T_a})}{T_r}, \quad \rho = \frac{\tilde{\rho}}{\rho_r}, \quad (\eta, \eta') = \frac{\tilde{\eta}, \tilde{\eta}'}{\eta_r}, \quad \lambda = \frac{\tilde{\lambda}}{\lambda_r}, \quad \beta = \frac{\tilde{\beta} T_a}{\bar{C} p}, \quad c_p = \frac{\tilde{c}_p}{\bar{c}_{p,r}} \]

key groups

- clearance slenderness: \(\epsilon := \frac{\tilde{C}}{L} \)
- temperature ratio: \(\gamma := \frac{T_r}{T_a} \)
Non-dimensional quantities

kinematic quantities
\[t = \tilde{t} \tilde{U}/\tilde{L} , \quad x = \tilde{x}/\tilde{L} , \quad c = \tilde{c}/\tilde{C} , \quad u = \tilde{u}/\tilde{U} \]

reference state
\[p = \tilde{p}/\tilde{p}_r , \quad \theta = (\tilde{T} - \tilde{T}_a)/\tilde{T}_r \]
\[\rho = \tilde{\rho}/\tilde{\rho}_r , \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}')/\tilde{\eta}_r , \quad \lambda = \tilde{\lambda}/\tilde{\lambda}_r , \quad \beta = \tilde{\beta}\tilde{T}_a , \quad c_p = \tilde{c}_p/\tilde{c}_{p,r} \]

key groups

clearance slenderness \[\epsilon := \tilde{C}/\tilde{L} \]
temperature ratio \[\gamma := \tilde{T}_r/\tilde{T}_a \]
Reynolds number \[Re := \tilde{U}\tilde{L}/\tilde{\eta} \]
Prandtl number \[Pr := \tilde{c}_p/\tilde{\lambda} \]
Péclet number \[Pe := Re Pr \]
Non-dimensional quantities

kinematic quantities
\[t = \tilde{t} \tilde{U} / \tilde{L}, \quad x = \tilde{x} / \tilde{L}, \quad c = \tilde{c} / \tilde{C}, \quad u = \tilde{u} / \tilde{U} \]

reference state
\[p = \tilde{p} / \tilde{p}_r, \quad \theta = (\tilde{T} - \tilde{T}_a) / \tilde{T}_r \]
\[\rho = \tilde{\rho} / \tilde{\rho}_r, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') / \tilde{\eta}_r, \quad \lambda = \tilde{\lambda} / \tilde{\lambda}_r, \quad \beta = \beta \tilde{T}_a, \quad c_p = \tilde{c}_p / \tilde{c}_{p,r} \]

key groups

- clearance slenderness \(\epsilon := \tilde{C} / \tilde{L} \)
- temperature ratio \(\gamma := \tilde{T}_r / \tilde{T}_a \)
- Reynolds number \(Re := \tilde{U} \tilde{L} \tilde{p}_r / \tilde{\eta}_r \)
- Prandtl number \(Pr := \tilde{c}_{p,r} \tilde{\eta}_r / \tilde{\lambda}_r \)
- Péclet number \(Pe := Re Pr \)
Non-dimensional quantities

kinematic quantities
\[t = \tilde{t} \frac{\bar{U}}{\bar{L}} , \quad x = \tilde{x} \frac{\bar{L}}{\bar{L}} , \quad c = \tilde{c} \frac{\bar{C}}{\bar{C}} , \quad u = \tilde{u} \frac{\bar{U}}{\bar{U}} \]

reference state
\[p = \tilde{p} \frac{\bar{p}_r}{\bar{p}_r} , \quad \theta = (\tilde{T} - \tilde{T}_a) / \bar{T}_r \]
\[\rho = \tilde{\rho} \frac{\bar{\rho}_r}{\bar{\rho}_r} , \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') / \tilde{\eta}_r , \quad \lambda = \tilde{\lambda} / \bar{\lambda}_r , \quad \beta = \tilde{\beta} \bar{T}_a , \quad c_p = \tilde{c}_p / \tilde{c}_p r \]

key groups

- clearance slenderness \(\epsilon := \tilde{C} / \bar{L} \)
- temperature ratio \(\gamma := \tilde{T}_r / \tilde{T}_a \)
- Reynolds number \(Re := \tilde{U} \bar{L} \bar{p}_r / \tilde{\eta}_r \)
- Prandtl number \(Pr := \tilde{c}_p r \tilde{\eta}_r / \bar{\lambda}_r \)
- Péclet number \(Pe := Re Pr \)
Non-dimensional quantities

kinematic quantities

\[t = \tilde{t} \frac{\tilde{U}}{\tilde{L}}, \quad x = \tilde{x} \frac{\tilde{L}}{\tilde{L}}, \quad c = \tilde{c} \frac{\tilde{C}}{\tilde{C}}, \quad u = \tilde{u} \frac{\tilde{U}}{\tilde{L}} \]

reference state

\[p = \tilde{p} \frac{\tilde{p}_{r}}{\tilde{p}_{r}}, \quad \theta = \left(\tilde{T} - \tilde{T}_{a} \right) \frac{\tilde{T}_{r}}{\tilde{T}_{r}} \]

\[\rho = \tilde{\rho} \frac{\tilde{\rho}_{r}}{\tilde{\rho}_{r}}, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') \frac{\tilde{\eta}_{r}}{\tilde{\eta}_{r}}, \quad \lambda = \tilde{\lambda} \frac{\tilde{\lambda}_{r}}{\tilde{\lambda}_{r}}, \quad \beta = \tilde{\beta} \frac{\tilde{T}_{a}}{\tilde{T}_{a}}, \quad c_p = \tilde{c}_p \frac{\tilde{c}_{p,r}}{\tilde{c}_{p,r}} \]

key groups

 clearance slenderness \[\epsilon := \frac{\tilde{C}}{\tilde{L}} \]

 temperature ratio \[\gamma := \frac{\tilde{T}_r}{\tilde{T}_a} \]

 Reynolds number \[Re := \frac{\tilde{U} \tilde{L} \tilde{p}_r}{\tilde{n}_r} \]

 Prandtl number \[Pr := \frac{\tilde{c}_{p,r} \tilde{n}_r}{\tilde{\lambda}_r} \]

 Péclet number \[Pe := Re \cdot Pr \]

B. Scheichl (AC²T, VUT)
Fluid mechanics of lubrication I
Non-dimensional quantities

kinematic quantities

\[t = \tilde{t} \tilde{U} / \tilde{L}, \quad x = \tilde{x} / \tilde{L}, \quad c = \tilde{c} / \tilde{C}, \quad u = \tilde{u} / \tilde{U} \]

reference state

\[p = \tilde{p} / \tilde{p}_r, \quad \theta = (\tilde{T} - \tilde{T}_a) / \tilde{T}_r \]
\[\rho = \tilde{\rho} / \tilde{\rho}_r, \quad (\eta, \eta') = (\tilde{\eta}, \tilde{\eta}') / \tilde{\eta}_r, \quad \lambda = \tilde{\lambda} / \tilde{\lambda}_r, \quad \beta = \tilde{\beta} \tilde{T}_a, \quad c_p = \tilde{c}_p / \tilde{c}_{p,r} \]

key groups

- clearance slenderness \(\epsilon := \tilde{C} / \tilde{L} \)
- temperature ratio \(\gamma := \tilde{T}_r / \tilde{T}_a \)
- Reynolds number \(Re := \tilde{U} \tilde{L} \tilde{\rho}_r / \tilde{\eta}_r \)
- Prandtl number \(Pr := \tilde{c}_{p,r} \tilde{\eta}_r / \tilde{\lambda}_r \)
- Péclet number \(Pe := Re Pr \)
Non-dimensional quantities, cont’d

natural metric

\[x = x_\parallel + \epsilon e_n n, \quad u = u_\parallel + \epsilon e_n w, \quad u_\parallel = u_\parallel e_\parallel \]
\[e_\parallel \cdot e_n = 0, \quad \partial_n e_\parallel = \partial_n e_n = 0 \]

\[\nabla = \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \]

\[\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + \underbrace{e_n \cdot \partial_n (\rho u_\parallel)}_{O(\epsilon)} + \underbrace{\epsilon \nabla_\parallel \cdot (\rho e_n w)}_{\rho w \nabla_\parallel \cdot e_n} + \underbrace{e_n \cdot \partial_n (\rho e_n w)}_{\partial_n (\rho w)} \]

\[D_t = (\tilde{L}/\tilde{U}) \tilde{D}_t = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n \]
non-dimensional quantities, cont’d

\[x = x_\parallel + \epsilon e_n n , \quad u = u_\parallel + \epsilon e_n w , \quad u_\parallel = u_\parallel e_\parallel \]
\[e_\parallel \cdot e_n = 0 , \quad \partial_n e_\parallel = \partial_n e_n = 0 \]

\[\nabla = \tilde{L} \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \]
\[\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + e_n \cdot \partial_n (\rho u_\parallel) + \epsilon \nabla_\parallel \cdot (\rho e_n w) + e_n \cdot \partial_n (\rho e_n w) \]
\[e_n \cdot e_\parallel \partial_n (\rho u_\parallel) = 0 \]

\[\rho w \nabla_{\parallel} \cdot e_n \quad \partial_n (\rho w) \]
\[D_t = (\tilde{L} / \tilde{U}) \ddot{D}_t = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n \]

natural metric
Non-dimensional quantities, cont’d

\[x = x_\parallel + \epsilon e_n n, \quad u = u_\parallel + \epsilon e_n w, \quad u_\parallel = u_\parallel e_\parallel \]

\[e_\parallel \cdot e_n = 0, \quad \partial_n e_\parallel = \partial_n e_n = 0 \]

\[\nabla = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \]

\[\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + e_n \cdot \partial_n (\rho u_\parallel) + \epsilon \nabla_\parallel \cdot (\rho e_n w) + e_n \cdot \partial_n (\rho e_n w) \]

\[e_n \cdot e_\parallel \partial_n (\rho u_\parallel) = 0 \]

\[D_t = (\nabla_\parallel + \eta_\parallel) = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n \]
Non-dimensional quantities, cont’d

natural metric

\[
x = x_\parallel + \epsilon e_n n, \quad u = u_\parallel + \epsilon e_n w, \quad u_\parallel = u_\parallel e_\parallel \\
e_\parallel \cdot e_n = 0, \quad \partial_n e_\parallel = \partial_n e_n = 0
\]

\[
\nabla = \tilde{\nabla} = \nabla_\parallel + \epsilon^{-1} e_n \partial_n \\
\nabla \cdot (\rho u) = \nabla_\parallel \cdot (\rho u_\parallel) + e_n \cdot \partial_n (\rho u_\parallel) + \epsilon \nabla_\parallel \cdot (\rho e_n w) + e_n \cdot \partial_n (\rho e_n w) \\
e_n \cdot e_\parallel \partial_n (\rho u_\parallel) = 0, \quad \rho w \nabla_\parallel \cdot e_n, \quad \partial_n (\rho w)
\]

\[
D_t = (\tilde{L}/\tilde{U}) \tilde{D}_t = \partial_t + u \cdot \nabla = u_\parallel \cdot \nabla_\parallel + w \partial_n
\]
Navier–Stokes eqs

\[\tilde{p}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \Rightarrow \tilde{p}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \epsilon \rho w \nabla_{||} \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum

\[Re \epsilon^2 \rho (\ddot{x}_{rel} + 2 \Omega_{rel} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^{tr}] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) I \]

energy

\[Pe \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla_{||} p + \partial_n (\eta \partial_n u_{||}), \quad 0 \sim \epsilon^{-1} \partial_n p \]
Navier–Stokes eqs

\[\tilde{p}_r := \tilde{\eta}_r \tilde{UL}/\tilde{C}^2 , \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2/\tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \quad \Rightarrow \quad \tilde{p}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) + \epsilon \rho \omega \nabla \cdot \mathbf{e}_n + \partial_n (\rho \omega) = 0 \]

momentum

\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr}] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \mathbf{u}) I \]

energy

\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r/\tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla \parallel \rho + \partial_n (\eta \partial_n \mathbf{u}) \parallel, \quad 0 \sim \epsilon^{-1} \partial_n \rho \]
Navier–Stokes eqs

\[\tilde{p}_r := \tilde{\eta}_r \tilde{U}L / \tilde{C}^2 , \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state \[q = q(\rho, 1 + \gamma \theta) , \quad q = \rho , \eta , \lambda , c_p \quad \Rightarrow \quad \tilde{p}_r \]
continuity \[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \epsilon \rho w \nabla_{||} \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]
momentum \[Re \epsilon^2 \rho (\ddot{x}_{ref} + 2 \Omega_{ref} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]
\[\Delta = \eta [\nabla \mathbf{u} + (\nabla \mathbf{u})^t] + (\eta' - \frac{2}{3} \eta) (\nabla \cdot \mathbf{u}) I \]
energy \[Pe \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t \rho + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)] \]
\[\Phi = \Delta \cdot \nabla \mathbf{u} , \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1 , \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]
momentum \[0 \sim -\nabla_{||} \rho + \partial_n (\eta \partial_n \mathbf{u}_{||}) , \quad 0 \sim \epsilon^{-1} \partial_n \rho \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \Rightarrow \tilde{\rho}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla_{\parallel} \cdot (\rho \mathbf{u}_{\parallel}) + \epsilon \rho w \nabla_{\parallel} \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum

\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \dot{\Omega}_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr} \right] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) I \]

energy

\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 \left[\Phi + \nabla \cdot (\lambda \nabla \theta) \right] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla_{\parallel} p + \partial_n (\eta \partial_n \mathbf{u}_{\parallel}), \quad 0 \sim \epsilon^{-1} \partial_n p \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta} \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta} \tilde{U}^2 / \tilde{\lambda}_r \]

state

\[q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \quad \Rightarrow \quad \tilde{\rho}_r \]

continuity

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla || \cdot (\rho \mathbf{u} ||) + \epsilon \rho w \nabla || \cdot \mathbf{e}_n + \partial_n (\rho w) = 0 \]

momentum

\[\text{Re} \epsilon^2 \rho (\ddot{x}_{\text{ref}} + 2 \Omega_{\text{ref}} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta \]

\[\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^\text{tr} \right] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) \mathbf{I} \]

energy

\[\text{Pe} \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 \left[\Phi + \nabla \cdot (\lambda \nabla \theta) \right] \]

\[\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a \]

\[\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n \]

momentum

\[0 \sim -\nabla || \rho + \partial_n (\eta \partial_n \mathbf{u} ||), \quad 0 \sim \epsilon^{-1} \partial_n \rho \]
Navier–Stokes eqs

\[\tilde{\rho}_r := \tilde{\eta}_r \tilde{U} \tilde{L} / \tilde{C}^2, \quad \tilde{T}_r := \tilde{\eta}_r \tilde{U}^2 / \tilde{\lambda}_r \]

state \quad q = q(\rho, 1 + \gamma \theta), \quad q = \rho, \eta, \lambda, c_p \quad \Rightarrow \quad \tilde{\rho}_r

continuity \quad \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) \equiv \partial_t \rho + \nabla|| \cdot (\rho \mathbf{u}||) + \epsilon \rho w \nabla|| \cdot \mathbf{e}_n + \partial_n (\rho w) = 0

momentum \quad Re \epsilon^2 \rho (\ddot{x}_{ref} + 2 \Omega_{ref} \times \mathbf{u} + D_t \mathbf{u}) + \nabla p = \epsilon^2 \nabla \cdot \Delta

\Delta = \eta \left[\nabla \mathbf{u} + (\nabla \mathbf{u})^{tr} \right] + (\eta' - \frac{2}{3} \eta)(\nabla \cdot \mathbf{u}) I

energy \quad Pe \epsilon^2 \rho c_p D_t \theta = \beta (1 + \gamma \theta) D_t p + \epsilon^2 [\Phi + \nabla \cdot (\lambda \nabla \theta)]

\Phi = \Delta \cdot \nabla \mathbf{u}, \quad \gamma := \tilde{T}_r / \tilde{T}_a

\epsilon \ll 1, \quad \nabla \sim \epsilon^{-1} \mathbf{e}_n \partial_n

momentum \quad 0 \sim -\nabla|| \rho + \partial_n (\eta \partial_n \mathbf{u}||), \quad 0 \sim \epsilon^{-1} \partial_n \rho
Outline

3. Classical theory
 - First principles
 - Problem formulation
 - Asymptotic theory
Limit process

classical lubrication approximation

thin film $\epsilon \ll 1$

quasi-isothermal $\gamma \ll 1$

inertia neglected $Re \epsilon^2 \ll 1$, laminar flow: $Re \lesssim 10^5$

typical values $\epsilon \lesssim 10^{-3}$, $Pr_{oil} \approx 70 \ldots 10^3 \Rightarrow Pe \lesssim 10^8$, $Pe \epsilon^2 \lesssim 10^2$

$\nabla \cdot (\rho \mathbf{u}) \sim \nabla_\parallel \cdot (\rho \mathbf{u}_\parallel) + \partial_n (\rho \mathbf{w}) + O(\epsilon)$

$\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma)$

expansions

$\nabla_\parallel \sim \nabla_\parallel^0 + O(\epsilon)$

$\nabla_\parallel^0 = \nabla_\parallel$ for $n = 0$

$[\mathbf{u}_\parallel, w, p, \rho, \theta, \eta, \ldots] (x_\parallel, n, t; \epsilon, Re, \gamma, \ldots) \sim [\mathbf{U}, W, P, Q, \Theta, N] (x_\parallel, n, t) + \ldots$

$c \sim C(x_\parallel, t) + O(\epsilon)$ journal bearing

B. Scheichl (AC²T, VUT) Fluid mechanics of lubrication I 14 / 21
Limit process

classical lubrication approximation

thin film \(\epsilon \ll 1 \)

quasi-isothermal \(\gamma \ll 1 \)

inertia neglected \(Re \epsilon^2 \ll 1 \), laminar flow: \(Re \lesssim 10^5 \)

typical values \(\epsilon \lesssim 10^{-3} \), \(Pr_{oil} \approx 70 \ldots 10^3 \) \(\Rightarrow Pe \lesssim 10^8 \), \(Pe \epsilon^2 \lesssim 10^2 \)

\[\nabla \cdot (\rho u) \sim \nabla_{||} \cdot (\rho u_{||}) + \partial_n (\rho w) + O(\epsilon) \]

\[\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma) \]

expansions

\[\nabla_{||} \sim \nabla_{||}^0 + O(\epsilon) \quad \nabla_{||}^0 = \nabla_{||} \quad \text{for} \quad n = 0 \]

\[[u_{||}, w, p, \rho, \theta, \eta, \ldots] (x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, N](x_{||}, n, t) + \cdots \]

\[c \sim C(x_{||}, t) + O(\epsilon) \quad \text{journal bearing}! \]
Limit process

classical lubrication approximation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>thin film</td>
<td>$\epsilon \ll 1$</td>
</tr>
<tr>
<td>quasi-isothermal</td>
<td>$\gamma \ll 1$</td>
</tr>
<tr>
<td>inertia neglected</td>
<td>$Re \epsilon^2 \ll 1$</td>
</tr>
<tr>
<td>laminar flow</td>
<td>$Re \lesssim 10^5$</td>
</tr>
<tr>
<td>typical values</td>
<td>$\epsilon \lesssim 10^{-3}$, $Pr_{oil} \approx 70 \ldots 10^3$</td>
</tr>
<tr>
<td></td>
<td>$\Rightarrow Pe \lesssim 10^8$, $Pe \epsilon^2 \lesssim 10^2$</td>
</tr>
</tbody>
</table>

\[
\nabla \cdot (\rho \mathbf{u}) \sim \nabla_{||} \cdot (\rho \mathbf{u}_{||}) + \partial_n (\rho \mathbf{w}) + O(\epsilon)
\]

\[
\rho(p, 1 + \gamma \theta) \sim \rho(p, 1) + O(\gamma)
\]

expansions

\[
\nabla_{||} \sim \nabla^0_{||} + O(\epsilon) \quad \nabla^0_{||} = \nabla_{||} \quad \text{for} \quad n = 0
\]

\[
[u_{||}, w, p, \rho, \theta, \eta, \ldots](x_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, \mathcal{N}](x_{||}, n, t) + \ldots
\]

\[
c \sim C(x_{||}, t) + O(\epsilon) \quad \text{journal bearing}
\]
Limit process

classical lubrication approximation

thin film $\epsilon \ll 1$

quasi-isothermal $\gamma \ll 1$

inertia neglected $Re \epsilon^2 \ll 1$, laminar flow: $Re \lesssim 10^5$

typical values $\epsilon \lesssim 10^{-3}$, $Pr_{oil} \approx 70 \ldots 10^3 \Rightarrow Pe \lesssim 10^8$, $Pe \epsilon^2 \lesssim 10^2$

\[
\nabla \cdot (\rho \boldsymbol{u}) \sim \nabla_{||} \cdot (\rho \boldsymbol{u}_{||}) + \partial_n (\rho \boldsymbol{w}) + O(\epsilon)
\]
\[
\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma)
\]

expansions

$\nabla_{||} \sim \nabla_{||}^0 + O(\epsilon)$ \hspace{1cm} $\nabla_{||}^0 = \nabla_{||}$ for $n = 0$

$\begin{bmatrix} \boldsymbol{u}_{||}, w, p, \rho, \theta, \eta, \ldots \end{bmatrix}(\boldsymbol{x}_{||}, n, t; \epsilon, Re, \gamma, \ldots) \sim [\boldsymbol{U}, W, P, Q, \Theta, \mathcal{N}](\boldsymbol{x}_{||}, n, t) + \cdots$

$c \sim C(\boldsymbol{x}_{||}, t) + O(\epsilon)$ journal bearing
Limit process

classical lubrication approximation

thin film \(\epsilon \ll 1 \)

quasi-isothermal \(\gamma \ll 1 \)

inertia neglected \(Re \epsilon^2 \ll 1 \), laminar flow: \(Re \lesssim 10^5 \)

typical values \(\epsilon \lesssim 10^{-3} \), \(Pr_{\text{oil}} \approx 70 \ldots 10^3 \) \(100 \ldots 20^\circ C \Rightarrow Pe \lesssim 10^8 \), \(Pe \epsilon^2 \lesssim 10^2 \)!

\[
\nabla \cdot (\rho \mathbf{u}) \sim \nabla || \cdot (\rho \mathbf{u} ||) + \partial_n (\rho w) + O(\epsilon)
\]

\[
\rho (p, 1 + \gamma \theta) \sim \rho (p, 1) + O(\gamma)
\]

expansions

\[
\nabla || \sim \nabla^0 || + O(\epsilon) \quad \nabla^0 || = \nabla || \quad \text{for} \quad n = 0
\]

\[
[u ||, w, p, \rho, \theta, \eta, \ldots](x ||, n, t; \epsilon, Re, \gamma, \ldots) \sim [U, W, P, Q, \Theta, N](x ||, n, t) + \cdots
\]

\[
c \sim C(x ||, t) + O(\epsilon) \quad \text{journal bearing!}
\]
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \ \mathcal{N} \]

continuity \[\partial_t Q + \nabla^0 \cdot (Q U) + \partial_N (Q W) = 0 \quad (1) \]

momentum \[\nabla^0 P = \partial_n (\mathcal{N} \partial_n U), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n \mathcal{N} = 0 \quad (2) \]

kinematic BCs

\(n = 0 : \quad U = U_1(x|_n, t), \quad W = W_{p,1}(x|_n, t) \quad (3) \)

\(n = C(x|_n, t) : \quad U = U_2(x|_n, t), \quad W = \partial_t C + U_2 \cdot \nabla^0 C + W_{p,2}(x|_n, t) \quad (4) \)

(1), (3), (4) \[\Rightarrow \quad \partial_t (QC) + \nabla^0 \cdot \left(Q \int_0^C U \, dn \right) + Q(W_{p,2} - W_{p,1}) = 0 \]

(2), (3), (4) \[\Rightarrow \quad U = \frac{\nabla^0 P}{2 \mathcal{N}(P)} n(n - C) + \frac{n}{C}(U_2 - U_1) \]

\(\frac{Hagen–Poisseuille}{Couette} \)
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad N \]

continuity \[\partial_t Q + \nabla_\parallel \cdot (Q U) + \partial_N(Q W) = 0 \quad (1) \]

momentum \[\nabla_\parallel P = \partial_n(N \partial_n U), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n N = 0 \quad (2) \]

kinematic BCs

\(n = 0 : \quad U = U_1(x_\parallel, t), \quad W = W_{p,1}(x_\parallel, t) \quad (3) \)

\(n = C(x_\parallel, t) : \quad U = U_2(x_\parallel, t), \quad W = \partial_t C + U_2 \cdot \nabla_\parallel C + W_{p,2}(x_\parallel, t) \quad (4) \)

\((1), (3), (4) \quad \Rightarrow \quad \partial_t(QC) + \nabla_\parallel \cdot \left(Q \int_0^C U \, dn\right) + Q(W_{p,2} - W_{p,1}) = 0 \)

\((2), (3), (4) \quad \Rightarrow \quad U = \frac{\nabla_\parallel P}{2N(P)} n(n - C) + \frac{n}{C} (U_2 - U_1) \)

Hagen–Poiseuille

Couette
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad \mathcal{N} \]

continuity \[\partial_t Q + \nabla_\parallel \cdot (Q \mathbf{U}) + \partial_N (Q \mathbf{W}) = 0 \quad (1) \]

momentum \[\nabla_\parallel^0 P = \partial_n (\mathcal{N} \partial_n \mathbf{U}), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n \mathcal{N} = 0 \quad (2) \]

kinematic BCs

\[n = 0 : \quad \mathbf{U} = \mathbf{U}_1(x_\parallel, t), \quad \mathbf{W} = \mathbf{W}_{p,1}(x_\parallel, t) \quad (3) \]

\[n = C(x_\parallel, t) : \quad \mathbf{U} = \mathbf{U}_2(x_\parallel, t), \quad \mathbf{W} = \partial_t C + \mathbf{U}_2 \cdot \nabla_\parallel^0 C + \mathbf{W}_{p,2}(x_\parallel, t) \quad (4) \]

\[(1), (3), (4) \quad \Rightarrow \quad \partial_t (Q C) + \nabla_\parallel \cdot \left(Q \int_0^C \mathbf{U} \, dn \right) + Q (\mathbf{W}_{p,2} - \mathbf{W}_{p,1}) = 0 \]

\[(2), (3), (4) \quad \Rightarrow \quad \mathbf{U} = \frac{\nabla_\parallel^0 P}{2 \mathcal{N}(P)} n(n - C) + \frac{n}{C} (\mathbf{U}_2 - \mathbf{U}_1) \]

\[\text{Hagen–Poiseuille} \quad \text{Couette} \]
Leading-order eqs

state & energy \[Q = Q(P, 1), \quad Q = Q, \quad N \]

continuity \[\partial_t Q + \nabla^0 \cdot (QU) + \partial_N (QW) = 0 \quad (1) \]

momentum \[\nabla^0 P = \partial_n (N \partial_n U), \quad \partial_n P = 0 \quad \Rightarrow \quad \partial_n Q = \partial_n N = 0 \quad (2) \]

kinematic BCs

\[n = 0 : \quad U = U_1(x_\|, t), \quad W = W_{p,1}(x_\|, t) \quad (3) \]

\[n = C(x_\|, t) : \quad U = U_2(x_\|, t), \quad W = \partial_t C + U_2 \cdot \nabla^0 C + W_{p,2}(x_\|, t) \quad (4) \]

(1), (3), (4) \[\Rightarrow \quad \partial_t (Q C) + \nabla^0 \cdot \left(Q \int_0^C U \, dn \right) + Q (W_{p,2} - W_{p,1}) = 0 \]

(2), (3), (4) \[\Rightarrow \quad U = \frac{\nabla^0 P}{2N(P)} n(n - C) + \frac{n}{C} (U_2 - U_1) + U_1 \]

Hagen–Poiseuille

Couette

sliding
Integral mass balance

\[\int_0^C U \, dn = Q + C \, U_m, \quad Q := -\frac{C^3 \nabla^0 P}{12 \mathcal{N}}, \quad U_m := \frac{U_1 + U_2}{2} \]

Reynolds eq

O. Reynolds (1886), A. Sommerfeld (1904), L. Prandtl (1937)

\[\nabla^0 \cdot (-Q \partial_t + U_m \cdot \nabla^0) (Q C) + Q C \nabla^0 \cdot U_m + Q (W_{p,2} - W_{p,1}) \]

\(
\) permeability

\[Q = Q(P), \quad \mathcal{N} = \mathcal{N}(P) \]

elliptic 2nd-order PDE for \(P(x_\parallel, t) \) and given \(C(x_\parallel, t), \ U_m(x_\parallel, t) \)

kinematic wave operator \(\partial_t + U_m \cdot \nabla^0 \) most relevant for gas bearings

linear for incompressible lubricant with constant properties \((Q \equiv \mathcal{N} \equiv 1) \)

in general to be solved numerically
Integral mass balance

\[\int_{0}^{C} U \, dn = Q + C \, U_{m}, \quad Q := - \frac{C^{3} \nabla_{\parallel}^{0} P}{12 \, N}, \quad U_{m} := \frac{U_{1} + U_{2}}{2} \]

Reynolds eq

\[\nabla_{\parallel}^{0} (Q \dot{Q}) = \left(\partial_{t} + U_{m} \cdot \nabla_{\parallel}^{0} \right) (Q \dot{C}) + QC \nabla_{\parallel}^{0} \cdot U_{m} + Q \left(W_{p,2} - W_{p,1} \right) \]

‘squeeze’ Couette + sliding = ‘wedge’

\[Q = Q(P), \quad N = N(P) \]

elliptic 2nd-order PDE for \(P(x_{\parallel}, t) \) and given \(C(x_{\parallel}, t), \, U_{m}(x_{\parallel}, t) \)

kinematic wave operator \(\partial_{t} + U_{m} \cdot \nabla_{\parallel}^{0} \) most relevant for gas bearings

linear for incompressible lubricant with constant properties \((Q \equiv N \equiv 1) \)

in general to be solved numerically
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla_1^0 P}{12N} \quad \text{,} \quad \boldsymbol{U}_m = \frac{\boldsymbol{U}_1 + \boldsymbol{U}_2}{2} \]

\[\nabla_1^0 \cdot (-QQ) = (\partial_t + \boldsymbol{U}_m \cdot \nabla_1^0)(QC) + QC \nabla_1^0 \cdot \boldsymbol{U}_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P) \quad , \quad N = N(P) \]

rigid contacts, no Navier slip

\[\nabla_1^0 \cdot [\boldsymbol{U}_1, \boldsymbol{U}_2, \boldsymbol{U}_m] = 0 \]

Galilean transformation

\[[\boldsymbol{x}_1, \ t] = [\boldsymbol{x}'_1 + \boldsymbol{S}(t'), \ t'] \]

\[[\nabla_1^0, \partial_t] = [\nabla_1^0, \partial_{t'} - \dot{\boldsymbol{S}} \nabla_1^0] \]

\[[C, P, \boldsymbol{U}_{1,2}](\boldsymbol{x}_1, \ t) = [C', P', \boldsymbol{U}'_{1,2}](\boldsymbol{x}'_1, \ t'), \quad [Q, N](P) = [Q', N'](P') \]

\[[\boldsymbol{U}_1, \boldsymbol{U}_2, \boldsymbol{U}_m] \rightarrow [\boldsymbol{U}'_1, \boldsymbol{U}'_2, \boldsymbol{U}'_m] - \dot{\boldsymbol{S}} \quad \text{ invariance against sliding motion } \boldsymbol{S} \]
Reynolds eq – some important properties

\[Q = -\frac{C^3}{12N} \nabla_0^0 P, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla_0^0 \cdot (-QQ) = (\partial_t + U_m \cdot \nabla_0^0)(QC) + QC \nabla_0^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad N = N(P) \]

rigid contacts, no Navier slip

\[\nabla_0^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation

\[[x, t] = [x' + S(t'), t'] \]

\[[\nabla_0^0, \partial_t] = [\nabla_0^0', \partial_{t'} - \dot{S} \nabla_0^0'] \]

\[[C, P, U_{1,2}](x, t) = [C', P', U_{1,2}'](x', t'), \quad [Q, N](P) = [Q', N'](P') \]

\[[U_1, U_2, U_m] \rightarrow [U'_1, U'_2, U'_m] - \dot{S} \]

invariance against sliding motion \(S \)
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla_0^0 P}{12 \mathcal{N}} , \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla_0^0 \cdot (-QQ) = (\partial_t + U_m \cdot \nabla_0^0)(QC) + QC \nabla_0^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P) , \quad \mathcal{N} = \mathcal{N}(P) \]

rigid contacts, no Navier slip

\[\nabla_0^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation

\[[x_\parallel, t] = [x'_\parallel + S(t'), t'] \]

\[[\nabla_0^0, \partial_t] = [\nabla_0^0', \partial_{t'} - \dot{S} \nabla_0^0'] \]

\[[C, P, U_{1,2}](x_\parallel, t) = [C', P', U'_{1,2}](x'_\parallel, t') , \quad [Q, \mathcal{N}](P) = [Q', \mathcal{N}'](P') \]

\[[U_1, U_2, U_m] \to [U'_1, U'_2, U'_m] - \dot{S} \quad \text{invariance against sliding motion } S \]
Reynolds eq – some important properties

\[Q = -\frac{C^3 \nabla_0^0 P}{12N}, \quad U_m = \frac{U_1 + U_2}{2} \]

\[\nabla_0^0 \cdot (-Q Q) = (\partial_t + U_m \cdot \nabla_0^0)(QC) + QC \nabla_0^0 \cdot U_m + Q(W_{p,2} - W_{p,1}) \]

\[Q = Q(P), \quad N = N(P) \]

rigid contacts, no Navier slip \[\nabla_0^0 \cdot [U_1, U_2, U_m] = 0 \]

Galilean transformation \[[x_||, t] = [x'_|| + S(t'), t'] \]

\[[\nabla_0^0, \partial_t] = [\nabla_0^0', \partial_{t'} - \dot{S} \nabla_0^0'] \]

\[[C, P, U_{1,2}] (x_||, t) = [C', P', U'_{1,2}] (x'_||, t'), \quad [Q, N](P) = [Q', N'](P') \]

\[[U_1, U_2, U_m] \mapsto [U'_1, U'_2, U'_m] - \dot{S} \quad \text{invariance against sliding motion } S \]
Validation of tribo-systems

typically find

- \(P(x_\parallel, t), \ x_\parallel \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)

- load-bearing capacity \(F(t) = \int_{\Omega} P e_n \, d\Omega \)

clearance \(C(x_\parallel, t) \) is

- prescribed
- found from fluid-structure interaction

machinery (e.g. shaft) dynamics \(\Rightarrow F = F(x_\parallel, t(C, C)) \)

EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

- \(P(\mathbf{x}_||, t) \), \(\mathbf{x}_|| \in \Omega \) subject to \(P(\partial \Omega, t) = P_a \)
- load-bearing capacity \(\mathbf{F}(t) = \int_{\Omega} P\mathbf{e}_n \, d\Omega \)

clearance \(C(\mathbf{x}_||, t) \) is

- prescribed
- found from fluid–structure interaction machinery (e.g. shaft) dynamics \(\Rightarrow \mathbf{F} = F(\partial_{\mathbf{n}}C, \partial_{\mathbf{t}}C, C) \)
- EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

\[P(x_{||}, t), \ x_{||} \in \Omega \quad \text{subject to} \quad P(\partial \Omega, t) = P_a \]

- load-bearing capacity \(F(t) = \int_{\Omega} P e_n \, d\Omega \)

clearance \(C(x_{||}, t) \) is

- prescribed
- found from fluid–structure interaction

machine (e.g. shaft) dynamics \(\Rightarrow F = F(\partial_{tt} C, \partial_t C, C) \)

EHL \(\Rightarrow P = P(C) \)
Validation of tribo-systems

typically find

\[P(x_{\parallel}, t), \ x_{\parallel} \in \Omega \ \text{subject to} \ \ P(\partial \Omega, t) = P_a \]

- load-bearing capacity \(F(t) = \int_{\Omega} Pe_n \ d\Omega \)

clearance \(C(x_{\parallel}, t) \) is

- prescribed
- found from fluid–structure interaction

machinery (e.g. shaft) dynamics \(\Rightarrow \ F = F(\partial_{tt} C, \partial_t C, C) \)

EHL \(\Rightarrow \ P = P(C) \)
Validation of tribo-systems

typically find

\[P(x_{||}, t), \ x_{||} \in \Omega \
\text{subject to} \ P(\partial \Omega, t) = P_a \]

load-bearing capacity \[F(t) = \int_{\Omega} P e_n \, d\Omega \]

clearance \[C(x_{||}, t) \] is

- prescribed
- found from fluid–structure interaction

machinery (e.g. shaft) dynamics \[F = F(\partial_{tt} C, \partial_t C, C) \]

EHL \[P = P(C) \]
Classical application: journal bearing

\[
\tilde{C} \quad \theta \\
\tilde{\omega} \quad \tilde{\epsilon} \\
\text{liquid film} \\
\text{cavitation}
\]

reference quantities
\[
\tilde{U}_m = \tilde{\omega} \tilde{R}_i, \quad \tilde{p}_r = \tilde{\eta}_r \tilde{\omega} \tilde{R}_i^2 / \tilde{C}^2
\]

geometrical parameters
\[
\epsilon = \tilde{C} / \tilde{R}_i \ll 1, \quad \text{eccentricity} \quad \epsilon = \tilde{\epsilon} / (\tilde{R}_a - \tilde{R}_i)
\]

non-dimensional quantities
\[
C = 1 + \epsilon \cos \theta + O(\epsilon^2), \quad U_m (= N = Q) = 1
\]
Further outlook include

- EHL
- inertia \((Re \epsilon^2 \sim 1, \text{start-up, high-speed rotors, rapid load cycles}) \)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale \(\ll \epsilon \) (surface roughness, mixed friction)

Rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Further outlook

include

- EHL
- inertia ($Re \varepsilon^2 \sim 1$, start-up, high-speed rotors, rapid load cycles)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale $\ll \varepsilon$ (surface roughness, mixed friction)

rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Further outlook

include

- EHL
- inertia ($Re \epsilon^2 \sim 1$, start-up, high-speed rotors, rapid load cycles)
- turbulence
- film rupture & cavitation (surface tension)
- effects acting on micro-scale $\ll \epsilon$ (surface roughness, mixed friction)

rational method: perturbation techniques

- multiple scales, matched asymptotic expansions
- numerical solution of reduced problem (simulation tools)
Thank you for your attention!