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State of the Art, Related Work

Mainstream tries to use RT/circuit level models and simulation
* Mixed-Level, Multi-Run, Monte-Carlo, etc.
* Design of Experiments [Rafaila]

* Earlier estimation of power + accuracy needed!

SystemC AMS Methodology enables modeling and simulation of
embedded mixed-signal systems at functional, architecture level.

* Power consumption?

* Accuracy?

T'J Institute of
I Computer Technology

Overview

" |ntroduction

= Refinement methodology

F. Schupfer, Ch. Grimm

= MARC/SYCYPHOS Design environment, examples

" Future work
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Profiling/Refinement at Functional Level

Functional Model

Profiling,
by Simulation

Y

h

Refine Accuracy, Estimate
Power Consumption Accuracy, Power
r Y

Refined
Functional Model

¥

Block Level Design

v

Accurate Model

(HW+SW + Circuits)

Supported by

tools and libraries
based on SystemC

. AMS and TLM

extensions:

Why is accuracy
reduced? Risks?

=> Accuracy budgeting

Why is power
consumed?

=> Power budgeting
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TDF: Filter in Receiver E—

. SCA_TDF_MODULE(1p_filter tdf) |
{

sca_tdf::sca_in<double> in;

sca_tdf::sca_out<double> out;

sca_tdf::sca_in<double> gain;

sca_tdf::sca_ltf_nd 1tf; // computes transfer function
sca_util::sca_vector<double> num, den; // coefficients

void initialize()

{
num(@) = 1.0;
den(@) = 1.0; den(1l) = 1.0/(2.0*M_PI*1.0e4);
}
void processing()
{
out.write( 1ltf(num, den, in.read() * gain.read() ) );
}

SCA_CTOR(1p_filter tdf) {}

Refined functional model

Transaction Level Model

TDF Model ] )
Instruction Set Simulator (ISS)
vco [ : X
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Model of non-ideal
properties in frontends, ADC, DSP

Model HW/SW
Partitioning, Allocation

TDF: Filter in Receiver E—

¥

. SCA_TDF_MODULE(lp filter tdf) |

sca_tdf::sca_in<AAF> in;

sca_tdf: :sca_out<AAF> out;

sca_tdf::sca_in<AAF> gain;

sca_tdf::sca_ltf_nd 1tf; // computes transfer function
sca_util::sca_vector<double> num, den; // coefficients

void initialize() From

{ : budgeting

num(@) = 1.0;

den(@) = 1.0; den(1) = 1.0/(2.0*M_PI*1.0e4);
}
void processing()

{

out.write( 1tf(num, den, in.read() * gain.read() ) + noise() );
}

SCA_CTOR(1lp filter tdf) {}

DS

Accuracy Profiling and Iterative Refinement
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SystemC (TLM, AMS) based analysis

= SystemC — based tracing of power and accuracy

,Body” AAF extension |( or Power ext.)| ( or Air ext.)
Sample Partial Accumulated Routing histor
(or package) deviations Power 8 Y
Trace through
& networ
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Range-Based Simulation

Affine Arithmetic — general

* Enhancement of Intervall Arithmetic [Comba]

F. Schupfer, Ch. Grimm

* Accurate range-based computations for linear systems

Affine Arithmetic - simulation

* Static and dynamic deviations [Heupke, Grimm]

* SystemC AMS integration [Heupke, Grimm]

* Transistor level solver [Grabowski, Grimm]

T'J Institute of

A Computer Technology
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Affine Arithmetic [Andrade et al.]

Pmproves Interval Arithmetics by conserving correlations in a
symbolic way

Affine Arithmetics represents a size X by
= anideal, numerical ‘central value’ x4, and
" n partial deviations x; scaled by noise symbols ¢; € [—1, 1]

X=xg+ ) xi€

TTM 3
s

T'J Institute of
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Graphical representations
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Range based system response Signal construction by sub-ranges
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Semi-symbolic Simulation Libraries & Tools

8 7e"
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Yy R x;s;—»fy
= Numeric simulation extended by / \: et 1. Library of functional blocks
H . Deviations
symbolic representatives Input Stirmui *  Blocks for receiver/transmitter (serializer, modulators, mixers, ACD,
X
= Multiple simulation results by % )
one run o | e [ * Non-ideal properties (Noise, offset, nonlinearities, ...)
T DSP processor
conte] | amory o] o000 ®*  Models von processors (ISS)
" Range dependency preservation |
System Model ol
= Guaranteed, conservative result 2. Profiling tools
inclusion o *  Accuracy profiling
®* Power (see poster)
System Analysis
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Example: Profiling Accuracy in 4-QAM receiver
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Poster: Power Profiling of In-Car WSN;
18 8-Bit uC with Firmware + Transceiver + Sensors
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Poster: Power Profiling of In-Car WSN;
18 8-Bit uC with Firmware + Transceiver + Sensors
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Overview
® Introduction
= Refinement methodology §
|

MARC/SYCYPHOS Design environment, examples

Conclusion, Future work

le Institute of
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Conclusion, Outlook

= Range based refinement methodology

* Complements Worst-Case Analysis

e
* Single run, traceable deviations influence 0
* Refinement information = recommendations, maybe automation?
= Planned extensions
* Automated management of ressource “accuracy”
* “Expert-models” that include typical risks as kind of IP-Knowledge from
recent projects
TU _
WIEN F. Schupfer, Ch. Grimm 25
Future work: SYCYPHOS/MARC
= Synthesis of Cyber Physical Systems and Applications
integrates all TUV Tools:
X
* Modeling of scenarios and high-level communication in %

cyber and physical worlds

* Modeling of accuracy, robustness, power consumption in
microelectronic systems

* Challenge:
Automatical analysis, verification, and improvement of
accuracy, resilience/adaptivity, power consumption

WIEN F. Schupfer, Ch. Grimm 26
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Thank you for your attention
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Affine Arithmetic: System Simulation

System Simulation, SystemC AMS
"Directed signal flow; output = f(input, state)

"Models of Computation: Synchronous & Dynamic Data flow,
KPN, Discrete event modeling, Signal flow

System Simulation with AA straight forward:

=Class library provides abstract data type AAF and associated
linear and nonlinear operations

"Number of noise terms increases with each nonlinear
operations = ,,Garbage collection”

WIEN F. Schupfer, Ch. Grimm
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Affine Arithmetic: System Simulation
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Circuit Simulation with Affine Arithmetic

TU Institute of
M) Computer Technology F. Schupfer, Ch. Grimm 30
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Computation of Affine ASPs

€omputaton of Affine ASP as follows:

1. Compute x by existing Newton-Raphson iteration:
F(zg,p0,t) =0 — Z=zg

878"

2. Compute x;¢; by sensitivity analysis:
JzopoAz + PlzgpoAp=0 — Z=z0+ ZEPEP

3. Compute NL €;,1 (in n-dim space) by approximation scheme
in vector/matrix form (Grabowski 2006, 2007, 2008).

Z=gzo+ Z Zpep + Lepd€epd,i

T lJ Institute of

[AE3Y Computer Technology F. Schupfer, Ch. Grimm 31

Affine Arithmetic, Circuit Simulation
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