

SYSTEMC AMS DAY 2011

INDUSTRY ADOPTION OF THE SYSTEMC AMS STANDARD

www.systemc.org

May 12, 2011

OPEN SYSTEMC ΤΙΥΕ

SystemC AMS Day 2011 **Industry Adoption of** the SystemC AMS **Standard**

May 12, 2011 Dresden

The SystemC AMS Day is sponsored by:

cādence

SYNOPSYS°

Content

SYSTEMC AMS FOR SYSTEM INTEGRATORS

Modelling and Simulation of a Fibre Optical Gyro System with SystemC AMS Stefan Rieke, Northrop Grumman LITEF GmbH, Germany	8
SystemC AMS-based Virtual Platform for Automotive Electronic Systems Development & Verification Ingmar Neumann, Continental Corporation, Germany	16
Automatic Transformation of MATLAB/Simulink Models to SystemC AMS Nico Bannow, Robert Bosch GmbH, Germany Ralph Görgen, OFFIS Institute, Germany Wolfgang Nebel, University of Oldenburg, Germany	26
SYSTEMC AMS FOR AUTOMOTIVE AND SENSORS SEMICONDUCTOR INDUSTRY	
An Efficient Transceiver Design Verification Method by Means of SystemC AMS – VHDL Co-simulation Gerhard Deutsch, Jakob Jongsma, Thomas Herndl, Infineon Technologies, Austria	34
SystemC AMS Model of a CMOS Video Sensor Fabio Cenni, Serge Scotti, STMicroelectronics, France Emmanuel Simeu, TIMA Laboratory, France	42
SystemC Executable Specification for Magnetic Speed Sensors Tobias Werth, Infineon Technologies, Austria	50
SYSTEMC AMS DESIGN METHODOLOGIES, EDA TOOLS AND FLOWS	
Introducing Analog Parts into TLM Virtual Platforms Yossi Veller, Mentor Graphics, Israel	58
Using IEEE 1685 Standard (IP-XACT) for Managing AMS Design Flow Based on SystemC AMS Emmanuel Vaumorin, Magillem Design Services, France	64

SYSTEMC AMS IN WIRELESS AND WIRED COMMUNICATION SEMICONDUCTOR INDUSTRY

SystemC/-AMS System-level Model of a Near Field Communication (NFC) Radio Front-end Bas Arts, NXP Semiconductors, The Netherlands	82
SystemC AMS Modelling of a Metallic Line Testing System Gerhard Nössing, Lantiq, Austria	96
RESEARCH AND ACADEMIC	
A Range-based System Simulation and Refinement Design Flow Florian Schupfer, Markus Svarc, Carna Radojicic, Christoph Grimm, Vienna University of Technology, Austria	104
A Monolithic 3-Phase Grid-Tie Direct Current (DC) Alternating Current (AC) Inverter Amal Banerjee, Andreas Gerstlauer, University of Texas, Austin, USA Balmiki Sur, IC Manage, USA Jim Freeman, Analog Electronics, USA	120

State of the Art, Related Work

Mainstream tries to use RT/circuit level models and simulation

- Mixed-Level, Multi-Run, Monte-Carlo, etc.
- Design of Experiments [Rafaila]
- Earlier estimation of power + accuracy needed!

SystemC AMS Methodology enables modeling and simulation of embedded mixed-signal systems at functional, architecture level.

- Power consumption?
- Accuracy?

Institute of TUI omputer Technology

Overview

- Introduction
- Refinement methodology
- MARC/SYCYPHOS Design environment, examples
- Future work

F. Schupfer, Ch. Grimm

ž

ž

tools and libraries based on SystemC

=> Accuracy budgeting

=> Power budgeting

TDF: Filter in Receiver SCA TDF MODULE(lp filter tdf) { sca_tdf::sca_in<AAF> in; sca_tdf::sca_out<AAF> out; sca tdf::sca in<AAF> gain; sca tdf::sca ltf nd ltf; sca util::sca vector<double> num, den; // coefficients void initialize() { num(0) = 1.0;den(0) = 1.0; den(1) = 1.0/(2.0*M_PI*1.0e4); } void processing() out.write(ltf(num, den, in.read() * gain.read()) + noise()); } SCA_CTOR(lp_filter_tdf) {} }; TU Institute of

omputer Technology

Accuracy Profiling and Iterative Refinement

Affine Arithmetic [Andrade et al.] Improves Interval Arithmetics by conserving *correlations* in a symbolic way Affine Arithmetics represents a size \hat{x} by • an ideal, numerical 'central value' x_0 , and • *n* partial deviations x_i scaled by noise symbols $\epsilon_i \in [-1, 1]$ $\hat{x} = x_0 + \sum_{i=1}^n x_i \epsilon_i$ Institute of TU Computer Technology **Graphical representations** $\hat{y}(t)$ ŷ(t) ▲ Range based system response Institute of τIJ computer Technology

Libraries & Tools

1. Library of functional blocks

- Blocks for receiver/transmitter (serializer, modulators, mixers, ACD, ...)
- Non-ideal properties (Noise, offset, nonlinearities, ...)
- Models von processors (ISS)

2. Profiling tools

- Accuracy profiling
- Power (see poster)

18

F. Schupfer, Ch. Grimm

22

200

100

0

TU

Institute of

Computer Technology

sink nodes

runtime

Conclusion, Outlook

- Range based refinement methodology
 - Complements Worst-Case Analysis
 - Single run, traceable deviations influence
 - Refinement information = recommendations, maybe automation?
- Planned extensions
 - Automated management of ressource "accuracy"
 - "Expert-models" that include typical risks as kind of IP-Knowledge from recent projects

Institute of Computer Technology

F. Schupfer, Ch. Grimm

25

Future work: SYCYPHOS/MARC

- Modeling of scenarios and high-level communication in cyber and physical worlds
- Modeling of accuracy, robustness, power consumption in microelectronic systems
- Challenge: Automatical analysis, verification, and improvement of accuracy, resilience/adaptivity, power consumption

F. Schupfer, Ch. Grimm						
Schubler, Ch. Grimm	-	Cak	au méar	Ch	Crimon	
	۰.	SCI	iupier.	GII.	Grimmi	

Thank you for y
Computer Technology
Affine Arithmetic: Syster

System Simulation, SystemC AMS

Directed signal flow; output = f(input, state)

Models of Computation: Synchronous & Dynamic Data flow, KPN, Discrete event modeling, Signal flow

System Simulation with AA straight forward:

Class library provides abstract data type AAF and associated linear and nonlinear operations

Number of noise terms increases with each nonlinear operations \rightarrow "Garbage collection"

m Simulation

F. Schupfer, Ch. Grimm

28

ž

Circuit Simulation with Affine Arithmetic

Computation of Affine ASPs

Computaton of Affine ASP as follows:

- **1.** Compute x_0 by existing Newton-Raphson iteration: $\underline{F}(\underline{x}_0, p_0, t) = \underline{0} \quad \rightarrow \quad \hat{\underline{x}} = \underline{x}_0$
- 2. Compute $x_i \epsilon_i$ by sensitivity analysis:
- 3. Compute $NL \in \epsilon_{i+1}$ (in n-dim space) by approximation scheme in vector/matrix form (Grabowski 2006, 2007, 2008).

$$\underline{\hat{x}} = \underline{x}_0 + \sum \underline{x}_p \epsilon_p + \underline{x}_{ep}$$

TU Institute of Computer Technology

 $\mathbf{J}|_{x_0,p_0} \Delta \underline{x} + \mathbf{P}|_{x_0,p_0} \Delta p = \underline{0} \quad \rightarrow \quad \underline{\hat{x}} = \underline{x}_0 + \sum \underline{x}_p \epsilon_p$

 $d^{\epsilon}epd,i$

× × ×