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Abstract

The investigation of the effects of sparsity or sparsity constraints in signal processing problems

has received considerable attention recently. Sparsity constraints refer to the a priori information

that the object or signal of interest can be represented by using only few elements of a predefined

dictionary. Within this thesis, sparsity refers to the fact that a vector to be estimated has only

few nonzero entries.

One specific field concerned with sparsity constraints has become popular under the name

“Compressed Sensing” (CS). Within CS, the sparsity is exploited in order to perform (nearly)

lossless compression. Moreover, this compression is carried out jointly or simultaneously with the

process of sensing a physical quantity.

In contrast to CS, one can alternatively use sparsity to enhance signal processing methods.

Obviously, sparsity constraints can only improve the obtainable estimation performance since the

constraints can be interpreted as an additional prior information about the unknown parameter

vector which is to be estimated. Our main focus will be on this aspect of sparsity, i.e., we analyze

how much we can gain in estimation performance due to the sparsity constraints.

We will study in detail two specific estimation problems that are already well investigated in the

absence of sparsity constraints. First, we consider an estimation problem coined the “sparse linear

model” (SLM). Here, the unknown parameter determines the mean of an observed Gaussian random

vector. Second, we consider an estimation problem that we refer to as the “sparse parametric

covariance model” (SPCM). In this case, the unknown parameter determines the covariance matrix

of an observed Gaussian random vector.

The main results of this thesis will be lower bounds on the variance of estimators for these two

sparse estimation problems. We will demonstrate that the mathematical framework of reproducing

kernel Hilbert spaces (RKHS) allows a simple derivation of lower bounds on the estimator variance

and, moreover, a natural comparison of estimation problems with and without sparsity constraints.
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Zusammenfassung

Die Untersuchung der Auswirkungen von Spärlichkeitsbedingungen (SB) in verschiedenen Prob-

lemen der Signalverarbeitung ist ein wichtiges Ziel der aktuellen Forschung. Unter SB versteht

man das Vorwissen, dass das Nutzsignal als Superposition weniger “Elementarsignale” dargestellt

werden kann. In dieser Arbeit beziehen sich die SB auf das Vorwissen, dass ein zu schätzender

Parametervektor wenige (im Vergleich zu seiner Länge) Einträge aufweist, die von Null verschieden

sind. Diese Vektoren werde dann als “spärlich” (sparse) bezeichnet.

Solche SB spielen eine zentrale Rolle in der Theorie von “Compressed Sensing” (CS). Im Rahmen

von CS werden die SB verwendet, um eine (nahezu) verlustfreie Datenkompression durchzufüren.

Diese Datenkompression wird dabei mit dem Prozess des Messens einer physikalischen Größe kom-

biniert.

Im Gegensatz zu CS kann man die SB auch zur Versbesserung bestehender Signalverarbeitungsmeth-

oden benutzen. In dieser Arbeit steht diese zweite Möglichkeit im Vordergrund. Ein wesentliches

Ziel ist die Quantifizierung der durch SB bewirkten potenziellen Leistungsverbesserung.

Es werden zwei verschiedene Schätzprobleme mit SB im Detail analysiert. Im ersten Problem,

dem “sparse linear model” (SLM), bestimmt der unbekannte spärliche Parametervektor in linearer

Weise den Mittelwert eines beobachteten Gaußschen Zufallsvektors. Im zweiten Problem, hier

als “sparse parametric covariance model” (SPCM) bezeichnet, bestimmt der unbekannte spärliche

Parametervektor die Kovarianzmatrix eines beobachteten Gaußschen Zufallsvektors.

Die Hauptergebnisse dieser Arbeit sind untere Schranken für die Varianz von Schätzern für

diese beiden Schätzprobleme. Es wird gezeigt, dass die Theorie der “reproducing kernel Hilbert

spaces” (RKHS) eine elegante Ableitung von unteren Varianzschranken erlaubt. Die gefundenen

Schranken gestatten einen natürlichen Vergleich von Schätzproblemen mit und ohne SB.
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Chapter 1

Introduction

Sparsity or sparsity constraints refer to the a-priori information that the parameter or signal vector

of interest can be represented by using only few elements of a predefined dictionary. In particular,

within this thesis, sparsity refers to the fact that a vector has only few non-zero entries. This

thesis is concerned with the theory of classical (i.e., non-Bayesian) estimation problems where it

is known that the unknown parameter vector is sparse.

Given a general classical estimation problem,1 in particular one with sparsity constraints, two

main questions are:

• How to design accurate and efficient estimators?

• Given a specific estimator, how far is it away from being optimal?

This work will mainly address the second question, i.e., the assessment of the quality of a given

estimator. To that end we have to define an optimality criterion. In this thesis we will use the

estimator variance (cf. Chapter 2) as the primary performance criterion. If we have a lower bound

on the set of all realizable values of the performance measure, we can assess the optimality of a

given estimator by comparing its performance measure, i.e., its variance, with this lower bound.

A central part of this work is concerned with the derivation of such lower bounds on the minimum

achievable variance of estimators with a prescribed bias function. We will make these ideas precise

in Chapter 2.

This thesis considers the application of the well-known theory of reproducing kernel Hilbert

spaces (RKHS) to specific problems within classical estimation theory. A RKHS is a special

type of Hilbert space which has specific properties that will be discussed in detail in Chapter

3. The application of RKHS theory to statistical signal processing proved to be very successful,

in particular in the context of machine learning [1, 2]. While the application of RKHS to general

1We will make the notion of a classical estimation problem precise in Chapter 2.

1



2 CHAPTER 1. INTRODUCTION

classical estimation theory dates back to the late 1950s [3], it seems that so far the RKHS framework

has not been used for the study of estimation problems with sparsity constraints. It will be

demonstrated in this thesis that RKHS theory is a well-suited tool for the analysis of the effect of

sparsity constraints within classical estimation problems.

Using the theory of RKHS, we will study in detail two specific estimation problems that have al-

ready been well investigated in the absence of sparsity constraints. First, we consider an estimation

problem coined the “sparse linear model” (SLM),2 in which the unknown parameter determines the

mean of an observed Gaussian random vector. Second, we consider the estimation problem coined

the “sparse parametric covariance model” (SPCM), in which the unknown parameter determines

the covariance matrix of an observed Gaussian random vector. We will show how the SLM and the

SPCM can be obtained as special cases of a larger class of sparse estimation problems where the

statistic of the observation is given by an exponential family (cf. Section 2.6). The main results of

this thesis will be lower bounds on the variance of estimators for the sparse estimation problems

that have a prescribed bias or mean.

1.1 Sparsity in Statistical Signal Processing

Consider a vector x ∈ R
N in the N -dimensional real Euclidean space [4–6]. We then call the

vector x sparse if it has only few nonzero entries, i.e., ‖x‖0 ≪ N where ‖x‖0 denotes the number

of nonzero entries of x. More precisely, the set of all vectors x ∈ R
N with at most S nonzero

entries will be called the set of strictly S-sparse vectors and denoted by

XS , {x ∈ R
N
∣∣‖x‖0 ≤ S}, (1.1)

where S ∈ [N ] , {1, . . . , N}, is called the sparsity degree. Beside the notion of strict sparsity,

there are also weaker notions of sparsity or sparse signals. E.g., the class of compressible signals [7]

consists of vectors whose sorted magnitudes of its entires exhibit a power-law decay so that the

signal vector can be well approximated by a strictly S-sparse vector with a suitable sparsity degree

S. Alternatively, we call a vector x ∈ R
N approximately S-sparse if it consists of S “large” entries

and N − S “small” entries. However, for a rigorous analysis, one has to make the meaning of a

“large” and a “small” entry precise. A specific approach to characterize the set of approximately

S-sparse vectors is to measure the norm of the “tail,” i.e., the norm of the vector that is obtained

from x by setting the S largest (in magnitude) entries to zero. This quantification of approximate

sparsity is used in [8] to characterize the performance of a signal processing algorithm. Another

approach to model approximately sparse vectors will be discussed in detail in Section 5.6.
2Again we justify the unusual convention to name estimation problems after models by the fact, that an estimation

problem is defined to a large extend by an observation model which connects the unknown parameter to be estimation

with the observation.
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If for a given application, e.g. radar [9] or channel estimation [10,11], it is known that the object

of interest can be represented by a sparse vector, then we should exploit this a-priori information.

This can be done in two alternative ways. On the one hand, we can use sparsity to perform a

nearly lossless compression. On the other hand, we could use the sparsity information in order to

improve the performance of existing signal processing schemes.

The former approach is taken within Compressed Sensing (CS) [12–14], i.e., CS refers to sig-

nal processing applications where the sparsity is exploited in order to perform a nearly lossless

compression simultaneously with the sensing process. The output of the sensing process is then

referred to as compressive measurements [15]. From a more formal viewpoint, the theory of CS is

concerned with two fundamental problems:

• The first problem considered in CS is that of finding good methods for the joint compression

and sensing process. In particular, if the sensing process is linear and modeled by a matrix-

vector multiplication between a CS measurement matrix M ∈ R
M×N and the sparse signal

vector x ∈ R
N , we would like to construct measurement matrices which yield both a good

compression performance (i.e., a small number of compressive measurements zm, with z =

Mx, which is equivalent to the requirement M ≪ N) and an accurate reconstruction of

the signal vector x from the compressive measurements z = Mx at a later point. These

two desiderata are contradicting goals and thus there is a tradeoff between compression

performance and achievable reconstruction accuracy. So far, the best known performance

guarantees are obtained by random constructions of the CS measurement matrix [12, 13].

• The second main problem faced in CS is how to exploit the sparsity of the sparse signal

vector x ∈ R
N in order to estimate or recover it in an efficient and accurate way from

given compressive measurements z = Mx. Existing results show that the sparsity allows for

computationally efficient and accurate estimation or recovery procedures [16–18].

By contrast to CS, one may choose not to perform any compression but instead use the full

available amount of raw data and exploit the sparsity constraints in order to obtain a better

performance of signal processing algorithms (compared to the performance obtained in the absence

of any sparsity constraints). Our thesis is concerned with this rationale, i.e., we analyze how much

one can potentially gain in performance using the a priori information represented by the sparsity

constraints.

1.2 Outline of the Thesis

In Chapter 2, we present a brief review of some important concepts used within classical (non-

Bayesian) estimation theory. We will discuss two major rationales within classical estimation
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theory, i.e., the minimax and the minimum variance rationales. The mathematical tools used in

later chapters are presented in Chapter 3. In Chapter 4, we introduce the RKHS approach to

minimum variance estimation and give detailed interpretations of some well-known lower bounds

on the estimator variance from the (geometric) viewpoint of RKHS. The two core chapters of this

thesis are Chapter 5 and Chapter 6, where the RKHS approach to minimum variance estimation

is specialized to two specific estimation problems, i.e., the SLM and the SPCM. In Chapter 5, we

give a detailed characterization of the RKHS associated to the SLM and use this characterization

for the derivation of novel lower bounds on the estimator variance. We will also show in Chapter

5 that the (linear) CS recovery problem can be interpreted as a specific instance of the SLM. In

Chapter 6, we will introduce an RKHS approach to the SPCM, which is quite different from the

RKHS approach to the SLM. This RKHS approach will then be used to derive novel lower bounds

on the estimator variance for the SPCM.

1.3 Contribution and Related Work

This thesis develops the application of the theory of RKHS to classical estimation problems with

sparsity constraints. The main part of the thesis is concerned with the analysis of two specific

estimation problems.

The first problem concerns the SLM. The goal is the estimation of a sparse parameter vec-

tor of which a noisy and linearly distorted version is observed. The SLM is obtained from the

well-known linear Gaussian model (LGM) [19–21] by adding sparsity constraints on the unknown

parameter vector. A special case of the SLM has been considered in [22–24], where the authors

investigate asymptotic minimax estimation. By contrast, we consider a finite-dimensional setting.

Furthermore, we do not consider minimax estimation but a different estimation rationale, i.e.,

minimum variance estimation, where the bias or mean of an estimator is prescribed. We give

results concerning the minimum variance that can be obtained by estimators with a prescribed

bias. In this spirit, the authors of [25,26] derive lower bounds on the variance of estimators for the

SLM with a locally prescribed bias. By locally we mean that the bias has to be defined only at

a given, fixed parameter value and in a small neighborhood around this point. Their bound is an

adaption of the well-known Cramér–Rao bound (CRB) [27] to the sparse setting and depends only

on a first-order characterization (related to a truncated Taylor expansion of an analytic function)

of the estimation problem and bias. In a similar setting, the authors of [28] prove the asymptotic

achievability of the CRB for the CS recovery problem. Whereas [28] considers the SLM with a

random system matrix, we consider a fixed deterministic system matrix as in [25].

By contrast to [25, 26], we derive lower bounds on the estimator variance using a higher-order

characterization of the estimation problem and estimator bias. This implies that our lower bounds
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will be in general tighter, i.e., higher, than those found in [25,26]. Another major difference is that

the results of [25,26] and, in a more general setting, those of [29] are stated in terms of generalized

(matrix) inequalities [30] involving the covariance matrix of an estimator. However, in this work,

we present bounds on the variance of the individual entries of an estimator. In principle both type

of bounds are equivalent, i.e., we can in general reformulate our bounds in terms of generalized

inequalities and vice versa. In particular, the bounds in [25, 26, 29] can be reformulated such that

they can be compared with our bounds.

The second estimation problem considered in this thesis concerns the SPCM. The goal is

to estimate a sparse parameter vector that determines the covariance matrix C of a Gaussian

(random) signal vector of which a noisy version is observed. While covariance estimation is an

established topic of research (see, e.g., the recent work [31–33]), sparsity constraints are mostly

placed directly on the inverse covariance matrix, i.e., the precision matrix C−1, by assuming

that most entries of C−1 are zero. This is mainly because the precision matrix of a Gaussian

random vector is directly related to a graphical model [34] describing the statistical structure of

the random vector. A sparse precision matrix C−1 thus corresponds to a sparse graph, i.e., a graph

with relatively few edges compared to the number of nodes.

From a methodological perspective, this thesis specializes the theory of RKHS for the applica-

tion to minimum variance estimation with sparsity constraints. By sparsity constraint, we mean

that the unknown parameter vector x ∈ R
N to be estimated is known to be S-sparse, i.e., x ∈ XS

with a known sparsity degree S ∈ N. The application of Hilbert space, in particular RKHS,

techniques to minimum variance estimation dates back to the seminal work of Parzen [3], which

introduced the theory of RKHS to general estimation problems. The approach of [3] is further

developed in [35] for specific estimation problems. We see our thesis as another specialization of

the work [3] to estimation problems with sparsity constraints.

Differently from this “RKHS line” of work, a Hilbert space approach has been proposed for

general minimum variance estimation problems in the recent paper [36]. The Hilbert space used

in [36] for the derivation of lower bounds on the estimator variance is different from the RKHS

used in this thesis and based on integral operators associated to a minimum variance estimation

problem. Furthermore, the authors in [36] do not consider estimation with sparsity constraints.

The main contributions of this thesis (listed according to their order of appearance) are the

following.

• Chapter 4: We show in Section 4.3.5 that under mild conditions on the underlying estimation

problem and prescribed, the minimum achievable variance LM of the minimum variance

problem M =
(
E , c(·),x0

)
, viewed as a function of the parameter vector x0, is lower semi-

continuous.
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• Chapter 4: We prove in Section 4.3.6, that the RKHS associated to a minimum variance

problem remains unchanged if the original observation is replaced by any sufficient statistic.

This result could be regarded as an RKHS analogue of the famous “Rao-Blackwell-Lehmann-

Scheffé” (RBLS) theorem [20].3

• Chapter 4: We provide a detailed derivation of some well-known variance bounds using

exclusively RKHS theory. This yields an intuitive geometric interpretation of these bounds.

• Section 5.2: We present a derivation and complete characterization of the RKHS associated

with the SLM. This includes as a special case a novel characterization of the RKHS associated

with the LGM. Our characterization will be quite different from those given [35] which already

considered the LGM and associated RKHS.

• Section 5.3: We discuss minimum variance estimation for the SLM. We characterize the

class of valid bias functions, i.e., those bias functions for which there exists at least one

finite-variance estimator having this bias function. In particular, we show that there does

not exist a finite-variance unbiased estimator of the support set of the unknown sparse

parameter vector.

• Section 5.4: We interpret existing lower bounds on the estimator variance for the SLM from

the RKHS viewpoint and then derive novel lower bounds on the estimator variance based on

the RKHS derived in Section 5.2.

• Section 5.5: We focus on a special case of the SLM termed the sparse signal in noise model

(SSNM). By exploiting the specific structure of the SSNM, it is possible to derive stronger

results than for the general SLM. In particular, we obtain closed-form expressions for the

minimum achievable variance (i.e., the Barankin bound) and the corresponding estimator

which achieves this minimum variance (i.e., the locally minimum variance (LMV) estimator,

which will be defined in Section 2.3) for a wide class of bias functions, which includes the

bias function of the hard-thresholding (HT) estimator [37].

• Section 5.6: We show that the strict sparsity constraints of the SLM are necessary in order

for the minimum achievable variance of the estimation problem to be strictly lower than that

of the minimum achievable variance for the LGM.

3The RBLS theorem basically states that given an arbitrary estimator one can always find an estimator that (i)

depends on the observation only via a sufficient statistic, (ii) has the same bias as the original estimator and (iii)

its variance does not exceed those of the original estimator. Thus, using a sufficient statistic as the new observation

means no loss of information in terms of minimum variance estimation.
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• Section 5.7: Based on the RKHS approach, we present an SLM-based analysis of the CS

recovery problem.

• Section 5.8: We compare the actual variance behaviors of some popular estimation schemes

for the SLM and SSNM with the corresponding lower bounds.

• Section 6.1 and 6.2: We present a specific RKHS approach to the SPCM and discuss the

differences between the RKHS approach to the SPCM and SLM.

• Section 6.3: We derive novel lower bounds on the estimator variance for the SPCM based on

the RKHS defined in Section 6.2.

• Section 6.4: We focus on a special case of the SPCM termed the sparse diagonalizable

parametric covariance model (SDPCM). By exploiting the specific structure of the SDPCM,

it is possible to derive stronger results than for the general SPCM. In particular, we will show

in Section 6.4.3 that for unbiased estimation for the SDPCM, the strict sparsity constraints

are necessary in order for the minimum achievable variance to be strictly lower than for the

case where no sparsity constraints are present.

• Section 6.5: We compare our lower bounds on the variance with the actual variance behavior

of two specific estimation schemes for the SDPCM.

1.4 Notation

In the following we will define the notation used in this thesis. The notation related to probability

theory will be introduced separately in Chapter 2.

The set of (nonnegative) real numbers is denoted by (R+) R, the set of natural numbers is

denoted by N = {1, 2, 3, . . . } and the set of nonnegative integers by Z+ = {0, 1, 2, . . .}. Given a

nonnegative integer L ∈ Z+, we denote by [L] the set of all numbers up to L, i.e., [L] , {1, . . . , L}
if L > 0 and for the special case L = 0 we set [0] , ∅ where ∅ denotes the empty set. Given an

arbitrary set A, we define the Kronecker delta δl,l′ ∈ {0, 1} for l, l′ ∈ A by setting δl,l′ = 0 if and

only if l 6= l′. Given the two sets A and B, we denote by A \ B the set which consists of those

elements of A that are not an element of B and by A ∪ B and A ∩ B the union and intersection,

respectively of A and B [6]. Furthermore we denote by |A| the cardinality, i.e., the number of

elements of a finite set A. We denote by log x the natural logarithm of the positive real number x.

Uppercase boldface letters denote matrices and lowercase boldface letters denote vectors.4 The

superscript T stands for transposition. Given a matrix H ∈ R
M×N we denote by vec{H} ∈

4Since a matrix can be viewed as a special case of a linear operator, we will use uppercase boldface letters also

to denote general linear operators.
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R
MN the certain vector that is obtained by vertically stacking the columns of H. For a square

matrix H ∈ R
N×N , we denote by Tr{H}, det{H} and H−1 its trace, determinant and inverse

(if it exists), respectively. The kernel or null space N (H) of a matrix H ∈ R
M×N is defined as

N (H) , {x ∈ R
N |Hx = 0}. We denote by span(H) the column span of a matrix H ∈ R

M×N , i.e.

span(H) , {y ∈ R
M |∃x ∈ R

N : y = Hx}.
The kth entry of a vector x ∈ R

N and the entry in the kth row and lth column of a matrix

H ∈ R
M×N are denoted by xk and (H)k,l, respectively. We designate the identity matrix of

dimension N × N as IN or just as I if the dimension is clear from the context. The kth column

of the identity matrix will be denoted by ek. By 0 we denote a vector or matrix consisting only

of zeros whereby the dimension of the vector or matrix should by clear from context. Given two

vectors a,b ∈ R
N and two matrices A,B ∈ R

M×N we denote by a 6= b and A 6= B the fact that

the two vectors and matrices, respectively differ in at least one entry. The support, i.e. the set of

indices that correspond to non-zero entries, and number of non-zero entries of a vector x ∈ R
N

are denoted by supp(x) and ‖x‖0, respectively. Given a vector x ∈ R
N , we define its p norm as

‖x‖p ,

(∑
k∈[N ] x

p
k

)1/p
. We denote by ‖a‖∞ , maxk∈[N ] |ak| the largest magnitude of the entries

of the vector a ∈ R
N . Given a square matrix H ∈ R

M×M we denote by ‖H‖p its matrix p-norm

defined as ‖H‖p , sup‖x‖p=1 ‖Hx‖p, where x ∈ R
M .

Given an index set K ⊆ [N ], a vector x ∈ R
N , and a matrix H ∈ R

M×N , we denote by

xK ∈ R
N and HK ∈ R

M×|K| the vector which is obtained from x by zeroing all entries except

those indexed by K and the matrix that is obtained by selecting only the columns of H indexed

by K, respectively.

The fact that a square matrix R ∈ R
N×N is positive semi-definite (psd), i.e.,

xTRx ≥ 0 ∀x ∈ R
N , (1.2)

is denoted by R ≥ 0. Given two psd matrices A,B ∈ R
N×N , we write A ≥ B if the matrix A−B,

given elementwise as the difference between the elements of A and B, is psd, i.e., A−B ≥ 0 [30].

If the inequality in (1.2) is replaced by a strict inequality, we call the matrix R positive definite,

in symbols R > 0.

Given an arbitrary matrix H ∈ R
M×N , we call any decomposition of the form

H = UΣVT (1.3)

with U ∈ R
M×r,V ∈ R

N×r,Σ ∈ R
r×r the thin singular value decomposition (SVD) [38] of H if

UTU = I, VTV = I and the matrix Σ is a diagonal matrix with strictly positive real-valued main

diagonal elements, i.e., (Σ)k,k > 0. These main diagonal entries are called the singular values of

H. Note that it can be shown that every nonzero matrix H ∈ R
M×N has a thin SVD [38]. The



1.4. NOTATION 9

rank or column rank of H, denoted by rank(H), is defined as the unique dimension r of the matrix

Σ appearing in (1.3). We also set rank(0) = 0.

Given a psd matrix H ∈ R
N×N , i.e., H ≥ 0, we call any decomposition of the form

H = UΣUT (1.4)

with U ∈ R
N×rank(H),Σ ∈ R

rank(H)×rank(H) the thin eigenvalue decomposition (EVD) (or thin

symmetric Schur decomposition) [38] of H if UTU = I and the matrix Σ is a diagonal matrix with

positive real-valued main diagonal elements, i.e., (Σ)k,k > 0. These main diagonal elements are

called the eigenvalues of H. Note that it can be shown that every psd matrix H ∈ R
N×N , where

H 6= 0, has a thin EVD [38].

Given a nonzero matrix H ∈ R
M×N and its thin SVD (1.3), we denote by H† ∈ R

N×M its

Moore Penrose pseudo inverse [38] defined by H† , VΣ−1UT . Note that due to the properties of

the thin SVD, the inverse Σ−1 is guaranteed to exist. For H = 0, the Moore Penrose inverse is

defined as H† = 0.

A sequence of elements fl ∈ M, where l ∈ N, that belong to a certain set M is denoted by

{fl ∈ M}l→∞ or, if the underlying set M is clear from the context, by {fl}l→∞.

We call a map or function f(·) : A → B invertible if there exists a map f−1(·), called the

inverse map or inverse function, such that f−1(f(x)) = x for every x ∈ A. A map f(·) : A → B is

called bijective if f(A) = B and if it is invertible, i.e., there exists an inverse map f−1(·) [5]. If a

real-valued function f(·) : D → R is identically zero on its domain, i.e., f(D) = {0}, we will denote

this by f(·) ≡ 0. Given a function f(·) : D → R defined on some domain D and a subdomain

D1 ⊆ D, we denote by f
∣∣
D1

(·) or f(·)
∣∣
D1

its restriction to D1, i.e., the specific function defined

on D1 that coincides with f(·) on D1. More explicitly, the function f
∣∣
D1

(·) : D1 → R satisfies

f
∣∣
D1

(x) = f(x) for every x ∈ D1. For the special case when the subdomain consists of a single

element, i.e., D1 = {x}, we denote by f(·)
∣∣
x

the function value f(x) at x.

The closed ball centered at x0 ∈ R
N with radius r > 0 is denoted by B(x0, r) , {x ∈

R
N
∣∣‖x− x0‖2 ≤ r}.
Given a real-valued function f(·) : D ⊆ R

N → R, we say that f(·) is continuous at the

point x0 ∈ D if lim
x→x0

f(x) = f(x0). A function is said to be continuous if it is continuous

at every point of its domain. Furthermore, we say that a function f(·) : D ⊆ R
N → R is

lower (upper) semi-continuous at the point x0 ∈ D if for every ε > 0 there exists a radius r

such that f(x) ≥ f(x0) − ε (f(x) ≤ f(x0) + ε) for every x ∈ B(x0, r) and denote this fact by

lim inf
x→x0

f(x) ≥ f(x0) (lim sup
x→x0

f(x) ≤ f(x0)) [5, 39], where

lim inf
x→x0

f(x) , sup
r>0

(
inf

x∈D∩(B(x0,r)\{x0})
f(x)

)
, lim sup

x→x0

f(x) , inf
r>0

(
sup

x∈D∩(B(x0,r)\{x0})
f(x)

)
.

(1.5)
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Given a real-valued function R(·, ·) : D ×D → R and an element x ∈ D, we denote by R(·,x)
the specific function f(·) : D → R given by f(x′) = R(x′,x) for every x′ ∈ D. Given two functions

f(·) : A → B, g(·) : C → D, we denote by f(·) = g(·) the fact that A = C, B = D and for every

x ∈ A we have f(x) = g(x).

Given a real-valued function f(·) : D → R where D ⊆ R
N , we denote by ∂ekf(x)

∂xek
or ∂f(x)

∂xk

the partial derivative (if it exists) of f(·) with respect to the kth entry, i.e., ∂ekf(x)
∂xek

denotes

the function g(x) = limh→0
f(x+hek)−f(x)

h [5]. This definition is then recursively extended to an

arbitrary multi-index p ∈ Z
N
+ [40] as follows: Denoting the partial derivative of order p by h(x),

i.e., h(x) = ∂pf(x)
∂xp , the partial derivative of order p′ = p + ek denoted by ∂p′

f(x)

∂xp′ is defined as
∂ekh(x)
∂xek

. Strictly speaking, this definition is not consistent when used for an arbitrary function

f(·), since the partial derivative of order p might depend on the order of adding the ek. However,

within this thesis we exclusively deal with functions f(·) for which this definition of the partial

derivative of order p ∈ Z
N
+ is unambiguous. Given a real-valued function g(·) : D → R where

D ⊆ R
N , we denote by ∂g(x)

∂x

∣∣
x0

the vector a ∈ R
N given elementwise by ak = ∂g(x)

∂xk

∣∣
x0

. Given

a real-valued function R(·, ·) : D × D → R where D ⊆ R
N , we denote by ∂ekR(x1,x2)

∂x
ek
2

or ∂R(x1,x2)
∂x2,k

its partial derivative of order ek w.r.t. x2, i.e., the function g(·, ·) : D × D → R defined as

g(x1,x2) = limh→0
R(x1,x2+hek)−R(x1,x2)

h . The generalization to partial derivatives of the form
∂p1∂p2R(x1,x2)

∂x
p1
1 x

p2
2

with p1,p2 ∈ Z
N
+ is a straightforward extension of the definition of ∂ekR(x1,x2)

∂x
ek
2

obtained by considering the pair (x1,x2) as a “super-vector” of length 2N .

For a finite set T , the sum
∑

l∈T f [l] and product
∏

∈T f [l] of a real valued function f [·] : T → R

are defined in the usual sense. For the special case given by the empty set, i.e., T = ∅ we set
∑

l∈T f [l] = 0 and
∏

∈T f [l] = 1 respectively. Given an arbitrary set T , we define the sum
∑

l∈T f [l]

as the supremum of all finite sums
∑

l∈T ′⊆T f [l] where T ′ is an arbitrary finite subset of T [6, p.

83]. As noted in [6], the so defined sum is nothing but the Lesbegue integral with respect to the

counting measure on T .

We denote by ℓ2(T ) the set of all real-valued functions f(·) : T → R defined on T for which

the sum
∑

l∈T |f [l]|2 is finite. It can be shown [6] that the set ℓ2(T ) is a normed vector space with

norm ‖f [·]‖T ,
√∑

l∈T |f [l]|2.
Given a nonnegative integer p ∈ Z+ we denote by p! the factorial, defined recursively by 0! , 1

and p! , p(p − 1)!. Given a multi-index p ∈ Z
N
+ [40], i.e., an N -tuple of nonnegative integers, we

denote by p! and |p| the product p! ,
∏

l∈[N ] pl! and the sum |p| ,∑l∈[N ] pl, respectively. For a

vector x ∈ R
N and a multi-index p ∈ Z

N
+ , we denote by xp the product xp ,

∏
l∈[N ](xl)

pl . Given

two multi-indices p1,p2 ∈ Z
N
+ , we mean by p1 ≤ p2 that this inequality holds separately for every

single entry, i.e., p1,l ≤ p2,l for every l ∈ [N ].



Chapter 2

Elements of Classical Estimation Theory

Classical or non-Bayesian estimation theory [19–21,41] is concerned with the problem of inferring

the value of an unknown but deterministic parameter x ∈ R
N based on the observation of a

random vector y ∈ R
M .1 By contrast to Bayesian estimation theory [19–21,41], we do not model

the parameter x as a random vector that has a certain statistical characterization. Instead, it is

assumed that the parameter vector has a fixed value that is however unknown.

2.1 Basic Concepts

The elements of a classical estimation problem are the following.

• Parameter set. We assume that the parameter x is an element of the parameter set X ,

i.e.,

x ∈ X . (2.1)

Note that the knowledge of (2.1) also expresses some prior information. Intuitively speaking,

the smaller the parameter set X , the more prior information is available. In the extreme case

(which is practically irrelevant) of a singleton X = {x0}, i.e., the parameter set consists of a

single element, the estimation problem becomes obviously trivial. A main part of this thesis

is concerned with the question of how much certain reductions of the parameter set X help

in terms of estimation quality.

• Statistical model. In order to infer the value of the parameter x from an observed random

quantity y, there has to be some relationship between x and y. Within classical estimation

theory, this relationship is modeled by a family (a set) of probability density functions (pdf)

1Of course x and y do not necessarily have to be real-valued vectors, but we will assume this without loss of

generality for our purposes.

11
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denoted by f(y;x) and called the statistical model. If the true parameter vector is x0, then

the probability of the event {y ∈ A}, where A ⊆ R
M is an arbitrary measurable2 set, is

given by

P{y ∈ A} =

∫

y∈A
f(y;x0)dy. (2.2)

We will consider only statistical models for which one can define a pdf f(y;x) w.r.t. to

the Lebesgue measure in RM such that the relation (2.2) can be interpreted in the sense

of integration w.r.t. the Lebesgue measure [6]. However, the main concepts developed in

this thesis could be in principle also applied to a more general case where the statistics of

the observation y are described by a probability measure [42, 43].3 We will use the symbol

Ex0{T(y)}, where T(y) ∈ R
K is a (possibly random) function of the observation, for the

expectation (cf. [42, 43]) of T(y) w.r.t. the pdf f(y;x0), i.e.,

Ex0{T(y)} ,

∫

z,y
zf(z = T(y)

∣∣y)f(y;x0)dz dy. (2.3)

Note that the conditional pdf f(z = T(y)
∣∣y) of the function value z = T(y), given the

observation y, does not depend on the parameter vector x0. This corresponds to the fact

that the random function T(·) is statistically independent of the observation y for every

parameter vector x ∈ X . For the special case of a deterministic mapping T(y), the definition

(2.3) reduces to

Ex0{T(y)} ,

∫

y

T(y)f(y;x0)dy. (2.4)

• Estimation problem. In some situations, we are not interested in the parameter x directly

but rather the value g(x) of a vector-valued function

g(·) : X → R
P (2.5)

of the true parameter. Consider, e.g., the situation where the vector x represents a trans-

mitted signal and one is not interested in the signal itself but only if a signal has been

transmitted, i.e., if the signal energy g(x) = ‖x‖22 is above a threshold.

Let us formalize the notion of a classical estimation problem by

Definition 2.1.1. A (classical) estimation problem E is a triplet E = (X , f(y;x),g(·))
consisting of the parameter set X ⊆ R

N , a statistical model f(y;x), and the function g(·) :
X → R

P of which we would like to estimate the value g(x).

2We consider the Lebesgue measure for the Euclidean space R
N .

3A pdf is nothing but a convenient representation of probability measures that satisfy some technical conditions

[42,43].
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• Estimator. The estimation or inference of the value g(x) based on the observation y is

performed by applying an estimator function ĝ(·) : RM → R
P to the observation y. For

a specific realization of the observation y, the function value ĝ(y) ∈ R
P is an estimate of

the value g(x). Note that the estimator function value ĝ(y) is a random quantity since it is

obtained by a mapping applied to the random vector y. In this thesis, we deal mainly with

estimators defined via a deterministic mapping ĝ(·). However, it is also possible to consider

random or randomized estimators which are defined by a conditional pdf f(ĝ
∣∣y), i.e., even

if we make the same observation y twice, the corresponding outputs of the randomized

estimator may be different. Such randomized estimators may be useful especially if the

parameter set X is finite.

Implicit in the notation f(ĝ
∣∣y) for the conditional pdf of the estimator outcome ĝ given the

observation y, is the requirement that it cannot depend on the parameter vector x, which

determines the statistics of y via the statistical model f(y;x) (see [41, p. 33]). Strictly

speaking, the correct notation for the conditional pdf of the estimator would be f(ĝ
∣∣y;x), but

since its values cannot depend on x we are allowed to write f(ĝ
∣∣y;x) = f(ĝ

∣∣y) with a suitable

conditional pdf f(ĝ
∣∣y). Equivalently, a randomized estimator ĝ(·) is a random function

(a realization of ĝ(·) is then a deterministic mapping R
M → R

P ), which is statistically

independent of the observation y for every x ∈ X .

We emphasize that all concepts and facts developed in this thesis that relate to the notion

of an estimator, hold for deterministic as well as random(ized) estimators.

• Mean squared error. We also need a measure to compare the quality of different estimators

ĝ(·). A popular choice for the performance measure that will also be used in this work is the

mean squared error (MSE)

ε(ĝ(·);x) , Ex{‖ĝ(y) − g(x)‖22}. (2.6)

• Bias. Given an estimation problem E = (X , f(y;x),g(·)), we define the bias b(ĝ(·);x) of

an estimator ĝ(·) as

b(ĝ(·);x) , Ex{ĝ(y)} − g(x). (2.7)

An estimator ĝ(·) whose bias vanishes identically, i.e.,

b(ĝ(·);x) = 0 ∀x ∈ X (2.8)

is called unbiased. The bias of an estimator represents the “systematic” or deterministic error

which is incurred by the estimator.
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• Variance and stochastic power. Given an estimation problem E = (X , f(y;x),g(·)), we

define the variance v(ĝ(·);x) of an estimator ĝ(·) as

v(ĝ(·);x) , Ex

{∥∥ĝ(y)− Ex{ĝ(y)}
∥∥2
2

}
. (2.9)

Similarly, we define the stochastic power P (ĝ(·);x) as

P (ĝ(·);x) , Ex

{∥∥ĝ(y)}
∥∥2
2

}
. (2.10)

The following relation between the estimator’s mean, variance, and stochastic power can be

verified easily:

P (ĝ(·);x) = v(ĝ(·);x) +
∥∥Ex

{
ĝ(y)}‖22. (2.11)

Note that two estimators that differ only on a set A ⊆ RM of measure zero yield the same

bias, variance, MSE, and stochastic power at every x ∈ X . Therefore, when we say that two

estimators are identical, we mean actually that they may differ only on a set of measure zero.

• Bias - variance tradeoff. The MSE ε(ĝ(·);x) of an estimator ĝ(·) can be decomposed as

the sum of two nonnegative terms:

ε(ĝ(·);x) = ‖b(ĝ(·);x)‖22 + v(ĝ(·);x), (2.12)

where we used the estimator bias as defined in (2.7) and the estimator variance as defined in

(2.9). For a small MSE ε(ĝ(·);x), according to (2.12), it is desirable to construct estimators

that have both a small bias and a small variance. However, in general these are conflicting

desiderata, i.e., an estimator with a small variance tends to have a large bias and vice versa.

Therefore, to obtain a small MSE, one has to carefully balance between these two terms.

It might be, e.g., that if one allows a small bias the variance can be reduced significantly,

resulting in a smaller MSE as compared to unbiased estimators [44]. However, there are at

least two situations where unbiased estimators are preferable. First, if the statistical model

f(y;x), viewed as a function of y, is highly concentrated around its mean, then the bias

effectively determines the MSE and thus a small MSE requires the estimator to be effectively

unbiased. The second situation where unbiasedness is advantageous is when one can observe

a large number N of independent identically distributed (i.i.d.) realizations {yl}l∈[N ] of the

observation y. It can be shown that, without loss of generality, the estimation can then be

based on the sample mean ȳ = 1
N

∑
l∈[N ]

yl.4Under mild conditions on the statistical model

4This is due to the fact that the sample mean ȳ is a sufficient statistic for the problem of estimating x from the

observation {yl}l∈[N] (cf. Section 4.3.6).
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f(y;x), it follows from the central limit theorem [45] that the pdf of ȳ becomes more and

more concentrated around its mean as N increases and therefore we have the same situation

as before, i.e., the MSE is dominated by the bias and thus a small MSE requires an estimator

to be effectively unbiased.

• Optimality of estimators. Given a specific estimation problem E = (X , f(y;x),g(·)), it is

natural to look for an optimum estimator ĝ(·). Since our primary objective is a small MSE

ε(ĝ(·);x), we could be tempted to search for the specific estimator that minimizes the MSE,

i.e., to find the specific estimator (if it exists) that solves the problem

min
ĝ(·)

ε(ĝ(·);x) (2.13)

for all x ∈ X simultaneously.

However, it turns out that in general such an optimality criterion is not meaningful since

there does not exist a single estimator that minimizes the MSE at all parameter vectors x ∈ X
simultaneously [41, 44], i.e., the minimization problem in (2.13) has in general no solution.

This can be verified easily since the minimum MSE obtainable at any fixed parameter vector

x0 is zero and achieved by the dumb estimator ĝ(y) = g(x0) which always yields a constant

value since it completely ignores the observation y. Therefore, if there existed an optimum

estimator in the sense of minimum MSE, it would have to yield zero MSE for all parameter

vectors x and this is in general impossible. We thus have to consider alternative optimality

criteria, two of which will be discussed in the following.

2.2 Minimax Estimation

A widely used notion of estimator optimality is based on the concept of robustness. By a robust

estimator we mean an estimator that performs well under any operating condition [46, 47]. For

our scope, this means that we would like to keep control of the worst-case MSE of an estimator

ĝ(·) for a given estimation problem E = (X , f(y;x),g(·)). This worst-case MSE is defined as

RE(ĝ(·)) , sup
x∈X

ε(ĝ(·);x). (2.14)

The optimal estimator in terms of robustness, called the minimax estimator, is defined as the

solution to the problem [41]

arginf
ĝ(·)

RE(ĝ(·)) = arginf
ĝ(·)

sup
x∈X

ε(ĝ(·);x). (2.15)

The infimum value RE , inf ĝ(·)RE(ĝ(·)) is called the minimax risk of the estimation problem

E . Finding minimax estimators or even characterizing the minimax risk (e.g., by lower bounds)
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is often difficult. However, for the estimation problem corresponding to the sparse linear model,

which will be discussed in detail in Chapter 5, some recent work (see e.g. [48–51]) derives sharp

lower bounds on the minimax risk and presents practical estimation schemes that are close to the

minimax estimator. In this regard, also the authors of [52, 53] present performance evaluations of

existing estimation schemes revealing that they are close to the minimax estimator.

2.3 Minimum Variance Estimation

An optimality criterion different from the minimax criterion is based on the bias-variance decom-

position of the MSE in (2.12). In particular, it is common to fix the estimator bias, i.e., to require

that

b(ĝ(·);x) !
= c(x) ∀x ∈ X , (2.16)

with a given function c(·) : X → R
P (called the prescribed bias function), and then look for

estimators that minimize the MSE.

If, for a given estimation problem E = (X , f(y;x),g(·)), one considers only estimators with

the same prescribed bias function c(x), minimizing the MSE ε(ĝ(·);x) is completely equivalent to

minimizing the variance v(ĝ(·);x). It is often impossible to perform a uniform minimization of the

variance, and therefore we will pursue a local approach: We consider a specific parameter vector

x0 ∈ X and try to minimize the variance v(ĝ(·);x0) at x0 of estimators ĝ(·) whose bias is equal

to the prescribed function c(·) : X → R
P , i.e., b(ĝ(·);x0) = c(x) for all x ∈ X .

We make some important definitions:

Definition 2.3.1. A “minimum variance estimation problem” or “minimum variance problem” M
is the triplet

M ,
(
E , c(x),x0

)
(2.17)

consisting of an estimation problem E = (X , f(y;x),g(·)), a prescribed bias function c(·) : X →
R
P , and a fixed parameter vector x0 ∈ X at which we will try to minimize the variance of estimators

whose bias is equal to c(x) for all x ∈ X .

Definition 2.3.2. Given a minimum variance problem M =
(
E , c(·),x0

)
, we denote by F(M) the

set of all (possibly randomized) estimators with the prescribed bias function c(x) and with finite

variance at x0, i.e.,

F(M) , {ĝ(·)
∣∣v(ĝ(·);x0) <∞, b(ĝ(·);x) = c(x) ∀x ∈ X}. (2.18)

We will refer to the set F(M) as the set of allowed estimators for the minimum variance problem

M.
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The theoretically achievable performance of any estimator for a minimum variance problem is

characterized by

Definition 2.3.3. Given a minimum variance problem M =
(
E , c(·),x0

)
, the minimum achievable

variance at the parameter vector x0 is defined as

LM , inf
ĝ(·)∈F(M)

v(ĝ(·);x0). (2.19)

If there is exists no allowed estimator for M, i.e., the set F(M) is empty, we define LM , ∞.

In the literature, the minimum achievable variance is sometimes referred to as the Barankin

bound (in particular if unbiased estimation is considered).

The most important notion of estimator optimality in the context of minimum variance esti-

mation is stated in

Definition 2.3.4 (Locally Minimum Variance Estimation). Given a minimum variance problem

M =
(
E , c(·),x0

)
, we call any (possibly randomized) estimator ĝ(x0)(·) ∈ F(M) whose variance

at x0 attains LM, i.e.,

v(ĝ(x0)(·);x0) = LM, (2.20)

a locally minimum variance (LMV) estimator for M. For the special case where the prescribed bias

function is identically zero, i.e., c(·) ≡ 0, such an estimator is called a locally minimum variance

unbiased (LMVU) estimator.

While an LMV estimator in general performs well (has a small variance) only locally around

a specific parameter vector x0, there may be estimators which have the prescribed bias c(·) and

moreover perform well (have a small variance) everywhere, i.e., for any parameter value x ∈ X :

Definition 2.3.5 (Uniformly Minimum Variance Estimation). Given an estimation problem E =

(X , f(y;x),g(·)), a prescribed bias function c(·) : X → R
P and a parameter vector x0 ∈ X , we

denote by M(x0) the specific minimum variance problem that is given by M(x0) = (E , c(·),x0).

Then, we call any estimator ĝ(·) : RM → R
P which is an LMV estimator for M(x0) simultaneously

for every x0 ∈ X , a uniformly minimum variance (UMV) estimator for the given estimation

problem E and bias function c(·). For the special case where the bias function is identically zero, i.e.,

c(·) ≡ 0, such an estimator is called a uniformly minimum variance unbiased (UMVU) estimator

for the estimation problem E.

2.3.1 Vector-Valued vs. Scalar-Valued Parameter Function

So far, we considered the estimation of the value g(x) of a vector-valued function g(·) : X →
R
P of the parameter vector x. However, the minimum variance estimation of a P -dimensional
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vector-valued function g(x) =
(
g1(x), . . . , gP (x)

)T
can be reduced to separately estimating the P

scalar functions {gk(x)}k∈[P ]. This is possible because on the one hand we have that the variance

v(ĝ(·);x) can be decomposed as v(ĝ(·);x) =
∑

k∈[P ] v(ĝk(·);x), and on the other hand the bias

constraint decomposes elementwise, i.e., b(ĝ(·);x) = c(x) if and only if b(ĝk(·);x) = ck(x) for

every k ∈ [P ]. Thus, given a minimum variance problem M =
(
E , c(·),x0

)
with prescribed bias

c(·) : X → R
P , we have that the minimum achievable variance at x0 is given as

LM =
∑

k∈[P ]

LMk
, (2.21)

where LMk
denotes the minimum achievable variance for the “scalar” minimum variance prob-

lem Mk = (Ek, ck(·),x0), with Ek denoting the associated scalar estimation problems, i.e, Ek ,

(X , f(y;x), gk(·)). Here, gk(·) and ck(·) denote the kth component of the parameter function g(·)
and the prescribed bias function c(·), respectively. Furthermore, if the estimators {ĝk(·)}k∈[P ] are

LMV estimators for the minimum variance problems Mk, then the vector-valued estimator given

by ĝ(·) =
(
ĝ1(·), . . . , ĝP (·)

)T
is the LMV estimator for M, and vice versa.

Therefore, in the context of minimum variance estimation, we can restrict ourselves without

loss of generality to estimation problems E = (X , f(y;x), g(·)) with a scalar-valued parameter

function g(·) : X → R, i.e., we can assume P = 1 in (2.5). Note that the restriction to scalar-

valued parameter functions is in general not possible in the context of minimax estimation since

the optimization problem (2.15) does not decompose in general.

2.3.2 Lower Bounds via Generalized Inequalities

Some results on minimum variance estimation (e.g., [25, 29]) are stated in terms of generalized

(matrix) inequalities [30] involving the estimator covariance matrix covx0{ĝ(y)} ∈ R
P×P defined

as

covx0{ĝ(y)} , Ex0

{[
ĝ(y)− Ex0{ĝ(y)}

][
ĝ(y)− Ex0{ĝ(y)}

]T}
. (2.22)

Note that covx0{ĝ(y)} is a psd matrix by its very definition. A typical result is then a lower bound

of the form

covx0{ĝ(y)} ≥ L, (2.23)

where the lower bound L ∈ R
P×P is a psd matrix that depends of course on the underlying

estimation problem. By contrast, we derive exclusively lower bounds on the variance v(ĝ(·);x0),

which is always a scalar quantity.

However, since v(ĝ(·);x0) = Tr{covx0{ĝ(y)}}, we have that any bound of the form (2.23)

induces also a lower bound on v(ĝ(·);x0) via

v(ĝ(·);x0) = Tr{covx0{ĝ(y)}} ≥ Tr{L}, (2.24)
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where the last inequality follows from the fact that for two psd matrices A, B ∈ R
P×P , we have

A ≥ B ⇒ Tr{A} ≥ Tr{B} [30].

2.3.3 Exchangeability of Prescribed Bias and Parameter Function

A minimum variance problem M depends on the prescribed bias c(·) : X → R and the parameter

function g(·) : X → R. However, the minimum achievable variance LM as well as the corresponding

LMV estimator do not depend independently on c(·) and g(·), as stated in

Theorem 2.3.1. Consider two estimation problems E = (X , f(y;x), g(·)) and E ′ = (X , f(y;x), g′(·))
which share a common parameter set X and statistical model f(y;x). We have that any estimator

ĝ(·) for E with bias c(·) is also an estimator for E ′ with bias c′(·) = c(·) + g(·) − g′(·). For any

two minimum variance problems M =
(
E , c(·),x0

)
, M′ = (E ′, c′(·),x0) associated with E and E ′,

respectively, with a common fixed parameter vector x0 ∈ X but different prescribed bias functions

c(·) and c′(·), we have that if

g(·) + c(·) = g′(·) + c′(·), (2.25)

then the minimum achievable variance is the same for M and M′, i.e.,

LM = LM′ . (2.26)

Furthermore, if an estimator ĝ(·) is an LMV estimator for M, it is also an LMV estimator for

M′.

Proof. Consider an estimator ĝ(·) for E with bias c(·), i.e., b(ĝ(·);x) = c(x) for any x ∈ X . This

implies by (2.7) that Ex0{ĝ(y)} = g(x)+c(x) for any x ∈ X . However, if we use the same estimator

for E ′ we have that its bias is b(ĝ(·);x) = Ex0{ĝ(y)} − g′(x) = g(x) + c(x) − g′(x). Furthermore,

since both estimation problems E and E ′ share the same statistical model f(y;x), the variance

v(ĝ(·);x) (cf. (2.9)) is the same for both estimation problems. It follows that if the two minimum

variance problems M and M′ satisfy (2.25), the associated sets of allowed estimators coincide,

i.e., F(M) = F(M′), and moreover for each allowed estimator, the corresponding value of the

objective in (2.19) is the same for M and M′, i.e., LM = LM′ .

According to the definition of the minimum achievable variance in (2.19), it is possible that for

a given minimum variance problem M =
(
E , c(·),x0

)
there is no LMV estimator, i.e., no estimator

whose bias is equal to c(x) for all x ∈ X and whose variance at x0 is finite and equal to LM. This

motivates

Definition 2.3.6. Given a minimum variance problem M =
(
E , c(·),x0

)
, we call the prescribed

bias function c(·) : X → R
P valid for M if LM is finite and there exists at least one estimator

with bias c(x) whose variance at x0 equals LM.
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Similarly, we have [3, 35]

Definition 2.3.7. Given a minimum variance problem with zero bias, M = (E , c(·) ≡ 0,x0), with

associated estimation problem E = (X , f(y;x),g(·)), we call a parameter function g(x) estimable

for M if LM is finite and there exists at least one unbiased estimator for g(x) whose variance at

x0 equals LM.

Due to Theorem 2.3.1, we have

Corollary 2.3.2. Given the minimum variance problem M =
(
E , c(·),x0

)
associated with the

estimation problem E = (X , f(y;x), g(·)), the prescribed bias function c(·) : X → R is valid for M if

and only if the parameter function g′(·) = g(·)+c(·) of the estimation problem E ′ = (X , f(y;x), g(·))
is estimable for the minimum variance problem M′ = (E ′, c′(·) ≡ 0,x0).

2.3.4 Existence and Uniqueness of Minimum Variance Estimators

As already mentioned above, it is not guaranteed that there exists an LMV estimator for a

given minimum variance problem M =
(
E , c(·),x0

)
associated to an estimation problem E =

(X , f(y;x),g(·)). Discussions on the conditions for the existence of an LMV estimator can be

found in the seminal works [54, 55]. It is interesting to note that there need not exist an LMV

estimator even if the set F(M) is nonempty, i.e., even if there is at least one estimator ĝ(·) with

bias c(x) and whose variance at x0 is finite. An example of a minimum variance problem where

this is the case can be found in [54, p. 407]. The difficulty in establishing the existence of an LMV

estimator, i.e., an allowed estimator whose variance at x0 attains the infimum in (2.19), results

from the nontrivial topological characterization of the set F(M) of allowed estimators. While one

can easily verify that this set of estimators is an affine subset [30, p. 21] of a specific Hilbert

space, it is in general not true that this set is closed, i.e., there might exist a Cauchy sequence of

estimators belonging to F(M) which has no limit that belongs to F(M).5 We will discuss this

issue in more detail in Section 4.2. In any case, if a LMV estimator exists it is unique, as stated in

Theorem 2.3.3. Consider a minimum variance problem M =
(
E , c(·),x0

)
. If an LMV estimator

exists for M, it is unique.

Proof. The uniqueness of an LMVU estimator, i.e., the uniqueness of an LMV estimator for the

special case of a minimum variance problem with zero bias, c(x) = 0, has been proven in the

seminal works [54, 55]. The statement follows then for an arbitrary prescribed bias function c(·) :
X → R

P by Theorem 2.3.1.

A direct consequence of Theorem 2.3.3, which is also proved in [45] is stated in

5We will introduce the concepts of closedness, limits, and Cauchy sequences in Chapter 3.
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Theorem 2.3.4. Consider an estimation problem E = (X , f(y;x),g(·)) and a prescribed bias

function c(·) : X → R
P . If an UMV estimator exists for E and c(·), it is unique.

Proof. This result follows straightforwardly from Theorem 2.3.3 since the UMV is necessarily also

the unique LMV estimator for any minimum variance problem M =
(
E , c(·),x0

)
, which is obtained

from E and c(·) by choosing an arbitrary value for x0 ∈ X . If there would be two different UMV

estimators, they would be at the same time two different LMV estimators for M which contradicts

Theorem 2.3.3.

2.3.5 Transformations of the Parameter Function

Consider an estimation problem E1 = (X , f(y;x), g1(·)) and a modified estimation problem E2 =

(X , f(y;x), g2(·)) that is obtained from E1 by using the parameter function g2(x) instead of g1(x).

If the two parameter functions are related by g2(x) = g1(x) + a, where a ∈ R is a fixed constant,

we have obviously that if an estimator ĝ1(·) is an unbiased estimator for the estimation problem

E1, then the estimator ĝ2(·) , ĝ1(·) + a is an unbiased estimator for the estimation problem E2
(cf. Theorem 2.3.1). Moreover, this estimator has the same variance as the original estimator, i.e.,

vE2(ĝ2(·);x) = vE1(ĝ1(·);x) for every x ∈ X , where vE(ĝ(·);x) denotes the variance v(ĝ(·);x) at x

of an estimator ĝ(·) that uses an observation y whose statistics are determined by the statistical

model f(y;x) of the estimation problem E . By a slight generalization of this simple example, we

arrive at

Theorem 2.3.5. Consider two estimation problems E1 = (X , f(y;x),g1(·)), E2 = (X , f(y;x),g2(·))
and the associated minimum variance problems M1 = (E1, c(·),x0), M2 = (E2, c(·),x0) that are

identical except for the parameter functions g1(x) and g2(x), respectively. If the parameter func-

tions are related by

g2(·) = Ug1(·) + a (2.27)

where a ∈ R
P is a constant vector and U ∈ R

P×P is an orthonormal matrix, i.e., UTU = I, then

we have that

LM1 = LM2 . (2.28)

Moreover, if an estimator ĝ1(·) is the LMV estimator for M1, then the estimator ĝ2(·) , Uĝ1(·)+a

is the LMV estimator for M2.

Proof. The statement is proven by showing that there is a one-to-one correspondence between the

sets F(M1) and F(M2). Indeed, to any estimator ĝ1(·) ∈ F(M1), we can associate uniquely

the estimator ĝ2(·) , Uĝ1(·) + a ∈ F(M2). Moreover, the value of the objective in (2.19), i.e.,

v(ĝ(·);x0), is the same for ĝ1(·) and ĝ2(·).
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2.3.6 Relaxing The Bias Equality Constraints

Instead of requiring the estimator bias to equal a given function c(x) for every x ∈ X , one may

pose inequality constraints on the bias. This is pursued by the authors of [56] and [57], who

consider minimum variance estimation with inequality constraints placed on the bias gradient.

More specifically, they require the norm of the bias gradient matrix to be upper bounded by a

prescribed maximum value.

2.4 Transformation of the Observation

In some situations it might be desirable not to work with the observation y of a given estimation

problem directly, but to perform some “preprocessing” yielding a modified or transformed observa-

tion z which is easier to process for some reason. As an example for such a preprocessing consider

e.g. a compression or dimension reduction as is done within CS by multiplying the observation

y ∈ R
M with a CS measurement matrix M ∈ R

L×M (typically L ≪ M) to yield a small number

of compressive measurements zk, with z = My. However, in general we cannot expect that the

achievable estimation accuracy remains unchanged if we use the transformed observation. The

next two subsections discuss the influence of a transformation of the observation, in the context of

minimum variance estimation, for the two cases where the transformation is invertible and where

it is not.

2.4.1 Invertible Transformation – Invariance of Classical Estimation Problems

Consider the problem of estimating the value g(x) of the parameter function g(·) : X → R using

the observation y ∈ R
M . Then, intuitively, the estimation problem does not become any harder

if we use not directly y but a transformed observation z = T(y), where T(·) : RM → R
K denotes

an invertible deterministic function (this requires that K ≥ M), as the new observation. Indeed,

we have

Theorem 2.4.1. Consider an estimation problem E = (X , f(y;x),g(·)) with a statistical model

f(y;x) and an invertible deterministic mapping T(·) : RM → R
K . We denote by E ′ the estimation

problem that is obtained from E by using the vector z = T(y) as the observation, i.e., E ′ =

(X , f(z;x),g(·)) where f(z;x) denotes the pdf of the new observation z = T(y). We then have

that for any two minimum variance problems M = (E , c(·),x0)), M′ = (E ′, c(·),x0)) which share

a common prescribed bias function c(·) : X → R
P and a fixed parameter vector x0 ∈ X ,

LM = LM′ . (2.29)
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Moreover, the minimax risks of E and E ′ satisfy

RE = RE ′ . (2.30)

Proof. This statement if proven by showing that the optimization problems (2.19) and (2.15) which

define the quantities LM, LM′ and RE , RE ′ respectively are equivalent for E , E ′ and M, M′.

Indeed, for any estimator ĝ(y) for E and M that uses the observation y we have that the specific

estimator ĝ′(z) , ĝ(T−1(z)) that uses the observation z = T(y) has the same bias and variance

at any x ∈ X . The same goes the other way, i.e., given any estimator ĝ′(z) for E ′ and M′ that uses

the observation z we have that the specific estimator ĝ(y) , ĝ′(T(y)) that uses the observation y

has the same bias and variance at any x ∈ X . Thus we have that ĝ′(z) ∈ F(M′) ⇔ ĝ(y) ∈ F(M),

i.e., b(ĝ(y);x) = b(ĝ′(z);x) for every x ∈ X , and v(ĝ(y);x0) = v(ĝ′(z);x0).

2.4.2 Non-invertible Transformation – Data Processing Inequality for Classical

Estimation

As discussed in the previous section, replacing the observation y by z = T(y) where T(·) : RM →
R
K is an arbitrary (but known) invertible deterministic function is irrelevant w.r.t. minimum vari-

ance and minimax estimation. Loosely speaking, an invertible transformation is just a “relabeling”

of the observed data, i.e., the realization of the observation, which does not incur any gain or loss

of information.

However, if the transformation T(·) applied to the observation is not invertible or even random,

the situation changes. While in general the achievable performance for minimum variance and

minimax estimators is different for the transformed estimation problem E ′ whose statistical model

is given by f(z;x), we still have a relation between the modified and the original estimation

problem. This relation is due to the fact that any estimator ĝ(·) that uses the new observation z

is also an (possibly random) estimator for the original estimation problem with the observation y

since ĝ(z) = ĝ(T(y)). More precisely, we have

Theorem 2.4.2. Consider an estimation problem E = (X , f(y;x),g(·)) with a statistical model

f(y;x) and a (possibly random) function T(·) : RM → R
K . If the function T(·) is random we

assume that it is statistically independent of y for every x ∈ X . We denote by E ′ the estimation

problem that is obtained from E by using the vector z = T(y) as the observation, i.e., E ′ =

(X , f(z;x),g(·)) where f(z;x) denotes the pdf of the new observation z = T(y). We then have

that for any two minimum variance problems given by M =
(
E , c(·),x0

)
, M′ = (E ′, c(·),x0)) which

share a common prescribed bias function c(·) : X → R
P and a fixed parameter vector x0 ∈ X ,

LM ≤ LM′ . (2.31)



24 CHAPTER 2. ELEMENTS OF CLASSICAL ESTIMATION THEORY

Moreover, the minimax risks of E and E ′ satisfy

RE ≤ RE ′ . (2.32)

Proof. The statement follows from the fact that for any estimator ĝ′(z) for E ′ and M′ that uses

the observation z = T(y), we have that the specific (possibly random) estimator ĝ(y) , ĝ′(T(y))

for E and M that uses the observation y has the same bias and variance at any x ∈ X .

In particular, assume that LM′ < LM which would imply, via Definition 2.3.3, that there

must be an allowed estimator ĝ′
0(z) for M′ whose variance at x0 is strictly smaller than LM,

i.e., v(ĝ′(z);x0) < LM. We can then construct an allowed estimator for M as ĝ0(y) , ĝ′
0(T(y))

which has the same variance v(ĝ′(z);x0) < LM at x0. This, however, is a contradiction due to

the definition of LM. A similar argument holds for the minimax risks of the estimation problems

E and E ′.

Thus the infimum in (2.19) and (2.15) cannot decrease by moving from E to E ′ or from M to

M′, respectively.

2.5 Reducing the Parameter Set

The following definition will prove handy:

Definition 2.5.1. Consider a minimum variance problem M =
(
E , c(·),x0

)
associated with the

estimation problem E = (X , f(y;x),g(·)) and an arbitrary subset X ′ ⊆ X of the parameter set of

M. We then denote by

M
∣∣
X ′ ,

(
E ′, c(·)

∣∣
X ′ ,x0

)
(2.33)

the specific minimum variance problem associated with the estimation problem

E ′ ,
(
X ′, f(y;x),g(·)

∣∣
X ′

)
(2.34)

which is identical to M except for the parameter set.

Given an estimation problem E = (X , f(y;x),g(·)), it may be known beforehand that the true

parameter vector x belongs to a subset X ′ ⊆ X of the “nominal” parameter set X . Intuitively,

this a priori knowledge should be exploitable in order to improve the performance of estimators

for g(x). A precise statement in this regard for minimax estimation is

Theorem 2.5.1. Given two estimation problems E = (X , f(y;x),g(·)), E ′ = (X ′, f(y;x),g(·))
which differ only in their parameter sets X and X ′, we have

X ′ ⊆ X ⇒ RE ′ ≤ RE , (2.35)

i.e., reducing the parameter set can never increase the minimax risk of an estimation problem.
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Proof. For any estimator ĝ(·), we have due to X ′ ⊆ X the following relation for the worst MSE’s

associated with E and E ′:

RE ′(ĝ(·)) = sup
x∈X ′

ε(ĝ(·),x) ≤ sup
x∈X

ε(ĝ(·),x) = RE(ĝ(·)). (2.36)

Since this inequality holds for every estimator and since RE(ĝ(·)) , supx∈X ε(ĝ(·);x), we obtain

(2.35).

Compared to minimax estimation, the effect of reducing the parameter set of an estimation

problem in the context of minimum variance estimation is more subtle [25, 26, 29, 58–60]. As

one may intuitively expect, the achievable performance as quantified by the minimum achievable

variance cannot become worse. However, this improved performance bound may not be achieved

by incorporating the a-priori information of a reduced parameter set directly into the design of an

estimator. E.g., if we are given a minimum variance problem M =
(
E , c(·),x0

)
associated with

the estimation problem E = (X , f(y;x),g(·)) and it is known beforehand that the true parameter

vector x is contained within X ′ ⊆ X , then it might be reasonable to constrain an estimator ĝ(y) for

M to take on values only within the set g(X ′) ⊆ R
P . However, for minimum variance estimation

it may not be optimal to place such an additional constraint on an estimator. The real effect of a

reduced parameter set for minimum variance estimation is that the set of allowed estimators F(M)

becomes larger if the parameter set X is reduced to X ′ since the bias constraint defining F(M)

(see (2.18)) has to be satisfied only on the smaller set X ′ instead of the original parameter set X .

Since the set of allowed estimators can only become larger, the minimum achievable variance (cf.

(2.19)) can never increase, as is stated in

Theorem 2.5.2. Consider a minimum variance problem M =
(
E , c(·),x0

)
and an arbitrary subset

X ′ ⊆ X of the parameter set of M. For any modified minimum variance problem M′ = M
∣∣
X ′,

associated with the smaller parameter set X ′ ⊆ X , we have

LM′ ≤ LM, (2.37)

i.e., a reduction of the parameter set can never result in an increase of the minimum achievable

variance.

Furthermore, if we consider a minimum variance problem M with zero bias, c(·) ≡ 0, and an

arbitrary parameter function g(·) : X → R
P , we have that if the parameter function g(·)

∣∣
X ′ is not

estimable for M′, then the parameter function g(·) is also not estimable for M.

Proof. This result follows from (2.19) by the obvious fact that under the condition X ′ ⊆ X we have

that F(M) ⊆ F(M′), i.e., any allowed estimator for M is necessarily also an allowed estimator

for M′.
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2.6 Statistical Models Belonging to an Exponential Family

An important class of estimation problems is obtained by assuming that the statistical model

f(y;x) belongs to an exponential family [34, 41, 61]. An exponential family is a class of pdfs that

is associated with two fixed vector-valued functions Φ(·) : RM → R
K , u(·) : RN → R

K of the

observation y and the parameter vector x, respectively:

f (Φ,u)(y;x) = exp
([

Φ(y)
]T

u(x)−A(Φ)(x)
)
h(y) (2.38)

where h(·) : RM → R is a fixed nonnegative weight function. Associated with an exponential

family is the natural parameter space [61] denoted N (Φ) and defined as

N (Φ) ,

{
x ∈ R

N

∣∣∣∣
∫

y

exp
([

Φ(y)
]T

u(x)
)
h(y)dy <∞

}
. (2.39)

The function A(Φ)(x) : N (Φ) → R is defined by the requirement that
∫
y
f (Φ,u)(y;x)dy = 1 for

every x ∈ N (Φ), i.e.,

A(Φ)(x) , log

∫

y

exp
([

Φ(y)
]T

u(x)
)
h(y)dy. (2.40)

In the literature, the function Φ(·) is known as the potential function or sufficient statistic and the

function A(Φ)(·) is known as the log partition function or cumulant (generating) function [34, 61].

It can be shown [61] that under some weak technical requirements on the parameter func-

tion u(·), every exponential family can be reduced to a standard form, with parameter function

u′(x) = x. In particular, any estimation problem with parameter set X and statistical model

f (Φ,u)(y;x) is equivalent to an estimation problem with parameter set X ′ = u(X ) and statistical

model f (Φ,u′(x)=x)(y;x).

By definition, every exponential family in standard form, i.e., u(x) = x), is completely char-

acterized by the log partition function A(Φ)(·) : N (Φ) → R which has some interesting properties.

In particular, for an exponential family in standard form, according to [34, 61] for every x0 in the

interior of N (Φ), i.e., there exists a radius r > 0 such that B(x0, r) ⊆ N (Φ), the partial derivatives
∂pA(Φ)(x)

∂xp

∣∣∣∣
x=x0

up to any order p ∈ Z
N
+ exist and are given by the cumulants of the pdf f (Φ)(y;x0).

In particular, we obtain for the first order derivatives

∂elA(Φ)(x)

∂xel

∣∣∣∣
x=x0

= Ex0{Φl(y)}. (2.41)

Another useful fact is that the partial derivatives ∂pf(y;x)
∂xp

∣∣
x=x0

exist for any order p ∈ Z
N
+ at

every x0 in the interior of N (Φ). Moreover, it holds that [34, 61]

Ex0

{(
1

f(y;x)

∂pf(y;x)

∂xp

)2}
<∞ (2.42)



2.6. STATISTICAL MODELS BELONGING TO AN EXPONENTIAL FAMILY 27

for any multi-index p ∈ Z
N
+ .

Maybe the most important instance of a pdf belonging to an exponential family is the multivari-

ate normal distribution f(y) of a Gaussian random vector y ∈ R
M with mean µ ∈ R

M and the posi-

tive definite covariance matrix C ∈ R
M×M , i.e., f(y) = 1√

(2π)M det{C}
exp

(
−1

2(y − µ)TC−1(y − µ)
)
.

This distribution is obtained for the choice x = µ from the exponential family in standard form,

i.e., u(x) = x, with sufficient statistic Φ(y) = C−1y, weight function h(y) = 1√
(2π)M det{C}

exp
(
−

1
2y

TC−1y
)

and cumulant function A(Φ)(x) = 1
2x

TC−1x. If a random vector y ∈ R
M is distributed

normally with mean µ and covariance matrix C ∈ R
M×M we denote this by y ∼ N (µ,C).

Finally, we note that the concept of exponential families provides a natural link between clas-

sical estimation theory and the theory of graphical models. Indeed, the structure of the suffi-

cient statistics translates directly to a specific connectivity structure of the associated graphical

model [31, 34].
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Chapter 3

Mathematical Tools

This chapter is a self-contained presentation of the mathematical tools that will be required later

on. All the mathematical concepts discussed in this chapter are based on sets of real-valued

functions f(·) : D → R which share a common domain D. We define the multiplication of a

function with a real number and the sum of two functions over the same domain in the usual

pointwise sense. The following presentation is based mainly on [5, 6] for general Hilbert space

theory and [3, 62] for the theory of RKHS.

3.1 Hilbert Spaces

3.1.1 Some Basic Definitions

Definition 3.1.1. An inner-product function space I over a domain D is a linear space of real-

valued functions f(·) : D → R. By a linear space we mean that

f(·), g(·) ∈ I and a, b ∈ R ⇒ af(·) + bg(·) ∈ I, (3.1)

i.e., any linear combination of two elements of I is also an element of I. Moreover, an inner

product is defined on I, i.e., a mapping that associates to two functions f(·), g(·) ∈ I the real

number 〈f(·), g(·)〉I ∈ R. This inner product has the properties

(a) 〈f(·), g(·)〉I = 〈g(·), f(·)〉I
(b) 〈af(·) + bh(·), g(·)〉I = a〈f(·), g(·)〉I + b〈h(·), g(·)〉I ∀a, b ∈ R and ∀f(·), h(·), g(·) ∈ I
(c) 〈f(·), f(·)〉I ≥ 0 ∀f(·) ∈ I
(d) 〈f(·), f(·)〉I = 0 only if f(·) ≡ 0. (3.2)

In what follows we will need the famous Cauchy-Schwarz inequality [6] as stated in

29
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Theorem 3.1.1. Consider an function space I ′ together with a linear mapping that assigns to any

two functions f(·), g(·) ∈ I ′ the real number 〈f(·), g(·)〉I′ . If the mapping is such that 〈f(·), g(·)〉I′

has the properties (a)-(c) of (3.2), then we have that

|〈f(·), g(·)〉I′ | ≤
√

〈f(·), f(·)〉I′〈g(·), g(·)〉I′ , (3.3)

where the equality sign holds if and only if there is a number c ∈ R such that 〈f(·) − cg(·), f(·) −
cg(·)〉I′ = 0.

Proof. [6, p. 77]

For every inner product space I , one can naturally define an induced norm ‖f(·)‖I via

‖f(·)‖I ,
√

〈f(·), f(·)〉I . (3.4)

As can be verified easily, the induced norm satisfies the axioms of a norm, i.e.,

• Positive definiteness:

∀f(·) ∈ H : ‖f(·)‖I ≥ 0, ‖f(·)‖I = 0 ⇔ f(·) ≡ 0. (3.5)

• Homogeneity:

a ∈ R, f(·) ∈ I ⇒ ‖af(·)‖I = |a|‖f(·)‖I . (3.6)

• Triangle inequality:

‖f(·) + g(·)‖I ≤ ‖f(·)‖I + ‖g(·)‖I . (3.7)

It may happen that for a given linear function space I ′ one can define naturally a real-valued

function 〈f(·), g(·)〉I′ of pairs of elements of the function space, that satisfies all requirements for

an inner product in (3.2) except condition (d).1 It is then customary (cf. [6]) to consider two

functions f(·), g(·) ∈ I ′ as identical if 〈f(·) − g(·), f(·) − g(·)〉I′ = 0. Technically speaking, one

constructs an inner-product space whose elements are the equivalence classes

[
f(·)

]
,

{
f ′(·) ∈ I ′∣∣〈f(·)− f ′(·), f(·) − f ′(·)

〉
I′ = 0

}
(3.8)

where f(·) ∈ I ′. Based on Theorem 3.1.1, one can then verify that this inner-product space is

well defined, i.e., if f ′(·) ∈ [f(·)] and g′(·) ∈ [g(·)] then 〈f(·), g(·)〉I′ = 〈f ′(·), g′(·)〉I′ . However, we

will follow the usual convention of considering the space I ′ itself as an inner-product space [6] and

denote by a function f(·) not only the function itself but the whole equivalence class [f(·)].
1Maybe the best known example of this situation is given by the set of square-integrable real-valued functions.
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Therefore, if we write f(·) ≡ 0, we mean not necessarily that f(x) = 0 for every x ∈ D but that

the function f(·) is in the same class as the function which is identically zero. However, within

this thesis we will work primarily with a special kind of Hilbert spaces, i.e., a RKHS, and in that

case we have that every class
[
f(·)

]
consists of one and only one function, i.e.,

[
f(·)

]
= {f(·)}.

The induced norm ‖ · ‖I also defines the notion of convergence in an inner-product function

space I .

Definition 3.1.2. A sequence {fl(·)}l→∞ of functions fl(·) belonging to an inner-product function

space I, i.e., fl(·) ∈ I, is called convergent to a function f(·) ∈ I if to any ε > 0 there exists a

n0 ∈ N such that

n ≥ n0 ⇒ ‖fn(·) − f(·)‖I ≤ ε. (3.9)

The function f(·) is then called the limit of the sequence {fl(·)}l→∞ and denoted by liml→∞ fl(·).

A necessary condition for a sequence to be convergent is that it is a Cauchy sequence:

Definition 3.1.3. A sequence {fl(·) ∈ I}l→∞ of functions fl(·) belonging to an inner-product

function space I is called a Cauchy sequence if to any ε > 0 there exists a n0 ∈ N such that

n1, n2 ≥ n0 ⇒ ‖fn1(·)− fn2(·)‖I ≤ ε. (3.10)

Now we are in the position to define the central mathematical structure for our thesis, i.e., a

Hilbert space:

Definition 3.1.4. A function Hilbert space H is an inner-product function space that has the

additional property of being complete, i.e., every Cauchy sequence of functions belonging to H
converges to a function belonging to H.

Every inner-product space I can be completed in a canonical way such that it becomes a

Hilbert space [62]. In what follows, we will state the most important concepts and facts about

Hilbert spaces, as required for our purposes.

Definition 3.1.5. Given a function Hilbert space H, and an index set T , we call a subset S =

{gl(·)}l∈T ⊆ H dense, if any element of H can be approximated arbitrary well by an element of the

set S, i.e., for any f(·) ∈ H and any ε > 0, there exists a function g(·) ∈ S such that

‖g(·) − f(·)‖H ≤ ε. (3.11)

Definition 3.1.6. A function Hilbert space H is said to be separable if it contains a countable

subset which is dense in H.

Within this thesis, we exclusively work with Hilbert spaces that are separable.



32 CHAPTER 3. MATHEMATICAL TOOLS

Definition 3.1.7. Given a function Hilbert space H, a set of functions S = {gl(·)}l∈T with an

arbitrary index set T is called complete if the following implication holds:

〈
gl(·), f(·)

〉
H = 0 ∀l ∈ T ⇒ f(·) ≡ 0. (3.12)

Definition 3.1.8. Consider a function Hilbert space H and a subset U ⊆ H. If the subset is such

that any linear combination of two elements of U is still in U , i.e.,

f(·), g(·) ∈ U and a, b ∈ R ⇒ af(·) + bg(·) ∈ U , (3.13)

and if moreover every Cauchy sequence {fl(·) ∈ U}l→∞ converges to a function belonging to U ,

then we call U a subspace of the Hilbert space H.

Note that according to this definition, we have that any subspace of a Hilbert space is itself

a Hilbert space. Indeed, a subspace is a linear space since by (3.13) any linear combination of

two elements are again in the subspace. A subspace is also an inner-product space since an inner

product is given naturally by the inner product defined on the larger Hilbert space, in which the

subspace is contained. Finally, by definition, a subspace is an inner-product space in which every

Cauchy converges to a function of the same subspace, i.e., it is a complete inner-product space,

i.e., a Hilbert space.

Definition 3.1.9. Given a function Hilbert space H that contains an inner-product space I (which

is defined for the same inner product as that of H), i.e., I ⊆ H, we define the closure of I relative

to H, denoted by cl{I}, as the subspace of H that consists of all functions belonging to I as well

as any limit of a Cauchy sequence of functions belonging to I.

Definition 3.1.10. Given an inner-product function space I (in particular, a Hilbert space), an

arbitrary index set T , and a set {vl(·)}l∈T of functions vl(·) ∈ I, we define the linear span of

{vl(·)}l∈T , denoted by span{vl(·)}l∈T , as the set of all finite linear combinations of the functions

vl(·), i.e.,

span{vl(·)}l∈T ,

{
v(·) ∈ I

∣∣∣∣v(·) =
∑

j∈[J ]
ajvlj(·) with J ∈ N, aj ∈ R, lj ∈ T

}
. (3.14)

Definition 3.1.11. Given a function Hilbert space H and an arbitrary index set T , we say that

the set of functions {fl(·) ∈ H}l∈T spans H if the linear span span{fl(·)}l∈T is dense in the Hilbert

space H.

Definition 3.1.12. Given a function Hilbert space H, we call any set of functions {gl(·) ∈ H}l∈T
an orthonormal basis (ONB) for the Hilbert space H if the functions {gl(·)}l∈T span the Hilbert

space H and the functions gl(·) are orthonormal, i.e.,

〈gk(·), gl(·)〉H = δk,l. (3.15)
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Definition 3.1.13. Given a function Hilbert space H and a subspace U ⊆ H, we define the

orthogonal projection of a function f(·) ∈ H onto the subspace U , denoted by PUf(·), as the

element of U given by

PUf(·) , argmin
g(·)∈U

‖g(·) − f(·)‖H. (3.16)

From its definition, it is clear that the orthogonal projection PUf(·) is the best approximation

of f(·) by an element of U .

Definition 3.1.14. We call two Hilbert spaces H1 and H2 with associated inner products 〈 · , · 〉H1

and 〈 · , · 〉H2 isometric if there exists a bijective linear map J[·] : H1 → H2, i.e.,

f(·), g(·) ∈ H1 and a, b ∈ R ⇒ J[af(·) + bg(·)] = aJ[f(·)] + bJ[g(·)], (3.17)

which preserves inner products, i.e.,

f(·), g(·) ∈ H1 ⇒ 〈f(·), g(·)〉H1 = 〈J[f(·)], J[g(·)]〉H2 . (3.18)

Any bijective linear map J[·] for which (3.18) holds is called a congruence (or congruence map)

from H1 to H2.

3.1.2 Some Basic Facts

Theorem 3.1.2. Consider a function Hilbert space H and a subset L ⊆ H which is dense in H.

Then we can express the norm ‖f(·)‖H of any function f(·) ∈ H as

‖f(·)‖H = sup
g(·)∈L

‖g(·)‖H>0

〈f(·), g(·)〉H
‖g(·)‖H

. (3.19)

Proof. By Theorem 3.1.1 we have that |〈f(·), g(·)〉H | ≤ ‖f(·)‖H‖g(·)‖H, which implies that

sup
g(·)∈L

‖g(·)‖H>0

〈f(·), g(·)〉H
‖g(·)‖H

≤ ‖f(·)‖H. (3.20)

From this, the validity of (3.19) is obvious for ‖f(·)‖H = 0.

It remains to prove (3.19) for the case ‖f(·)‖H > 0. However, in this case we can choose

a g(·) ∈ L with ‖g(·)‖H > 0 such that 〈f(·),g(·)〉H
‖g(·)‖H is arbitrarily close to ‖f(·)‖H. Indeed, since

L is dense in H we can find for any sufficiently small ε > 0 a function g(·) ∈ L such that

‖f(·)− g(·)‖H ≤ ε and ‖g(·)‖H > 0. This specific function g(·) yields

〈f(·), g(·)〉H
‖g(·)‖H

=
〈f(·)− g(·) + g(·), g(·)〉H

‖g(·)‖H
=

〈f(·)− g(·), g(·)〉H
‖g(·)‖H

+
〈g(·), g(·)〉H
‖g(·)‖H
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(a)

≥ −‖f(·)− g(·)‖H‖g(·)‖H
‖g(·)‖H

+
〈g(·), g(·)〉H
‖g(·)‖H

≥ −ε+ ‖g(·)‖H

= −ε+ ‖f(·) + g(·) − f(·)‖H
(3.7)

≥ −ε+ ‖f(·)‖H − ‖g(·) − f(·)‖H

= −ε− ‖f(·)− g(·)‖H + ‖f(·)‖H ≥ −2ε+ ‖f(·)‖H, (3.21)

where step (a) is due to Theorem 3.1.1. From (3.21) we conclude that

sup
g(·)∈L

‖g(·)‖H>0

〈f(·), g(·)〉H
‖g(·)‖H

≥ ‖f(·)‖H. (3.22)

Combining (3.20) and (3.22) yields (3.19).

Theorem 3.1.3. Consider a function Hilbert space H, a finite index set T (which can be assumed

without loss of generality to be of the form T = [L] with some L ∈ N), and the set of functions

{fl(·) ∈ H}l∈T . We then have that the linear span span{fl(·)}l∈T is a subspace of H.

Proof. The linear span span{fl(·)}l∈T , for a finite index set T , together with the inner product

〈 · , · 〉H is a finite dimensional inner-product function space, i.e., a special case of an abstract finite

dimensional inner-product space. From this, the statement follows from the well-known fact, that

any finite dimensional inner-product space is complete [6, 63].

Theorem 3.1.4. Consider a function Hilbert space H and an ONB {gl(·)}l∈T for it, where T is

an arbitrary index set. We then have for any f(·) ∈ H

‖f(·)‖2H =
∑

l∈T

∣∣〈gl(·), f(·)
〉
H
∣∣2, (3.23)

and

f(·) =
∑

l∈T

〈
f(·, gl(·)

〉
H gl(·). (3.24)

Proof. [6]

The meaning of (3.24) in case of an infinite index set T is that the function f(·) can be

approximated arbitrarily well by the sums
∑

l∈T ′

〈
f(·, gl(·)

〉
Hgl(·), where T ′ ⊆ T is an arbitrary

finite subset of T , i.e.,

inf
T ′⊆T

∥∥∥∥f(·)−
∑

l∈T ′

〈
f(·, gl(·)

〉
H gl(·)

∥∥∥∥
H
= 0. (3.25)
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Theorem 3.1.5. Consider two Hilbert spaces H1 and H2 as well as two sets of functions A ,

{fj(·) ∈ H1}j∈T and B , {gj(·) ∈ H2}j∈T , indexed by the same set T , that span H1 and H2

respectively, i.e., span{A} is dense in H1 and span{B} is dense in H2. Then, if

t, s ∈ T ⇒ 〈ft(·), fs(·)〉H1 = 〈gt(·), gs(·)〉H2 , (3.26)

the two Hilbert spaces H1, H2 are isometric. A sufficient condition for a linear mapping J[·] :
H1 → H2, which satisfies

t ∈ T ⇒ J[ft(·)] = gt(·), (3.27)

to be a congruence from H1 to H2 is that

J[f(·)] = lim
l→∞

J[fl(·)], (3.28)

for any Cauchy sequence {fl(·) ∈ span{A}}l→∞ with limit f(·) ∈ H1.

Proof. [3]

Theorem 3.1.6. Consider a function Hilbert space H, an arbitrary function f(·) ∈ H, and a

subspace U ⊆ H. We then have for any g(·) ∈ U

〈f(·)−PUf(·), g(·)〉H = 0, (3.29)

which implies that

‖PUf(·)‖2H = ‖f(·)‖2H − ‖f(·)−PUf(·)‖2H ≤ ‖f(·)‖2H. (3.30)

Proof. [6]

Theorem 3.1.7. Consider a function Hilbert space H and a subspace U ⊆ H for which an ONB

{vl(·)}l∈T with a finite index set T exists. Then the orthogonal projection and squared norm of a

function f(·) ∈ H onto the subspace U is given by

PUf(·) =
∑

l∈T

〈
f(·), vl(·)

〉
H vl(·), (3.31)

and

‖PUf(·)‖2H =
∑

l∈T

∣∣〈f(·), vl(·)
〉
H
∣∣2, (3.32)

respectively.

Proof. [6]
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Theorem 3.1.8. Consider a function Hilbert space H and a finite number of functions vl(·) ∈ H,

l ∈ [L]. Then the squared norm of the orthogonal projection of a function f(·) ∈ H on the subspace

U , span{vl(·)}l∈[L] (cf. Theorem 3.1.3) is given by

‖PUf(·)‖2H = cTG†c (3.33)

where the vector c ∈ R
L and matrix G ∈ R

L×L are defined elementwise by cl = 〈f(·), vl(·)〉H and

(G)m,n = 〈vm(·), vn(·)〉H respectively.

Proof. According to Theorem 3.1.6, we can decompose any f(·) ∈ H as a sum f(·) = PUf(·)+h(·),
where 〈h(·), g(·)〉H = 0 for every g(·) ∈ U . This implies that for any l ∈ [L] we have

〈f(·), vl(·)〉H = 〈PUf(·), vl(·)〉H. (3.34)

Since, per definition, the orthogonal projection PUf(·) belongs to the subspace U , span{vl(·)}l∈[L],
we can represent it as

PUf(·) =
∑

l∈[L]
dlvl(·), (3.35)

with suitable coefficients dl ∈ R. The squared norm of the projection can then, due to the

properties (3.2), be expressed as

‖PUf(·)‖2H = dTGd, (3.36)

where G as defined above and the vector d ∈ R
L is obtained by stacking the coefficients dl. From

(3.35) and the linearity of the inner product one can verify using (3.34), that the vector d and the

above defined vector c ∈ R
L are related by

c = Gd. (3.37)

Using the identity GG†G = G [38], we finally obtain

cTG†c
(3.37)
= dTGG†Gd = dTGd

(3.36)
= ‖PUf(·)‖2H.

We will need in the following a slight variation of Theorem 3.1.8 stated in

Theorem 3.1.9. Consider a function Hilbert space H and two sets of functions {vl(·) ∈ H}l∈[L1]

and {wl(·) ∈ H}l∈[L2] that are mutually orthogonal, i.e., 〈vl(·), wl′(·)〉H = 0 for any pair of indices

l ∈ [L1], l
′ ∈ [L2]. Then the squared norm of the orthogonal projection of a function f(·) ∈ H on

the subspace U , span
{
{vl(·)}l∈[L1] ∪ {wl(·)}l∈[L2]

}
is given by

‖PUf(·)‖2H = cT1 G
†
1c1 + cT2 G

†
2c2, (3.38)
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where the vectors c1 ∈ R
L1 , c2 ∈ R

L2 and matrices G1 ∈ R
L1×L1 , G2 ∈ R

L2×L2 are defined

elementwise by c1,l , 〈f(·), vl(·)〉H, c2,l , 〈f(·), wl(·)〉H and (G1)m,n = 〈vm(·), vn(·)〉H, (G2)m,n =

〈wm(·), wn(·)〉H, respectively.

Proof. We merge the two sets {vl(·) ∈ H}l∈[L1] and {wl(·) ∈ H}l∈[L2] into one large set A ,

{ul(·)}l∈[L1+L2] such that ul(·) = vl(·) for l ∈ [L1] and ul(·) = wl−L1(·) for l ∈ [L1 +L2] \ [L1] and

then define the matrix G ∈ R
(L1+L2)×(L1+L2) elementwise by (G)k,l , 〈ul(·), uk(·)〉H. Obviously,

we have span{A} = U . Note that G is a block diagonal matrix, i.e., G =

(
G1 0

0 G2

)
, which

implies that also its pseudo-inverse is block diagonal, i.e., G† =

(
G

†
1 0

0 G
†
2

)
(cf. [64, Theorem

4.2.15]). Similarly, we define the vector c ∈ RL1+L2 via cl = 〈f(·), ul(·)〉H and observe that

c =
(
cT1 cT2

)T
. The application of Theorem 3.1.8, remember that U = span{A}, yields

‖PUf(·)‖2H = cTG†c =
(
cT1 cT2

)
(
G

†
1 0

0 G
†
2

)(
c1

c2

)
= cT1 G

†
1c1 + cT2 G

†
2c2.

Theorem 3.1.10. Consider a function Hilbert space with an ONB {gl(·) ∈ H}l∈T with an arbitrary

index set T . We then have that the Hilbert space H is isometric to the Hilbert space ℓ2(T ) with

inner product
〈
f [·], g[·]

〉
ℓ2(T )

,
∑

l∈T f [l]g[l]. Furthermore, a congruence is given by J[·] : H →
ℓ2(T ) : f(·) ∈ H 7→ h[·] ∈ ℓ2(T ) where h[l] =

〈
f(·), gl(·)

〉
H. Any element f(·) ∈ H of the Hilbert

space H can be written as

f(·) =
∑

l∈T
a[l]gl(·) (3.39)

with a coefficient sequence a[l] ∈ ℓ2(T ), and we have

〈
f(·), g(·)

〉
H =

〈
J[f(·)], J[g(·)]

〉
ℓ2(T )

. (3.40)

Conversely, for any coefficient sequence a[l] ∈ ℓ2(T ) the function given by (3.39) is an element of

H.

Proof. [6, p. 85]

The meaning of (3.39) in case of an infinite index set T is that the function f(·) can be

approximated arbitrarily well by the sums
∑

l∈T ′ a[l]gl(·), where T ′ ⊆ T is an arbitrary finite

subset of T , i.e.,

inf
T ′⊆T
a[l]∈R

∥∥∥∥f(·)−
∑

l∈T ′

a[l]gl(·)
∥∥∥∥
H
= 0. (3.41)
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3.2 Reproducing Kernel Hilbert Spaces (RKHS)

A RKHS H is a special kind of Hilbert space consisting of real-valued functions f(·) : D → R

defined over a specific domain D (which will always be a subset of RN within this thesis). The

special thing about a RKHS H is that the point evaluations fy[·] : H → R : g(·) 7→ g(y) are

continuous functionals [62]. According to [3], we have

Definition 3.2.1. Given a function Hilbert space H over the domain D (i.e., the Hilbert space H
consists of functions f : D → R) and a function R(·, ·) : D × D → R, we call H a RKHS with

reproducing kernel R(·, ·) if the following two statements are valid:

• The function f(·) , R(·,x) obtained by fixing the second argument of the kernel to an arbi-

trary x ∈ D, i.e., f(x′) = R(x′,x), is an element of the RKHS H, i.e.,

x ∈ D ⇒ R(·,x) ∈ H. (3.42)

• The inner product
〈
· , ·
〉
H on the RKHS H satisfies the following “reproducing property”:

f(·) ∈ H,x ∈ D ⇒
〈
f(·), R(·,x)

〉
H = f(x). (3.43)

We make the notion of a kernel function precise by

Definition 3.2.2. Given an arbitrary set D, we call a real-valued function R(·, ·) : D ×D → R a

“kernel function over the domain D” if it is symmetric, i.e.,

x1,x2 ∈ D ⇒ R(x1,x2) = R(x2,x1) (3.44)

and for any finite set {xk}k∈[K] of points xk ∈ D, the matrix R ∈ R
K×K defined elementwise by

(R)k,l = R(xk,xl) is psd, i.e.,

R ≥ 0. (3.45)

As shown in [62], a necessary and sufficient condition for the existence of a (necessarily unique)

reproducing kernel for a given Hilbert space H is that the point evaluations fy[·] : H → R : g(·) 7→
g(y) are continuous functionals. However, for our purposes, it is important to observe that in the

opposite direction, i.e., given a kernel function R(·, ·) : D × D → R, one can always associate a

RKHS to it [2, 62, 65, 66].

Definition 3.2.3. Given a kernel function R(·, ·) : D × D → R over a domain D, we associate

with it the linear function space denoted by L(R) and defined as

L(R) , span{R(·,x)}x∈D . (3.46)

That is, any f(·) ∈ L(R) can be written as a finite sum f(·) =
∑

l∈[L] alR(·,xl) with certain

coefficients al ∈ R and points xl ∈ D.
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Theorem 3.2.1. Given an arbitrary kernel function R(·, ·) : D × D → R, we have that on the

linear space L(R), one can naturally define an inner product denoted by 〈f(·), g(·)〉L(R). This inner

product satisfies the basic properties (3.2) and is completely specified by the requirement

x1,x2 ∈ D ⇒ 〈R(·,x1), R(·,x2)〉L(R) = R(x1,x2). (3.47)

Given two arbitrary functions f(·), g(·) ∈ L(R) and their representations f(·) =∑l∈[L1]
alR(·,x1,l),

g(·) = ∑l∈[L2]
blR(·,x2,l) with suitable coefficients al, bl ∈ R and points x1,l,x2,l ∈ D, their inner

product is given by

〈f(·), g(·)〉L(R) =
∑

l∈[L1]

∑

l′∈[L2]

albl′R(x2,l′ ,x1,l). (3.48)

Moreover, if two functions f(·), g(·) are such that 〈f(·) − g(·), f(·) − g(·)〉L(R) = 0, we have that

f(x) = g(x) for every x ∈ D.

Proof. The properties (a) and (b) in (3.2) are evident from (3.48). Note that (3.48) contains as a

special case the reproducing property (3.43) since for g(·) = R(·,x2), i.e., L′ = 1 and b1 = 1, we

obtain

〈f(·), g(·)〉L(R) =
∑

l∈[L1]

alR(x2,x1,l) = f(x2). (3.49)

As already discussed, the property (d) in (3.2) is always satisfied if we define f(·) ≡ 0 to mean

that 〈f(·)−n(·), f(·)−n(·)〉L(R) = 0, where n(·) denotes the zero function, i.e., n(x) = 0 for every

x ∈ D.

The property (c) in (3.2), i.e., 〈f(·), f(·)〉L(R) ≥ 0 for any f(·) =
∑

l∈[L1]
alR(·,xl) ∈ L(R)

follows straightforwardly from (3.45) and the formula (3.48) evaluated for f(·) = g(·). Indeed,

〈f(·), f(·)〉L(R) =
∑

l∈[L1]

∑

l′∈[L1]

alal′R(x1,l′ ,x1,l) = aTRa ≥ 0, (3.50)

with the vector a ∈ RL1 whose entries are the coefficients al and psd matrix R ∈ RL1×L1 whose

elements are given by (R)m,n , R(x1,m,x1,n).

Finally, we have that 〈f(·)− g(·), f(·)− g(·)〉L(R) = 0 implies f(x) = g(x) for every x ∈ D. In

particular, f(·) ≡ 0 implies that f(x) = 0 for every x ∈ D. Indeed, we have by (3.43) (which is a

special case of (3.48)) and Theorem 3.1.1 that for any x ∈ D

|f(x)− g(x)| (3.43)
= |〈f(·)− g(·), R(·,x)〉L(R) |

(3.3)

≤
√

〈f(·)− g(·), f(·) − g(·)〉L(R)

√
〈R(·,x), R(·,x)〉L(R)

(3.47)
=

√
〈f(·)− g(·), f(·) − g(·)〉L(R)

√
R(x,x) = 0,

i.e., f(x) = g(x) for any x ∈ D.
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With a slight abuse of notation, we will use from now on the same symbol L(R) for both the

linear space given by (3.46) and the inner-product space that is given by this linear space together

with the inner product 〈f(·), g(·)〉L(R) defined by (3.47). It should be clear from the context what

precise meaning of the symbol L(R) is used.

Based on the inner-product space L(R), one can show

Theorem 3.2.2. Consider an arbitrary kernel function R(·, ·) : D × D → R over a domain D,

and let C denote the set of all functions f(·) : D → R that are the pointwise limits of a Cauchy

sequence in the inner-product space L(R). Then, the set of functions f(·) : D → R denoted by

H(R) and defined as

H(R) , L(R) ∪ C (3.51)

forms a RKHS with kernel R(·, ·). Moreover, the linear space L(R) is dense in the Hilbert space

H(R), i.e., the set {R(·,x) ∈ L(R)}x∈D spans the RKHS H(R). The inner product on the Hilbert

space H(R) is completely determined by the basic properties (3.2) and by (3.43).

Proof. [3, 62, 65]

Given a kernel R(·, ·) : D × D → R, we have that the RKHS H(R) constructed in Theorem

3.2.2 is the unique RKHS associated with this kernel, as stated in

Theorem 3.2.3. Given an abitrary kernel function R(·, ·) : D × D → R over a domain D, there

exists a unique RKHS which satisfies (3.42) and (3.43). This unique RKHS coincides with H(R)

constructed in Theorem 3.2.2.

Proof. The statement about the existence is proven trivially by Theorem 3.2.2. A proof of the

uniqueness can be found in [3, 62].

Example 3.2.4. A well-known example of a RKHS is the Euclidean space R
N endowed with the

inner product 〈x,y〉 =∑k∈[N ] xkyk. This is a RKHS of functions over the domain D = [N ], which

can be represented by length N vectors. This RKHS is associated to the kernel R(·, ·) : [N ]× [N ] →
R : R(k, l) = δk,l, i.e., the kernel can be represented by the identity matrix IN . For any k ∈ [N ]

we have ek = R(·, k) ∈ R
N which verifies (3.42). Next, for any vector a ∈ R

N it holds that

ak = aTek = 〈a, R(·, k)〉 verifying (3.43). Finally, one can verify (3.47) since 〈R(·, k), R(·, l)〉 =

eTk el = δk,l = R(k, l).

3.3 Important Facts about RKHS

Theorem 3.3.1. Consider a RKHS H(R) and a set {vl(·) ∈ H(R)}l∈T , where T is an arbitrary

index set. If the set {vl(·) ∈ H(R)}l∈T is dense in L(R), then it is also dense in the RKHS H(R).
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Proof. Consider an arbitrary f(·) ∈ H(R). Since by Theorem 3.2.2 we have that the linear space

L(R) is dense in H(R), we can find for any ε > 0 a function g(·) ∈ L(R) such that ‖g(·) −
f(·)‖H(R) ≤ ε. Furthermore, since the set {vl(·) ∈ H(R)}l∈T is dense in L(R), we can also find a

function vl(·) such that ‖g(·) − vl(·)‖H(R) ≤ ε. By the triangle inequality (3.7), we have

‖f(·)− vl(·)‖H(R) = ‖(f(·)− g(·)) + (g(·) − vl(·))‖H(R)

≤ ‖f(·)− g(·)‖H(R) + ‖g(·) − vl(·)‖H(R) ≤ 2ε. (3.52)

Thus, we have shown that any f(·) ∈ H(R) can be approximated arbitrary well by a function

vl(·).

Theorem 3.3.2. Consider a RKHS H(R) over the domain D. If a sequence {fl(·) ∈ H(R)}l→∞
converges to a function f(·) ∈ H(R), i.e, liml→∞ fl(·) = f(·), then the sequence converges also

pointwise to f(·), i.e., for every x ∈ D we have that liml→∞ fl(x) = f(x). Moreover, this point-

wise convergence is uniform on every subset D′ ⊆ D on which R(x,x) is uniformly bounded, i.e.,

there exists a constant C such that R(x,x) ≤ C for every x ∈ D′.

Proof. [62]

A direct consequence of Theorem 3.3.2 which is of major importance for our purposes is stated

in

Theorem 3.3.3. Consider a RKHS H(R) over the domain D and an arbitrary Cauchy sequence

{fl(·) ∈ H(R)}l→∞. If the sequence converges pointwise to the function f(·) : D → R, i.e., for every

x ∈ D we have liml→∞ fl(x) = f(x), then the sequence converges to f(·), i.e., liml→∞ fl(·) = f(·)
and f(·) ∈ H(R).

Proof. This result is proven by contradiction: Denote the limit of the Cauchy sequence by f ′(·),
i.e., f ′(·) = liml→∞ fl(·). Note that the limit exists since per definition any Cauchy sequence in a

Hilbert space has a limit. Now let us assume that the limit f ′(·) is different from f(·). Since f ′(·)
and f(·) are different, there must be some point x′ ∈ D for which f ′(x′) 6= f(x′). However, since

the sequence {fl(·)}l→∞ converges to f ′(·) in RKHS norm, we have according to Theorem 3.3.2

that the sequence {fl(x′)}l→∞ must converge to f ′(x′). But this is a contradiction to the fact that

{fl(x′)}l→∞ converges to f(x′).

Theorem 3.3.4. Consider two RKHSs H(R1) and H(R2) defined over the domains D1 and D2,

respectively, as well as two sets A = {fj(·) ∈ H(R1)}j∈T and B = {gj(·) ∈ H(R2)}j∈T , indexed by

the same index set T , that span H(R1) and H(R2), respectively. Assume that these two sets are

such that

t, s ∈ T ⇒
〈
ft(·), fs(·)

〉
H(R1)

=
〈
gt(·), gs(·)

〉
H(R2)

. (3.53)
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Then a sufficient condition for a linear mapping K[·] : H(R1) → H(R2), satisfying K[ft(·)] = gt(·)
for every t ∈ T , to be a congruence from H(R1) to H(R2) is that for any sequence {fl(·) ∈
span{A}}l→∞ such that the pointwise limit function f(x) = limk→∞ fk(x) exists and belongs to

H(R1), we have that

∀x ∈ D2 : K[f(·)](x) = lim
l→∞

K[fl(·)](x). (3.54)

Proof. This result is proven by Theorem 3.1.5. Obviously we have that K[·] satisfies (3.27) and

it only remains to verify (3.28). To that end, consider an arbitrary Cauchy sequence {fl(·) ∈
span{A}}l→∞ with limit f(·) ∈ H(R1) and the associated sequence {K[fl(·)] ∈ span{B}}l→∞
which due to (3.53) is also a Cauchy sequence with some limit g(·) ∈ H(R2). By Theorem

3.3.2, we have that the sequence {fl(·) ∈ span{A}}l→∞ converges pointwise to f(·), which in turn

implies via (3.54) that the Cauchy sequence {K[fl(·)](·) ∈ span{B}}l→∞ converges pointwise to the

function K[f(·)](·). Since by Theorem 3.3.3 and liml→∞ K[fl(·)] = g(·), we have that K[f(·)] = g(·),
we have verified (3.28).

A main theme of this thesis is how a certain RKHS H1 defined over domain D1 is related to

another RKHS H2 that is obtained by restricting the functions f(·) ∈ H1 to the subset D2 ⊆ D1.

The most important result concerning this question is stated in

Theorem 3.3.5. Consider a RKHS H(R1) associated with the kernel R1(·, ·) : D1×D1 → R, whose

elements are functions with domain D1. Then the set of functions that is obtained by restricting

each function f(·) ∈ H(R1) to the subdomain D2 ⊆ D1 coincides with the RKHS H(R2) associated

with the kernel R2(·, ·) : D2 × D2 → R that is the restriction of the kernel R1(·, ·) : D1 × D1 → R

to the subdomain D2 ×D2, i.e., R2(·, ·) = R1(·, ·)
∣∣
D2×D2

. Furthermore, we have the relation

‖f(·)‖H(R2) = min
g(·)∈H(R1)

g(·)
∣∣
D2

=f(·)

‖g(·)‖H(R1). (3.55)

Thus, the norm of any element f(·) ∈ H(R2) is equal to the minimal norm of a function g(·) ∈
H(R1) that coincides with f(·) on the restricted domain D2.

Proof. [62]

In what follows, we will need

Theorem 3.3.6. Consider a RKHS H(R) whose kernel R(·, ·) : D×D → R is given pointwise by

R(x1,x2) =
∑

k∈T
gk(x1)gk(x2) (3.56)

with an arbitrary index set T .The functions gk(·) ∈ H(R) are assumed to be orthonormal, i.e.,

〈
gk(·), gl(·)

〉
H(R)

= δk,l. (3.57)
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Then we have that the set {gk(·) ∈ H(R)}k∈T forms an ONB for the RKHS H(R).

Proof. The proof is a slight modification of the derivation of [67, Theorem 3.12]. First, we note

that the sum
∑
k∈T

gk(x1)gk(x2) can be understood in the usual sense, i.e., as the supremum over

all finite sums
∑

k∈T ′

gk(x1)gk(x2) with a finite set T ′ ⊆ T . This is possible via the Cauchy-Schwarz

inequality for the Hilbert space ℓ2(T ) (cf. Theorem 3.1.1 and [6]) since the sequences a[k] , gk(x1),

b[k] , gk(x2) both belong to ℓ2(T ) for any x1,x2 ∈ D.

We now show that any function f(·) ∈ H(R) can be approximated arbitrarily well by a finite

linear combination of the functions {gk(·) ∈ H(R)}k∈T , i.e., the set spans the RKHS H(R) which

implies that {gk(·) ∈ H(R)}k∈T is an ONB for H(R). To this end, according to Theorem 3.3.1,

it is already sufficient to show that any function f(·) ∈ L(R) in the linear span L(R) can be

approximated arbitrarily well.

Consider an arbitrary function f(·) ∈ L(R) (cf. (3.46)), i.e., f(·) =∑l∈[L] alR(·,xl) with some

al ∈ R and xl ∈ D, l ∈ [L]. We then have that

‖f(·)‖2H(R) =

〈∑

l∈[L]
alR(·,xl),

∑

l∈[L]
alR(·,xl)

〉

H(R)

=
∑

l,l′∈[L]
alal′R(xl,xl′)

(3.56)
=

∑

l,l′∈[L]
alal′

∑

k∈T
gk(xl)gk(xl′)

=
∑

l,l′∈[L]
alal′

∑

k∈T

〈
gk(·), R(·,xl)

〉

H(R)

〈
gk(·), R(·,xl′)

〉

H(R)

(a)
=
∑

k∈T

〈
gk(·),

∑

l∈[L]
alR(·,xl)

〉

H(R)

〈
gk(·),

∑

l′∈[L]
al′R(·,xl′)

〉

H(R)

=
∑

k∈T

〈
gk(·), f(·)

〉

H(R)

〈
gk(·), f(·)

〉

H(R)

=
∑

k∈T

∣∣〈gk(·), f(·)〉H(R)

∣∣2, (3.58)

where the change of summation order in (a) can be validated by an argument based on the Cauchy-

Schwarz inequality for the Hilbert space ℓ2(T ) (cf. Theorem 3.1.1 and [6]). Let us now introduce

the function sT ′(·) , ∑
k∈T ′〈f(·), gk(·)〉H(R) gk(·) ∈ span{gk(·)}k∈T for any finite set T ′ ⊆ T . It

can be verified that according to Theorem 3.1.7, the function sT ′(·) coincides with the orthogonal

projection of f(·) on the subspace

U (T ′) , span{gk(·)}k∈T ′ ⊆ span{gk(·)}k∈T ⊆ H(R), (3.59)
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i.e., PU(T ′)f(·) = sT ′(·). Obviously, an ONB for the subspace U (T ′) is given by the function set

span{gk(·)}k∈T ′ . Therefore, by Theorem 3.1.6 and Theorem 3.1.7, we have

‖f(·)− sT ′(·)‖2H(R) = ‖f(·)−PU(T ′)f(·)‖2H(R)

(3.30)
= ‖f(·)‖2H(R) − ‖PU(T ′)f(·)‖2H(R)

(3.32)
= ‖f(·)‖2H −

∑

k∈T ′

∣∣〈f(·), gk(·)〉H(R)

∣∣2

(3.58)
=

∑

k∈T

∣∣〈f(·), gk(·)〉H(R)

∣∣2 −
∑

k∈T ′

∣∣〈f(·), gk(·)〉H(R)

∣∣2

=
∑

k∈T \T ′

∣∣〈f(·), gk(·)〉H(R)

∣∣2. (3.60)

From this it follows that

inf
|T ′|∈N
T ′⊆T

‖f(·)− sT ′(·)‖H(R) = 0,

i.e., any function f(·) ∈ L(R) can be approximated arbitrary well by an element of span{gk(·)}k∈T
due to (3.59). Thus, we have that span{gk(·)}k∈T is dense in the linear space L(R) and by Theorem

3.3.1 it is also dense in H(R). This means in turn that the set {gk(·)}k∈T of orthonormal functions

spans the RKHS H(R), i.e., is an ONB for H(R).

3.4 RKHSs with a Differentiable Kernel

The main part of this thesis is concerned exclusively with RKHSs over a domain D ⊆ R
N that are

associated with a “differentiable” kernel [2,68]. It will turn out that under specific conditions, the

functions of a RKHS associated with a differentiable kernel are characterized completely by their

behavior in an arbitrarily small neighborhood around a single point belonging to the domain D.

Note that it will always be implicitly assumed that the standard topology, induced by the inner

product xTy, is used for R
N .

For a precise definition of a differentiable kernel, consider an index set K ⊆ [N ] and a vector

xc ∈ R
N , and define the “ε-K-neighborhood” of xc by

NK
xc
(ε) , {xc + a

∣∣a ∈ R
N
+ , supp(a) = K, ‖a‖∞ ≤ ε}. (3.61)

Definition 3.4.1. A kernel R(·, ·) : D×D → R over a domain D ⊆ R
N is said to be differentiable

up to order m if for any xc and K for which there exists an ε > 0 such that NK
xc
(ε) ⊆ D, the partial

derivatives
∂p1∂p2R(x1,x2)

∂xp1
1 ∂xp2

2

∣∣∣∣
x1=x2=xc

(3.62)
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exist for any orders p1,p2 ∈ Z
N
+ with supp(p1), supp(p2) ⊆ K and ‖p1‖∞, ‖p2‖∞ ≤ m, and

moreover this partial derivatives are continuous functions of (x1,x2) (viewed as a vector in R
2N).

We will call a RKHS H(R) differentiable, if it is associated to a differentiable kernel R(·, ·).

An important property of the RKHS associated to a differentiable kernel is stated in

Theorem 3.4.1. Let D ⊆ R
N , and consider a RKHS H(R) associated to a kernel R(·, ·) : D×D →

R which is differentiable up to order m. Then for any p ∈ Z
N
+ with ‖p‖∞ ≤ m, the function

g
(p)
xc (·) : D → R defined by

g
(p)
xc (x) ,

∂pR(x,x2)

∂xp
2

∣∣∣∣
x2=xc

, (3.63)

where xc ∈ D is such that N supp(p)
xc (ε) ⊆ D (for a suitable ε > 0), is an element of H(R), i.e.,

g
(p)
xc (·) ∈ H(R). (3.64)

Furthermore, the inner product of the function g
(p)
xc (·) with an arbitrary function f(·) ∈ H(R) is

given by 〈
g
(p)
xc (·), f(·)

〉

H(R)

=
∂pf(x)

∂xp

∣∣∣∣
x=xc

. (3.65)

Proof. [68]

We will also need the following slight variation of Theorem 3.4.1.

Corollary 3.4.2. Consider a RKHS H(R) associated to a kernel R(·, ·) : D × D → R, D ⊆ R
N ,

which is differentiable up to order m ∈ N. Furthermore, consider a matrix A ∈ R
N×D, a vector

zc ∈ R
D, and a multi-index p ∈ Z

D
+ with ‖p‖∞ ≤ m that satisfy AN supp(p)

zc (ε) ⊆ D for some small

ε > 0. Then for any function h(·) : RD → R for which the partial derivatives of any order p′ ∈ Z
D
+

with ‖p′‖∞ ≤ m exist at the point zc ∈ R
D, the function f(·) : D → R defined by

f(x) ,
∂p
(
R(x,Az2)h(z2)

)

∂zp2

∣∣∣∣
z2=zc

, (3.66)

is an element of H(R), i.e.,

f(·) ∈ H(R). (3.67)

Proof. The statement follows from Theorem 3.4.1 by induction on the order p by the chain rule

and product rule of differentiation [5]. We will restrict ourselves here to the begin of the induction,

i.e., we consider p = ek with k ∈ [D] which yields

f(x) =
∂ek
(
R(x,Az2)h(z2)

)

∂zek2

∣∣∣∣
z2=zc

=
∂ekR(x,Az2)

∂zek2

∣∣∣∣
z2=zc

∂ekh(z2)

∂zek2

∣∣∣∣
z2=zc
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=

[
∑

k′∈[D]

∂ek′R(x, x2)

∂x
ek′
2

∣∣∣∣
x2=Azc

(A)k′,k

]
∂ekh(z2)

∂zek2

∣∣∣∣
z2=zc

. (3.68)

By assumption, we have ∂e
k′R(·,x2)

∂x
e
k′

2

∣∣∣∣
x2=Azc

∈ H(R) which implies, since f(·) is a linear combination

of the functions ∂e
k′R(·,x2)

∂x
e
k′

2

∣∣∣∣
x2=Azc

and H(R) is a Hilbert space (in particular a linear space), that

f(·) ∈ H(R).

In the next chapters, we will exclusively consider differentiable kernels that are such that

the function h(x) , R(x,x) is bounded on every bounded subset D′ ⊆ D. Note that that a

differentiable kernel up to an order m ≥ 1 is always continuous, i.e., lim(x,x′)→(x0,x′
0)
R(x,x′) =

R(x0,x
′
0), since the partial derivatives ∂ekR(x,x2)

∂x2,k
(and ∂ekR(x,x2)

∂xk
by symmetry of the kernel) are

continuous and thus the kernel R(·, ·), viewed as a function with domain R
2N is differentiable in

the usual sense of multivariable calculus [5, Theorem 9.21]. We have that the functions belonging

to a RKHS whose kernel is continuous and bounded in the above sense must be continuous:

Theorem 3.4.3. Consider the RKHS H(R) associated with a continuous kernel R(·, ·) : D×D →
R, with D ⊆ R

N , for which h(x) , R(x,x) is bounded for x ∈ D′, where D′ is any set of the form

D′ = D ∩ B(xc, r) with some center xc ∈ R
N and radius r > 0. Then every function f(·) : D → R

belonging to H(R) is continuous.

Proof. Given an arbitrary but fixed function f(·) ∈ H(R) and point x0 ∈ D, we have to show that

for every ε > 0 we can find a δ > 0 such that |f(x0)− f(x)| < ε for any x ∈ D with ‖x−x0‖2 < δ.

First we observe that any function fx(·) = R(·,x) with x ∈ D is trivially continuous by our

assumption that R(·, ·) in continuous. Since a finite linear combination of continuous functions is

still continuous, we also have that any function w(·) ∈ L(R) is continuous.

Now consider the ball B(x0, r) centered at x0 and with an arbitrary radius r > 0. According

to our assumptions, there exists a constant M such that R(x,x) < M for every x ∈ D ∩ B(x0, r).

According to Theorem 3.2.2, the linear space L(R) is dense in H(R), i.e., we can find a function

w(·) ∈ L(R) such that ‖w(·)−f(·)‖H(R) ≤ ε/(4
√
M) for an arbitrary but fixed ε > 0. Since w(·) is

continuous, we can find a radius δ ≤ r such that |w(x0)−w(x)| < ε/2 for every x ∈ D ∩ B(x0, δ).

Now we have for any x ∈ D ∩ B(x0, δ) that

|f(x0)− f(x)| =
∣∣w(x0)− w(x) + [f(x0)− w(x0)] + [w(x) − f(x)]

∣∣

(a)
=
∣∣w(x0)− w(x) + 〈f(·)−w(·), R(·,x0)〉H(R) + 〈f(·)− w(·), R(·,x)〉H(R)

∣∣

(b)

≤
∣∣w(x0)− w(x)

∣∣ +
∣∣〈f(·)− w(·), R(·,x0)〉H(R)

∣∣+
∣∣〈f(·)− w(·), R(·,x)〉H(R)

∣∣
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(c)

≤ ε/2 + ‖f(·)− w(·)‖H(R)‖R(·,x0)‖H(R) + ‖f(·)− w(·)‖H(R)‖R(·,x)‖H(R)

(d)
= ε/2 + ‖f(·)− w(·)‖H(R)

√
R(x0,x0) + ‖f(·)− w(·)‖H(R)

√
R(x,x)

≤ ε/2 +
ε

4
√
M

√
M +

ε

4
√
M

√
M

= ε/2 + ε/4 + ε/4 = ε, (3.69)

where (a) and (d) is due to the reproducing property (3.43), (b) follows from the inequality |a+b| ≤
|a|+ |b| for a, b ∈ R and the step (c) is obtained by an application of the Cauchy-Schwarz inequality

(cf. Theorem 3.1.1).

While Theorem 3.4.3 gives a sufficient condition on the kernel of a RKHS such that it consists

only of continuous functions, a necessary and sufficient condition for this to be the case in a more

general setting can be found in [66, Theorem 5].
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Chapter 4

The RKHS Approach to Minimum

Variance Estimation

4.1 Introduction

This chapter reviews the RKHS approach to minimum variance estimation as introduced in [3,35].

Using the RKHS approach, we will derive two fundamental results, which (to the best of the

authors knowledge) seem to be novel. The first result makes a characterization of the minimum

achievable variance LM viewed as a function of the fixed parameter vector x0 of a minimum

variance problem M =
(
E , c(·),x0

)
, when x0 is varied. In particular, we show in Section 4.3.5

that LM, viewed as a function of x0, is lower semi-continuous. The second result is related

to the concept of sufficient statistics. In particular, we prove in Section 4.3.6, that the RKHS

associated to a minimum variance problem remains unchanged if the original observation is replaced

by any sufficient statistic. Within this chapter we will also use the RKHS approach to give a

detailed geometric derivation and interpretation of some well-known lower bounds on the variance

of estimators with a given bias. Although it has been already mentioned in [3], that virtually

any known lower bound on the variance can be interpreted geometrically using RKHS theory, a

detailed elaboration of this interpretation for some well-known bounds seems to be missing in the

literature.

From a mathematical viewpoint, the RKHS approach to minimum variance estimation deals

with two specific Hilbert spaces which are naturally associated to a given minimum variance

problem M =
(
E , c(·),x0

)
associated with the estimation problem (X , f(y;x), g(·)).

The first Hilbert space, which is a RKHS and denoted H(M), consists of all functions γ(·) :

X → R that are obtained from a valid bias function c(·) for M by γ(·) = c(·) + g(·), where

g(·) : X → R is the parameter function of E . Thus, the RKHS H(M) consists of all functions

49
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γ(·) for which there exists an estimator for M with finite variance at x0 and whose mean function

is γ(·). The function γ(·) will be referred to as the prescribed mean function of the minimum

variance problem M.

The second Hilbert space, denoted L(M), which is naturally associated to the minimum vari-

ance problem M consists of estimators ĝ(·) : RM → R with a finite variance at x0 but whose bias

is not necessarily equal to the prescribed bias c(·) of M.

It will turn out that the Hilbert spaces H(M) and L(M) are isometric. Moreover, a specific

congruence between these two Hilbert spaces will give us a tool for determining the LMV estimator

(if it exists) for the minimum variance problem M.

In what follows, we will place an important constraint on the class of minimum variance

problems that are considered. More precisely, we assume that for any considered minimum variance

problem M =
(
E , c(·),x0

)
with associated estimation problem E = (X , f(y;x), g(·)), the following

holds:

Postulate 4.1.1. For any x ∈ X ,

Ex0

{(
f(y;x)

f(y;x0)

)2}
<∞. (4.1)

Unless otherwise stated, we will implicitly assume from now on that any minimum variance

problem that is considered satisfies (4.1). We note that many works on minimum variance estima-

tion introduce a variant of Postulate 4.1.1 [3, 35, 54, 55].

4.2 A Hilbert Space of Estimators

An estimator ĝ(·) : RM → R for an estimation problem E = (X , f(y;x), g(·)) is nothing but a

(possibly random) mapping that maps the observation space R
M to the range of the parameter

function, i.e., R.1 However, for a given minimum variance problem M, only the allowed estimators

F(M) (see Definition 2.3.2) make sense. As mentioned in Section 2.3.4, one can easily verify that

the set F(M) is an affine set of estimator functions, i.e., if ĝ1(·), ĝ2(·) ∈ F(M) then also any

affine combination (cf. [30, p. 21]) ĝ3(·) , aĝ1(·) + (1− a)ĝ2(·), where a ∈ R is arbitrary, yields an

allowed estimator, i.e., ĝ3(·) ∈ F(M). Moreover, every allowed estimator ĝ(·) ∈ F(M) belongs to

the Hilbert space P(M) associated with M that is defined as

P(M) ,
{
ĝ(·)
∣∣P (ĝ(·);x0) <∞

}
. (4.2)

(We recall that P (ĝ(·);x) = v(ĝ(·);x) +
∣∣Ex

{
ĝ(y)}|2.) To put it formally, we have [3]

1We will assume a scalar parameter function g(x), i.e., P = 1 throughout this chapter (cf. Section 2.1).
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Theorem 4.2.1. Given a minimum variance problem M =
(
E , c(·),x0

)
, the set of estimator

functions P(M) defined in (4.2) forms a function Hilbert space together with the inner product

〈ĝ1(·), ĝ2(·)〉RV defined by

〈ĝ1(·), ĝ2(·)〉RV , Ex0{ĝ1(y)ĝ2(y)}. (4.3)

The Hilbert space P(M) contains the set F(M) of allowed estimators for M as defined in (2.18),

i.e.,

F(M) ⊆ P(M). (4.4)

Proof. By definition, an (possibly random) estimator ĝ1(·) with finite stochastic power at x0 is

nothing but a random variable with a finite stochastic power at x0. Therefore, the Hilbert space

structure of P(M) with the inner product 〈ĝ1(·), ĝ2(·)〉RV follows from elementary probability- or

measure theory (see, e.g., [3, 6, 42, 43]).

Furthermore, by the definition of F(M) and (2.11), we have that the stochastic power at x0

of any allowed estimator ĝ(·) ∈ F(M) satisfies

P (ĝ(·);x0) = v(ĝ(·);x0) +
[
b(ĝ(·);x0) + g(x0)

]2
= v(ĝ(·);x0) +

[
c(x0) + g(x0)

]2
<∞,

verifying (4.4).

It will turn out that, in the context of minimum variance estimation, the set P(M) can be

further reduced without affecting the minimum achievable variance (cf. (2.19)). In particular,

we will show that for a given minimum variance problem M and associated estimation problem

E that satisfy (4.1), it is sufficient to consider only estimators which belong to the subspace

L(M) ⊆ P(M) defined by

L(M) , cl{span{ρM(·,x)}x∈X }, (4.5)

where ρM(·, ·) : RM ×X → R is the likelihood ratio of the minimum variance problem M defined

as

ρM(y,x) ,
f(y;x)

f(y;x0)
. (4.6)

Note that the condition (4.1) of our Postulate 4.1.1 can be written as

Ex0

{(
ρM(y;x)

)2}
<∞. (4.7)

The closure in (4.5) relative to the Hilbert space P(M) (see Definition 3.1.9) exists, since we have

that

span{ρM(·,x)}x∈X ⊆ P(M). (4.8)

This can be easily verified by noting that for any estimator of the form ĝ(·) , ρM(·,x), where

x ∈ X , it holds that

P (ĝ(·);x0) = Ex0

{
(ĝ(y))2

}
= Ex0

{
(ρM(y,x))2

}
<∞, (4.9)
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where the inequality follows from (4.1).

We emphasize the fact that in contrast to the set of allowed estimators F(M), the set L(M) is

by its very definition a function Hilbert space with associated inner product 〈ĝ1(·), ĝ2(·)〉RV. This

is a very important fact since, as we will see in Section 4.3.2, it guarantees that if the set F(M)

is nonempty, the infimum in (2.19) can be achieved by a suitable estimator, i.e., there exists an

LMV estimator if there is at least one estimator with the prescribed bias and finite variance at x0.

4.3 The RKHS Associated to a Minimum Variance Problem

In this section, we introduce the section Hilbert space, beside L(M) defined in (4.5), which is

naturally associated with a given minimum variance problem. This second Hilbert space has a

particular structure, i.e., it is a RKHS.

4.3.1 Definition

Consider a minimum variance problem M =
(
E , c(·),x0

)
, associated with the estimation problem

E = (X , f(y;x), g(·)), that satisfies the condition of Postulate 4.1.1. We then have for any pair

x1,x2 ∈ X that the corresponding likelihood ratios ρM(·,x1), ρM(·,x2) belong to the Hilbert

space P(M) with inner product 〈ρM(·,x1), ρM(·,x2)〉RV.

Therefore, one can naturally associate with the minimum variance problem M a real-valued

function RM(·, ·) : X × X → R defined as [3]

RM(x1,x2) , Ex0

{
ρM(y,x1)ρM(y,x2)

}
=
〈
ρM(·,x1), ρM(·,x2)

〉
RV

=

∫

y∈RM

f(y;x1)f(y;x2)

f(y;x0)
dy. (4.10)

An easily verified and useful observation is that RM(x0,x) = 1 for every x ∈ X .

The function RM(·, ·) has an important property as stated in

Theorem 4.3.1. The function RM(·, ·) : X × X → R is a kernel function with domain X in the

sense of Definition 3.2.2. Moreover, for every x ∈ X it holds that

RM(x,x0) = RM(x0,x) = 1, (4.11)

where x0 is the fixed parameter vector associated with the minimum variance problem M.

Proof. Consider an arbitrary finite set {xl}l∈[L] consisting of L ∈ N points xl ∈ X . The matrix

R ∈ R
L×L defined elementwise by (R)l,l′ , RM(xl,xl′) can be verified to coincide with the
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correlation matrix Ex0

{
rrT
}

of the random vector r ∈ R
L given elementwise by rl , ρM(y,xl),

i.e., R = Ex0

{
rrT
}
. Thus, since any correlation matrix of a real-valued random vector is psd [45],

we have that R is psd for any finite set {xl}l∈[L]. Furthermore, it is straightforward to verify that

RM(x1,x2) = RM(x2,x1) for any pair x1,x2 ∈ X . Thus, the two axioms of Definition 3.2.2 are

satisfied.

The identity (4.11) follows from the symmetry of RM(·, ·) and

RM(x,x0) =

∫

y

f(y;x)f(y;x0)

f(y;x0)
dy =

∫

y

f(y;x)dy = 1. (4.12)

We are now in the position to make

Definition 4.3.1. Given a minimum variance problem M =
(
E , c(·),x0

)
associated with the

estimation problem E = (X , f(y;x), g(·)), we associate with it the RKHS H(M) that is given via

the kernel RM(·, ·) : X × X → R and Theorem 3.2.2.

Thus, the RKHS H(M) is given by H(M) = L(RM) ∪ C where L(RM) is the inner-product

space given by Definition 3.2.3 and C denotes the set of functions f(·) : X → R, that are pointwise

limits of a Cauchy sequence in the inner-product space L(RM).

4.3.2 Main Result

Besides the RKHS H(M), a second Hilbert space naturally associated to a minimum variance

problem M is the Hilbert space L(M) defined in (4.5). Since both Hilbert spaces, H(M) and

L(M), are associated with the same minimum variance problem M, it does not come as a big

surprise that these two Hilbert spaces are closely related to each other. In particular, we have [3,35]

Theorem 4.3.2. Consider a minimum variance problem M with the associated Hilbert spaces

H(M) and L(M) given by Definition 4.3.1 and (4.5) respectively. We then have that these two

Hilbert spaces are isometric. Moreover, there exists a unique congruence J[·] : H(M) → L(M)

from H(M) to L(M) that satisfies

J[RM(·,x)] = ρM(·,x) (4.13)

for every x ∈ X . Finally, if two elements f(·) ∈ H(M) and g(·) ∈ L(M) satisfy J[f(·)] = g(·), we

have the identity

f(x) = Ex{g(y)} (4.14)

for every x ∈ X .
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Proof. [3]

If a minimum variance problem M is such that the associated kernel RM(·, ·) is differentiable,

then one can show

Theorem 4.3.3. Consider a minimum variance problem M with parameter set X ⊆ R
N that is

such that the associated kernel RM(·, ·) : X ×X → R is differentiable up to order m (see Definition

3.4.1). We denote by J[·] the congruence from H(M) to L(M) defined by (4.13). Then, given a

matrix A ∈ R
N×D, a vector zc ∈ R

D, and a multi-index p ∈ Z
D
+ with ‖p‖∞ ≤ m that satisfy

AN supp(p)
xc (ε) ⊆ X for a sufficiently small ε > 0, we have that the image J[f(·)] of the function

f(·) , ∂p
(
RM(·,Az2)h(z2)

)

∂zp2

∣∣∣∣
z2=zc

∈ H(M) (4.15)

is given by

J[f(·)] = ∂p
(
ρM(·,Az)h(z)

)

∂zp

∣∣∣∣
z=zc

. (4.16)

Here, the function h(·) : RD → R is arbitrary except that it is assumed that its partial derivatives

of any order p ∈ Z
D
+ with ‖p‖∞ ≤ m exist at zc.

Proof. This statement can be shown by induction on p. We restrict ourselves to the proof for the

case p = ek where k ∈ [D]. We can then write the function f(·) defined in (4.15) as the limit of

the Cauchy sequence

{
fl(·) ,

1

l

[
RM

(
·,A

(
zc +

1

l
ek

))
h

(
zc +

1

l
ek

)
−RM(·,Azc)h(zc)

]}

l→∞
,

i.e., f(·) = liml→∞ fl(·). Since, almost trivially by definition (cf. Definition 3.1.14), any congruence

is a continuous mapping (in particular, the limit operation commutes with the application of a

congruence) we have that J[f(·)] = liml→∞ J[fl(·)], which by Theorem 4.3.2 yields

J[f(·)] = lim
l→∞

1

l

[
ρM

(
· ,A

(
zc +

1

l
ek

))
h

(
zc +

1

l
ek

)
− ρM(·,Azc)h(zc)

]

=
∂ek
(
ρM(·,Az)h(z)

)

∂zek

∣∣∣∣
z=zc

. (4.17)

The connection between the theory of RKHS and minimum variance estimation is summarized

in [3, 35]
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Theorem 4.3.4. Given a minimum variance problem M =
(
E , c(·),x0

)
associated with the es-

timation problem E = (X , f(y;x), g(·)), satisfying (4.1) such that the associated RKHS H(M)

exists. Then, we have that:

• There exists at least one allowed estimator ĝ(·), i.e., the set F(M) defined in (2.18) is

nonempty, if and only if

γ(·) ∈ H(M) (4.18)

where γ(·) : X → R : γ(x) , c(x) + g(x) denotes the prescribed mean function of the

minimum variance problem M.

• If (4.18) holds, then the minimum achievable variance LM (see (2.19)) is given by

LM = ‖γ(·)‖2H(M) −
[
γ(x0)

]2
, (4.19)

and the corresponding LMV estimator ĝ(x0)(·) (see Definition 2.3.4) is obtained as

ĝ(x0)(·) = J[γ(·)], (4.20)

where J[·] : H(M) → L(M) denotes the congruence from H(M) to L(M) which is defined

by (4.13).

Proof. [3]

The relation (4.19) together with the definition of the minimum achievable variance LM (see

(2.19)) gives us a powerful tool for the derivation of lower bounds on the estimator variance if the

estimator’s bias is known. Indeed, any lower bound on ‖γ(·)‖2H(M) induces via (4.19) and (2.19)

a lower bound on the variance v(ĝ(·);x0) at x0 of any estimator ĝ(·) with bias equal to c(x) (or

equivalently with mean function equal to γ(x) = c(x) + g(x)).

As already observed in [3], a specific class of lower bounds on the variance v(ĝ(·);x0) can be

readily obtained via Theorem 3.1.6 by projecting γ(·) ∈ H(M) on a subspace U ⊆ H(R) of the

RKHS H(R). Indeed, denoting by PUγ(·) the orthogonal projection of the function γ(·) ∈ H(M)

on the subspace U , we have by Theorem 3.1.6 the lower bound

‖γ(·)‖2H(M) ≥ ‖PUγ(·)‖2H(M). (4.21)

4.3.3 Transforming the Parameter Function

A RKHS that is associated to a minimum variance problem has a specific property as stated in
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Lemma 4.3.5. Consider a minimum variance problem M =
(
E , c(·),x0

)
associated with the

estimation problem E = (X , f(y;x), g(·)) and with prescribed bias c(·) ≡ 0. Then, if the parameter

function g(·) is estimable, i.e., g(·) ∈ H(M) (due to Theorem 4.3.4 and Definition 2.3.7), we have

that any other parameter function g′(·) = g(·)+a with a ∈ R is also estimable, i.e., g′(·) ∈ H(M),

and moreover we have that

‖g′(·)‖2H(R) = ‖g(·)‖2H(R) + 2ag(x0) + a2. (4.22)

The minimum achievable variance remains unchanged after replacing the parameter function g(·)
with g′(·), i.e.,

LM = LM′ , (4.23)

where M′ denotes the minimum variance problem that is obtained from M by changing the pa-

rameter function from g(·) to g′(·).

Proof. Consider the specific function v(·) = RM(·,x0) which obviously belongs to the RKHS

H(M). By (4.11), we have that v(x) = 1 for every x ∈ X , and in turn via the reproducing

property (3.43) that 〈v(·), v(·)〉H(M) = 〈v(·), R(·,x0)〉H(M) = v(x0) = 1. Thus, we can represent

g′(·) = g(·) + a as g′(·) = g(·) + av(·). The squared norm of g′(·) can then be developed as

‖g′(·)‖2H(M) = ‖g(·) + av(·)‖MH(R) = 〈g(·) + av(·), g(·) + av(·)〉H(M)

= ‖g(·)‖2H(M) + 2a〈g(·), v(·)〉H(M) + a2〈v(·), v(·)〉H(M)

= ‖g(·)‖2H(M) + 2a〈g(·), R(·,x0)〉H(M) + a2 〈v(·), v(·)〉H(M)︸ ︷︷ ︸
=1

(3.43)
= ‖g(·)‖2H(M) + 2ag(x0) + a2. (4.24)

Based on (4.24), and using (4.19), the minimum achievable variance for M′ can be calculated as

LM′ = ‖g′(·)‖2H(M′) − (g′(x0))
2

= ‖g′(·)‖2H(M) − (g′(x0))
2

(4.24)
= ‖g(·)‖2H(M) + 2ag(x0) + a2 − (g(x0) + a)2

= ‖g(·)‖2H(M) + 2ag(x0) + a2 − (g(x0))
2 − 2ag(x0)− a2

= ‖g(·)‖2H(M) − (g(x0))
2 = LM, (4.25)

where we used the fact, that the two kernels RM(·, ·), RM′(·, ·) and therefore also the two RKHSs

H(M) and H(M′) coincide. This follows from (4.10), since the parameter sets and statistical

models of M and M′ are identical.
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We note that Lemma 4.3.5 is the RKHS-based formulation of a special case of Theorem 2.3.5.

4.3.4 Reducing the Parameter Set

The effect of a reduction of the parameter set X of a minimum variance problem on its associated

minimum achievable variance can be analyzed conveniently using the RKHS framework. Indeed,

consider a minimum variance problem M =
(
E , c(·),x0

)
associated with the estimation problem

E = (X , f(y;x), g(·)) and the modified minimum variance problem M′ = M
∣∣
X ′ obtained for the

new parameter set X ′ ⊆ X .

We then have that

LM
(a)
= ‖γ(·)‖2H(M) − (γ(x0))

2
(b)

≥ ‖γ(·)
∣∣
X ′‖2H(M′) − (γ(x0))

2 = LM′ , (4.26)

where step (a) follows from Theorem 4.3.4, step (b) is due to Theorem 3.3.5 and γ(·) : X → R :

γ(x) = c(x) + g(x) is the prescribed mean function of M. The main aspect of (4.26) (which was

already mentioned in Section 2.5) is that a reduction of the parameter set X can never result in a

worse achievable performance, i.e., in a higher minimum achievable variance.

In Chapter 5 and Chapter 6, we will study two specific estimation problems and the associated

minimum variance problems. These estimation problems are obtained from well-known estimation

problems by a reduction of the original parameter set X = R
N . This reduction will be quite

substantial, since the reduced parameter sets will have measure zero w.r.t. to the Lebesgue measure

in R
N . However, using RKHS theory, we will show that this large reduction is necessary in order

to obtain strictly lower values for the minimum achievable variance (see Section 5.6 and 6.4.3).

This agrees with the observation that pure or strict inequality constraints on the parameter set X
of an estimation problem have no influence on the Cramér–Rao bound when evaluated at a point

in the interior of X [29, p. 1292].

4.3.5 Classes of Minimum Variance Problems with Continuously Varying Ker-

nels

In some applications, it is of interest to characterize not only a single minimum variance problem

M =
(
E , c(·),x0

)
associated with the estimation problem E = (X , f(y;x), g(·)), but rather to

characterize the global properties of a whole class of minimum variance problems {M(x0)}x0∈X .

This class is obtained by varying the parameter vector x0 ∈ X used for the definition of the

minimum variance problem. Therefore, let us consider an estimation problem E = (X , f(y;x), g(·))
with a parameter set X ⊆ R

N that is such that the kernel RM(x0)(·, ·) : X × X → R is pointwise
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x0 x

f(x)

Figure 4.1: Graph of a function that is lower semi-continuous at x0. The solid dot indicates the

function value f(x0).

continuous w.r.t. the parameter x0, i.e.,

lim
x′
0→x0

RM(x′
0)
(x1,x2) = RM(x0)(x1,x2), ∀x0,x1,x2 ∈ X . (4.27)

In this case, the dependence of the minimum achievable variance LM(x0) on x0 ∈ X is characterized

by

Theorem 4.3.6. Consider an estimation problem E = (X , f(y;x), g(·)) with parameter set X ⊆
R
N , and the class of minimum variance problems given by

{
M(x0) ,

(
E , c(·),x0

)}
x0∈X with a

prescribed bias function c(·) : X → R that is valid for every M(x0) with x0 ∈ X . We denote by

γ(·) : X → R : γ(x) = c(x) + g(x) the prescribed mean function. Then, if γ(x) is a continuous

function of x and the kernel RM(x) is pointwise continuous w.r.t. x, i.e., it satisfies (4.27), the

minimum achievable variance LM(x) exists, i.e. is finite, for every x. Furthermore, viewed as a

function of x, LM(x) is lower semi-continuous (see Figure 4.1).

Proof. The finiteness of LM(x) for every x ∈ X follows trivially from the definition of a valid bias

function (see Definition 2.3.6) and Theorem 4.3.4, since it is assumed that the prescribed bias

function c(·) is valid for M(x) for every x ∈ X .

Now, observe that

LM(x)
(a)
= ‖γ(·)‖2H(M) − (γ(x))2

(b)
= sup

f(·)∈L(RM)
‖f(·)‖2

H(M)
>0

(
〈γ(·), f(·)〉H(M)

)2

‖f(·)‖2H(M)

− (γ(x))2
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(c)
= sup

D={x1,...,xL}
L∈N, xl∈X

a∈AD

(
〈γ(·),∑l∈[L] alR(·,xl)〉H(M)

)2
∑

l,l′∈[L] alal′RM(x)(xl,xl′)
− (γ(x))2

= sup
D={x1,...,xL}
L∈N, xl∈X

a∈AD

(∑
l∈[L] alγ(xl)

)2
∑

l,l′∈[L] alal′RM(x)(xl,xl′)
− (γ(x))2 , (4.28)

where we used AD ,
{
a ∈ R

L
∣∣∑

l,l′∈[L] alal′RM(x)(xl,xl′) > 0
}
. The step (a) follows from

Theorem 4.3.4, step (b) is due to Theorem 3.1.2 since the linear space L(RM) (cf. Definition 3.2.3)

is dense in the RKHS H(M) by Theorem 3.2.2. The step (c) follows from the fact that any

function f(·) belonging to the linear space L(RM) can be written as a finite linear combination

f(·) =∑l∈[L] alR(·,xl) with suitable coefficients al ∈ R and points D = {x1, . . . ,xL} ⊆ X , which

can be used in combination with the reproducing property (3.43) to express the squared norm of

f(·) as ‖f(·)‖2H(M) =
∑

l,l′∈[L] alal′RM(x)(xl,xl′). By (4.28), we have

LM(x) = sup
D={x1,...,xL}
L∈N, xl∈X

a∈AD

hD,a(x), (4.29)

with the function hD,a(x) : X → R defined as

hD,a(x) ,

(∑
l∈[L] alγ(xl)

)2
∑

l,l′∈[L] alal′RM(x)(xl,xl′)
− (γ(x))2 , (4.30)

where L , |D|. For any finite set D = {xl ∈ X}l∈[L] and a ∈ AD, it follows from the continuity

of RM(x)(·, ·) and γ(x) w.r.t. x, that the function hD,a(x) is continuous in a neighborhood around

any point x0 ∈ X . Thus, for any point x0 ∈ X , there exists a radius δ0 > 0 such that the function

hD,a(x) is continuous on B(x0, δ0) ∩ X .

We will show by contradiction that the function LM(x) given by (4.29) must be lower semi-

continuous. To that end, let us assume that the minimum achievable variance LM(x) is not lower-

semicontinuous at a specific parameter vector x0 ∈ X , i.e., we have that lim inf
x→x0

LM(x) ≤ LM(x0)−ε0
with a specific ε0 > 0. This implies that for any radius r > 0, there exists at least one parameter

vector x′ ∈ X ∩ B(x0, r) such that LM(x′) < LM(x0) − ε0/2, i..e,

∀r > 0 : ∃x′ ∈ X ∩ B(x0, r) ⇒ LM(x′) < LM(x0) − ε0/2. (4.31)

Now, we have that due to (4.29) there must be a finite subset D0 ⊆ X and a vector a0 ∈ AD0 such

that

hD0,a0(x0) ≥ LM(x0) − ε0/4, (4.32)
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since otherwise hD,a(x) ≤ LM(x0) − ε/4 for every D, ⊣, which would imply via (4.29) the con-

tradiction LM(x0) ≤ LM(x0) − ε/4 < LM(x0). Furthermore, hD0,a0(x) is continuous at x0 within

B(x0, δ0) ∩ X , implying the existence of a small radius r0 > 0 (where r0 < δ0) such that for any

x ∈ X ∩ B(x0, r0) we have

hD0,a0(x) ≥ hD0,a0(x0)− ε0/4. (4.33)

By combining (4.32) and (4.33), we see that there exists a radius r0 > 0 (with r0 < δ0) such

that for any x ∈ X ∩ B(x0, r0) we have

hD0,a0(x)
(4.33)

≥ hD0,a0(x0)− ε0/4
(4.32)

≥ LM(x0) − ε0/4− ε0/4 = LM(x0) − ε0/2. (4.34)

This lower bound on the specific function hD0,a0(x) implies also a lower bound on the supremum

in (4.29), i.e., for those parameter vectors x for which the bound in (4.34) is in force, we have

simultaneously the lower bound

LM(x)
(4.29)
= sup

D={x1,...,xL}
L∈N, xl∈X

a∈AD

hD,a(x) ≥ hD0,a0(x)
(4.34)

≥ LM(x0) − ε0/2. (4.35)

Putting together the pieces, we have that there exists a radius r0 > 0 (with r0 < δ0) such that

for any x ∈ X ∩ B(x0, r0) we have LM(x) ≥ LM(x0) − ε0/2, i.e.,

∀x ∈ X ∩ B(x0, r0) ⇒ LM(x) ≥ LM(x0) − ε0/2. (4.36)

Since this fact contradicts (4.31), we have shown that LM(x) must be lower-semicontinuous at

every point x ∈ X .

4.3.6 Sufficient Statistics from the RKHS Viewpoint

Consider a minimum variance problem M =
(
E , c(·),x0

)
associated with the estimation problem

E = (X , f(y;x), g(·)). In some cases, the observation y ∈ R
M , whose statistic is given by the

statistical model f(y;x) of the estimation problem, carries irrelevant information and can therefore

be compressed in some sense. This compression or extraction of useful information (i.e., useful for

the problem of estimating g(x)) can be performed by applying a (possibly randomized) mapping

T(·) : RM → R
K to the observation y, yielding a modified observation z ∈ R

K , z = T(y). A

compression is achieved if K < M . We will make the weak technical assumption that the mapping

T(·) is such that the modified observation z = T(y), which is a random vector, possesses a

pdf [42,43,45]. For clarity, we will denote the evaluation of the pdf of the random vector z = T(y)

at the specific vector z′ ∈ R
K by fz(z′;x).
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Definition 4.3.2 ([41]). A modified observation z = T(y) ∈ R
K is called a sufficient statistic for

the estimation problem E = (X , f(y;x), g(·)) if the conditional distribution f(y
∣∣z;x) of y given z

does not depend on x, i.e., if

f(y
∣∣z;x) = f(y

∣∣z), (4.37)

with a suitable (conditional) pdf f(y
∣∣z).

The verification if a given modified observation is a sufficient statistic can be based on

Theorem 4.3.7. Consider an estimation problem E = (X , f(y;x), g(·)) and a modified observation

z = T(y) for E for which there exists a pdf. The modified observation z is a sufficient statistic for

E if and only if we can factor the pdf f(y;x) of the observation y as

f(y;x) = fz(T(y);x)h(y), (4.38)

where h(·) is a nonnegative function which does not depend on x and fz(·;x) denotes the pdf of

the random vector z = T(y).

Proof. [20, 41, 69]

We note that Theorem 4.3.7 is a variant of a famous result in classical estimation theory known

as the “Neyman-Fisher factorization theorem” [20]. However, the Neyman-Fisher factorization

theorem is more general than Theorem 4.3.7 since it does not require the existence of a well-

defined pdf of the modified observation z = T(y).

Consider an estimation problem E = (X , f(y;x), g(·)) and a sufficient statistic z = T(y), i.e.,

we can factor the statistical model f(y;x) as in (4.38). We can then define a new estimation

problem E ′ by using the sufficient statistic as the observation, i.e., we define E ′ , (X , f(z;x), g(·)).
If we consider the two minimum variance problems M, M′ that are obtained from E and E ′ and

a common prescribed bias function c(·) : X → R and parameter vector x0 ∈ X , we have that the

associated RKHSs are identical:

Theorem 4.3.8. Consider an estimation problem E = (X , f(y;x), g(·)) with a sufficient statistic

z = T(y) and the modified estimation problem E ′ = (X , f(z;x), g(·)) that is obtained from E by

using the sufficient statistic z as the observation. Then we have for any fixed parameter vector

x0 ∈ X and any prescribed bias function c(·) : X → R, that the RKHSs associated to the two

minimum variance problems M = (E , c(·),x0) and M′ = (E ′, c(·),x0) are identical, i.e.,

H(M) = H(M′). (4.39)

In particular, this implies that the minimum achievable variances of M and M′ are equal, i.e.,

LM = LM′ . (4.40)
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Proof. The statement is proven by showing that the kernels RM(·, ·) : X ×X → R and RM′(·, ·) :
X ×X → R associated with M and M′, respectively, are identical. Indeed, by denoting the value

of the joint pdf and the conditional pdf of the two random vectors y and z evaluated at z = z′ by

f(y, z′;x) and f(y
∣∣z′;x) respectively, we have by (4.10) that

RM(x1,x2) = Ex0

{
f(y;x1)

f(y;x0)

f(y;x2)

f(y;x0)

}
(a)
= Ex0

{
fz(T(y);x1)

fz(T(y);x0)

fz(T(y);x2)

fz(T(y);x0)

}

(b)
= Ex0

{
fz(z;x1)

fz(z;x0)

fz(z;x2)

fz(z;x0)

}
= RM′(x1,x2). (4.41)

Here, the step (a) follows from the factorization (4.38) and (b) follows from a fundamental property

of the expectation operation2 [42, 43, 45]. Since RM(·, ·) = RM′(·, ·), we have by Theorem 3.2.3

that H(M) = H(M′). Finally, the relation (4.40) follows then by (4.19) of Theorem 4.3.4.

We already mentioned in Theorem 2.4.1 of Section 2.4.1 that any transformation of the ob-

servation, by an invertible map is irrelevant to minimum variance estimation. Indeed, as can be

verified easily by Theorem 4.3.7, any modified observation that is obtained by an invertible map

T(·) is trivially a sufficient statistic, and hence Theorem 4.3.8 applies.

Furthermore, we note that Theorem 4.3.8 agrees with a famous result within classical (non-

Bayesian) estimation theory, that is known as the “Rao-Blackwell-Lehmann-Scheffé” theorem [20].

This theorem states that given an estimator with a specific bias function, and given a sufficient

statistic, one can always find another estimator, depending on the observation only via the sufficient

statistic, with the same bias function and a variance that does not exceed the variance of the original

estimator. This fact is consistent with Theorem 4.3.8, in particular with (4.40).

4.4 RKHS Interpretation of Known Variance Bounds

In this section, we will interpret some well-known lower bounds on the estimator variance either

as a specific evaluation of the squared norm ‖γ(·)‖2H(M) in (4.19) or as specific lower bounds on

‖γ(·)‖2H(M) .

Throughout this section, we will consider only minimum variance problems with prescribed

bias c(·) ≡ 0, i..e, we consider unbiased estimation, which means that γ(·) = g(·). However, by

Section 2.3.3, in particular by Theorem 2.3.1, this is no real restriction since we do not constrain

a priori the parameter functions g(·) of the considered estimation problems.

2For a random vector y ∈ R
M and a function t(·) : R

M → R
K , the expectation Ex0

{t(y)} is equal to the

expectation Ex0
{b}, where b ∈ R

K is the random vector whose realization b′ is obtained from y′, the realization

of the random vector y, by b′ = t(y′).
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4.4.1 Barankin Bound

The term “Barankin bound” refers to the following result [55, 70]:

Theorem 4.4.1 (Barankin bound). Consider a minimum variance problem M =
(
E , c(·),x0

)
as-

sociated with the estimation problem E = (X , f(y;x), g(·)), where c(x) ≡ 0 and for which Postulate

4.1.1 is fulfilled. Then, for any estimator ĝ(·) : RM → R which is unbiased and has finite variance

at x0, we have that its variance at x0 is lower bounded by

v(ĝ(·);x0) ≥ sup
D={x1,...,xL}
L∈N, xl∈X

a∈BD

∣∣∣∣
∑
l∈[L]

alh(xl)

∣∣∣∣
2

Ex0

{( ∑
l∈[L]

alρM(y,xl)

)2} , (4.42)

where we used

h(·) : X → R : h(x) , g(x) − g(x0), (4.43)

ρM(y,xl) as defined in (4.6), and BD ,
{
a ∈ R

L|Ex0

{(∑
l∈[L] alρM(y,xl)

)2}
> 0
}
. Moreover, if

there exists at least one unbiased estimator with a finite variance at x0, we have that the supremum

in (4.42) is equal to the minimum achievable variance at x0, i.e.,

LM = sup
D={x1,...,xL}
L∈N, xl∈X

a∈BD

∣∣∣∣
∑
l∈[L]

alh(xl)

∣∣∣∣
2

Ex0

{( ∑
l∈[L]

alρM(y,xl)

)2} , (4.44)

which is then called the Barankin bound for the minimum variance problem M.

We note that the RKHS interpretation of the Barankin bound has been already discussed

in [71]. However, the following derivation will be self-contained and more detailed than those

presented in [71].

First, we have that by Theorem 4.3.4, the existence of at least one unbiased estimator with

finite variance at x0, i.e., the existence of at least one allowed estimator, is equivalent to the fact

that the function g(·) (which coincides with the prescribed mean function γ(x) = g(x) + c(x)

for M) belongs to the RKHS H(M), i.e., g(·) ∈ H(M). However, since h(·) = g(·) + a with

a = −g(x0), we have by Lemma 4.3.5, that g(·) ∈ H(M) if and only if h(·) ∈ H(M). Thus, there

exists at least one unbiased estimator with finite variance at x0 if and only if h(·) ∈ H(M). In

what follows we will verify (4.44) in the case h(·) ∈ H(M), which in turn shows that the supremum

in (4.42) is finite if h(·) ∈ H(M) (due to Theorem 4.3.4), i.e., if there exists at least one unbiased

estimator with finite variance at x0. The sufficiency of the condition h(·) ∈ H(M) for the existence
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of a finite supremum in (4.44) is also mentioned in [66, Lemma 4], where it is moreover shown that

the condition h(·) ∈ H(M) is also necessary for the existence of a finite supremum in (4.44).

Let us now show that for the case h(·) ∈ H(M) (which is equivalent to g(·) ∈ H(M)), the

relation (4.44) of Theorem 4.4.1 is just a reformulation of (4.19) in Theorem 4.3.4 which is based

on Theorem 3.1.2. First, we note that by Theorem 4.3.4 and Lemma 4.3.5, we have that

LM = ‖g(·)‖2H(M) − (g(x0))
2 (4.43)

= ‖h(·) + g(x0)‖2H(M) − (g(x0))
2

(4.22)
= ‖h(·)‖2H(M) + 2g(x0)h(x0)︸ ︷︷ ︸

=0

+(g(x0))
2 − (g(x0))

2 = ‖h(·)‖2H(M) . (4.45)

By a similar derivation as used for (4.28), we obtain

‖h(·)‖2H(M) = sup
f(·)∈L(RM)
‖f(·)‖2

H(M)
>0

(
〈h(·), f(·)〉H(M)

)2

‖f(·)‖2H(M)

= sup
D={x1,...,xL}
L∈N, xl∈X

a∈AD

(
〈h(·),∑l∈[L] alR(·,xl)〉H(M)

)2
∑

l,l′∈[L] alal′RM(x)(xl,xl′)
− (γ(x))2

= sup
D={x1,...,xL}
L∈N, xl∈X

a∈AD

(∑
l∈[L] alh(xl)

)2
∑

l,l′∈[L] alal′RM(x)(xl,xl′)
, (4.46)

where we used AD , {a ∈ R
L|∑l,l′∈[L] alal′RM(xl,xl′) > 0}. Combining (4.46) and (4.45) yields

LM = sup
D={x1,...,xL}
L∈N, xl∈X

a∈AD

∣∣∑
l∈[L] alh(xl)

∣∣2
∑

l,l′∈[L] alal′RM(xl,xl′)
. (4.47)

But this is equal to (4.44) since for any finite D ⊆ X , of size |D| = L, and arbitrary coefficient

vector a ∈ R
L, we straightforwardly have that

∑

k,k′∈[L]
akak′RM(xk,x

′
k) = Ex0

{( ∑

k∈[L]
akρM(y,xk)

)2}
. (4.48)

This also implies that AD = BD. The lower bound in (4.42) follows then directly from (4.44) and

the definition of LM in (2.19).
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4.4.2 Cramér–Rao bound

The Cramér–Rao bound (CRB) [20,27,72] is probably the best known lower bound on the variance

of estimators for a given estimation problem E = (X , f(y;x), g(·)) which satisfies some weak

regularity conditions as discussed presently. Since the CRB applies to any unbiased estimator (the

CRB applies also for biased estimators since it depends solely on the mean function of a given

estimator) for E , the CRB also yields a lower bound on the minimum achievable variance LM
for the minimum variance problem M = (E , c(·) ≡ 0,x0) associated with the estimation problem

E . We will consider the CRB for two different settings which are defined by the structure of the

parameter set X associated with the estimation problem E . These two instances of the CRB are

termed the “unconstrained CRB” and the “constrained CRB”, respectively.

The validity of the CRB requires some weak technical conditions to be placed on the estimation

problem E = (X , f(y;x), g(·)) and associated minimum variance problem M = (E , c(·) ≡ 0,x0),

which are summarized in

Postulate 4.4.2. The estimation problem E = (X , f(y;x), g(·)) and associated minimum variance

problem M = (E , c(·) ≡ 0,x0) are such that:

• The parameter set X ⊆ R
N contains an N -dimensional open ball B(x0, r) centered at x0 ∈ X

and with a positive radius r > 0, i.e.,

B(x0, r) ⊆ X . (4.49)

• For every x ∈ X , the partial derivatives ∂pf(y;x)
∂xp exist and moreover

Ex0

{(
1

f(y;x0)

∂pf(y;x)

∂xp

)2}
<∞ (4.50)

for every multi-index p ∈ Z
N
+ with ‖p‖∞ ≤ m, where m ∈ N is called the maximum differ-

entiation order.

• For any function h(y) : RM → R such that Ex{h(y)} exists3 we have that for all x ∈ B(x0, r)

the expectation operation commutes with partial differentiation, i.e.,

∂p
∫
y
h(y)f(y;x)dy

∂xp
=

∫

y

h(y)
∂pf(y;x)

∂xp
dy (4.51)

or equivalently, expressed in terms of expectations, we have

∂pEx{h(y)}
∂xp

= Ex

{
h(y)

1

f(y;x)

∂pf(y;x)

∂xp

}
(4.52)

for every multi-index p ∈ Z
N
+ with ‖p‖∞ ≤ m provided that the right hand side of (4.51)

and (4.52) is finite.

3Note that this implies that Ex{|h(y)|} < ∞ [42,43,73].
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• The parameter function g(·) : X → R is such that the partial derivatives ∂pg(x)
∂xp

∣∣
x=x0

exist at

x0 for every multi-index p ∈ Z
N
+ with ‖p‖∞ ≤ m.

• The expectation

Ex0

{
1

f(y;x0)

∂p1f(y;x1)

∂xp1
1

1

f(y;x0)

∂p2f(y;x2)

∂xp2
2

}
(4.53)

depends continuously on the parameter vectors x1,x2 ∈ X ∩ B(x0, r) for every pair of multi-

indices p1,p2 ∈ Z
N
+ with ‖p1‖∞, ‖p2‖∞ ≤ m.

It can be shown that Postulate 4.4.2 is satisfied in particular for estimation problems where

the statistical model is given by an exponential family (see Section 2.6).

In the following, we will need

Theorem 4.4.3. Consider an estimation problem E = (X , f(y;x), g(·)) and associated minimum

variance problem M = (E , c(·) ≡ 0,x0) for which Postulate 4.1.1 and Postulate 4.4.2 with maximum

differentiation order m, and radius r hold true. Then, the kernel RM(·, ·) : X × X → R is

differentiable up to order m.

Proof. First, note that the condition (4.50) implies that

Ex0

{
1

f(y;x0)

∂pf(y;x)

∂xp

}
≤
√

Ex0

{(
1

f(y;x0)

∂pf(y;x)

∂xp

)2}
<∞ (4.54)

due to the Cauchy-Schwarz inequality (cf. Theorem 3.1.1) for the Hilbert space P(M) (see (4.2) and

Theorem 4.2.1) with inner product 〈 · , · 〉RV and the two specific estimators ĝ1(y) = 1
f(y;x0)

∂pf(y;x)
∂xp

and ĝ2(y) = 1 where obviously 〈ĝ2(·), ĝ2(·)〉RV = 1.

Then, for any any two multi-indices p1,p2 ∈ Z
N
+ with ‖p1‖∞, ‖p2‖∞ ≤ m and parameter

vectors x1,x2 ∈ X ∩ B(x0, r) we have

∞
(a)
>

√

Ex0

{(
1

f(y;x0)

∂p1f(y;x1)

∂xp1
1

)2}
Ex0

{(
1

f(y;x0)

∂p2f(y;x2)

∂xp2
2

)2}

(b)

≥ Ex0

{
1

f(y;x0)

∂p1f(y;x1)

∂xp1
1

1

f(y;x0)

∂p2f(y;x2)

∂xp2
2

}

=

∫

y

1

f(y;x0)

∂p1f(y;x1)

∂xp1
1

1

f(y;x0)

∂p2f(y;x2)

∂xp2
2

f(y;x0)dy

=

∫

y

1

f(y;x0)

∂p1f(y;x1)

∂xp1
1

∂p2f(y;x2)

∂xp2
2

dy
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(c)
=
∂p2

∫
y

f(y;x2)
f(y;x0)

∂p1f(y;x1)

∂x
p1
1

dy

∂xp
2

(d)
=
∂p2∂p1

∫
y

f(y;x1)f(y;x2)
f(y;x0)

dy

∂xp1
1 ∂xp2

2

=
∂p1∂p2RM(x1,x2)

∂xp1
1 ∂xp2

2

, (4.55)

where (a) is due to (4.50), step (b) is due to the Cauchy-Schwarz inequality (cf. Theorem 3.1.1) for

the Hilbert space P(M) (see (4.2) and Theorem 4.2.1), step (c) follows from (4.52) with h(y) =
1

f(y;x0)
∂p1f(y;x1)

∂x
p1
1

and (d) follows by another application of (4.52) for the choice h(y) = f(y;x2)
f(y;x0)

.

The application of (4.52) is allowed in step (c) and (d) since a finite value of the right hand side

of (4.51) and (4.52) is guaranteed by (4.54) and (4.1), respectively. Thus, we have shown that the

partial derivative ∂p1∂p2RM(x1,x2)

∂x
p1
1 ∂x

p2
2

exists for p1,p2 ∈ Z
N
+ with ‖p1‖∞, ‖p2‖∞ ≤ m and parameter

vectors x1,x2 ∈ X ∩ B(x0, r). Since moreover, these partial derivatives are continuous functions

of x1 and x2, due the continuity of the function (4.53) in Postulate 4.4.2, we have that the kernel

RM(·, ·) : X × X → R is differentiable up to order m.

Unconstrained CRB

The following form of the unconstrained CRB has been presented in [56, 74]:

Theorem 4.4.4. Consider an estimation problem E = (X , f(y;x), g(·)) and associated minimum

variance problem M = (E , c(·) ≡ 0,x0) that satisfy the conditions of Postulate 4.1.1 and Postulate

4.4.2 with m = 1. Then the variance v(ĝ(·);x0) at x0 of any unbiased estimator ĝ(·) with finite

variance at x0 is lower bounded by

v(ĝ(·);x0) ≥
(
∂g(x)

∂x

∣∣∣∣
x0

)T

J†
x0

∂g(x)

∂x

∣∣∣∣
x0

(4.56)

where Jx0 ∈ R
N×N , known as the Fisher information matrix associated to the estimation problem

E, is given elementwise by

(Jx0)k,l , Ex0

{
∂ log f(y;x)

∂xk

∣∣∣∣
x=x0

∂ log f(y;x)

∂xl

∣∣∣∣
x=x0

}
. (4.57)

Proof. See [20, 56].

We now provide an RKHS-based derivation of Theorem 4.4.4 by showing that under the validity

of Postulate 4.4.2, the bound in (4.56) can be obtained via an orthogonal projection on a specific

subspace of the RKHS H(M). To this end, we define the subspace UCR ⊆ H(M) as

UCR , span
{
{v0(·)} ∪ {vl(·)}l∈[N ]

}
, (4.58)
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with the functions v0(·) , RM(·,x0) ∈ H(M) and

vl(·) ,
∂RM(·,x)

∂xl

∣∣∣∣
x=x0

∈ H(M), l ∈ [N ]. (4.59)

By Theorem 4.4.3, the kernel RM(·, ·) is differentiable up to order m = 1. Therefore, the functions

{vl(·)}l∈[N ] belong to H(R) due to Theorem 3.4.1. In particular, the definition of the functions

vl(·) is of the same form as those in (3.63). The inner product between any vl(·) with l ∈ [N ] and

v0(·) is given by

〈
v0(·), vl(·)

〉
H(M)

(a)
=
〈
RM(·,x0), vl(·)

〉
H(M)

= vl(x0)

(b)
=
∂RM(x0,x)

∂xl

∣∣∣∣
x=x0

(c)
=

∂

∂xl

∫

y

f(y;x)f(y;x0)

f(y;x0)
dy

∣∣∣∣
x=x0

=
∂

∂xl

∫

y

f(y;x)dy

∣∣∣∣
x=x0

=
∂

∂xl
1
∣∣
x=x0

= 0. (4.60)

Here, we used for the step (a) the reproducing property (3.43), for (b) the definition of the functions

vl(·) and for (c) the definition of the kernel RM(·, ·) (4.10).

Now we consider the projection PUCR
g(·) of the parameter function g(·) onto the subspace UCR.

Since Theorem 4.4.4 makes a statement about an unbiased estimator of g(·) with a finite variance

at x0, we can assume that g(·) is estimable, i.e., we have g(·) ∈ H(M) by Theorem 4.3.4. (Note

that γ(·) = g(·) in Theorem 4.3.4.) Due to (4.60), we have that subset UCR (cf. (4.58)) is spanned

by the union of the two mutually orthogonal sets {v0(·)} and {vl(·)}l∈[N ]. Therefore, we can apply

Theorem 3.1.9 to obtain the squared norm of the projection PUCR
g(·) as

‖PUCR
g(·)‖2H(M) =

〈
g(·), v0(·)

〉
H(M)

(〈
v0(·), v0(·)

〉
H(M)

)−1〈
g(·), v0(·)

〉
H(M)

+ aTV†a

= (g(x0))
2 + aTV†a, (4.61)

where, according to the reproducing property (3.43), we used
〈
g(·), v0(·)

〉
H(M)

= g(x0) and

〈
v0(·), v0(·)

〉
H(M)

=
〈
RM(·,x0), RM(·,x0)

〉
H(M)

= R(x0,x0)
(4.11)
= 1. (4.62)

The vector a ∈ R
N and the matrix V ∈ R

N×N in (4.61) are defined elementwise as al =
〈
g(·), vl(·)

〉
H(M)

and (V)k,l =
〈
vk(·), vl(·)

〉
H(M)

, respectively. Note that due to Theorem 3.4.1

(using g(p)xc (·) = vl(·) for p = el, xc = x0 and f(·) = g(·)),

al =
〈
vl(·), g(·)

〉
H(M)

=
∂g(x)

∂xl

∣∣∣∣
x=x0

, l ∈ [N ]. (4.63)
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Furthermore,

(V)k,l =
〈
vk(·), vl(·)

〉
H(M)

(a)
=
∂2RM(x1,x2)

∂x1,kx2,l

∣∣∣∣
x1=x2=x0

=
∂2

∂x1,kx2,l

∫

y

f(y;x1)f(y;x2)

f(y;x0)
dy

∣∣∣∣
x1=x2=x0

(b)
=

∫

y

∂2

∂x1,kx2,l

f(y;x1)f(y;x2)

f(y;x0)

∣∣∣∣
x1=x2=x0

dy

=

∫

y

∂

∂x1,k

f(y;x1)

f(y;x0)

∣∣∣∣
x1=x0

∂

∂x2,l

f(y;x2)

f(y;x0)

∣∣∣∣
x2=x0

f(y;x0)dy

=

∫

y

∂

∂x1,k
log f(y;x1)

∣∣∣∣
x1=x0

∂

∂x2,l
log f(y;x2)

∣∣∣∣
x2=x0

f(y;x0)dy

= Ex0

{
∂

∂x1,k
log f(y;x1)

∣∣∣∣
x1=x0

∂

∂x2,l
log f(y;x2)

∣∣∣∣
x2=x0

}
, (4.64)

where step (a) follows from Theorem 3.4.1 (using g(p)xc (·) for the two choices p = ek and p = el,

respectively, and xc = x0) and (b) is obtained by two applications of (4.51) in Postulate 4.4.2

(for the first application we use h(y) = f(y;x1)
f(y;x0)

and differentiate w.r.t. x2,l; and for the second

application we set h(y) = ∂
∂x2,l

f(y;x2)
f(y;x0)

∣∣∣∣
x2=x0

and differentiate w.r.t. x1,k). Thus we have V = Jx0 ,

where Jx0 is the Fisher information matrix as defined in (4.57). As a consequence, by combining

(4.19) of Theorem 4.3.4, (4.21), (4.61) and (4.63) we obtain

LM
(4.19)
= ‖g(·)‖2H(M) −

(
g(x0)

)2 (4.21)

≥ ‖PUCR
g(·)‖2H(M) −

(
g(x0)

)2

(4.61),(4.63)
=

(
g(x0)

)2
+

(
∂g(x)

∂x

∣∣∣∣
x0

)T

J†
x0

∂g(x)

∂x

∣∣∣∣
x0

−
(
g(x0)

)2
=

(
∂g(x)

∂x

∣∣∣∣
x0

)T

J†
x0

∂g(x)

∂x

∣∣∣∣
x0

.

(4.65)

This coincides with the unconstrained CRB in (4.56), since we have v(ĝ(·);x0) ≥ LM by the

definition of LM in (2.19).

Constrained CRB

Consider an estimation problem E = (X , f(y;x), g(·)) with associated minimum variance prob-

lem M = (E , c(·) ≡ 0,x0). We asume that the parameter set X is defined via a set of equality

constraints, i.e.,

X = {x ∈ R
N
∣∣f(x) = 0}, (4.66)
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where f(·) : RN → R
L is a continuously differentiable vector-valued function. We also assume

that f(·) is such that the set X is nonempty and that its Jacobian F(x) , ∂f(x)
∂x ∈ R

L×N , given

elementwise by (F(x))m,n ,
∂fm(x)
∂xn

, has rank L whenever f(x) = 0, i.e., for every x ∈ X . Such

parameter sets are considered e.g. in [58–60].

As discussed in Section 2.5, there are a two fundamentally different ways in how one can exploit

the prior knowledge that is given by a specific form of the parameter set (e.g., such as (4.66)). For

the problem of estimating the parameter vector itself, i.e., g(x) = x, the authors of [58] require

an estimator ĝ(·) : RM → R
N to take on values only in X , i.e., ĝ(y) ∈ X for all y ∈ R

M .This is

reasonable since if it is known that the unknown parameter vector x is an element X , then the

value of an estimator of x should also be an element of X .

However, in this work, we will focus on another approach that is also considered by the authors

of [59]. Within this second approach, we do not constrain the values of the estimator itself to

be an element of X but instead we only require the bias of the estimator to equal the prescribed

bias for parameter vectors x ∈ X . In this approach, the a priori knowledge of a certain type of

parameter set X helps us in that we must place fewer bias constraints on an estimator. Thus, the

set of allowed estimators F(M) in (2.18) tends to become larger as the parameter set X is getting

smaller, i.e., more “informative”.

The constrained CRB is a generalization of the unconstrained CRB to estimation problems

with a parameter set X of the form (4.66). A specific formulation of the constrained CRB is given

in [59]:

Theorem 4.4.5. Consider an estimation problem E = (X , f(y;x), g(·)) and associated minimum

variance problem M = (E , c(·) ≡ 0,x0) that satisfy Postulate 4.1.1 and Postulate 4.4.2 with m = 1

and whose parameter set X satisfies (4.66). Then the variance v(ĝ(·);x0) at x0 ∈ X of any

unbiased estimator ĝ(·) with a finite variance at x0 is lower bounded by

v(ĝ(·);x0) ≥
(
∂g(x)

∂x

∣∣∣∣
x0

)T

U(x0)
(
UT (x0)Jx0U(x0)

)†
UT (x0)

∂g(x)

∂x

∣∣∣∣
x0

(4.67)

where Jx0 is the FIM as defined in (4.57) and U(x0) ∈ R
N×(N−L) is any matrix whose column

vectors form an ONB for the null space N (F(x0)) of the Jacobian F(x0), i.e.,

F(x0)U(x0) = 0, UT (x0)U(x0) = I(N−L). (4.68)

Proof. [59]

Note that if the function f(x) in (4.66) is given as f(x) ≡ 0, one can verify that the matrix

U(x0) used in Theorem 4.4.5 can be chosen as U(x0) = I in which case the constrained CRB

(4.67) reduces to the unconstrained CRB (4.56). We now re-derive the bound (4.67) using the
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RKHS H(M) associated to the minimum variance problem M of Theorem 4.4.5. This derivation

will be very similar to the RKHS-based derivation of the unconstrained CRB as performed above.

However, there are some modifications necessary due to the additional assumption on the parameter

set X given by (4.66). These modifications are based mainly on the methods used in [60].

In particular, will show that the bound (4.67) can be obtained via an orthogonal projection on

a finite-dimensional subspace UCCRB ⊆ H(M) which is defined by

UCCRB , span
{
{v0(·)} ∪ {vl(·)}l∈[N−L]

}
, (4.69)

where v0(·) , RM(·,x0) ∈ H(M) and the functions {vl(·)}l∈[N−L] ∈ H(M) will be specified in the

following. We first note that given the fixed vector x0 associated to the minimum variance problem

M, we have according to the implicit function theorem (see [60, Theorem 3.3] or [5]) that there

exists a continuously differentiable and bijective map r(·), which moreover has a continuously

differentiable inverse4 r−1(·), from an open set O ⊆ R
N−L into an open set P ⊆ X which also

contains x0, i.e.,

r(·) : O ⊆ R
N−L → P ⊆ X (4.70)

where x0 ∈ P. Note that any function value r(θ) is an element of the parameter set, i.e., r(θ) ∈ X .

The Jacobian of r(·) at an arbitrary θ ∈ O will be denoted by G(θ) ∈ R
N×(N−L), i.e.,

(G(θ))m,n =
∂rm(θ)

∂θn
. (4.71)

We now define the functions vl(·) ∈ H(M) in (4.69) as

vl(·) ,
∂RM(·, r(θ))

∂θl

∣∣
θ=r−1(x0)

, l ∈ [N − L]. (4.72)

The fact that the so-defined functions vl(·) belong to H(M) can again be verified straightforwardly

by Theorem 4.4.3 together with Theorem 3.4.1. Indeed, using the chain rule for differentiation [5,

Theorem 9.15], we have

vl(·) =
∂RM(·, r(θ))

∂θl

∣∣∣∣
θ=r−1(x0)

=
∑

l′∈[N ]

∂RM(·,x)
∂xl′

∣∣∣∣
x=x0

∂rl′(θ)

∂θl

∣∣∣∣
θ=r−1(x0)

, l ∈ [N − L], (4.73)

which is a linear combination of the functions ∂RM(·,x)
∂xl′

∣∣∣∣
x=x0

which are of the same form (for the

choice p = el′ and xc = x0) as the functions g(p)xc (·) defined in Theorem 3.4.1,

4Such a function is called a diffeomorphism [60].
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The inner product between any vl(·) with l ∈ [N − L] and v0(·) is given by (cf. our derivation

in (4.60))

〈v0(·), vl(·)〉H(M) =
∂RM(x0, r(θ))

∂θl

∣∣∣∣
θ=θ0

=
∂

∂θl

∫

y

f(y; r(θ))f(y;x0)

f(y;x0)
dy

∣∣∣∣
θ=θ0

=
∂

∂θl

∫

y

f(y; r(θ))dy

∣∣∣∣
θ=θ0

=
∂

∂θl
1
∣∣
θ=θ0

= 0, (4.74)

where we introduced the shorthand θ0 , r−1(x0).

Since Theorem 4.4.5 makes a statement about an unbiased estimator of the parameter function

g(·) that has a finite variance at x0, we can assume that the parameter function g(·) is estimable,

i.e., we have g(·) ∈ H(M) by Theorem 4.3.4 (where again γ(·) = g(·)).
According to Theorem 3.1.8 and (4.74), we can express the squared norm of the orthogonal

projection PUCCRB
g(·) as

‖PUCCRB
g(·)‖2H(M) =

(
〈g(·), v0(·)〉H(M)

)2
+ aTV†a = (g(x0))

2 + aTV†a, (4.75)

where the vector a ∈ R
N−L and the matrix V ∈ R

(N−L)×(N−L) are defined elementwise as al ,

〈g(·), vl(·)〉H(M) and (V)k,l , 〈vk(·), vl(·)〉H(M), respectively. Due to the derivative-reproducing

property (3.65) and the chain rule of differentiation [5, Theorem 9.15], we obtain

al = 〈g(·), vl(·)〉H(M) =

〈
g(·), ∂RM(·, r(θ))

∂θl

∣∣∣∣
θ=θ0

〉

H(M)

(4.73)
=

〈
g(·),

∑

l′∈[N ]

∂RM(·,x)
∂xl′

∣∣∣∣
x=x0

∂rl′(θ)

∂θl

∣∣∣∣
θ=θ0

〉

H(M)

=
∑

l′∈[N ]

∂rl′(θ)

∂θl

∣∣∣∣
θ=θ0

〈
g(·), ∂RM(·,x)

∂xl′

∣∣∣∣
x=x0

〉

H(M)

(3.65)
=

∑

l′∈[N ]

∂rl′(θ)

∂θl

∣∣∣∣
θ=θ0

∂g(x)

∂xl′

∣∣∣∣
x0

(4.71)
=

∑

l′∈[N ]

(G(θ0))l′,l
∂g(x)

∂xl′

∣∣∣∣
x0

, (4.76)

, i.e., in vector notation:

a = GT (θ0)
∂g(x)

∂x

∣∣∣∣
x0

. (4.77)

Furthermore, by using the chain rule for derivation once again, we obtain

(V)k,l = 〈vk(·), vl(·)〉H(M) =

〈
∂RM(·, r(θ))

∂θk

∣∣∣∣
θ=θ0

,
∂RM(·, r(θ))

∂θl

∣∣∣∣
θ=θ0

〉

H(M)



4.4. RKHS INTERPRETATION OF KNOWN VARIANCE BOUNDS 73

=

〈
∑

l′∈[N ]

∂RM(·,x)
∂xl′

∣∣∣∣
x=x0

∂rl′(θ)

∂θk

∣∣∣∣
θ=θ0

,
∑

l′∈[N ]

∂RM(·,x)
∂xl′

∣∣∣∣
x=x0

∂rl′(θ)

∂θl

∣∣∣∣
θ=θ0

〉

H(M)

=
∑

l′,l′′∈[N ]

∂rl′(θ)

∂θk

∣∣∣∣
θ=θ0

∂rl′′(θ)

∂θl

∣∣∣∣
θ=θ0

〈
∂RM(·,x)

∂xl′

∣∣∣∣
x=x0

,
∂RM(·,x)
∂xl′′

∣∣∣∣
x=x0

〉

H(M)

(a)
=

∑

l′,l′′∈[N ]

(G(θ0))l′,k (G(θ0))l′′,l
∂2RM(x1,x2)

∂x1,l′∂x2,l′′

∣∣∣∣
x1=x2=x0

=
(
G(θ0)

TWG(θ0)
)
k,l
, (4.78)

where step (a) is due to Theorem 3.4.1 (using g(p)xc (·) for the choices p = el′ , p = el′′ and xc = x0),

and the matrix W ∈ R
N×N is given elementwise via

(W)k,l ,
∂2RM(x1,x2)

∂x1,k∂x2,l

∣∣∣∣
x1=x2=x0

= Ex0

{
∂

∂x1,k
log f(y;x1)

∣∣∣∣
x1=x0

∂

∂x2,l
log f(y;x2)

∣∣∣∣
x2=x0

}
.

(4.79)

Here, we reused for (4.79) the derivation of (4.64). According to (4.79), the matrix W coincides

with the FIM Jx0 as defined in (4.57), i.e., W = Jx0 . Putting together the pieces, we obtain

LM
(4.19)
= ‖g(·)‖22 −

(
g(x0)

)2 (4.21)

≥ ‖PUCCRB
g(·)‖2H(M) −

(
g(x0)

)2

(4.75)
= aTV†a

(4.78),(4.77)
=

(
∂g(x)

∂x

∣∣∣∣
x0

)T

G(θ0)
(
GT (θ0)Jx0G(θ0)

)†
GT (θ0)

∂g(x)

∂x

∣∣∣∣
x0

. (4.80)

As shown in [60, p. 29], the Jacobian G(θ0) in (4.71) and the matrix U(x0) appearing in

Theorem 4.4.5 are related by an invertible linear transformation, i.e., there exists a nonsingular

matrix S ∈ R
(N−L)×(N−L) (wich may depend on x0) such that

G(θ0)S = U(x0). (4.81)

However, one can always find a map r(·) such that S = I, in which case G(θ0) = U(x0) [60, p.

50]. Indeed, suppose that the map r(·) is such that S 6= I and therefore G(θ0) 6= U(x0). We can

then use for the definition of the functions vl(·) in (4.72) instead of r(·) a new map r′(·) defined

as r′(θ) = r(Sθ), whose Jacobian G′(θ0) satisfies

G′(θ0)
(a)
= G(θ0)S

(4.81)
= U(x0), (4.82)

where step (a) is due to the chain rule for differentiation [5, Theorem 9.15].

Thus, since we can assume that G(θ0) = U(x0), we have by the definition of LM in (2.19)

that the bound (4.80) coincides with the bound (4.67).
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4.4.3 Bhattacharyya Bound

The CRB of a given minimum variance problem depends only on the first-order partial derivatives

of the statistical model f(y,x) w.r.t. to the parameter x. By incorporating also higher-order partial

derivatives, one obtains the Bhattacharyya bound [75,76]. Like the CRB the Bhattacharyya bound,

is a lower bound on the variance of any unbiased estimator for a given estimation problem (which

is required to satisfy some regularity conditions). The Bhattacharyya bound may be formulated

in our setting as follows.

Theorem 4.4.6. Consider an estimation problem E = (X , f(y;x), g(·)) with associated minimum

variance problem M = (E , c(·) ≡ 0,x0) that satisfy the conditions of Postulate 4.1.1 and Postulate

4.4.2 with maximum order of differentiation equal to m. For any set of L ∈ N multi-indices

{pl ∈ ZN
+}l∈[L] with ‖pl‖∞ ≤ m, we have that the variance v(ĝ(·);x0) at x0 of any unbiased

estimator ĝ(·) with finite variance at x0 is lower bounded by

v(ĝ(·);x0) ≥ bTB†b, (4.83)

where the vector b ∈ R
L and the matrix B ∈ R

L×L are given elementwise by

bl ,
∂plg(x)

∂xpl

∣∣∣∣
x0

(4.84)

and

(B)k,l , Ex0

{
1

f2(y;x0)

∂pkf(y;x)

∂xpk

∣∣∣∣
x=x0

∂plf(y;x)

∂xpl

∣∣∣∣
x=x0

}
, (4.85)

respectively.

A derivation of Theorem 4.4.6 can be based on the RKHS H(M). This derivation is completely

analogous to that of Theorem 4.4.4. The only difference is that instead of the subspace UCR defined

via (4.58) and (4.59), which is used for the derivation of Theorem 4.4.4, one has to use the subspace

UBHATT , span{{v0(·)}∪{vl(·)}l∈[L]}. Here, we used the functions v0(·) , RM(·,x0) ∈ H(M) and

vl(·) , ∂plRM(·,x)
∂xpl

∣∣
x=x0

∈ H(M) for l ∈ [L]. The fact that the functions {vl(·)}l∈[L] belong to the

RKHS H(M) may be verified by Theorem 4.4.3 together with Theorem 3.4.1.

While the RKHS interpretation of the Bhattacharyya bound has already been presented in [35]

for a specific estimation problem, the above derivation holds for general estimation problems.

Finally, note that the unconstrained CRB in Theorem 4.4.4 is obtained as a special case of the

Bhattacharyya bound for the choices L = N , m = 1 and multi-indices {pl = el}l∈[L] in Theorem

4.4.6.



4.4. RKHS INTERPRETATION OF KNOWN VARIANCE BOUNDS 75

4.4.4 Hammersley-Chapman-Robbins Bound

Despite its popularity, a drawback of the CRB (and also of the Bhattacharyya bound) is that it

only exploits the local structure of an estimation problem E around a specific point x0 ∈ X [75].

As an illustrative example, consider two different estimation problems E1 = (X1, f(y;x), g(·)) and

E2 = (X2, f(y;x), g(·)) that share the same statistical model f(y;x) and parameter function g(·)
but are defined for two different parameter sets X1 and X2. Let us assume that both parameter

sets are open balls centered at x0 but with different radii r1 and r2, i.e., X1 = B(x0, r1) and

X2 = B(x0, r2) with r1 6= r2. Then the CRB at x0 will be the same for both estimation problems

irrespective of the precise values of r1, r2. Thus, the CRB ignores in some sense a part of the

information that is contained in the parameter set X .

On the other hand, the Barankin bound exploits the full information carried by the parameter

set X since it is the tightest possible lower bound on the estimator variance. However, in the

general case, it is difficult to evaluate the exact Barankin bound in (4.44).

The Hammersley-Chapman-Robbins bound (HCRB) [29, 77, 78] is a lower bound on the esti-

mator variance which also incorporates the “global” structure of the estimation problem, i.e., it

depends on the parameter set X not only through its local structure as does the CRB. However,

it can be evaluated much more easily than the Barankin bound. In our context, the HCRB can

be stated as follows [29]:

Theorem 4.4.7. Consider an estimation problem E = (X , f(y;x), g(·)) and associated minimum

variance problem M = (E , c(·) ≡ 0,x0) that satisfy Postulate 4.1.1. Furthermore, consider a finite

set of “test-points” {xl ∈ X}l∈[L]. Then the variance v(ĝ(·);x0) at x0 ∈ X of any unbiased estimator

ĝ(·) with a finite variance at x0 is lower bounded by

v(ĝ(·);x0) ≥ mTV†m, (4.86)

where the vector m ∈ R
L and the matrix V ∈ R

L×L are defined elementwise by

ml , g(xl)− g(x0) (4.87)

and

(V)l,l′ , Ex0

{[
f(y;xl)− f(y;x0)

][
f(y;xl′)− f(y;x0)

]

f2(y;x0)

}
, (4.88)

respectively.

Proof. [29]

We now show how the bound in (4.86) can be obtained via the RKHS H(M). First, note that

since Theorem 4.4.7 makes a statement about an existing unbiased estimator of g(x) with finite
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variance at x0, we can assume that g(·) is estimable, i.e., g(·) ∈ H(M) according to Theorem

4.3.4. Then, let us define the subspace

UHCRB , span
{
{v0(·)} ∪ {vl(·)}l∈[L]

}
, (4.89)

where L is the number of test-points
{
xl

}
l∈[L] used in Theorem 4.4.7. The subspace UHCRB is

spanned by the functions v0(·) , RM(·,x0) and
{
vl(·) , RM(·,xl) − RM(·,x0)

}
l∈[L]. Note that

we obviously have by Theorem 3.2.2 that these functions belong to H(M).

The function v0(·) ∈ H(M) is orthogonal to any vl(·) ∈ H(M) with l ∈ [L], i.e., the two sets

{v0(·)} and {vl(·)}l∈[L] are mutually orthogonal, since by the reproducing property (3.43) we have
〈
v0(·), vl(·)

〉
H(M)

=
〈
RM(·,x0), RM(·,xl)−RM(·,x0)

〉
H(M)

=
〈
RM(·,x0), RM(·,xl)

〉
H(M)

−
〈
RM(·,x0), RM(·,x0)

〉
H(M)

= RM(xl,x0)−RM(x0,x0)
(4.11)
= 1− 1 = 0. (4.90)

Now we define the matrix V ∈ R
L×L elementwise by

(V)l,l′ ,
〈
vl(·), vl′(·)

〉
H(M =

〈
RM(·,xl)−RM(·,x0), RM(·,xl′)−RM(·,x0)

〉

H(M)

(3.43)
= RM(xl′ ,xl)−RM(xl′ ,x0)−RM(xl,x0) +RM(x0,x0). (4.91)

The inner products of g(·) with the vectors vl(·) are calculated (also using the reproducing property

(3.43)) as
〈
g(·), v0(·)

〉
H(M)

= g(x0), and 〈g(·), vl(·)〉H(M) = g(xl)− g(x0) = ml for l ∈ [L]. (4.92)

By projecting the prescribed mean function γ(·) = g(·) + c(·) = g(·) of the minimum variance

problem M on the subspace UHCRB, we obtain

LM
(4.19)
= ‖g(·)‖22 −

(
g(x0)

)2 (4.21)

≥ ‖PUHCRB
g(·)‖2H(M) −

(
g(x0)

)2

(a)
=
〈
g(·), v0(·)

〉
H(M)

(〈
v0(·), v0(·)

〉
H(M)

)−1〈
g(·), v0(·)

〉
H(M)

+mTV†m−
(
g(x0)

)2

(b)
=
(
g(x0)

)2
+mTV†m−

(
g(x0)

)2
= mTV†m, (4.93)

where for step (a) we used (4.92) and Theorem 3.1.9, which applies since UHCRB is defined as the

linear span of the union of the two mutually orthogonal function sets {v0(·)} and {vl(·)}l∈[L]. The

step (b) follows from

〈
v0(·), v0(·)

〉
H(M)

=
〈
RM(·,x0), RM(·,x0)

〉
H(M)

(3.43)
= RM(x0,x0)

(4.11)
= 1. (4.94)
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and (4.92).

The bound in (4.86) follows from (4.93), the definition of LM in (2.19) and the fact that

(V)l,l′
(4.91)
= RM(xl′ ,xl)−RM(xl′ ,x0)−RM(xl,x0) +RM(x0,x0)

= Ex0

{
f(y;xl′)

f(y;x0)

f(y;xl)

f(y;x0)

}
− Ex0

{
f(y;xl′)

f(y;x0)

f(y;x0)

f(y;x0)

}
− Ex0

{
f(y;xl)

f(y;x0)

f(y;x0)

f(y;x0)

}

+ Ex0

{
f(y;x0)

f(y;x0)

f(y;x0)

f(y;x0)

}

= Ex0

{
f(y;xl′)− f(y;x0)

f(y;x0)

f(y;xl)− f(y;x0)

f(y;x0)

}

= Ex0

{[
f(y;xl)− f(y;x0)

][
f(y;xl′)− f(y;x0)

]

f2(y;x0)

}
. (4.95)
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Chapter 5

The Sparse Linear Model

5.1 Introduction

In this chapter, we study the problem of estimating a nonrandom parameter vector x∈R
N which

is known to be strictly S-sparse, i.e., at most S of its entries are nonzero, where S ∈ [N ] (typically

S≪N). We thus have

x∈XS , with XS =
{
x′∈R

N
∣∣‖x′‖0 ≤ S

}
. (5.1)

While the sparsity degree S ∈ N is assumed to be known, the set of positions of the nonzero entries

of x, i.e., the support supp(x), is unknown.

The estimation of x is based on the observed vector y∈R
M given by

y = Hx+ n , (5.2)

with a known system matrix H∈R
M×N and additive white Gaussian noise (AWGN) n ∼ N (0, σ2I)

with a known positive (i.e., nonzero) noise variance σ2 > 0. The matrix H is arbitrary, typically,

it will be assumed to satisfy the requirement

spark(H)> S , (5.3)

where spark(H) denotes the minimum number of linearly dependent columns of H [17].1 Note

that we also allow M <N (this case is relevant to compressed sensing methods as discussed in

Section 5.7); however, condition (5.3) implies that M≥S. Furthermore, note that the requirement

(5.3) is weaker than the standard requirement [25]

spark(H)> 2S , (5.4)

1For a matrix H ∈ R
M×N with full column rank, i.e., rank(H) = N , we define spark(H) = N.

79
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which is reasonable since otherwise we can find two different parameter vectors x1,x2 ∈ XS for

which the pdf of the observation is identical, i.e., f(y;x1) = f(y;x2) for every y, which means that

it is completely impossible to distinguish between x1 and x2 only by looking at the observation y.

More formally, by combining the observation model (5.2) with the requirement (5.1), we define

the sparse linear model (SLM) as the specific estimation problem denoted ESLM and given as

ESLM ,
(
XS, fH(y;x), g(x) = xk

)
, (5.5)

where k ∈ [N ] is an arbitrary but fixed index (the precise choice of k will be made explicit whenever

necessary) and with the statistical model

fH(y;x) =
1

(2πσ2)M/2
exp

(
− 1

2σ2
‖y −Hx‖22

)
. (5.6)

One may argue that considering the parameter function g(x) = xk is to restrictive, since in

practice one may be intersted in the whose parameter vector x rather than only a single entry xk.

However, as discussed in Section 2.3.1, in the context of minimum variance estimation, we have

that estimation of the parameter vector x is completely equivalent to the N separate estimation

problems {(
XS , fH(y;x), g(x) = xk

)}

k∈[N ]

. (5.7)

By comparing (5.6) with (2.38), we see that the statistical model of the SLM is an instance of the

standard exponential family, with sufficient statistic Φ(y) = 1
σ2H

Ty, parameter function u(x) = x,

cumulant function A(Φ)(x) = 1
2σ2x

THTHx, and weight h(y) = exp
(
− 1

2σ2y
Ty
)
.

The SLM is very similar to a well-known estimation problem, i.e., the linear Gaussian model

(LGM) [19–21,56], which is given by

ELGM ,
(
R
N , fH(y;x), g(x) = xk

)
. (5.8)

Indeed, the only difference between the LGM ELGM and the SLM ESLM is the parameter set. The

SLM is obtained from the LGM by reducing the parameter set from X = R
N to the set of S-sparse

vectors, i.e., X = XS. If the sparsity degree S is equal to the dimension of the observation, i.e.,

S = N , then the SLM coincides with the LGM.

The SLM is relevant, e.g., for sparse channel estimation [11] where the sparse parameter vector

x represents the taps of a linear time-invariant channel and the system matrix H represents the

training signal. Generally, the SLM can be used for any type of sparse deconvolution [37] like in

optical coherence tomography (OCT) [79], where the sparse vector x models the layer structure of

the human eye and the matrix H represents the properties of the measurement device.

An important special case of the SLM is given by H=I (so that M=N), i.e.,
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y = x+ n , (5.9)

where again x ∈ XS and n ∈ R
N represents AWGN, i.e., n ∼ N (0, σ2I) with known variance

σ2 > 0. This will be referred to as the sparse signal in noise model (SSNM). Formally, the SSNM

is defined as the estimation problem

ESSNM ,
(
XS , fH=I(y;x), g(x) = xk

)
, (5.10)

i.e., with the statistical model (5.6) for the specific choice H = I for the system matrix. The SSNM

can be used, e.g., for channel estimation [11] when the channel consists only of few significant

taps and an orthogonal training signal is used [80]. Another potential application for the SSNM

is image denoising using an orthonormal wavelet basis [23]. Note that due to Theorem 2.4.2,

any lower bound on the minimum achievable variance of a minimum variance problem MSSNM =

(ESSNM, c(·),x0) entails a lower bound on the minimum achievable variance for a minimum variance

problem for any estimation problem with parameter set XS and observation model

y = H(x+ n), (5.11)

where n denotes AWGN, i.e., n ∼ N (0, σ2I) and H ∈ R
M×N is an arbitrary (possibly random)

matrix. However, if the system matrix H ∈ R
M×N in (5.2) is a deterministic orthonormal matrix,

i.e., HTH = I (which implies that M ≥ N), then we can transform the observation y in an

invertible manner to obtain the modified observation y′ = HTy = x+ n′, where n′ ∼ N (0, σ2I).

The modified observation corresponds then to an SSNM and moreover, by Theorem 2.4.1, is

equivalent to the original SLM since the transformation of the observation is invertible. Thus, any

SLM with an orthonormal system matrix is, from the viewpoint of minimum variance estimation,

completely equivalent to the SSNM (cf. [81, 82]).

The SLM has been considered in [16], where the authors analyze the performance of specific

estimation schemes that are based on convex optimization problems. In a minimax estimation

context, the SLM has been studied in [48, 49], where the authors derive bounds on the minimax

risk (see Section 2.2) and also discuss estimators that come close to these bounds. An asymptotic

analysis of minimax estimation for the SSNM is given in the seminal work [22,23]. In our context,

i.e., minimum variance estimation, lower bounds on the minimum achievable estimation variance

for the SLM have been studied recently. In particular, the CRB for the SLM was derived and

analyzed in [25, 26]. In [81], lower and upper bounds on the minimum achievable variance of

unbiased estimators were derived for the SSNM by using techniques that differ from the RKHS

approach that will be used in this thesis. A remarkable property of the lower bounds presented

in [25] and [81] is the fact that they exhibit a discontinuity when passing from the case ‖x‖0=S
to the case ‖x‖0<S.
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In this chapter, we use the mathematical framework of RKHS to derive novel lower bounds on

the variance of estimators for the SLM. These bounds hold for estimators with a given differentiable

bias function. For the special case of the SSNM, we obtain a lower bound for unbiased estimators

which is tighter than the bounds in [25, 26, 81] and, moreover, is a continuous function of x. As

we will show, RKHS theory relates the lower bound for the SLM to that obtained for a specific

LGM. The RKHS framework has been previously applied to estimation [3, 35] but, to the best of

our knowledge, not to the SLM.

This chapter is organized as follows: In Section 5.2, we introduce and discuss the RKHS

associated to minimum variance problems that arise from the SLM. Based on this RKHS, we discuss

in Section 5.3 some fundamental facts about minimum variance estimation for the SLM. In Section

5.4, we use RKHS theory first to reinterpret existing lower bounds from the geometric RKHS

perspective and then to derive novel lower bounds on the variance of estimators for the SLM which

have a prescribed bias, or, equivalently, a prescribed mean function. The important special case of

the SLM given by the SSNM is discussed in Section 5.5, where we derive closed-form expressions

for the minimum achievable variance, i.e., the Barankin bound and for the corresponding LMV

estimator. A discussion on the necessity of strict sparsity requirements is presented in Section 5.6.

The SLM viewpoint on the CS recovery problem is presented in Section 5.7. Finally, we compare

the theoretical bounds with the actual variance behavior of some popular estimation schemes in

Section 5.8.

The key results of this chapter have been presented in part in [81–84].

5.2 RKHS Associated with the SLM

We will denote any minimum variance problem that is obtained from ESLM (5.5) by additionally

fixing a prescribed bias function c(·) : XS → R and parameter vector x0 ∈ XS , by

MSLM , (ESLM, c(·),x0) . (5.12)

It should be clear from the context which bias function c(·) and fixed parameter vector x0 is used

within the minimum variance problem MSLM. Note that the restriction to the specific parameter

function g(x) = xk in the SLM (5.5) is no real restriction, since we do not constrain the prescribed

bias c(·) used for the minimum variance problem MSLM and, according to Theorem 2.3.1, it is no

loss of generality if one fixes either the prescribed bias or the parameter function of a minimum

variance problem, but not both.

The estimation problem ESLM satisfies the requirements of Postulate 4.1.1, since it can be

easily verified that Ex0

{[
fH(y;x)
fH(y;x0)

]2}
<∞ for any x ∈ XS . Therefore, according to Section 4.3.1,
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we can associate with the minimum variance problem MSLM an RKHS H(MSLM) whose kernel

RMSLM
(·, ·) : XS × XS → R is given as (cf. (4.10)):

RMSLM
(x1,x2) = Ex0{ρMSLM

(y,x1)ρMSLM
(y,x2)} = Ex0

{
fH(y;x1)

fH(y;x0)

fH(y;x2)

fH(y;x0)

}

=

∫

y

fH(y;x1)fH(y;x2)

fH(y;x0)
dy

=

∫

y

1

(2πσ2)M/2

exp
(
− 1

2σ2 ‖y −Hx1‖22
)
exp

(
− 1

2σ2 ‖y −Hx2‖22
)

exp
(
− 1

2σ2 ‖y −Hx0‖22
) dy

=

∫

y

1

(2πσ2)M/2
exp

(
− 1

2σ2

[
‖y‖22 − 2yTH(x1 + x2 − x0) + ‖Hx1‖22 + ‖Hx2‖22 − ‖Hx0‖22

])
dy

=

∫

y

1

(2πσ2)M/2
exp

(
− 1

2σ2

[
‖y −H(x1 + x2 − x0)‖2 + 2xT

0 H
TH(x1 + x2)

− 2xT
1 H

THx2 − 2xT
0 H

THx0

])
dy

= exp

(
− 1

2σ2

[
+ 2xT

0 H
TH(x1 + x2)− 2xT

1 H
THx2 − 2xT

0 H
THx0

])
×

∫

y

1

(2πσ2)M/2
exp

(
− 1

2σ2

[
‖y −H(x1 + x2 − x0)‖2

])
dy

︸ ︷︷ ︸
=1

= exp

(
1

σ2
(x1 − x0)

THTH(x2 − x0)

)
. (5.13)

Obviously, the kernel RMSLM
(·, ·) is differentiable in the sense of Definition 3.4.1 up to any order

m ∈ N, and therefore Theorem 3.4.1 applies to the RKHS H(MSLM) (note that this RKHS consists

of functions f(·) : XS → R).

Let us now consider the SLM for the specific case S = N , for which the SLM coincides with

the LGM. We will denote by

MLGM , (ELGM, c̃(·),x0) (5.14)

any minimum variance problem arising from the LGM ELGM by fixing a prescribed bias function

c̃(·) : RN → R and parameter vector x0 ∈ XS .2 The corresponding RKHS will be denoted by

2Note that we require x0 ∈ XS even if the parameter set of the LGM is R
N ⊇ XS.
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H(MLGM), i.e., H(MLGM) is the RKHS associated to the kernel RMLGM
(·, ·) : RN × R

N → R:

RMLGM
(x1,x2) = exp

(
1

σ2
(x1 − x0)

THTH(x2 − x0)

)
. (5.15)

Note that the functional form of RMLGM
(x1,x2) is identical with that of RMSLM

(x1,x2) (see

(5.13)). However, these two kernel functions differ in their domain, which is RN×R
N and XS×XS,

respectively.

As can be verified easily, the restriction MLGM

∣∣
XS

of the minimum variance problem MLGM

given by (5.14) coincides with the minimum variance problem MSLM given by (5.12) with pre-

scribed bias c(·) = c̃(·)
∣∣
XS

. We highlight the fact that we prescribe the estimator bias within mini-

mum variance estimation for the SLM only for the smaller set XS , i.e., we require b(x̂k(·);x) = c(x)

only for x ∈ XS ⊆ R
N , whereas for the LGM we prescribe the bias for every x ∈ R

N .

Theorem 5.2.1. Consider the minimum variance problem MLGM = (ELGM, c̃(·),x0) with an

arbitrary but fixed choice for σ, M , N , H, prescribed bias c̃(·) : RN → R, and parameter vector

x0 ∈ XS. We then have that for any sparsity degree S ∈ [N ], the RKHS H(MSLM) associated with

MSLM = MLGM

∣∣
XS

consists of the restrictions of all functions f(·) : RN → R belonging to the

RKHS H(MLGM) to the subdomain XS ⊆ R
N , i.e.,

H(MSLM) =

{
f(·)

∣∣
XS

∣∣∣∣ f(·) ∈ H(MLGM)

}
. (5.16)

Moreover, the norm of any element f(·) ∈ H(MSLM) is given by

‖f(·)‖H(MSLM) = min
g(·)∈H(MLGM)

g(·)
∣∣
XS

=f(·)

‖g(·)‖H(MLGM) (5.17)

Proof. This result is obtained from the application of Theorem 3.3.5 to the specific RKHSs

H(MSLM) and H(MLGM) since the associated kernels obviously satisfyRMSLM
(·, ·) = RMLGM

(·, ·)
∣∣
XS×XS

.

The RKHS H(MLGM) associated with the minimum variance problem MLGM has already

been analyzed in [35]. However, we will now present an alternative characterization of the RKHS

H(MLGM) that is based on a congruence with a specific RKHS that has some pleasing properties.

Theorem 5.2.2. Consider the RKHS H(MLGM) associated with MLGM , (ELGM, c̃(·),x0) with

an arbitrary system matrix H ∈ R
M×N , not necessarily satisfying (5.3), and denote its thin SVD

by H = UΣVT . Then we have that any function f(·) ∈ H(MLGM) is invariant w.r.t. translations

by vectors x′ ∈ R
N that belong to the null-space of H, i.e.,

f(x) = f(x+ x′) (5.18)
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for any x′ ∈ N (H), x ∈ R
N . Furthermore, the RKHS H(MLGM) is isometric to the RKHS

H(R
(D)
g ) for D = rank(H), which is defined via the kernel R

(D)
g (·, ·) : RD × R

D → R:

R(D)
g (x1,x2) , exp

(
xT
1 x2

)
. (5.19)

The mapping Kg[·] : H(R
(D)
g ) → H(MLGM) given by

f(·) 7→ f̃(·) = Kg[f(·)] : f̃(x′) = f

(
1

σ
H̃†x′

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
(x′)THTHx0

)
, (5.20)

where H̃ , VΣ−1, is a congruence from H(R
(D)
g ) to H(MLGM). The inverse mapping K

−1
g [·] :

H(MLGM) → H(R
(D)
g ) given by

f(·) 7→ f̃(·) = K
−1
g [f(·)] : f̃(x′) = f

(
σH̃x′) exp

(
− 1

2σ2
‖Hx0‖22 +

1

σ
(x′)T H̃†x0

)
, (5.21)

is a congruence from H(MLGM) to H(R
(D)
g ).

Proof. Consider the function fx1(·) = RMLGM
(·,x1), where x1 ∈ R

N is arbitrary but fixed. Then,

for any x′ ∈ N (H) and x ∈ R
N ,

fx1(x+ x′) = exp

(
1

σ2
(x+ x′ − x0)

THTH(x1 − x0)

)

= exp




1

σ2
(x− x0)

THTH(x1 − x0) +
(
(x1 − x0)

THTHx′)T
︸ ︷︷ ︸

=0




= exp

(
1

σ2
(x− x0)

THTH(x1 − x0)

)
= fx1(x). (5.22)

From this, it follows straightforwardly that any function f(·) ∈ span {RMLGM
(·,x)}x∈RN satisfies

(5.18). Consider now a general f(·) ∈ H(MLGM) and fix an arbitrary x ∈ R
N and x′ ∈ N (H).

Then, for any f ′(·) ∈ span {RMLGM
(·,x)}x∈RN , we have

f(x+ x′)− f(x) =
[
f(x+ x′)− f ′(x+ x′)

]
−
[
f(x)− f ′(x)

]
+ f ′(x+ x′)− f ′(x)

(a)
=
[
f(x+ x′)− f ′(x+ x′)

]
−
[
f(x)− f ′(x)

]
(5.23)

where (a) follows from the fact that f ′(·) satisfies (5.18). Since according to Theorem 3.2.2, the

linear space span {RMLGM
(·,x)}x∈RN is dense in H(MLGM) we can choose for any ε > 0 a function

f ′(·) ∈ span {RMLGM
(·,x)}x∈RN such that ‖f ′(·) − f(·)‖H(MLGM) ≤ ε which implies via Theorem

3.1.1 and the reproducing property (3.43) that

∣∣f(x+ x′)− f ′(x+ x′)
∣∣ (3.43)

=

∣∣∣∣
〈
f(·)− f ′(·), RMLGM

(·,x + x′)
〉
H(MLGM)

∣∣∣∣
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(3.3)

≤ ‖f ′(·)− f(·)‖MLGM
‖RMLGM

(·,x + x′)‖H(MLGM) ≤ ε‖RMLGM
(·,x+ x′)‖H(MLGM)

(3.43)
= ε

√
RMLGM

(x+ x′,x+ x′), (5.24)

and similarly that

∣∣f(x)− f ′(x)
∣∣ ≤ ε

√
RMLGM

(x,x). (5.25)

Thus, we can make the last expression of (5.23) arbitrarily small by a suitable choice for f ′(·).
This concludes the proof of (5.18).

For the following, we note that based on the thin SVD H = UΣVT of H, we have

HTH = VΣ2VT =
(
H̃†)T H̃†. (5.26)

Consider the two sets of functions given by

A ,

{
gx(·) , exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xTHTHx0

)
R(D)

g

(
·, H̃†x

)}

x∈RN

(5.27)

and

B ,
{
fx(·) , RMLGM

(·, σx)
}
x∈RN . (5.28)

We have obviously that

B =
{
RMLGM

(·,x)
}
x∈RN (5.29)

and in turn

span
{
B
}
= span

{
RMLGM

(·,x)
}
x∈RN . (5.30)

Furthermore, since for any x ∈ R
D and x′ , VΣx ∈ R

N (note that H̃†x′ = x) we have

R(D)
g (·, H̃†x′) = R(D)

g (·,x), (5.31)

it holds that {
R(D)

g (·,x)
}

x∈RD

⊆
{
R(D)

g (·, H̃†x′)
}

x′∈RN

. (5.32)

Similarly, since any x′ ∈ R
N and x , H̃†x′ ∈ R

D also satisfy (5.31) it holds that

{
R(D)

g (·, H̃†x′)
}

x′∈RN

⊆
{
R(D)

g (·,x)
}

x∈RD

. (5.33)

Combining (5.32) and (5.33) yields

{
R(D)

g (·,x)
}

x∈RD

=

{
R(D)

g

(
·, H̃†x′)

}

x′∈RN

, (5.34)
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and in turn

span{A} = span
{
R(D)

g (·,x)
}

x∈RD
, (5.35)

since the weights exp

(
1

2σ2 ‖Hx0‖22 − 1
σx

T (HTH)x0

)
appearing in the definition of A have no

influence on the set span{A}. Thus, we have shown that A and B span the two RKHSs H(R
(D)
g )

and H(MLGM), respectively.

For any two vectors x1,x2 ∈ R
N :

〈
fx1(·), fx2(·)

〉
H(MLGM)

=
〈
RMLGM

(·, σx1), RMLGM
(·, σx2)

〉
H(MLGM)

(3.43)
= RMLGM

(σx1, σx2)

= exp

(
1

σ2
(σx1 − x0)

THTH(σx2 − x0)

)

= exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
1 H

THx0 + xT
1 H

THx2 +
1

2σ2
‖Hx0‖22 −

1

σ
xT
2 H

THx0

)

= exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
1 H

THx0

)
exp

(
xT
1 H

THx2

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
2 H

THx0

)

(5.26)
= exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
1 H

THx0

)
exp

(
xT
1 (H̃

†)T H̃†x2

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
2 H

THx0

)

(5.19)
= exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
1 H

THx0

)
R(D)

g

(
H̃†x1, H̃

†x2

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
2 H

THx0

)

(3.43)
=

〈
exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
1 H

THx0

)
R(D)

g

(
·, H̃†x1

)
,

exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xT
2 H

THx0

)
R(D)

g

(
·, H̃†x2

)〉

H(R
(D)
g )

=
〈
gx1(·), gx2(·)

〉
H(R

(D)
g )

. (5.36)

Now, for an arbitrary x ∈ R
N , let us denote by hx(·) , Kg[gx(·)] ∈ H(MLGM) the image of

the function gx(·) , exp
(

1
2σ2 ‖Hx0‖22 − 1

σx
T (HTH)x0

)
R

(D)
g

(
·, H̃†x

)
∈ H(R

(D)
g ) (see (5.27)) under

the mapping Kg[·] defined in (5.20). We have

hx(x
′) = gx

(
1

σ
H̃†x′

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
(x′)THTHx0

)
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(5.27)
= exp

(
1

2σ2
‖Hx0‖22 −

1

σ
xTHTHx0

)
R(D)

g

(
1

σ
H̃†x′, H̃†x

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
(x′)THTHx0

)

(5.19)
= exp

(
1

σ2
‖Hx0‖22 −

1

σ
xTHTHx0

)
exp

(
1

σ

(
x′)T (H̃†)T H̃†x

)
exp

(
− 1

σ2
(x′)THTHx0

)

(5.26)
= exp

(
1

σ2
‖Hx0‖22 −

1

σ
xTHTHx0 +

1

σ

(
x′)THTHx− 1

σ2
(x′)THTHx0

)

= exp

(
1

σ2
(x′ − x0)

THTH(σx− x0)

)
(5.13)
= RMLGM

(x′, σx) = fx(x
′). (5.37)

The fact that the mapping Kg[·] defined in (5.20) is a congruence from H(R
(D)
g ) to H(MLGM)

follows then from Theorem 3.3.4, since for every argument x ∈ R
N the function value Kg[g(·)](x)

depends continuously on the function value g

(
1
σ H̃

†x
)

, which implies that the image Kg[g(·)] of a

function g(·) ∈ H(R
(D)
g ) which is the pointwise limit of a sequence

{
gl(·) ∈ span{A}

}
l→∞ is the

pointwise limit of the functions Kg[gl(·)] ∈ H(MLGM).

In the following, we will make use of the obvious facts summarized in

Lemma 5.2.3. The kernel R
(D)
g (·, ·) : RD × R

D → R defined in (5.19) is differentiable up to any

order m ∈ N (see Definition 3.4.1). We have that for any vector xc ∈ R
D, index set K ⊆ [D], and

ε > 0, the ε-K-neighborhood of xc (see (3.61)) belongs to the domain of R
(D)
g (·, ·), i.e., NK

xc
(ε) ⊆

R
D.

The RKHS H(R
(D)
g ) is entirely characterized by

Theorem 5.2.4. The RKHS H(R
(D)
g ) is separable and it contains the functions g(p)(·) : RD → R

given by

g(p)(x) ,
1√
p!

∂pR
(D)
g (x,x2)

∂xp
2

∣∣∣∣
x2=0

=
1√
p!

xp, (5.38)

where p ∈ Z
D
+ is an arbitrary multi-index, i.e.,

p ∈ Z
D
+ ⇒ g(p)(·) ∈ H(R(D)

g ), (5.39)

with p! ,
∏

l∈[D] pl! and xp ,
∏

l∈[D](xl)
pl. The inner product of an arbitrary function f(·) ∈

H(R
(D)
g ) with g(p)(·) is given by

〈
f(·), g(p)(·)

〉
H(R

(D)
g )

=
1√
p!

∂pf(x)

∂xp

∣∣∣∣
x=0

. (5.40)
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Moreover, the set
{
g(p)(·) ∈ H(R

(D)
g )

}
p∈ZD

+
forms an ONB for H(R

(D)
g ). Thus, a function f(·) :

R
D → R belongs to H(R

(D)
g ), i.e., f(·) ∈ H(R

(D)
g ) if and only if it can be written pointwise as

f(x) =
∑

p∈ZD
+

a[p]g(p)(x) =
∑

p∈ZD
+

a[p]
1√
p!

xp, (5.41)

with a unique coefficient sequence a[p] ∈ ℓ2(ZD
+).

Proof. The separability of H(R
(D)
g ) follows from [66, Theorem 7], since obviously the domain R

D

is separable and the kernel R(D)
g (·, ·) is continuous. The validity of (5.39) and (5.40) follows from

Lemma 5.2.3 and Theorem 3.4.1. By the power (Taylor) series representation of the exponential

function [6], we have that the kernel R(D)
g (·, ·) can be written pointwise as

R(D)
g (x1,x2) = exp

(
xT
1 x2

)
=
∑

p∈ZD
+

1

p!
x
p
1x

p
2 =

∑

p∈ZD
+

g(p)(x1)g
(p)(x2). (5.42)

This implies via Theorem 3.3.6 that the set
{
g(p)(·) ∈ H(R

(D)
g )

}
p∈ZD

+
forms an ONB for H(R

(D)
g ),

since it can be easily verified by (5.40) that
〈
g(p)(·), g(p′)(·)

〉
H(R

(D)
g )

= δp,p′ . The series represen-

tation in (5.41) finally follows from Theorem 3.1.10.

A useful consequence of Theorem 5.2.4 is obtained by Theorem 3.1.10:

Corollary 5.2.5. The mapping Ka[·] : ℓ2
(
Z
D
+

)
→ H(R

(D)
g ) :

Ka

[
a[p]

]
(x) =

∑

p∈ZD
+

a[p]g(p)(x) =
∑

p∈ZD
+

a[p]
1√
p!

xp , x ∈ R
D, (5.43)

is a congruence from ℓ2
(
Z
D
+

)
to H(R

(D)
g ).

Proof. The linearity of the mapping Ka[·] is obvious. Since the functions
{
g(p)(·) ∈ H(R

(D)
g )

}
p∈ZD

+

form an ONB for H(R
(D)
g ), we have by Theorem 3.1.10 that any function f(·) ∈ H(R

(D)
g ) can

be written as a sum
∑

p∈ZD
+
a[p] 1√

p!
xp, i.e., as the image Ka

[
a[p]

]
of some coefficient sequence

a[p] ∈ ℓ2
(
Z
D
+

)
. We also have that the mapping preserves inner products, i.e., given two functions

f(·) =∑p∈ZD
+
a[p]g(p)(x), f ′(·) =∑p∈ZD

+
a′[p]g(p)(x) we have

〈
f(·), f ′(·)

〉
H(R

(D)
g )

(3.40)
=

〈
a[p], a′[p]

〉
ℓ2
(
ZD
+

) =
∑

p∈ZD
+

a[p]a′[p]. (5.44)

This relation implies that two different coefficient sequences a[p] and a′[p], i.e., ‖a[p]−a′[p]‖
ℓ2
(
ZD
+

) 6=
0 cannot yield the same image under the mapping Ka[·]. To summarize, we have that the mapping

Ka[·] is linear, inner-product preserving, and bijective, i.e., a congruence (see Definition 3.1.14).
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A specific class of functions that belong to H(R
(D)
g ) is presented in

Theorem 5.2.6. Consider a coefficient sequence a[p] : ZD
+ → R which satisfies the inequality

|a[p]| ≤ C |p|, (5.45)

where C ∈ R+ is an arbitrary constant. The RKHS H(R
(D)
g ) contains any function f(·) : RD → R

given by

f(x) = exp
(
xTx1

) ∑

p∈ZD
+

a[p]

p!
xp, (5.46)

where x1 ∈ R
D is arbitrary.

Proof. Since exp
(
xTx1

)
=
∑

p∈ZD
+

x
p
1
p! x

p and
∑

p∈ZD
+

a[p]
p! x

p are power series that converge every-

where in R
D, we can by [40] write their product f(·) also as a power series in the form

f(x) =
∑

p∈ZD
+

c[p]xp, (5.47)

where the coefficients c[p] are obtained as [40]

c[p] =
∑

n≤p

1

n!(p− n)!
a[p− n]xn

1 . (5.48)

Now we show that the coefficients d[p] , c[p]
√
p! are square summable, i.e., d[p] ∈ ℓ2(ZD

+) which

then implies via (5.47) and Theorem 5.2.4 that f(·) ∈ H(R
(D)
g ).

Indeed, using (5.45), (5.48) and the fact that for any x ∈ R
D and multi-index p ∈ Z

D
+ it holds

that

xp =
∏

l∈[D]

xpll ≤
∏

l∈[D]

‖x‖pl∞ = ‖x‖|p|∞ , (5.49)

we obtain the bound

∣∣d[p]
∣∣ =

∣∣∣∣
∑

n≤p

√
p!

n!(p− n)!
a[p− n]xn

1

∣∣∣∣ ≤
∑

n≤p

√
p!

n!(p− n)!

∣∣∣∣a[p− n]xn
1

∣∣∣∣

=
1√
p!

∑

n≤p

p!

n!(p− n)!

∣∣∣∣a[p− n]xn
1

∣∣∣∣
(5.49)

≤ 1√
p!

∑

n≤p

p!

n!(p− n)!

∣∣a[p− n]
∣∣‖x1‖|n|∞

≤ 1√
p!

∑

n≤p

p!

n!(p− n)!
C |p−n|‖x1‖|n|∞ =

1√
p!

∑

n≤p

∏

l∈[D]

pl!

nl!(pl − nl)!
Cpl−nl‖x1‖nl∞

=
1√
p!

∑

n≤p

∏

l∈[D]

(
pl
nl

)
Cpl−nl‖x1‖nl∞ =

1√
p!

∏

l∈[D]

(C + ‖x1‖∞)pl
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=
1√
p!

(C + ‖x1‖∞)|p|, (5.50)

which implies that
(
d[p]

)2 ≤ 1

p!
(C + ‖x1‖∞)2|p|. (5.51)

By the ratio test [5, p. 66]) we have that

A ,
∑

pl∈Z+

1

pl!
(C + ‖x1‖∞)2pl <∞, (5.52)

since

lim
pl→∞

1
(pl+1)!(C + ‖x1‖∞)2(pl+1)

1
pl!
(C + ‖x1‖∞)2pl

= lim
pl→∞

1

pl + 1
(C + ‖x1‖∞)2 = 0. (5.53)

Now, consider an arbitrary finite index set T ⊆ Z
D
+ and denote the largest entry of any element

of T by k(T ) , maxp′∈T ‖p′‖∞. Given the index set T , we define a larger index set T ′, i.e.,

T ′ ,
{
p ∈ Z

D
+

∣∣pl ≤ k(T ) for every l ∈ [D]
}
, (5.54)

which obviously contains T , i.e., T ⊆ T ′. Then, we can bound the sum
∑

p∈T
(
d[p]

)2
as

∑

p∈T

(
d[p]

)2 ≤
∑

p∈T ′

(
d[p]

)2 (5.51)

≤
∑

p∈T ′

1

p!
(C + ‖x1‖∞)2|p| =

∏

l∈[D]

∑

pl∈[k(T )]

1

pl!
(C + ‖x1‖∞)2pl

≤
∏

l∈[D]

∑

pl∈Z+

1

pl!
(C + ‖x1‖∞)2pl

(5.52)
= AD, (5.55)

i.e., we can upper bound any finite sum
∑

p∈T
(
d[p]

)2
by the finite quantity AD (which does not

depend on the index set T ). Thus, we have verified that d[p] ∈ ℓ2(ZD
+).

Note that Theorem 5.2.6 trivially implies that H(R
(D)
g ) contains any function f(·) : RD → R

that can be written as

f(x) = exp
(
xTx1

) ∑

l∈[L]
alx

pl , (5.56)

with arbitrary x1 ∈ R
D, L ∈ N, al ∈ R, and pl ∈ Z

D
+ .

We will also make use of

Theorem 5.2.7. For an arbitrary parameter vector xc ∈ R
D and multi-index p ∈ Z

D
+, consider

the function g
(p)
xc (·) : RD → R given by

g
(p)
xc (x) ,

∂pR
(D)
g (x,x2)

∂xp
2

∣∣∣∣
x2=xc

. (5.57)
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Then g
(p)
xc (·) belongs to the RKHS H(R

(D)
g ), i.e.,

p ∈ Z
D
+ ,xc ∈ R

D ⇒ g
(p)
xc (·) ∈ H(R(D)

g ). (5.58)

The inner product of an arbitrary function f(·) ∈ H(R
(D)
g ) with g

(p)
xc (x) is given by

〈
f(·), g(p)xc (·)

〉
H(R

(D)
g )

=
∂pf(x)

∂xp

∣∣∣∣
x=xc

. (5.59)

Moreover, the set
{
g
(p)
xc (·)

}
p∈ZD

+
is complete for H(R

(D)
g ), which implies in particular that if two

functions f(·), f ′(·) ∈ H(R
(D)
g ) take on the same values on B(xc, r) ⊆ R

D with an arbitrary radius

r > 0, then they are identical, i.e., f(·) = f ′(·).

Proof. The validity of (5.58) and (5.59) follows from Theorem 3.4.1 by the fact that R(D)
g (·, ·) is

a differentiable kernel. To prove the completeness (see Definition 3.1.7) of the set
{
g
(p)
xc (·)

}
p∈ZD

+
,

we consider an arbitrary function f(·) ∈ H(R
(D)
g ) and note that by (5.41) in Theorem 5.2.4, it can

be represented as a power series which converges everywhere in R
D. According to [40, Proposition

1.2.3], we can then represent the function as

f(x) =
∑

p:|p|≤L

∂pf(x)

∂xp

∣∣∣∣
x=xc

1

p!
(x− xc)

p +RL(x), (5.60)

where the remainder term RL(x) is such that limL→∞ |RL(x)| = 0 for any x ∈ R
D. By using

(5.59), we can rewrite (5.60) as

f(x) =
∑

p:|p|≤L

〈
f(·), g(p)xc (·)

〉
H(R

(D)
g )

p!
(x− xc)

p +RL(x). (5.61)

From this, we conclude that if
〈
f(·), g(p)xc (·)

〉
H(R

(D)
g )

= 0 for all p ∈ Z
D
+ , the function f(·) necessarily

has to be zero for all arguments, i.e., f(·) ≡ 0. Thus, according to Definition 3.1.7,
{
g
(p)
xc (·)

}
p∈ZD

+

is complete for H(R
(D)
g ).

Finally, consider two functions f(·), f ′(·) ∈ H(R
(D)
g ) that take on the same values on B(xc, r) ⊆

R
D with an arbitrary radius r > 0, i.e., the difference f(·)− f ′(·) is zero for all x ∈ B(xc, r) and

in turn the partial derivative
∂p
[
f(x)−f ′(x)

]

∂xp

∣∣∣∣
x=xc

is zero for every multi-index p. However, by

(5.59), this means that the inner product
〈
f(·) − f ′(·), g(p)xc (·)

〉
H(R

(D)
g )

is equal to zero for every

p ∈ Z
D
+ . Since the set

{
g
(p)
xc (·)

}
p∈ZD

+
is complete for H(R

(D)
g ), this implies that f(·) − f ′(·) ≡ 0,

i.e., f(·) = f ′(·).
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5.3 Minimum Variance Estimation for the SLM

In the next section, we will derive lower bounds on the minimum achievable variance LMSLM(x0)

for the class of minimum variance problems {MSLM(x0)}x0∈XS
. Here,

MSLM(x0) , (ESLM, c(·),x0) , (5.62)

for a fixed choice of the SLM parameters σ, S, M , N , H and prescribed bias function c(·) : XS → R.

For the special case S = N , i.e., where the SLM coincides with the LGM,

MLGM(x0) , (ELGM, c̃(·),x0) . (5.63)

In this section, we present some fundamental properties of LMSLM(x0).

The following statement gives a detailed characterization of the class of valid bias functions

for MSLM(x0) and moreover states explicit expressions of the minimum achievable variance and

corresponding LMV estimator for a valid bias function.

Theorem 5.3.1. Consider the SLM ESLM =
(
XS, fH(y;x), g(x) = xk

)
with specific values of k,

S, M , N , H ∈ R
M×N , and denote the thin SVD of H by H = UΣVT .

1. For a specific choice for x0 ∈ XS, a prescribed bias function c(·) : XS → R is valid for

MSLM(x0) , (ESLM, c(·),x0), i.e., LMSLM(x0) <∞, if and only if it can be written as

c(x) = exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

) ∑

p∈ZD
+

1√
p!
a[p]

(
1

σ
H̃†x

)p

− xk, x ∈ XS, (5.64)

with a suitable coefficient sequence a[p] ∈ ℓ2(ZD
+), D = rank(H), and H̃ , VΣ−1. If c(·) is

valid for MSLM(x0), then it is necessarily continuous.

2. The minimum achievable variance for MSLM(x0) is obtained in terms of the minimum

squared ℓ2(ZD
+) norm ‖a[·]‖ℓ2(ZD

+ ) ,
√∑

p∈ZD
+
(a[p])2 among all coefficient sequences a[p] ∈

ℓ2(ZD
+) that are consistent with (5.64), i.e.,

LMSLM(x0) = min
a[p]∈ℓ2(ZD

+ )

a[p] consistent with (5.64)

‖a[·]‖2
ℓ2(ZD

+ )
−
[
c(x0) + x0,k

]2
. (5.65)

3. Furthermore, given any valid bias function c(·) : XS → R, we have that for every coefficient

sequence a[p] ∈ ℓ2(ZD
+) which is consistent with (5.64), the estimator ĝ(·) : RM → R given

by

ĝ(·) , exp

(
− 1

2σ2
‖Hx0‖22

) ∑

p∈ZD
+

a[p]√
p!

∂p
[
ρMLGM(x0)(·, σH̃x) exp

(
1
σx

T
0 H

THH̃x
)]

∂xp

∣∣∣∣∣
x=0

(5.66)

is an allowed estimator for MSLM(x0), i.e., ĝ(·) ∈ F(MSLM(x0)).
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4. Finally, the estimator obtained from (5.66) by the specific coefficient sequence a0[p] ∈ ℓ2(ZD
+)

that has the minimum ℓ2(ZD
+) norm ‖a[·]‖ℓ2(ZD

+ ) among all coefficient sequences that are

consistent with (5.64), is the LMV estimator for MSLM(x0).

Proof. 1. By Theorem 4.3.4, we have that the prescribed bias function c(·) : XS → R is valid

for MSLM(x0) if and only if c(x) + xk ∈ H(MSLM(x0)) which by Theorem 5.2.1 is the case

if and only if there exists a function γ(·) ∈ H(MLGM(x0)) such that γ(x) = c(x) + xk for

every x ∈ XS . Furthermore, by Theorem 5.2.2, γ(·) ∈ H(MLGM(x0)) if and only if the

function γ(·) : RN → R is the image under the congruence Kg[f(·)](see (5.20)) of a function

f(·) ∈ H(R
(D)
g ) (with D = rank(H)), i.e.,

γ(x) = f

(
1

σ
H̃†x′

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
(x′)THTHx0

)
, (5.67)

with a suitable function f(·) ∈ H(R
(D)
g ). By Theorem 5.2.4, a function f(·) : RD → R

belongs to H(R
(D)
g ) if and only if it can be written as (5.41) with a unique coefficient sequence

a[p] ∈ ℓ2(ZD
+). The condition (5.64) for a bias function to be valid follows then by combining

(5.67) with (5.41).

The continuity of any valid bias function c(·) can be verified by Theorem 3.4.3, since the

kernel RMSLM
(see (5.13)) is obviously continuous.

2. Given a valid bias function c(x), and using the shorthand γ̃(·) : XS → R : γ̃(x) = c(x) + xk,

the minimum achievable variance is then obtained by Theorem 4.3.4 and (5.17) in Theorem

5.2.1 as

LMSLM(x0)
(4.19)
= ‖γ̃(·)‖2H(MSLM(x0))

−
[
γ̃(x0)

]2

(5.17)
= min

g(·)∈H(MLGM(x0))

g(·)
∣∣
XS

=γ̃(·)

‖g(·)‖2H(MLGM(x0))
−
[
γ̃(x0)

]2
(5.68)

Using Theorem 5.2.2 and Corollary 5.2.5, we can rewrite (5.68) as

LMSLM(x0) = min
g(·)∈H(MLGM(x0))

g(·)
∣∣
XS

=γ̃(·)

‖g(·)‖2H(MLGM(x0))
−
[
γ̃(x0)

]2

= min
f(·)∈H(R

(D)
g )

Kg[f(·)]
∣∣
XS

=γ̃(·)

∥∥∥∥Kg[f(·)]
∥∥∥∥
2

H(MLGM(x0))

−
[
γ̃(x0)

]2



5.3. MINIMUM VARIANCE ESTIMATION FOR THE SLM 95

= min
a[p]∈ℓ2(ZD

+ ))

Kg

[
Ka

[
a[p]
]]∣∣

XS
=γ̃(·)

∥∥∥∥Kg

[
Ka

[
a[p]

]]∥∥∥∥
2

H(MLGM(x0))

−
[
γ̃(x0)

]2

= min
a[p]∈ℓ2(ZD

+ ))

Kg

[
Ka

[
a[p]
]]∣∣

XS
=γ̃(·)

∥∥a[p]
∥∥2
ℓ2(ZD

+ )
−
[
c(x0) + x0,k

]2
. (5.69)

Since

Kg

[
Ka

[
a[p]

]] (5.43)
= Kg

[
∑

p∈ZN
+

1√
p!
a[p]xp

]

(5.20)
= exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

) ∑

p∈ZD
+

1√
p!
a[p]

(
1

σ
H̃†x

)p

, (5.70)

we have that a coefficient sequence a[p] ∈ ℓ2(ZD
+) satisfies

Kg

[
Ka

[
a[p]

]]∣∣
XS

= γ̃(x) = c(x) + xk (5.71)

if and only if it is consistent with (5.64). Based on this observation, the relation (5.65) follows

then from (5.69).

3. Now consider a coefficient sequence a[p] ∈ ℓ2(ZD
+) which is consistent (5.64). This implies

that the function

γ̄(·) : RN → R : γ̄(x) , exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

) ∑

p∈ZD
+

1√
p!
a[p]

(
1

σ
H̃†x

)p

(5.72)

satisfies

γ̄(·)
∣∣
XS

= c(x) + xk. (5.73)

Since by (5.70)

γ̄(·) = Kg

[
Ka

[
a[p]

]]
, (5.74)

we have that the function γ̄(·) belongs to H(MLGM(x0)), i.e., we can define the estimator

ĝa[p](·) , J[γ̄(·)] = J
[
Kg

[
Ka

[
a[p]

]]]
(5.75)

as the image of γ̄(·) under the congruence J[·] : H(MLGM(x0)) → L(H(MLGM(x0))) defined

in (4.13). By Theorem 4.3.2 and Theorem 4.3.4, the estimator ĝa[p](·) has variance at x0

equal to

v(ĝa[p](·);x0) = ‖γ̄(·)‖2H(MLGM(x0))
−
[
γ̄(x0)

]2
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= ‖Kg

[
Ka

[
a[p]

]]
‖2H(MLGM(x0))

−
[
γ̄(x0)

]2
=
∥∥a[p]

∥∥2
ℓ2(ZD

+ )
−
[
γ̄(x0)

]2
<∞
(5.76)

and mean function equal to γ̄(x). In particular, the bias of ĝa[p](·) is equal to c(x) for every

x ∈ XS. This implies that the estimator ĝa[p](·) is an allowed estimator for MSLM(x0), i.e.,

ĝa[p](·) ∈ F(MSLM(x0))

Let us now show that the estimator ĝa[p](·) coincides with the estimator (5.66), when using

the same coefficient sequence a[p]. Based on the identity

H̃THTH = Σ−1VTVΣ2VT = ΣVT = H̃†, (5.77)

we observe that

exp

(
1

σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

)(
1

σ
H̃†x

)p

= exp

(
1

σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

)
∂p exp

(
1
σ (x

′)T H̃†x
)

∂x′p

∣∣∣∣∣
x′=0

(5.77)
= exp

(
1

σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

)
∂p exp

(
1
σx

THTHH̃x′)

∂x′p

∣∣∣∣∣
x′=0

=
∂p exp

(
1
σ2 ‖Hx0‖22 − 1

σ2x
THTHx0 +

1
σx

THTHH̃x′)

∂x′p

∣∣∣∣∣
x′=0

=
∂p exp

(
1
σ2 (x− x0)

THTH
(
σH̃x′ − x0

)
+ 1

σx
T
0 H

THH̃x′)

∂x′p

∣∣∣∣∣
x′=0

(5.15)
=

∂p
[
RMLGM(x0)

(
x, σH̃x′) exp

(
1
σx

T
0 H

THH̃x′)]

∂x′p

∣∣∣∣∣
x′=0

. (5.78)

This allows us to rewrite (5.72) as

γ̄(·) = exp
(
− 1

2σ2
‖Hx0‖22

) ∑

p∈ZD
+

a[p]√
p!

∂p
(
RLGM(x, σH̃x′) exp

(
1
σx

T
0 H

THH̃x′)
)

∂x′p

∣∣∣∣∣
x′=0

,

(5.79)

from which it follows by an application of Theorem 4.3.3 that

ĝa[p](·) = J[γ̄(·)]
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= J

[
exp

(
− 1

2σ2
‖Hx0‖22

) ∑

p∈ZD
+

a[p]√
p!

∂p
(
RLGM(x, σH̃x′) exp

(
1
σx

T
0 H

THH̃x′)
)

∂x′p

∣∣∣∣∣
x′=0

]

= exp

(
− 1

2σ2
‖Hx0‖22

) ∑

p∈ZD
+

a[p]√
p!

J

[∂p
(
RLGM(x, σH̃x′) exp

(
1
σx

T
0 H

THH̃x′)
)

∂x′p

∣∣∣∣∣
x′=0

]

=

(
− 1

2σ2
‖Hx0‖22

) ∑

p∈ZD
+

a[p]√
p!

∂p
[
ρMLGM(x0)(·, σH̃x) exp

(
1
σx

T
0 H

THH̃x
)]

∂xp

∣∣∣∣∣
x=0

, (5.80)

which coincides with (5.66).

4. Note that by definition, the coefficient sequence a0[p] ∈ ℓ2(ZD
+) is a minimizer of (5.69).

Since the estimator (5.66) obtained for the coefficients a0[p] coincides with the estimator

ĝa0[p](·) = J
[
Kg

[
Ka

[
a0[p]

]]]
, which is an allowed estimator for MSLM(x0) whose variance at

x0 equals (cf. (5.76))

∥∥a0[p]
∥∥2
ℓ2(ZD

+ )
−
[
γ̄(x0)

]2
=
∥∥a0[p]

∥∥2
ℓ2(ZD

+ )
−
[
c(x0) + x0,k)

]2

(5.69)
= LMSLM(x0). (5.81)

One specific implication of Theorem 5.3.1 concerning the problem of sparsity pattern detection

[85–87] is stated in

Theorem 5.3.2. There exists no estimator ĝ(y) of an injective real-valued function g(supp(x))

of the support of x ∈ XS which uses only the observation (5.2) of the SLM ESLM, is unbiased for

every x ∈ XS, and has a finite variance at any x0 ∈ XS.

Proof. Consider the SLM ESLM, but instead of estimating the parameter function g(x) = xk (for

some fixed index k ∈ [N ]), we are interested in unbiased estimation of an injective real-valued

function g(supp(x)) of the support supp(x). According to Section 2.3.3, this is equivalent to

a minimum variance problem associated with the ordinary SLM ESLM, i.e., with the parameter

function g(x) = xk, and using the prescribed bias function c′(·) : XS → R : c′(x) = g(supp(x))−xk,
which is obviously discontinuous. Indeed, consider the set {x(a) , ae1}a∈R ⊆ XS consisting of

parameter vectors of the form x(a) =
(
a, 0, . . . , 0

)T
, i.e., with exactly one nonzero entry whose

value is equal to the number a ∈ R. We then have lima→0 c
′(x(a)) = g({1}) but c′(x(0)) = g(∅),

where g(∅) 6= g({1}) since g(supp(x)) is assumed to be injective.
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However, since the prescribed bias function c′(·) is discontinuous, we have by Theorem 5.3.1

that this bias function is not valid for any minimum variance problem MSLM(x0) with x0 ∈ XS ,

i.e., there exists no estimator with the bias c′(·) and finite variance at any point x0 ∈ XS. Thus,

by Theorem 2.3.2, we have that the parameter function g(supp(x)) is not estimable for the SLM

ESLM at any x0 ∈ XS , which is just an equivalent formulation of the statement to be proved.

It is important to note that Theorem 5.3.2 asserts the impossibility of a finite variance estimator

of the support of the parameter vector x which is unbiased for all x ∈ XS. However, even if it

might seem at first sight, Theorem 5.3.2 does not contradict [85, 86] since the authors of [85, 86]

intentionally reduce the parameter set XS of the SLM to a smaller parameter set X ′ which includes

only vectors x with exactly S non-zeros, i.e., ‖x‖0 = S, and whose smallest nonzero magnitude is

not smaller than a given threshold θmin, i.e., mink∈supp(x) |xk| ≥ θmin.

The shape of LMSLM(x0), viewed as a function of x0 ∈ XS , is characterized by

Theorem 5.3.3. Consider the SLM ESLM with arbitrary values of S, M , N , and H and a pre-

scribed bias function c(·) : XS → R that is valid for any MSLM(x0) (cf. (5.62)) with x0 ∈ XS.

Then the minimum achievable variance LMSLM(x0) exists, i.e., is finite for every x0, and viewed as

a function of x0 is lower semi-continuous.

Proof. This fact follows from Theorem 4.3.6 by noting that the kernel RMSLM(x0)(·, ·) (see (5.13))

obviously satisfies (4.27).

Finally, we give two sufficient conditions on the prescribed bias c(·) to be valid for MSLM(x0)

with arbitrary x0 ∈ XS :

Theorem 5.3.4. Consider the minimum variance problem MSLM(x0) with system matrix H ∈
R
M×N and a prescribed bias function c(x) : XS → R which is given as

c(x) = exp
(
xT
1 H̃

†x
) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

− xk, (5.82)

with an arbitrary vector x1 ∈ R
D. Then, if the coefficients satisfy |a[p]| ≤ C |p| with an arbitrary

constant C ∈ R+, the bias c(·) is valid for any MSLM(x0) with x0 ∈ XS.

Proof. By Theorem 4.3.4, we have that a prescribed bias function c(x) is valid for MSLM(x0), if

(and only if) the prescribed mean function γ(·) : XS → R :

γ(x) = c(x) + xk = exp
(
xT
1 H̃

†x
) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

(5.83)
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belongs to the RKHS H(MSLM(x0)). According to Theorem 5.2.6 the function f(x) : RD → R :

f(x) = exp

(
− 1

2σ2
‖Hx0‖22

)
exp

((
σx1 +

1

σ
H̃†x0

)T
x
) ∑

p∈ZD
+

a[p]

p!
xp, (5.84)

with the same x1 ∈ R
D and coefficients a[p] as in (5.82), belongs to the RKHS H(R

(D)
g ) since

|a[p]| ≤ C |p|. The image Kg[f(·)] ∈ H(MLGM) under the congruence (5.20) is then obtained as

Kg[f(·)](x) = f

(
1

σ
H̃†x

)
exp

(
1

2σ2
‖Hx0‖22 −

1

σ2
xTHTHx0

)

= exp

(
σ
(
x1 +

1

σ2
H̃†x0

)T 1

σ
H̃†x

) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

exp

(
− 1

σ2
xTHTHx0

)

= exp

(
− 1

σ2
xTHTHx0 + x1H̃

†x+
1

σ2
xT
0

(
H̃†)T H̃†x

) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

(5.26)
= exp

(
− 1

σ2
xTHTHx0 + x1H̃

†x+
1

σ2
xT
0 H

THx

) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

= exp
(
x1H̃

†x
) ∑

p∈ZD
+

a[p]

p!

(
1

σ
H̃†x

)p

. (5.85)

Comparing (5.83) with (5.85) reveals that the prescribed mean function γ(·), which corresponds

to the prescribed bias in (5.82), is the restriction of Kg[f(·)](x) ∈ H(MLGM) to the subdomain

XS , i.e., γ(·) = Kg[f(·)]
∣∣
XS

, which implies by Theorem 5.2.1 that γ(·) ∈ H(MSLM(x0)) and in turn

that the prescribed bias c(x) is valid for MSLM(x0) with x0 ∈ XS .

By the definition of a valid bias function in Definition 2.3.6, we have trivially that any given

estimator with finite variance for all x ∈ R
N induces a valid bias function:

Lemma 5.3.5. Consider an estimator x̂k(y) for the LGM ELGM that has finite variance every-

where, i.e., v(x̂k(·);x) < ∞ for every x ∈ R
N . Then the bias function c(·) : XS → R : c(x) =

b(x̂k(·);x) is valid for MSLM(x0) (where σ, M , N and H are the same as for ELGM) with arbitrary

x0 ∈ XS.

5.4 Lower Bounds on the Estimator Variance for the SLM

In this section we will derive lower bounds on the minimum achievable variance LMSLM
where

the parameters σ, S, M , N , H, c(·) : XS → R, and x0 ∈ XS of the minimum variance problem
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MSLM = (ESLM, c(·),x0) are assumed arbitrary but fixed. Furthermore, we will assume from now

on that the prescribed bias function c(·) is valid. This is no real restriction since the lower bounds

that will be derived are finite and therefore trivially apply also formally if c(·) is not valid, in which

case LMSLM
= ∞ by definition (see Definition 2.3.3).

The various bounds that will be presented are similar in that they are based on a projection of

the prescribed mean function γ(·) : XS → R : γ(x) , c(x) + xk (which satisfies γ(·) ∈ H(MSLM)

if c(·) is valid) onto some subspace U of the RKHS H(MSLM). Indeed (as already discussed

after Theorem 4.3.4), by Theorem 4.3.4 and Theorem 3.1.6, we have for an arbitrary subspace

U ⊆ H(MSLM) the bound

LMSLM
= ‖γ(·)‖2H(MSLM) −

[
γ(x0)

]2 ≥ ‖PUγ(·)‖2H(MSLM) −
[
γ(x0)

]2
. (5.86)

The first bound is based on a generalization of the CRB and has been previously presented

in [25]:

Theorem 5.4.1. If the prescribed bias c(·) : XS → R is such that the partial derivatives ∂c(x)
∂xl

∣∣
x=x0

exist for l ∈ [N ], then

LMSLM
≥ σ2bT

(
HTH

)†
b when ‖x0‖0 < S (5.87)

LMSLM
≥ σ2bT

x0

(
HT

x0
Hx0

)†
bx0 when ‖x0‖0 = S, (5.88)

where b ∈ R
N is defined elementwise by bl , δk,l +

∂c(x)
∂xl

∣∣
x=x0

and bx0 ∈ R
S, Hx0 ∈ R

M×S

denote the restrictions to the entries and columns of b and H, respectively, which are indexed by

supp(x0) = (i1, . . . , iS), i.e.,
(
bx0

)
j
= bij .

Proof. Since c(·) is assumed valid, we have by Theorem 4.3.4 that the prescribed mean function

γ(·) : XS → R : γ(x) = c(x) + xk belongs to the RKHS H(MSLM).

For the case ‖x0‖0 < S, consider the subspace U1 , span
{
{v0(·)} ∪ {vl(·)

}
l∈[N ]

}
spanned by

the functions v0(·) , RMSLM
(·,x0) and

vl(·) ,
∂elRMSLM

(·,x2)

∂xel
2

∣∣∣∣
x2=x0

, l ∈ [N ]. (5.89)

We have trivially v0(·) ∈ H(MSLM) and by Theorem 3.4.1 we have also that vl(·) ∈ H(MSLM)

for l ∈ [N ]. In a completely analogous manner as the RKHS-based derivation of Theorem

4.4.4 in Section 4.4.2, one can show that
〈
v0(·), vl(·)

〉
H(MSLM)

= 0 for l ∈ [N ] (see (4.60)),
〈
vl(·), vl′(·)

〉
H(MSLM)

= σ2
(
HTH

)
l,l′

for l, l′ ∈ [N ] (see (4.64)), and
〈
vl(·), γ(·)

〉
H(MSLM)

= bl

for l ∈ [N ] (see (4.63)). The bound (5.87) is then obtained via Theorem 4.3.4, Theorem 3.1.6, and

Theorem 3.1.8 by projecting γ(·) on the subspace U1 (see (4.65)).
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In an almost identical manner one can prove the bound (5.88) for the case ‖x0‖0 = S. Indeed,

the only difference is that instead of using the subspace U1 one has to use the subspace U2 ,

span
{
{v0(·)} ∪ {vl(·)}l∈supp(x0)

}
.

The formulation of the bound in [25] slightly differs from Theorem 5.4.1 in that the authors

of [25] present a bound on the variance v(x̂(·);x0) of a vector-valued estimator that estimates x

itself and not only the kth coefficient xk as we consider. However, according to Section 2.3.1, by

summing the bound in Theorem 5.4.1 over all individual indices k ∈ [N ], one obtains the bound

presented in [25]. This is just another consequence of the fact that minimum variance estimation

of the parameter vector x is equivalent to separate minimum variance estimation of the coefficients

xk.

We note two important aspects of Theorem 5.4.1: First, if the matrix H has full column rank,

i.e, rank(H) = N , and we consider unbiased estimation, i.e., c(·) ≡ 0, then the bound in (5.87)

coincides with the variance of the well-known least-squares (LS) estimator [20, 21] given as

x̂k,LS(y) , eTk (H
TH)−1HTy, (5.90)

which implies that in this case the inequality in (5.87) becomes an equality, i.e., LMSLM
=

σ2bT
(
HTH

)†
b. Indeed, a straightforward calculation reveals that x̂k,LS(·) is unbiased and has

variance

v(x̂k,LS(·);x0) = σ2eTk
(
HTH

)†
ek = σ2eTk

(
HTH

)−1
ek, (5.91)

where the last equality follows because rank(H) = N . Thus, under these conditions, the LS

estimator is the LMVU estimator for the SLM at every parameter vector x0 ∈ XS with ‖x0‖0 < S.

Since (by Theorem 2.3.3) it is the unique LMVU estimator for x0 with ‖x0‖0 < S, we have that

if there existed a UMVU estimator, it necessarily would be the ordinary LS estimator x̂k,LS(·).
Note that the LS estimator does not exploit the sparsity assumption expressed by the parameter

set XS , and it has the constant variance (5.91) for every x ∈ XS . Thus, even if there existed a

UMVU estimator it would not be able to take advantage of the sparsity assumption. However, as

already shown in [81,82] and discussed in Section 5.5, there does not exist a UMVU estimator for

the SLM in general.

A second important aspect of Theorem 5.4.1 is that the lower bound given by (5.87) and (5.88)

is not a continuous function of x0 in general. Indeed, for the case H = I and c(·) ≡ 0 considered

in [81, 82], it can be verified that the bound is a strictly upper semi-continuous function of x0.

Consider e.g. MSLM = (ESLM, c(·),x0) with H = I, S = 1, M = N = 2, k = 2, c(·) ≡ 0, and

a parameter vector x0 of the form x0 = a(1, 0)T where a ∈ R+. The corresponding bound given

by Theorem 5.4.1 is equal to 0 for all a > 0 but equals 1 for a = 0. However, since by Theorem

5.3.3 the minimum achievable variance LMSLM
has to be a lower semi-continuous function of x0,
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we have that the bound in Theorem 5.4.1 cannot be tight, i.e., we have a strict inequality in (5.87)

or (5.88) in general.

While the bound in Theorem 5.4.1 was based on a generalization of the CRB (see Section

4.4.2), the authors of [81] present a lower bound on LMSLM
for H = I and c(·) ≡ 0 that is based

on a generalization of the HCRB (see Section 4.4.4):

Theorem 5.4.2. Consider the minimum variance problem MSLM = (ESLM, c(·),x0) with H = I

and c(·) ≡ 0. Then we have the bound

LMSLM
≥ σ2 when | supp(x0) ∪ {k}| < S + 1 (5.92)

LMSLM
≥ σ2

N − S − 1

N − S
exp

(
−ξ20/σ2

)
when | supp(x0) ∪ {k}| = S + 1, (5.93)

where ξ0 denotes the value of the S-largest (in magnitude) entry of x0.

Proof. The bias function c(·) ≡ 0 is assumed to be valid, i.e., the mean function γ(·) : XS → R :

γ(x) = xk belongs to H(MSLM).

First consider the case where | supp(x0) ∪ {k}| = S + 1 (which can only occur if N > S). In

order to show (5.93) we denote by j0 and ξ0 respectively the index and value of the S-largest (in

magnitude) entry of x0. We then introduce the subspace U (t)
1 , span

{
v0(·)∪{v(t)l (·)}l∈[N ]

}
which

is parametrized by t ∈ R and spanned by the vectors v0(·) , RMSLM
(·,x0), v

(t)
l (·) , RMSLM

(·,x0−
ej0ξ0 + tel)−RMSLM

(·,x0) for l ∈ [N ] \ supp(x0) and v(t)l (·) , RMSLM
(·,x0 + tel)−RMSLM

(·,x0)

for l ∈ supp(x0). Similarly to the RKHS-based derivation of the HCRB in Theorem 4.4.7, one can

show by a projection of the mean function γ(·) ∈ H(MSLM) on the subspace U (t) that (see (4.93))

LMSLM
≥ t2eTkV

†ek, (5.94)

where V ∈ R
N×N is defined elementwise as

(V)m,n ,
〈
v(t)m (·), v(t)n (·)

〉
H(MSLM)

=
〈
RMSLM

(·,x0 + tem)−RMSLM
(·,x0), RMSLM

(·,x0 + ten)−RMSLM
(·,x0)

〉
H(MSLM)

(3.43)
= RMSLM

(x0 + tem,x0 + ten)−RMSLM
(x0,x0 + tem)

−RMSLM
(x0 + ten,x0) +RMSLM

(x0,x0)

(4.11)
= exp(t2eTnem/σ

2)− 1− 1 + 1

= δm,n exp(t
2/σ2)− 1. (5.95)
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As shown in [82], the bound in (5.93) is obtained from (5.94) as the limit limt→0 t
2eTkV

†ek.

Now we consider the remaining case where | supp(x0) ∪ {k}| < S + 1. Instead of U (t)
1 , we will

now use the subspace U (t)
2 , {v0(·), v(t)(·)}, where v(t)(·) , RMSLM

(·,x0 + tek)−RMSLM
(·,x0). In

an analogous manner as before, one obtains

LMSLM
≥ t2

‖v(t)(·)‖2H(MSLM)

. (5.96)

The squared norm of v(t)(·) can be calculated as

‖v(t)(·)‖2H(MSLM) =
〈
v(t)(·), v(t)(·)

〉
H(MSLM)

(3.43)
= RMSLM

(x0 + tek,x0 + tek)−RMSLM
(x0,x0 + tek)

−RMSLM
(x0 + tek,x0) +RMSLM

(x0,x0)

(4.11)
= exp(t2eTk ek/σ

2)− 1− 1 + 1

= exp(t2/σ2)− 1. (5.97)

Thus, one straightforwardly obtains the bound LMSLM
≥ σ2 in (5.92) by the limit

lim
t→0

t2/[exp(t2/σ2)− 1]. (5.98)

Since the variance of the specific unbiased estimator ĝ(y) = yk for the SLM is equal to σ2, we have

that LMSLM
= σ2.

The bound given in Theorem 5.4.2 has been presented in a slightly different form in [81, 82],

where a lower bound on the variance v(x̂(·),x0) of an unbiased estimator of the parameter vector

x itself, instead of the single coefficient xk, has been derived.3 As discussed in Section 2.3.1,

minimum variance estimation of the parameter vector is equivalent to separate minimum variance

estimation of the coefficients xk. In particular, the bound given in [81,82] is obtained by summing

the bound in Theorem 5.4.2 over all indices k ∈ [N ].

While in general the bound in Theorem 5.4.2 is tighter, i.e., higher than the bound of Theorem

5.4.1 (when specialized to c(·) ≡ 0 and H = I), it is again upper semi-continuous. This again

implies by Theorem 5.3.3 that the bound cannot be tight, i.e., we have a strict inequality in (5.93)

3More precisely, a lower bound on the MSE of any unbiased estimator of x was presented in [81, 82]. However,

the variance of an unbiased estimator is equal to its MSE.
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in general. However, for the case | supp(x0) ∪ {k}| < S + 1,4 the bound in (5.92) is tight since, as

already mentioned above, it is achieved by the ordinary LS estimator x̂k,LS(y) = yk.

An improved lower bound on LMSLM
has been presented in [83]:

Theorem 5.4.3. Consider the minimum variance problem MSLM = (ESLM, c(·),x0) with a system

matrix H ∈ R
M×N satisfying (5.3) and with prescribed mean function γ(·) : XS → R : γ(x) =

c(x) + xk. We assume that the prescribed bias function c(·) : XS → R is such that the partial

derivatives ∂elc(x)
∂xel

exist for all l ∈ [N ]. Then, for an arbitrary set K = {i1, . . . , i|K|} ⊆ [N ]

consisting of no more than S different indices, i.e., |K| ≤ S, we have the bound

LMSLM
≥ exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)[
σ2rTx0

(
HT

KHK
)−1

rx0 + γ2(x̃0)
]
− γ2(x0), (5.99)

where PK , HKH
†
K ∈ R

M×M , rx0 ∈ R
|K| is defined elementwise as rx0,l ,

∂
eil γ(x)

∂x
eil

∣∣
x=x̃0

, and

x̃0 ∈ R
N is defined as the unique (due to (5.3)) vector with supp(x̃0) = K that solves

Hx̃0 = HKH
†
KHx0. (5.100)

Proof. First we note that since H is assumed to satisfy (5.3), the matrix HK ∈ R
M×|K| has full

column rank, which implies that H
†
K = (HT

KHK)−1HT
K [38]. Thus,

HT
KH(x̃0 − x0) = HT

K(HKH
†
KHx0 −Hx0) = HT

KHKH
†
KHx0 −HT

KHx0

= HT
KHK(HT

KHK)−1HT
KHx0 −HT

KHx0 = HT
KHx0 −HT

KHx0 = 0, (5.101)

which implies in turn that span(HK) is orthogonal to H(x̃0−x0). Let us then consider the subspace

U3 , span
{
v0(·) ∪ {vl(·)}l∈K

}
(5.102)

spanned by the functions v0(·) , RMSLM
(·, x̃0) and vl(·) ,

∂elRMSLM
(·,x2)

∂x
el
2

∣∣
x2=x̃0

, which by Theorem

3.4.1 belong to the RKHS H(MSLM). The inner product between any vl(·) with l ∈ K and v0(·)
is given due to Theorem 3.4.1 by

〈
v0(·), vl(·)

〉
H(MSLM)

=
∂RMSLM

(x1,x2)

∂x2,l

∣∣∣∣
x1=x2=x̃0

=
1

σ2
(x̃0 − x0)

THTHel exp

(
1

σ2
∥∥H(x̃0 − x0)

∥∥2
2

)
(a)
= 0, (5.103)

4Note that the case | supp(x0) ∪ {k}| < S + 1 can only occur if either ‖x‖0 < S or ‖x‖0 = S and additionally

k ∈ supp(x0).
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where (a) follows from the fact that Hel ∈ span(HK) and therefore, as shown by (5.101), has to

be orthogonal to H(x̃0 −x0), i.e., (x̃0 −x0)
THTHel = 0. Now, we define the matrix V ∈ R

|K|×|K|

elementwise via

(V)m,n ,
〈
vim(·), vin(·)

〉
H(MSLM)

(a)
=
∂RMSLM

(x1,x2)

∂x1,in∂x2,im

∣∣∣∣
x1=x2=x̃0

=
1

σ2
∂
[
(x1 − x0)

THTHeim exp
(

1
σ2 (x1 − x0)

THTH(x̃0 − x0)
) ]

∂x1,in

∣∣∣∣
x1=x̃0

=
1

σ2
eTinH

THeim exp

(
1

σ2
(x̃0 − x0)

THTH(x̃0 − x0)

)

+
1

σ4

(
(x̃0 − x0)

THTHeim

)
eTinH

TH(x̃0 − x0) exp

(
1

σ2
(x̃0 − x0)

THTH(x̃0 − x0)

)

(b)
=

1

σ2
eTinH

THeim exp

(
1

σ2
(x̃0 − x0)

THTH(x̃0 − x0)

)
, (5.104)

where (a) follows again from Theorem 3.4.1 and (b) follows from the fact that Heim ∈ span(HK),

implying via (5.101) that (x̃0 −x0)
THTHeim = 0. From (5.104), we have by elementwise compar-

ison that

V =
1

σ2
HT

KHK exp

(
1

σ2

∥∥H(x̃0 − x0)
∥∥2
2

)
. (5.105)

Since furthermore

‖H(x̃0 − x0)‖22
(5.100)
= ‖Hx0 −HKH

†
KHx0‖22 = ‖(I−HKH

†
K)Hx0‖22 = ‖(I −PK)Hx0‖22, (5.106)

the bound in (5.99) follows from Theorem 4.3.4 and Theorem 3.1.9 (note that due to (5.3) we have

that
(
HT

KHK
)−1

=
(
HT

KHK
)†

) via (5.104), (5.103) and the inner products

〈
v0(·), γ(·)

〉
H(MSLM)

= γ(x̃0) (5.107)

and
〈
vl(·), γ(·)

〉
H(MSLM)

=
∂eilγ(x)

∂xeil

∣∣∣∣
x=x̃0

= rx0,l (5.108)

(cf. Theorem 3.4.1):

LMSLM

(4.19)
= ‖γ(·)‖2H(MSLM) −

[
γ(x0)

]2 (4.21)

≥ ‖PU3γ(·)‖2H(MSLM) −
[
γ(x0)

]2
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(3.38),(5.108)
=

〈
γ(·), v0(·)

〉
H(MSLM)

(〈
v0(·), v0(·)

〉
H(MSLM)

)−1 〈
γ(·), v0(·)

〉
H(MSLM)︸ ︷︷ ︸

(5.107)
= γ(x̃0)

+ rTx0
V†rx0 −

[
γ(x0)

]2

(a)
= exp

(
− 1

σ2
‖(I−PK)Hx0‖22

)[
γ(x̃0)

]2
+ rTx0

V†rx0 −
[
γ(x0)

]2

(5.105)
= exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)[
σ2rTx0

(
HT

KHK
)−1

rx0 + γ2(x̃0)
]
−
[
γ(x0)

]2
, (5.109)

where step (a) is due to

〈
v0(·), v0(·)

〉
H(MSLM)

=
〈
RMSLM

(·, x̃0), RMSLM
(·, x̃0)

〉
H(MSLM)

(3.43)
= RMSLM

(x̃0, x̃0)

= exp

(
1

σ2
(x̃0 − x0)

THTH(x̃0 − x0)

)
= exp

(
1

σ2

∥∥H(x̃0 − x0)
∥∥2
2

)

(5.106)
= exp

(
1

σ2
‖(I −PK)Hx0‖22

)
.

Note that the matrix PK = HKH
†
K defined in Theorem 5.4.3 is an orthogonal projection

matrix [38] on the subspace UK , span(HK) ⊆ R
M ; consequently, (I − PK) is an orthogonal

projection matrix on the orthogonal complement [4, 38] of UK and the norm ‖(I −PK)Hx0‖ thus

represents the distance between the point Hx0 and the subspace UK [6]. Therefore, the factor

exp
(
− 1

σ2 ‖(I −PK)Hx0‖22
)

appearing in the bound (5.99) can be interpreted as a measure of the

distance between the point Hx0 and the subspace UK. In general, the bound (5.99) is tighter, i.e.

higher, if K is chosen such that this distance is small, i.e., ‖(I −PK)Hx0‖22 is small.

One of the appealing properties of the bound (5.99) is that it is continuous for the special case

H = I and c(·) ≡ 0, irrespective of what index k is chosen for the parameter function in the SLM

(see (5.5)). We also have for this specific instance of MSLM that the bound (5.99) is tighter, i.e.,

higher, than the bounds given in Theorem 5.4.1 and Theorem 5.4.2.

The quantity σ2rTx0

(
HT

KHK
)−1

rx0 appearing in the bound (5.99) has a remarkable interpre-

tation as the unconstrained CRB (see Section 4.4.2) for a minimum variance problem associated

with the LGM with N = |K|. In fact, for k ∈ supp(x0), the factor exp
(
− 1

σ2 ‖(I−PK)Hx0‖22
)

can

be made equal to 1 by choosing K = supp(x0). On the other hand, consider k /∈ supp(x0), and

chose K = {{k} ∪ L}, where L denotes the indices of the S − 1 largest (in magnitude) entries of
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x0. The bound (5.99) then indicates a transition from a “low”-SNR regime, where

exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
≈ 1,

to a “high”-SNR regime, where

exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
≈ 0.

In the low-SNR regime, the bound (5.99) is equal to the CRB of a LGM with N = |K|. In

the high-SNR regime, the bound becomes approximately equal to 0; this means that the nonzero

entries xk with k /∈ supp(x) can be estimated with small variance.

We note that in [83], we presented a version of the bound (5.99), that is obtained by choosing

the index set K for which the right hand side of (5.99) is largest. We note also that the proof of

the bound (5.99) used here is slightly more direct than that sketched in [83].

By a slight modification of the proof of Theorem 5.4.3, we obtain

Theorem 5.4.4. Consider the minimum variance problem MSLM = (ESLM, c(·),x0) with a system

matrix H satisfying (5.3) and with prescribed mean function γ(·) : XS → R : γ(x) = c(x)+xk. We

assume that c(·) is valid and such that the partial derivatives ∂elc(x)
∂xel

exist for all l ∈ [N ]. Then,

for an arbitrary set K = {i1, . . . , i|K|} ⊆ [N ] consisting of no more than S different indices, i.e.,

|K| ≤ S, we have the bound

LMSLM
≥ exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
σ2rTx0

(
HT

KHK
)−1

rx0 , (5.110)

where PK ∈ R
M×M and rx0 ∈ R

|K| are defined as in Theorem 5.4.3.

Proof. We use the same derivation as in the proof of Theorem 5.4.3, but with the subspace U3 in

(5.102) replaced by the subspace

U4 , span
{
v0(·) ∪ {vl(·)}l∈K

}
(5.111)

which is spanned by the functions v0(·) , RMSLM
(·,x0) and vl(·) ,

∂elRMSLM
(·,x2)

∂x
el
2

∣∣
x2=x̃0

. The

difference between U3 and U4 is the definition of the function v0(·). Therefore, only the equations

in the proof of Theorem 5.4.3 which involve v0(·) change. However, we still have that vl(·) with

l ∈ K is orthogonal to v0(·) (see (5.103)), since

〈
v0(·), vl(·)

〉
H(MSLM)

=

〈
RMSLM

(·,x0),
∂elRMSLM

(·,x2)

∂xel
2

∣∣∣∣
x2=x̃0

〉

H(MSLM)

(3.43)
=

∂elRMSLM
(x0,x2)

∂xel
2

∣∣∣∣
x2=x̃0
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(4.11)
=

∂el1

∂xel
2

∣∣∣∣
x2=x̃0

= 0. (5.112)

We also obtain the inner products

〈
v0(·), v0(·)

〉
H(MSLM)

=
〈
RMSLM

(·,x0), RMSLM
(·,x0)

〉
H(MSLM)

(3.43)
= RMSLM

(x0,x0)
(4.11)
= 1, (5.113)

and
〈
γ(·), v0(·)

〉
H(MSLM)

=
〈
γ(·), RMSLM

(·,x0)
〉
H(MSLM)

(3.43)
= γ(x0). (5.114)

Therefore, the relations of (5.109) up to the last expression before step (a) are still valid, i.e.,

LMSLM

(4.19)
= ‖γ(·)‖2H(MSLM) −

[
γ(x0)

]2 (4.21)

≥ ‖PU4γ(·)‖2H(MSLM) −
[
γ(x0)

]2

(3.38),(5.108)
=

〈
γ(·), v0(·)

〉
H(MSLM)

( 〈
v0(·), v0(·)

〉
H(MSLM)︸ ︷︷ ︸

(5.113)
= 1

)−1 〈
γ(·), v0(·)

〉
H(MSLM)︸ ︷︷ ︸

(5.114)
= γ(x0)

+ rTx0
V†rx0 −

[
γ(x0)

]2

=
[
γ(x0)

]2
+ rTx0

V†rx0 −
[
γ(x0)

]2

(5.105)
= exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
σ2rTx0

(
HT

KHK
)−1

rx0 . (5.115)

The difference between the bound (5.110) and the bound (5.99) is equal to

γ2(x0)− exp

(
− 1

σ2
‖(I−PK)Hx0‖22

)
γ2(x̃0), (5.116)

which depends on the choice of the index set K. If for some index set K (note that rx0 depends on

K), the prescribed bias is such that γ2(x̃0) ≈ γ2(x0),5 then the difference (5.116) is approximately

nonnegative since

exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
≤ 1.

This in turn, implies that the bound (5.110) is tighter, i.e. higher, in this case.

5This is the case e.g. if c(·) ≡ 0, i.e. for unbiased estimation, and the columns of HK are nearly orthonormal.
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5.5 The Sparse Signal in Noise Model

We now specialize the results obtained for minimum variance estimation associated with the general

SLM ESLM to the special case of the SLM given by the SSNM ESSNM (5.10). The SSNM is obtained

from the SLM by choosing H = I (which implies that M = N). We denote by MSSNM ,

(ESSNM, c(·),x0) any minimum variance problem that is associated with ESSNM, a prescribed bias

function c(·) : XS → R, and a parameter vector x0 ∈ XS. The specific choices for c(·) and x0 should

be clear from the context. The following discussions and results are presented in part in [84].

In principle, we can characterize the RKHS H(MSSNM), which is associated with the kernel

RMSSNM
(·, ·) : XS × XS → R : RMSSNM

(x1,x2) , exp

(
1

σ2
(x1 − x0)

T (x2 − x0)

)
, (5.117)

using Theorem 5.2.2 and Theorem 5.2.1 specialized to H = I. However, it will turn out that a more

convenient characterization is possible by exploiting the specific structure of H(MSLM) induced

by the choice H = I:

Theorem 5.5.1. Consider the minimum variance problem MSSNM = (ESSNM, c(·),x0) with some

σ, S, N , x0 ∈ XS, and c(·) : XS → R. The RKHS H(MSSNM) is isometric to the RKHS H(Re)

associated with the kernel Re(·, ·) : XS × XS → R:

Re(x1,x2) = exp
(
xT
1 x2

)
. (5.118)

A congruence Ke[·] : H(MSSNM) → H(Re) is given by

f(·) 7→ f̃(·) = Ke[f(·)] : f̃(x′) = f(σx′)νx0(x
′) (5.119)

with νx0(x) , exp
(
− 1

2σ2 ‖x0‖22 + 1
σx

Tx0

)
. The RKHS H(Re) is differentiable up to any order and

contains the functions

g(p)(x) ,
1√
p!

∂pRe(x,x2)

∂xp
2

∣∣∣∣
x2=0

=
1√
p!

xp, (5.120)

i.e.,

g(p)(·) ∈ H(Re), (5.121)

where p ∈ Z
N
+ is an arbitrary multi-index with ‖p‖0 ≤ S, i.e., p ∈ Z

N
+ ∩XS. The inner product of

an arbitrary function f(·) ∈ H(Re) with any function g(p)(·) is given by

〈
f(·), g(p)(·)

〉
H(Re)

=
1√
p!

∂pf(x)

xp

∣∣∣∣
x=0

. (5.122)

Moreover, the set {g(p)(·)}p∈ZN
+∩XS

is an ONB for H(Re) and therefore any function f(·) ∈ H(Re)

can be written pointwise as

f(x) =
∑

p∈ZN
+∩XS

a[p]g(p)(x) =
∑

p∈ZN
+∩XS

a[p]
1√
p!

xp, (5.123)
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with a coefficient sequence a[p] ∈ ℓ2(ZN
+ ∩ XS). Conversely, for any coefficient sequence a[p] ∈

ℓ2(ZN
+ ∩ XS) the function given by (5.123) belongs to H(Re).

Proof. The derivation of the congruence in (5.119) is completely analogous to the proof of Theorem

5.2.2 specialized to H = I:

Let us define the function sets (similar to (5.27) and (5.28))

A1 ,

{
gx(·) , RMSSNM

(·, σx)
}

x∈XS

(5.124)

and

B1 ,

{
fx(·) , exp

(
1

2σ2
‖x0‖22 −

1

σ
xTx0

)
Re

(
·,x
)}

x∈XS

. (5.125)

Obviously, we have that the sets A1 and B1 span H(MSSNM) and H(Re), respectively, i.e.,

span{A1} = H(MSSNM) and span{B1} = H(Re). Similar to (5.36) one can verify that

〈
gx1(·), gx2(·)

〉
H(MSSNM)

=
〈
RMSSNM

(·, σx1), RMSSNM
(·, σx2)

〉
H(MSSNM)

(3.43)
= RMSSNM

(σx1, σx2)

= exp

(
1

σ2
(σx1 − x0)

T (σx2 − x0)

)

= exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
1 x0 + xT

1 x2 +
1

2σ2
‖x0‖22 −

1

σ
xT
2 x0

)

= exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
1 x0

)
exp

(
xT
1 x2

)
exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
2 x0

)

(5.118)
= exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
1 x0

)
Re

(
x1,x2

)
exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
2 x0

)

(3.43)
=

〈
exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
1 x0

)
Re

(
·,x1

)
,

exp

(
1

2σ2
‖x0‖22 −

1

σ
xT
2 x0

)
Re

(
·,x2

)〉

H(Re)

=
〈
fx1(·), fx2(·)

〉
H(Re)

. (5.126)

for any two vectors x1,x2 ∈ XS . Similar to (5.37), let us, for an arbitrary x ∈ XS, denote by

hx(·) , Ke[gx(·)] ∈ H(Re) the image of the function gx(·) = RMSSNM
(·, σx) (see (5.124)) under
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the mapping Ke[·] defined in (5.119). We have

hx(x
′) = gx

(
σx′) exp

(
− 1

2σ2
‖x0‖22 +

1

σ
(x′)Tx0

)

(5.124)
= exp

(
− 1

2σ2
‖x0‖22 +

1

σ
(x′)Tx0

)
RMSSNM

(σx′, σx)

(5.117)
= exp

(
− 1

2σ2
‖x0‖22 +

1

σ
(x′)Tx0

)
exp

(
1

σ2
(
σx′ − x0

)T (
σx− x0

))

= exp

(
− 1

2σ2
‖x0‖22 +

1

σ
(x′)Tx0 + (x′)Tx+

1

σ2
‖x0‖22 −

1

σ
(x′)Tx0 −

1

σ
xTx0

)

= exp

(
1

2σ2
‖x0‖22 −

1

σ
xTx0

)
exp

(
(x′)Tx

)

(5.118)
= exp

(
1

2σ2
‖x0‖22 −

1

σ
xTx0

)
Re(x

′,x)
(5.125)
= fx(x

′), (5.127)

i.e.,

Ke[gx(·)] = fx(·). (5.128)

for any x ∈ XS . The fact that the mapping Ke[·] defined in (5.119) is a congruence from H(MSSNM)

to H(Re) follows then from Theorem 3.3.4, since for every argument x ∈ XS the function value

Ke[g(·)](x) depends continuously on the function value g
(
σx
)
, which implies that the image Ke[g(·)]

of a function g(·) ∈ H(Re) which is the pointwise limit of a sequence
{
gl(·) ∈ span{A}

}
l→∞, is

the pointwise limit of the functions Ke[gl(·)] ∈ H(MSSNM).

From Theorem 3.4.1, we obtain (5.121) and (5.122).

The functions {g(p)(·)}p∈ZN
+∩XS

are orthogonal since for two difference indices p1,p2Z
N
+ ∩ XS

there must be at least one index l ∈ [N ] such that p1,l > p2,l or p1,l < p2,l. By the symmetry of

the inner product we can restrict ourselves without loss of generality to the case p1,l > p2,l, and

compute the inner product

〈
g(p2)(·), g(p1)(·)

〉
H(Re)

=
1√

p1!
√
p2!

∂p1xp2

xp1

∣∣∣∣
x=0

=
1√

p1!
√
p2!

[
∏

l′∈[N ]\{l}

∂p1,l′xp2,l′

xp1,l′

∣∣∣∣
x=0

]
∂p1,lxp2,l

xp1,l

∣∣∣∣
x=0︸ ︷︷ ︸

=0

= 0. (5.129)
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Since moreover
〈
g(p)(·), g(p)(·)

〉
H(Re)

=
1

p!

∂pxp

xp

∣∣∣∣
x=0

=
p!

p!
= 1, (5.130)

we have that {g(p)(·)}p∈ZN
+∩XS

is an orthonormal set, i.e.,

〈
g(p2)(·), g(p1)(·)

〉
H(Re)

= δp1,p2 . (5.131)

The fact that the set {g(p)(·)}p∈ZN
+∩XS

is an ONB follows then from Theorem 3.3.6 and the identity

Re(x1,x2)
(5.118)
= exp

(
xT
1 x2

)
=
∏

l∈[N ]

exp(x1,lx2,l) =
∏

l∈[N ]

∑

pl∈Z+

1

pl!
(x1,lx2,l)

pl

=
∑

p∈ZN
+

1

p!
x
p
1x

p
2

(a)
=

∑

p∈ZN
+∩XS

x
p
1√
p!

x
p
2√
p!

(5.120)
=

∑

p∈ZN
+∩XS

g(p)(x1)g
(p)(x2), (5.132)

which is valid for every x1,x2 ∈ XS (for x1,x2 /∈ XS the step (a) is not valid).

Finally, the series representation in (5.123) follows from Theorem 3.1.10.

Note that while it might seem at first sight that (5.119) is just the specialization of (5.20)

to the case H = I, their meanings are rather different, since the domain of RMSSNM
(·, ·) and

Re(·, ·) is XS × XS and not R
N × R

N , which is the domain of RMLGM
(·, ·) and R

(N)
g (·, ·) in the

special case H = I. Also note, that the kernel Re(·, ·) in Theorem 5.5.1 is the restriction to

the sub-domain XS × XS of the kernel R(N)
g (·, ·) : RD × R

D → R defined in Theorem 5.2.2, i.e.,

Re(·, ·) = R
(N)
g (·, ·)

∣∣
XS×XS

. From this we have that the RKHSs H(Re) and H(R
(N)
g ) are related

via Theorem 3.3.5.

Based on Theorem 5.5.1, we have the following general characterization of the minimum

achievable variance and the corresponding LMV estimator for the minimum variance problem

MSSNM = (ESSNM, c(·),x0):

Theorem 5.5.2. For the minimum variance problem MSSNM = (ESSNM, c(·),x0), the prescribed

bias function c(·) : XS → R is valid if and only if there exists a (necessarily unique) coefficient

sequence a[p] ∈ ℓ2(ZN
+ ∩ XS) such that

γ(σx)νx0(x) =
∑

p∈ZN
+∩XS

a[p]
xp

√
p!

(5.133)

for every x ∈ XS, where νx0(x) as defined in Theorem 5.5.1 and γ(x) = c(x)+xk denotes the pre-

scribed mean function. If the prescribed bias c(·) is valid for MSSNM, then the minimum achievable

variance is given by

LMSSNM
=

∑

p∈ZN
+∩XS

(ax0 [p])
2 − (γ(x0))

2 = ‖ax0 [p]‖2ℓ2(ZN
+∩XS)

− (γ(x0))
2 (5.134)
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with coefficients

ax0 [p] ,
〈
γ(σx)νx0(x), g

(p)(x)
〉
H(Re)

=
1√
p!

∂p (γ(σx)νx0(x))

∂xp

∣∣∣∣
x=0

. (5.135)

The corresponding LMV estimator x̂
(x0)
k (·) is obtained as

x̂
(x0)
k (y) =

∑

p∈ZN
+∩XS

ax0 [p]√
p!

∂pψx0(x;y)

∂xp

∣∣∣∣
x=0

(5.136)

where ψx0(x;y) , exp
(
1
σ2y

T (σx−x0)+
1
σx

T
0 x−1

2‖x‖22
)
, i.e., b(x̂

(x0)
k (·);x) = c(x) for every x ∈ XS

and v(x̂
(x0)
k (·);x0) = LMSSNM

.

Proof. By Theorem 4.3.4, we have that the prescribed bias function c(·) is valid for MSSNM if and

only if the prescribed mean γ(·) belongs to H(MSSNM). By Theorem 5.5.1, this is the case if and

only if

γ(σx)νx0(x) ∈ H(Re). (5.137)

which, again by Theorem 5.5.1, is the case if and only if there exists a coefficient sequence a[p] ∈
ℓ2(ZN

+ ∩ XS) that satisfies (5.133) for every x ∈ XS .

Let us assume from now on that the prescribed bias function c(·) : XS → R is valid for MSSNM,

i.e., (5.133) and (5.137) hold. By Theorem 4.3.4, Theorem 5.5.1, and Theorem 3.1.4, we obtain

LMSSNM

(4.19)
= ‖γ(·)‖2H(MSSNM) −

[
γ(x0)

]2

(5.119)
= ‖γ(σx)νx0(x)‖2H(Re)

−
[
γ(x0)

]2

(3.23)
=

∑

p∈ZN
+∩XS

(〈
γ(σx)νx0(x), g

(p)(x)
〉
H(Re)

)2
−
[
γ(x0)

]2

(5.122)
=

∑

p∈ZN
+∩XS

1

p!

(
∂p(γ(σx)νx0(x))

∂xp

∣∣∣∣
x=0

)2

−
[
γ(x0)

]2
, (5.138)

which verifies (5.134). We then have by (5.133) that

γ(x) = exp

(
1

2σ2
‖x0‖22 −

1

σ2
xTx0

) ∑

p∈ZN
+∩XS

a0[p]√
p!

(
x

σ

)p

, (5.139)

with a suitable coefficient sequence a0[p] ∈ ℓ2(ZN
+ ∩ XS). The image Ke[γ(·)] ∈ H(Re) of the

function γ(·) given by (5.139) is obtained as

Ke[γ(·)] = γ(σx)νx0(x) =
∑

p∈ZN
+∩XS

a0[p]√
p!

xp, (5.140)
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i.e.,

Ke[γ(·)] =
∑

p∈ZN
+∩XS

a0[p]√
p!

xp (5.120)
=

∑

p∈ZN
+∩XS

a0[p]g
(p)(·). (5.141)

Since the functions
{
g(p)(·)

}
p∈ZN

+∩XS
are orthonormal (cf. (5.131)), we have

a0[p]
(5.141)
=

〈
Ke[γ(·)], g(p)(x)

〉
H(Re)

(5.119)
=

〈
γ(σx)νx0(x), g

(p)(x)
〉
H(Re)

(5.122)
=

1√
p!

∂p (γ(σx)νx0(x))

∂xp

∣∣∣∣
x=0

, (5.142)

implying also their uniqueness.

Using

exp

(
1

σ2
‖x0‖22 −

1

σ2
xTx0

)(
1

σ
x

)p

= exp

(
1

σ2
‖x0‖22 −

1

σ2
xTx0

)
∂p exp

(
1
σ (x

′)Tx
)

∂x′p

∣∣∣∣∣
x′=0

=
∂p exp

(
1
σ2 ‖x0‖22 − 1

σ2x
Tx0 +

1
σx

Tx′)

∂x′p

∣∣∣∣∣
x′=0

=
∂p exp

(
1
σ2 (x− x0)

T
(
σx′ − x0

)
+ 1

σx
T
0 x

′)

∂x′p

∣∣∣∣∣
x′=0

(5.117)
=

∂p
[
RMSSNM

(
x, σx′) exp

(
1
σx

T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

, (5.143)

we can further develop (5.139) as

γ(x) = exp

(
1

2σ2
‖x0‖22 −

1

σ2
xTx0

) ∑

p∈ZN
+∩XS

a0[p]√
p!

(
x

σ

)p

= exp

(
− 1

2σ2
‖x0‖22

) ∑

p∈ZN
+

a0[p]√
p!

∂p
[
RMSSNM

(x, σx′) exp
(
1
σx

T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

. (5.144)

This implies via Corollary 3.4.2, Theorem 4.3.4, Theorem 4.3.3 and the identity

ρMSSNM
(y,x) = exp

(
1

σ2
yT (x− x0)−

1

2σ2
(‖x‖22 − ‖x0‖22)

)
, (5.145)



5.5. THE SPARSE SIGNAL IN NOISE MODEL 115

that the estimator defined by (5.136) is the LMV estimator for MSSNM:

x̂
(x0)
k (y) , ĝ(x0)(y)

(4.20)
= J[γ(·)]

(5.144)
= J

[
exp

(
− 1

2σ2
‖x0‖22

) ∑

p∈ZN
+

a0[p]√
p!

∂p
[
RMSSNM

(x, σx′) exp
(
1
σx

T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

]

= exp

(
− 1

2σ2
‖x0‖22

) ∑

p∈ZN
+

a0[p]√
p!

J

[
∂p
[
RMSSNM

(x, σx′) exp
(
1
σx

T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

]

(4.16)
= exp

(
− 1

2σ2
‖x0‖22

) ∑

p∈ZN
+

a0[p]√
p!

∂p
[
ρMSSNM

(·, σx′) exp
(
1
σx

T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

(5.145)
=

∑

p∈ZN
+

a0[p]√
p!

∂p
[
exp

(
1
σ2y

T (σx′ − x0)− 1
2‖x′‖22 + 1

σx
T
0 x

′)]

∂x′p

∣∣∣∣∣
x′=0

=
∑

p∈ZN
+∩XS

ax0 [p]√
p!

∂pψx0(x
′;y)

∂x′p

∣∣∣∣
x′=0

. (5.146)

The statement of Theorem 5.5.2 is stronger than that of Theorem 5.3.1 when specialized to

H = I, because it contains explicit expressions for the minimum achievable variance LMSSNM
and

the corresponding LMV estimator x̂(x0)
k (y). This is possible because of the isometry between the

RKHS H(MSSNM) and the RKHS H(Re), i.e., without the intermediate step via the LGM and

Theorem 3.3.5, as used (indirectly through Theorem 5.2.1) in Theorem 5.3.1.

The expression (5.134) nicely demonstrates the influence of the sparsity constraints on mini-

mum variance estimation for the SSNM. Indeed, let us consider the SSNM without any sparsity

constraints, i.e., where S = N and the SSNM reduces to the LGM with H = I. For a fixed

prescribed bias c0(·) : RN → R and parameter vector x0 ∈ XS′ with some sparsity degree S′ < N ,

denote the minimum achievable variance for Mnon-sparse = (ESSNM, c0(·),x0) by Lnon-sparse. Then

consider the SSNM with sparsity degree S′ < N , i.e., where sparsity constraints are present, and

denote the minimum achievable variance for MSSNM =
(
ESSNM, c0(·)

∣∣
XS′

,x0

)
= Mnon-sparse

∣∣
XS′

by LS′ . Then we have

Lnon-sparse − LS′ =
∑

p∈ZN
+ \(ZN

+∩XS′)

1

p!

(
∂p
[
(c0(σx) + σxk)νx0(x)

]

∂xp

∣∣∣∣
x=0

)2

. (5.147)
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By reducing the sparsity degree S′, the set
(
Z
N
+ ∩ XS′

)
becomes smaller. This in turn implies that

number of summands in (5.147) is increased and therefore, since the summands in (5.147) are

non-negative, the minimum achievable variance LS′ becomes smaller.

Based on Theorem 5.5.2, we have the following obvious result concerning the existence of a

UMV estimator for the SSNM:

Lemma 5.5.3. Consider the SSNM ESSNM = (XS , fH=I(y;x), g(x) = xk) and a prescribed bias

function c(·) : XS → R. Then there exists a UMV estimator for ESSNM and c(·) if and only if the

LMV x̂
(x0)
k (y) for the minimum variance problem MSSNM = (ESSNM, c(·),x0) given explicitly by

(5.136) does not depend on x0.

In what follows, we will need the lth order (probabilists’) Hermite polynomial Hl(·) : R → R

defined as [88]

Hl(x) = (−1)lex
2/2 d

l

dxl
e−x2/2. (5.148)

We now specialize Theorem 5.5.2 to a specific class of bias functions c(·) : XS → R that we call

“diagonal” bias functions. A diagonal bias function c(x) depends on the parameter x only through

the kth component (where k is the same index as used for the parameter function of the SSNM

ESSNM =
(
XS , fH=I(y;x), g(x) = xk

)
), i.e., c(x) = c̃(xk) with some function c̃(·) : R → R that

may vary with the index k used for the definition of the parameter function of ESSNM. Similarly,

we say that an estimator x̂k(y) for the SSNM is diagonal if it depends on the observation y only

via the kth entry, i.e., x̂k(y) = x̂k(yk). Obviously, the bias function of a diagonal estimator for the

SSNM is diagonal. The well-known hard- and soft-thresholding estimators are diagonal estimators.

However, the maximum likelihood (ML) estimator for the SSNM is not diagonal.

Making the weak assumption that c̃(xk) : R → R can be represented by a power-series which

converges everywhere on R, we obtain

Theorem 5.5.4. Consider the minimum variance problem MSSNM = (ESSNM, c(·),x0) for some

choice of σ, S, M , N , x0 and for a diagonal prescribed bias function c(·) : XS → R, i.e., c(x) =

c̃(xk). Moreover, we assume that the function c̃(·) : R → R is such that the prescribed mean

function γ(·) : XS → R : γ(x) = c̃(xk) + xk can be written as a power series centered at x0 and

which converges everywhere, i.e.,

γ(x) =
∑

l∈Z+

ml

l!
(xk − x0,k)

l (5.149)

with suitable coefficients ml ∈ R. We then have that the bias c(·) is valid for MSSNM if and only if

∑

l∈Z+

(ml)
2σ2l

l!
<∞. (5.150)
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If the coefficients ml satisfy (5.150), then we have for the case where | supp(x0)∪{k}| < S+1 that

LMSSNM
=
∑

l∈N

(ml)
2

l!
σ2l, (5.151)

with the corresponding LMV estimator

x̂
(x0)
k (y) =

∑

l∈Z+

ml

l!
σlHl

(
yk − x0,k

σ

)
, (5.152)

i.e., b(x̂
(x0)
k (·);x) = γ(x) − xk = c̃(xk) for every x ∈ XS and v(x̂

(x0)
k (·);x0) = LMSSNM

. For the

complementary case where | supp(x0)∪{k}| = S+1, we have, by denoting the indices of the support

of x0 as supp(x0) =
{
i1, . . . , iS

}
, that

LMSSNM
=



∑

l∈Z+

m2
l σ

2l

l!



[
∑

j∈[S]
exp

(
−
x20,ij
σ2

) ∏

j′∈[j−1]

[
1− exp

(
−
x20,ij′

σ2

)]]
−
[
γ(x0)

]2
, (5.153)

with the corresponding LMV estimator

x̂
(x0)
k (y) =
[
∑

l∈Z+

ml

l!
σlHl

(yk
σ

)] ∑

j∈[S]
exp

(
−
x20,ij + 2yijx0,ij

2σ2

) ∏

j′∈[j−1]

[
1− exp

(
−
x20,ij′ + 2yij′x0,ij′

2σ2

)]
.

(5.154)

Proof. Appendix A.

A slight reformulation of Theorem 5.5.4 yields

Corollary 5.5.5. Consider the minimum variance problem MSSNM = (ESSNM, c(·),x0) for some

choice of σ, S, N , x0 ∈ XS, and for a diagonal prescribed bias function c(·) : XS → R, i.e.,

c(x) = c̃(xk). Moreover we assume that the bias function c(·) is valid and such that the prescribed

mean function γ(·) : XS → R : γ(x) = c̃(xk) + xk can be written as a power series centered at

x0,k and which converges everywhere, i.e., we have γ(x) =
∑

l∈Z+

ml

l! (xk − x0,k)
l with coefficients ml

satisfying (5.150). Then we obtain for the minimum achievable variance

LMSSNM
= tMSSNM

(x0)
∑

l∈Z+

m2
l σ

2l

l!
−
[
γ(x0)

]2
, (5.155)

and for the corresponding LMV estimator

x̂
(x0)
k (y) = hMSSNM

(y,x0)
∑

l∈Z+

ml

l!
σlHl

(
yk − x0,k

σ

)
, (5.156)
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where

tMSSNM
(x) ,





∑
j∈[S] exp

(
−

x2
ij

σ2

)∏
j′∈[j−1]

[
1− exp

(
−

x2
i
j′

σ2

)]
≤ 1, when | supp(x0) ∪ {k}| = S + 1,

1, when | supp(x0) ∪ {k}| < S + 1

(5.157)

hMSSNM
(y,x) ,





∑
j∈[S]

exp

(
−

x2
ij
+2yijxij

2σ2

) ∏
j′∈[j−1]

[
1− exp

(
−

x2
i
j′
+2yi

j′
xi

j′

2σ2

)]
, when | supp(x0) ∪ {k}| = S + 1,

1, when | supp(x0) ∪ {k}| < S + 1

(5.158)

with an arbitrary index set I = {i1, . . . , iS} such that |I| = S, k /∈ I and supp(x0) \ {k} ⊆ I.

Proof. The relation (5.155) follows from (5.151) and (5.153) since γ(x0) = m0, which implies that

∑

l∈Z+

m2
l σ

2l

l!
−
[
γ(x0)

]2
=
∑

l∈N

m2
l σ

2l

l!
. (5.159)

The relation (5.156) follows from (5.152) and (5.154), since for the case | supp(x0) ∪ {k}| = S + 1

we must have k /∈ supp(x0), i.e., x0,k = 0. Indeed, if k ∈ supp(x) we would have supp(x0)∪{k} =

supp(x0), and since the cardinality of the support supp(x0) cannot be larger than S (x0 ∈ XS),

this would mean that | supp(x0) ∪ {k}| = | supp(x0)| ≤ S < S + 1.

The inequality tMSSNM
(x) ≤ 1 in (5.157) can be verified by observing that

∑

j∈[S]
exp

(
−
x2ij
σ2

) ∏

j′∈[j−1]

(
1− exp

(
−
x2ij′

σ2

))

=

[
∏

j′′∈[S]
exp

(
−
x2ij′′

σ2

)] ∑

j∈[S]

[
∏

j′′′∈[S]
exp

(x2ij′′′
σ2

)]
exp

(
−
x2ij
σ2

)[ ∏

j′∈[j−1]

(
1− exp

(
−
x2ij′

σ2

))]

=

[
∏

j′′∈[S]
exp

(
−
x2ij′′

σ2

)] ∑

j∈[S]

[
∏

j′′′∈[S]\[j]
exp

(x2ij′′′
σ2

)][ ∏

j′∈[j−1]

(
exp

(x2ij′
σ2

− 1

))]

(a)
=

[
∏

j′′∈[S]
exp

(
−
x2ij′′

σ2

)] ∑

j∈[S]

∑

k∈ZS
+

kj=0
kj′′′>0, j′′′∈[S]\[j]

∏

j′∈[S]

(x2ij′
σ2

)kj′
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≤
[
∏

j′′∈[S]
exp

(
−
x2ij′′

σ2

)] ∑

k∈ZS
+

∏

j′∈[S]

(x2ij′
σ2

)kj′

(b)
=

[
∏

j′′∈[S]
exp

(
−
x2ij′′

σ2

)][ ∏

j∈[S]
exp

(
x2ij
σ2

)]
= 1,

where the step (a) and (b) can be verified by the distributive law and the series representation

exp

(
x2
ij

σ2

)
=
∑

l∈Z+

1
l!

(
x2
ij

σ2

)l

.

Note that the coefficients ml appearing in the representation (5.149) of the prescribed mean

function depend on the parameter vector x0 ∈ XS associated with the minimum variance problem

MSSNM, because the power series representing γ(x) is centered at x0.

If the prescribed bias function c(·) is the actual bias function b(x̂′k(·);x) of a given diagonal

estimator x̂′k(y) = x̂′k(yk) with finite variance at x0, i.e., x̂′k(·) ∈ P(MSSNM) (see (4.2)), the

coefficients ml appearing in Corollary 5.5.5 and Theorem 5.5.4 have a particular interpretation.

In what follows, we need the following result:

Lemma 5.5.6. Consider the minimum variance problem MSSNM(x) = (ESSNM, c(·),x) and the

associated function Hilbert space P(MSSNM) of finite-variance estimators with inner product

〈
ĝ1(·), ĝ2(·)

〉
RV

, Ex

{
ĝ1(y)ĝ2(y)

}

=
1

(2πσ2)N/2

∫

y∈RN

ĝ1(y)ĝ2(y) exp

(
− 1

2σ2
‖y − x‖22

)
dy. (5.160)

Then the subset D(x) ⊆ P(MSSNM) which consists of all diagonal estimators ĝ(y) = ĝ(yk) is a

Hilbert subspace with induced inner product

〈
ĝ1(·), ĝ2(·)

〉
D(x)

, Ex0

{
ĝ1(yk)ĝ2(yk)

}

=
1√
2πσ

∫

yk∈R
ĝ1(yk)ĝ2(yk) exp

(
− 1

2σ2
(yk − xk)

2

)
dyk. (5.161)

A specific ONB for D(x) is given by
{
h(l)(·)

}
l∈Z+

with functions h(l)(·) : RN → R defined as

h(l)(y) ,
1√
l!
Hl

(
yk − xk

σ

)
. (5.162)

Proof. [89]

We have the following straightforward consequence of Corollary 5.5.5:
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Corollary 5.5.7. Consider the minimum variance problem MSSNM = (ESSNM, c(·),x0) for some

choice of σ, S, N , x0 ∈ XS, and assume that the prescribed bias function c(·) : XS → R is given

as the actual bias function of a diagonal estimator x̂k(y) = x̂k(yk), i.e., c(x) = b(x̂k(·);x). The

estimator x̂k(y) is assumed to have finite variance and stochastic power at all parameter vectors

x ∈ XS, i.e., x̂k(·) ∈ D(x) for every x ∈ XS. Then, the prescribed mean function γ(·) : XS → R :

γ(x) = c(x)+xk = Ex{x̂k(y)} can be written as a power series (5.149) which converges everywhere.

The coefficients ml in (5.149) are given by scaled expansion coefficients of x̂k(y) w.r.t. the ONB
{
h(l)(·)

}
l∈Z+

defined in (5.162), i.e.,

ml =

√
l!

σl
〈
x̂k(·), h(l)(·)

〉
D(MSSNM)

. (5.163)

The prescribed bias c(·) is valid by construction. The minimum achievable variance and corre-

sponding LMV estimator are obtained as

LMSSNM
= v(x̂k(·);x0)tMSSNM

(x0) +
[
tMSSNM

(x0)− 1
][
γ(x0)

]2
, (5.164)

x̂
(x0)
k (y) = x̂k(yk)hMSSNM

(y,x0), (5.165)

respectively, with the functions tMSSNM
(x), hMSSNM

(y,x) as defined in (5.157), and (5.158), re-

spectively.

Proof. Since the functions
{
h(l)(·)

}
l∈Z+

form an ONB for D(x) for every x ∈ XS, we have by

Theorem 3.1.4:

∑

l∈Z+

[〈
x̂k(·), h(l)(·)

〉
D(x))

]2
(3.23)
= ‖x̂k(·)‖2D(x)

(5.161)
= P (x̂k(·);x) = v(x̂k(·);x) +

[
Ex{x̂k(y)}

]2

= v(x̂k(·);x) +
[
γ(x)

]2
. (5.166)

and ∑

l∈Z+

〈
x̂k(·), h(l)(·)

〉
D(x)

h(l)(·) = x̂k(·). (5.167)

The prescribed mean function can be expressed as

γ(x) = Ex{x̂k(y)} =
1√
2πσ

∫

yk∈R
x̂k(yk) exp

(
− 1

2σ2
(yk − xk)

2

)
dyk. (5.168)

Note that γ(x) depends only on xk, i.e., γ(x) = γ(xk). Differentiating the mean function l times

w.r.t. xk yields

∂lekγ(x)

∂xlek

(5.168)
=

1√
2πσ

∂l
∫
yk∈R x̂k(yk) exp

(
− 1

2σ2 (yk − xk)
2
)
dyk

∂xlk
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(a)
=

1√
2πσ

∫

yk∈R
x̂k(yk)

∂l exp
(
− 1

2σ2 (yk − xk)
2
)

∂xlk
dyk

(b)
=

1√
2πσl+1

∫

yk∈R
x̂k(yk)Hl

(
yk − xk

σ

)
exp

(
− 1

2σ2
(yk − xk)

2

)
dyk

=

√
l!

σl
〈
x̂k(·), h(l)(·)

〉
D(x)

, (5.169)

where (a) follows from changing the order of differentiation and integration (cf. [41, Theorem

1.5.8]), which be verified, e.g., by a standard argument using the dominated convergence theorem

[5,61, 73]. The step (b) can be verified by a calculation similar to (A.9).

Since (by the assumption x̂k(·) ∈ D(x) for every x ∈ XS) it holds that P (x̂k(·);x) < ∞ for

every x ∈ XS, we have from (5.166) hat the inner products
〈
x̂k(·), h(l)(·)

〉
D(x)

must be bounded

by some constant C (strictly speaking, the sequence of the inner products has to decay faster than

1/l). This in turn yields by (5.169), that the lth order partial derivative of the mean function γ(x)

is bounded by C
√
l!

σl , which implies by Taylor’s theorem [5] that the mean function can be written

as a power series in the form (5.149) with coefficients

ml =

√
l!

σl
〈
x̂k(·), h(l)(·)

〉
D(x0)

. (5.170)

The power series is centered at x0 and converges everywhere on XS .

The relation (5.164) follows then from (5.155) via (5.166) and (5.170) as

LMSSNM

(5.155)
= tMSSNM

(x0)
∑

l∈Z+

m2
l σ

2l

l!
−
[
γ(x0)

]2

(5.170)
= tMSSNM

(x0)
∑

l∈Z+

[√
l!

σl
〈
x̂k(·), h(l)(·)

〉
D(x0)

]2σ2l
l!

−
[
γ(x0)

]2

= tMSSNM
(x0)

∑

l∈Z+

[〈
x̂k(·), h(l)(·)

〉
D(x0)

]2 −
[
γ(x0)

]2

(5.166)
= tMSSNM

(x0)v(x̂k(·);x0) + tMSSNM
(x0)

[
γ(x0)

]2 −
[
γ(x0)

]2

(5.166)
= v(x̂k(·);x0)tMSSNM

(x0) +
[
tMSSNM

(x0)− 1
][
γ(x0)

]2
. (5.171)

Finally, the relation (5.165) follows from (5.156) by (5.167) as

x̂
(x0)
k (y)

(5.156)
= hMSSNM

(y,x0)
∑

l∈Z+

ml

l!
σlHl

(
yk − x0,k

σ

)
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(5.162)
= hMSSNM

(y,x0)
∑

l∈Z+

ml√
l!
σlh(l)(y)

(5.170)
= hMSSNM

(y,x0)
∑

l∈Z+

〈
x̂k(·), h(l)(·)

〉
D(x0)

h(l)(y)

(5.167)
= hMSSNM

(y,x0)x̂k(y). (5.172)

Note that Corollary 5.5.7 also applies to unbiased estimation where c(·) ≡ 0 and γ(x) = xk,

since these are the bias and mean functions of the ordinary LS estimator x̂LS,k(y) = yk, which

obviously is diagonal and has finite variance at every x ∈ XS .

Remarkably, according to Corollary 5.5.7 (in particuar, due to (5.157) and (5.158)), every

diagonal estimator x̂k(·) : RN → R for the SSNM with finite variance at x0 ∈ XS is necessarily

the LMV estimator for the minimum variance problem MSSNM = (ESSNM, c(x) = b(x̂k(·);x),x0)

whenever | supp(x0) ∪ {k}| < S + 1, irrespective of the sparsity degree S. Thus, in this case,

the sparsity information does not help anything with regard to minimum variance estimation, i.e.,

the estimator x̂k(·) is the LMV estimator for any parameter set XS including the non-sparse case

X = R
N and the variance v(x̂k(·);x0) coincides with the minimum achievable variance LMSSNM

,

i.e., the Barankin bound.

However, whenever | supp(x0) ∪ {k}| = S + 1, we have by Corollary 5.5.7 and the inequality

in (5.157) that there are estimators with the same bias and mean as x̂k(·) but with a smaller

variance at x0. The LMV estimator x̂(x0)
k (·) that achieves the minimum variance at x0 is obtained

by a multiplication of the estimator x̂k(y) = x̂k(yk) with a “correction” factor hMSSNM
(y,x0) that

does not depend on yk. Note that by a straightforward calculation one can show that the LMV

estimator in (5.165) is robust against deviations from the nominal parameter x0. In particular, that

estimator has always finite mean and variance for any parameter vector x ∈ R
N and an observation

y = x+n that follows the statistical model of the LGM with H = I and an arbitrary noise variance

σ2. We verify this claim separately for the two complementary cases | supp(x0) ∪ {k}| = S + 1

and | supp(x0)∪ {k}| < S +1. First consider the case | supp(x0)∪ {k}| = S +1, where, as already

observed above, necessarily

{k} /∈ supp(x0) = {i1, . . . , iS}, (5.173)

i.e., x0,k = 0 and moreover | supp(x0)| = ‖x0‖0 = S. Given an arbitrary vector x ∈ R
N , the

stochastic power P (x̂(x0)
k (·);x) at x of the LMV estimator in (5.165) is then obtained as

P (x̂
(x0)
k (·);x) = Ex

{[
x̂
(x0)
k (·)

]2}
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(5.165)
= Ex

{[
x̂k(yk)hMSSNM

(y,x0)

]2}

(5.158)
= Ex

{[
x̂k(yk)

∑

j∈[S]
αij

∏

j′∈[j−1]

(1− αij′ )

]2}
(5.174)

(5.158)
= Ex

{[
x̂k(yk)

∑

j∈[S]
αij

∏

j′∈[j−1]

(1− αij′ )

]2}
(5.175)

(5.173)
= Ex

{[
x̂k(yk)

]2
}

︸ ︷︷ ︸
<∞

Ex

{[ ∑

j∈[S]
αij

∏

j′∈[j−1]

(1− αij′ )

]2}

= Ex

{[
x̂k(yk)

]2
}
Ex

{ ∑

j,j′′∈[S]
αijαij′′

[ ∏

j′∈[j−1]

(1− αij′ )

][ ∏

j′′′∈[j′′−1]

(1− αij′′′ )

]}
<∞

(5.176)

where we introduced the shorthand αi , exp

(
− x2

0,i+2yix0,i

2σ2

)
and the last step follows by collecting

terms, and the fact that

Ex

{ ∏

i∈supp(x0)

[
αi

]ni

}
=

∏

i∈supp(x0)

Ex

{[
αi

]ni
}
<∞, (5.177)

for any nonnegative exponents ni ∈ Z+. Similarly, one can also show that the mean of x̂(x0)
k (·) is

finite at every x ∈ R
N , i.e., Ex

{
x̂
(x0)
k (·)

}
<∞.

5.6 Necessity of Strict Sparsity

In what follows, we consider the LGM ELGM with a fixed choice of σ, M , N , H, and a fixed choice

of the sparsity degree S, and the associated minimum variance problem MLGM = (ELGM, c̃(·),x0)

with parameter vector x0 ∈ XS and prescribed bias c̃(·) : RN → R. Since the SLM ESLM for

S < N is obtained by reducing the parameter set X = R
N of the LGM ELGM to the set of S-sparse

vectors XS , the set of allowed estimators F(MSLM) (see (2.18)) for the minimum variance problem

MSLM = MLGM

∣∣
XS

is in general larger than the set of allowed estimators F(MLGM) for MLGM,

i.e., F(MSLM) ⊇ F(MLGM).

It is this increase of the set of allowed estimators that causes the minimum achievable variance

LMSLM
(for S < N) to be strictly smaller than LMLGM

in general. This fact agrees with the

discussion of Section 4.3.4 according to which we have LMSLM
≤ LMLGM

. An important exception
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to this rule is the special case of an affine prescribed bias, i.e., c(x) = aTx+ b with a fixed vector

a ∈ R
N and number b ∈ R, and a full column rank system matrix H. In this case, the lower

bound in Theorem 5.4.1 for the case ‖x0‖0 < S coincides with LMLGM
. Therefore, the minimum

achievable variance LMSLM
for the SLM coincides with the minimum achievable variance LMLGM

for the LGM (since LMSLM
≤ LMLGM

).

Note that the reduction from the parameter set X = R
N of the LGM ELGM to the parameter

set X = XS of the SLM ESLM with S < N is rather large, since the Lebesgue measure of XS (with

S < N) is zero w.r.t. RN [73].

Intuitively, it should make not a big difference if we relax the constraint x ∈ XS and include

also approximately S-sparse vectors in the parameter set. Thus, we prescribe the estimator bias not

only for strictly but also for approximately S-sparse vectors. A specific definition of approximate

S-sparsity is used, e.g., in [22, 23, 48], where the authors model the set of approximately S-sparse

vectors by an ℓq ball of radius S, where 0 ≤ q ≤ 1. The ℓq ball Bq(S) of radius S is defined by

Bq(S) ,

{
x′ ∈ R

N
∣∣‖x′‖qq ≤ S

}
. (5.178)

Note that the set XS of strictly sparse vectors is obtained as the limiting case when q = 0, i.e.,

XS = B0(S).

In Figure 5.1, we illustrate Bq(S) for N = 2, S = 1 and various q. Note also that in contrast

to XS , the parameter sets Bq(S) are bounded for q > 0, i.e., for every q > 0 and S there exists a

radius r such that Bq(S) ⊆ B(0, r) ⊆ R
N .

Let us now define the minimum variance problem M(q) , MLGM

∣∣
Bq(S)

, which is obtained from

MLGM by reducing the parameter set from X = R
N to X = Bq(S). Note that MSLM = M(0).

Then, one might expect that for q → 0, i.e., when Bq(S) → XS, we should have LM(q) → LMSLM
.

Despite the intuition that a change of the parameter set from XS to Bq(S) with small q > 0,

i.e., considering M(q) instead of MSLM, should make not a big difference, the next result tells us

that for minimum variance estimation it makes a very big difference if we use XS or Bq(S), no

matter how small q is.

Theorem 5.6.1. Consider a parameter set X ⊆ R
N and the minimum variance problem M′ =

MLGM

∣∣
X =

(
E ′, c̃(·)

∣∣
X ,x0 ∈ X

)
associated with the estimation problem E ′ = (X , fH(y;x), g(x) = xk).

Note that the minimum variance problem M′ is identical to MLGM = (ELGM, c̃(·),x0) except for

the parameter set. We assume that the prescribed bias function c̃(·) : RN → R is valid for MLGM.

Then, if the parameter set X contains an open ball B(xc, r) with some radius r > 0 and center
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x1

x2

(a)

1

1

x1

x2

(b)

1

1

x1

x2

(c)

1

1

x1

x2

(d)

Figure 5.1: Different parameter sets consisting of strictly or approximately 1-sparse vectors x =
(
x1, x2

)T ∈ R
2. (a) X = B0(1) = X1. (b) X = B0.25(1). (c) X = B0.75(1). (d) X = B1(1).
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xc ∈ X , i.e.,

B(xc, r) ⊆ X , (5.179)

we have that

LM′ = LMLGM
. (5.180)

Proof. We will denote the prescribed mean functions of the minimum variance problems M′ and

MLGM by γ′(·) : X → R : γ′(x) , c̃(x) + xk and γ(·) : RN → R : γ(x) , c̃(x) + xk, respectively.

These two mean functions are related by

γ′(·) = γ(·)
∣∣
X . (5.181)

Note that the assumption that c̃(·) is valid for MLGM implies that the bias function c̃(·)
∣∣
X is valid

for M′ (due to Theorem 3.3.5). We therefore have that γ′(·) ∈ H(M′) and γ(·) ∈ H(MLGM) (due

to Theorem 4.3.4).

Since the kernel RM′(·, ·) is the restriction of the kernel RMLGM
(·, ·) to the subdomain X ×X ,

i.e., RM′(·, ·) = RMLGM
(·, ·)

∣∣
X×X , we have by Theorem 4.3.4 and Theorem 3.3.5 that

LM′

(4.19)
= ‖γ′(·)‖2H(M′) −

[
γ′(x0)

]2

(3.55)
= min

γ′′(·)∈H(MLGM)

γ′′(·)
∣∣
X
=γ′(·)

‖γ′′(·)‖2H(MLGM) −
[
γ′(x0)

]2

(5.181)
= min

γ′′(·)∈H(MLGM)

γ′′(·)
∣∣
X
≡0

‖γ′′(·) + γ(·)‖2H(MLGM) −
[
γ′(x0)

]2
. (5.182)

Using Theorem 5.2.2, we can reformulate (5.182) as

LM′ = min
γ′′(·)∈H(MLGM)

γ′′(·)
∣∣
X
≡0

∥∥K−1
g [γ′′(·) + γ(·)]

∥∥2
H(R

(D)
g )

−
[
γ′(x0)

]2
(5.183)

with D = rank(H).

Consider then an arbitrary function γ′′(·) ∈ H(MLGM) which vanishes on X , i.e., γ′′(x) = 0 for

every x ∈ X . Due to (5.179), the function K
−1
g [γ′′(·)](x′) vanishes for every x′ ∈ B(H̃xc, r1) ⊆ R

D

with a suitable radius r1 > 0 and with center H̃xc, where H̃ is defined as in Theorem 5.2.2. From

this, it follows via Theorem 5.2.7 that for every γ′′(·) ∈ H(MLGM) that satisfies γ′′(·)
∣∣
X ≡ 0 we

have

K
−1
g [γ′′(·) + γ(·)] = K

−1
g [γ′′(·)] + K

−1
g [γ(·)] = K

−1
g [γ(·)]. (5.184)
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This, in turn, implies that

LM′ = min
γ′′(·)∈H(MLGM)

γ′′(·)
∣∣
X
≡0

∥∥K−1
g [γ′′(·) + γ(·)]

∥∥2
H(R

(D)
g )

−
[
γ′(x0)

]2

= ‖K−1
g [γ(·)]‖2H(R

(D)
g )

−
[
γ′(x0)

]2

(a)
= ‖γ(·)‖2H(MLGM) −

[
γ(x0)

]2 (4.19)
= LMLGM

, (5.185)

where for the step (a) we used again Theorem 5.2.2.

Since we have obviously that the parameter set X = Bq(S) satisfies (5.179) for any q > 0,

Theorem 5.6.1 implies that LM(q) = LMLGM
for any q > 0. Thus, the minimum achievable

variance for M(q) with q > 0 is always equal to that of the minimum variance problem MLGM,

which does not include any sparsity constraints since its parameter set is given by X = R
N .

Furthermore, since in general (see (5.147)) LMLGM
> LMSLM

, we have also that LM(q) does not

converge to LMSLM
as q goes to zero in general.

5.7 The SLM Viewpoint on Compressed Sensing

The compressive measurement process of a compressed sensing (CS) application is often modeled

by a linear measurement equation of the form [8,16, 17, 37, 53]

y = Hx+ n, (5.186)

where y ∈ R
M denotes the compressive measurements; H ∈ R

M×N (where typically M ≪ N)

denotes the CS measurement matrix; the signal or parameter vector x ∈ R
N is assumed to be

sparse, i.e., x ∈ XS with known sparsity degree S (where typically S ≪ N); and n represents some

additive measurement noise. If the vector n ∈ R
M in (5.186) is AWGN, i.e., n ∼ N (0, σ2I), then

the CS measurement equation (5.186) is identical to the observation model of the SLM (see (5.2)).

Any CS recovery method, e.g., the “Basis Pursuit” (BP) [16, 90] or the “Orthogonal Matching

Pursuit” (OMP) [17, 91] to name two well-known instances,6 can be interpreted as an estimator

x̂(y) that aims to estimate the sparse vector x using the observation y given by (5.186).

In general, it is infeasible to characterize the analytical properties of the measurement matrix

H in an exact manner (e.g., to compute its thin SVD), due to the large dimension (typically

M ≥ 10 and N ≥ 100). Instead, one can use an incomplete characterization via the concept of

(mutual) coherence and the restricted isometry property [8, 16, 17, 53], which we will now define.

6A comprehensive overview is provided at http://dsp.rice.edu/cs.

http://dsp.rice.edu/cs
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Definition 5.7.1. The coherence of a matrix H ∈ R
M×N is defined as

µ(H) , max
i 6=j

|hT
j hi|, (5.187)

where hi ∈ R
M denotes the ith column of H.

Definition 5.7.2. A matrix H ∈ R
M×N is said to satisfy the restricted isometry property (RIP)

of order K with RIP constant δK ∈ R+ if for every index set I ⊆ [N ] of size K, i.e., |I| = K, we

have

(1− δK)‖z‖22 ≤ ‖HIz‖22 ≤ (1 + δK)‖z‖22 (5.188)

for every z ∈ R
K .

Note that it can be straightforwardly shown that δK ≤ δK ′ if K ′ ≥ K.

While the coherence of a matrix can be calculated more efficiently than the RIP constants

δK [53], it is a coarser description of the matrix H than the RIP constants. However, as stated

in [53], we have the following relation between these two concepts:

Theorem 5.7.1. For a matrix H with coherence µ(H), the RIP constant δK of order K satisfies

δK ≤ (K − 1)µ(H). (5.189)

Proof. [53]

We now specialize Theorem 5.4.4 to the CS scenario of the SLM, i.e., where the system matrix

H of the SLM is a CS measurement matrix with known RIP constants.

Theorem 5.7.2. Consider the minimum variance problem MSLM = (ESLM, c(·),x0) with some

choice of σ, S, M , N , x0 ∈ XS and with system matrix H, where H ∈ R
M×N is a CS measurement

matrix satisfying the RIP of order S with RIP constant δS < 1. We denote the prescribed mean by

γ(·) : XS → R : γ(x) = c(x) + xk. Then, for an arbitrary set K = {i1, . . . , i|K|} ⊆ [N ] consisting

of no more than S different indices, i.e., |K| ≤ S, for which the partial derivatives ∂
eil γ(x)

∂x
eil

exist,

we have that

LMSLM
≥ exp

(
− 1 + δS

σ2

∥∥∥∥x
supp(x0)\K
0

∥∥∥∥
2

2

)
σ2rTx0

(
HT

KHK
)−1

rx0 , (5.190)

where the vector rx0 ∈ R
|K| is defined elementwise as rx0,l ,

∂
eil γ(x)

∂x
eil

∣∣
x=x̃0

with x̃0 as defined by

(5.100) in Theorem 5.4.3.

Proof. Let PK ∈ R
M×|K| denote the orthogonal projection matrix on the subspace span(HK) ⊆

R
M . We have that PK = HK

(
HT

KHK
)−1

HT
K since H satisfies the RIP or order S, which implies

that HK has full column rank [38]. We also have

(I−PK)
THK = (I −PK)HK = 0,
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i.e., for every vector x′ ∈ span(HK) we have that (I−PK)x′ = 0. This implies that

(I−PK)
THx0 = (I−PK)H(x

supp(x0)\K
0 + xK

0 ) = (I−PK)Hx
supp(x0)\K
0 , (5.191)

since HxK
0 ∈ span(HK). Based on (5.191) and using the shorthand x′

0 , x
supp(x0)\K
0 , we have

∥∥(I −PK)Hx0

∥∥2
2
=
∥∥(I−PK)Hx′

0

∥∥2
2

=
∥∥Hx′

0

∥∥2
2
− 2

(
x′
0

)T
HTPKHx′

0 +
(
x′
0

)T
HTP2

KHx′
0

(a)
=
∥∥Hx′

0

∥∥2
2
−
(
x′
0

)T
HTPKHx′

0

(b)

≤
∥∥Hx′

0

∥∥2
2

(c)

≤ (1 + δS)
∥∥x′

0

∥∥2
2
, (5.192)

where the step (a) follows from (PK)
2 = PK since PK is an orthogonal projection matrix [38], the

step (b) follows from the fact that PK is psd, and (c) is due to ‖x′
0‖0 ≤ S and the assumption

that H satisfies the RIP of order S with RIP constant δS < 1. The statement follows then as a

reformulation of (5.110) from Theorem 5.4.4 using (5.192), i.e.,

LMSLM

(5.110)

≥ exp

(
− 1

σ2
‖(I −PK)Hx0‖22

)
σ2rTx0

(
HT

KHK
)−1

rx0

(5.192)

≥ exp

(
− 1 + δS

σ2

∥∥xsupp(x0)\K
0

∥∥2
2

)
σ2rTx0

(
HT

KHK
)−1

rx0 . (5.193)

If we want to use Theorem 5.7.2 for comparing the actual variance behavior of a given CS

recovery scheme (using the CS measurement matrix H), which is an estimator x̂k(·) for the SLM

with system matrix H, with the theoretically minimum variance achievable for the bias of the

estimator x̂k(·), we have to ensure that the first-order partial derivatives of the mean function

Ex{x̂k(y)} of the given estimator x̂k(·) exist. The next lemma states that this is indeed the case

for a very broad class of estimators x̂k(·) resulting from a CS recovery scheme. It is essentially a

more rigorous formulation of the relation (19) in [56].

Lemma 5.7.3. Consider the SLM ESLM with system matrix H ∈ R
M×N and an estimator x̂k(·) :

R
M → R which may arise from a CS recovery scheme like BP or OMP. We denote the mean
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function of x̂k(·) by γ(·) : XS → R : γ(x) = Ex{x̂k(y)}. If the estimator x̂k(y) is a continuous

function of y, and moreover for every y ∈ R
M we have

|x̂k(y)| ≤ C‖y‖L2 (5.194)

with some constants C,L ∈ R+, then the partial derivatives ∂elγ(x)
∂xel

exist for every l ∈ [N ] and are

given by
∂elγ(x)

∂xel
=

1

σ2
Ex

{
x̂k(y)(y −Hx)THel

}
. (5.195)

Proof. We have

γ(x) = Ex

{
x̂k(y)

}
=

1

(2πσ2)M/2

∫

y∈RM

x̂k(y) exp

(
− 1

2σ2
‖y −Hx‖22

)
dy, (5.196)

where the existence of the integral follows from the dominated convergence theorem [5,6,73] since

(i) the function

x̂k(y) exp

(
− 1

2σ2
‖y −Hx‖22

)

is continuous and therefore measurable and (ii) it is upper bounded in magnitude (dominated) by

the function C‖y‖L2 exp
(
− 1

2σ2 ‖y −Hx‖22
)
, which is obviously integrable. We further have

∂elγ(x)

∂xel

(5.196)
=

∂el

∂xel

1

(2πσ2)M/2

∫

y∈RM

x̂k(y) exp

(
− 1

2σ2
‖y −Hx‖22

)
dy

(a)
=

1

(2πσ2)M/2

∫

y∈RM

x̂k(y)
∂el exp

(
− 1

2σ2 ‖y −Hx‖22
)

∂xel
dy

(b)
=

1

(2πσ2)M/2

∫

y∈RM

x̂k(y)
1

σ2
(y −Hx)THel exp

(
− 1

2σ2
‖y −Hx‖22

)
dy

=
1

σ2
Ex

{
x̂k(y)(y −Hx)THel

}
, (5.197)

where step (a) follows from a change of the order of differentiation and integration (see [41, Theorem

1.5.8]), and step (b) is due to the chain rule for differentiation [5]. The existence of the last integral

in (5.197) can again be verified by the continuity of the integrand and the validity of the bound

(5.194) on the estimator x̂k(y).

For the application of Lemma 5.7.3, we have to verify for a given CS recovery scheme, i.e., for a

given estimator x̂(y), that its entries x̂k(y) satisfy the bound (5.194) and are continuous functions

of y. While showing (5.194) is rather straightforward for the BP and OMP, the rigorous proof of
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continuity is subtle. Consider, e.g., the BP recovery method [90], which is defined as the solution

to the problem

min
x∈RN

‖x‖1 s.t. Hx = y. (5.198)

Since there may be multiple solutions to this problem, there are many possible estimator functions

x̂BP(·) corresponding to the BP. However, some popular implementations (e.g., the primal dual

algorithm presented in [30, 92]) of the estimator x̂BP(y) : R
M → R

N yield a continuous function

of the observation y. The resulting approximate BP estimator is then continuous “by design.” As

can be verified easily, the statement and proof of Lemma 5.7.3 remain unchanged if one replaces

the requirement of a continuous estimator function with that of a Lebesgue measurable estimator

function. It seems then fairly unlikely that any reasonable and practically implemented CS recovery

scheme does not yield an estimator that is both measurable and bounded as in (5.194).

We note that condition (5.3) is necessary for a matrix H to have the RIP of order S with a

constant δS < 1.7 Moreover, for CS applications, one favors in general measurement matrices H

that have RIP constants close to zero, i.e., δS ≈ 0 [8,18,53,93,94]. However, in this case the bound

in (5.190) is nearly identical to the bound (5.110) for the SLM with H = I, given explicitly as

LMSLM
≥ exp

(
− 1

σ2
‖(I −PK)x0‖22

)
σ2rTx0

rx0 . (5.199)

Note that for H = I, implying that

PK = HKH
†
K =

∑

l∈K
ele

T
l , (5.200)

the effect of the multiplication (I−PK)x0 is a zeroing of all entries of the vector x0 whose indices

belong to K, i.e.,

(I−PK)x0 = x
supp(x0)\K
0 . (5.201)

Thus, if one uses a “good” CS measurement matrix, i.e., with RIP constant δS close to zero, then

Theorem 5.7.2 suggests that the minimum achievable variance is close to the minimum achievable

variance of another instance of the SLM with the same S, and N but with system the matrix

being the identity matrix I instead of the measurement matrix H. This means that in terms

of achievable estimation accuracy, there is no loss of information incurred by applying the CS

measurement matrix H ∈ R
M×N and thereby reducing the signal dimension from N to M , where

M ≪ N in general. This agrees with the fact that if a CS measurement matrix satisfies the RIP

with RIP constants that are sufficiently small, then one can recover - e.g., by using the BP -

7Indeed, assume that spark(H) ≤ S which means that there exists an index set I ⊆ [N ] consisting of S indices,

i.e., |I| = S such that the columns of HI are linearly dependent. This implies that there is a coefficient vector

z0 ∈ R
S with z0 6= 0 (i.e., ‖z0‖

2
2 > 0) such that HIz0 = 0 and in turn ‖HIz0‖

2
2 = 0. Therefore, there cannot exist

a constant δK < 1 that satisfies the RIP condition (5.188) for every z ∈ R
S .
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the sparse parameter vector x ∈ XS from the compressed observation y given by (5.186) up to a

reconstruction error that is solely determined by the noise in (5.186) [8, 50].

The CS measurement model in (5.186) assumes that the noise component is added after the

measurement process. However, in some applications it may be more accurate to model the effect

of the noise before the measurement process takes place, i.e., to use the following measurement

model:

y′ = H(x+ n), (5.202)

where the meanings of H, x, and n are the same as for (5.186). Note that the observation

y′ is obtained by applying a mapping, i.e., the matrix multiplication by H, to the observation

y = x+n of the SSNM. Therefore, if the CS measurement process is modeled by (5.202), then we

can analyze the resulting minimum variance problem of estimating the sparse vector x ∈ XS from

the observation y′ by using the results on the SSNM in Section 5.5, in particular Theorem 5.5.2,

together with Theorem 2.4.2. We thus obtain the following result:

Theorem 5.7.4. Consider the observation model (5.202) and an estimator x̂k(y
′) : RM → R,

which may arise from a CS recovery scheme, of xk. The estimator x̂k(y
′) can use only the obser-

vation y′ and is assumed to have finite variance at x0 ∈ XS, i.e., v(x̂k(·);x0) <∞. We assume that

the mean of this estimator exists for all parameter vectors x ∈ XS and denote its mean function

by γ(·) : XS → R : γ(x) = Ex{x̂k(y′)}. Then, we have that

v(x̂k(·);x0) ≥ ‖ax0 [p]‖2ℓ2(ZN
+∩XS)

−
[
γ(x0)

]2
, (5.203)

where the coefficient sequence ax0 [p] ∈ ℓ2(ZN
+ ∩ XS) are given by (5.135).

Proof. Let us denote by M′ the minimum variance problem obtained for the observation model

(5.202),the parameter set XS, the fixed parameter vector x0 ∈ XS, the parameter function g(x) =

xk, and prescribed bias function c(·) , γ(·) − xk = Ex

{
x̂k(y

′)
}
− xk. Since c(·) is identical with

the bias function b(x̂k(·),x) of the estimator x̂k(·) which is assumed to have finite variance at x0,

we have that c(·) is valid for M′ and v(x̂k(·);x0) ≥ LM′ .

The minimum variance problem M′ is obtained from the minimum variance problem MSSNM =

(ESSNM, c(·),x0) (which uses the same index k ∈ [N ] in its parameter function (see (5.10)) as

used within M′) by a matrix multiplication of the observation of the SSNM with the matrix H.

Therefore, by Theorem 2.4.2, we have that c(·) is valid for MSSNM. Indeed, since c(·) is valid for

M′ we have that LM′ is finite and this implies via (2.31) that LMSSNM
is finite, i.e., c(·) must

be valid for MSSNM. Since c(·) is valid for MSSNM we have that LMSSNM
is given by (5.134) in

Theorem 5.5.2. The bound (5.203) follows then as

v(x̂k(·);x0) ≥ LM′

(2.31)

≥ LMSSNM

(5.134)
= ‖ax0 [p]‖2ℓ2(ZN

+∩XS)
−
[
γ(x0)

]2
. (5.204)
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It is important to note that the statement and proof of Theorem 5.7.4 are also valid for the case

where H in (5.202) is a random matrix, which is independent of the noise n. This is practically

relevant since it is often the case that CS measurement matrices are modeled as random matrices.

5.8 Comparison of the Bounds with Existing Estimators

Let us now compare the lower bounds derived so far with the actual variance behavior of some

well-known estimators. In what follows, we will denote by L
(c(·),k)
K,a (x0), L

(c(·),k)
K,b (x0) the bounds

(5.99) and (5.110) obtained by Theorem 5.4.3 and Theorem 5.4.4, respectively, using the index set

K and prescribed bias function c(·).
Given an estimator x̂(·) whose bias is equal to c(x) and mean equal to γ(x) , c(x) + x, we

obtain due to (2.21),a lower bound on the estimator variance v(x̂(·);x0) by summing the quantities

L
(ck(·),k)
K,a/b (x0), i.e.,

v(x̂(·);x0) ≥ L
a/b
γ(·),x0

,
∑

k∈[N ]

L
(ck(·),k)
Kk,a/b

(x0). (5.205)

Note that in (5.205). we allow the index K = Kk in (5.99), (5.110) to vary with the index k.

5.8.1 SLM Viewpoint on Fourier Analysis

The first experiment is inspired by [20, Example 4.2 – ‘Fourier Analysis’] and considers the general

SLM with σ2 = 1 and system matrix

H =




cos(θ10) . . . cos(θL0) sin(θ10) . . . sin(θL0)

cos(θ11) . . . cos(θL1) sin(θ11) . . . sin(θL1)
...

. . .
...

...
. . .

...

cos(θ1(M − 1)) . . . cos(θL(M − 1)) sin(θ1(M − 1)) . . . sin(θL(M − 1))



, (5.206)

i.e., H ∈ R
M×N with N = 2L. Note that this system matrix corresponds to a finite-length

discrete Fourier transform evaluated at the frequencies8 {θl}l∈[L]. In our simulation we choose

M = 128, L = 8, and θl = 0.2 + 3.9 · 10−3(l − 1). Our choice of θl corresponds to a frequency

resolution of ∆θ = 3.9 × 10−3; this is about half of the DFT frequency resolution, which is given

by ∆θ = 1
128 ≈ 7.8× 10−3. We assume that the parameter vector can have at maximum 4 nonzero

entries, i.e., we consider the SLM with sparsity degree S = 4.

8Here, we consider the normalized frequency θ ∈ [0, 1] of a discrete-time harmonic signal x[n] = sin(2πθn).
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Figure 5.2: Variance of the OMP estimator and corresponding lower bounds versus the SNR, for

the SLM with N=16, M = 128, σ2 = 1 and S=4.

In Fig. 5.2, we compare the variance of the OMP estimator x̂OMP(y), which is obtained by ap-

plying OMP (see [17,91]) with S iterations to the observation, with the lower bounds LOMP,a/b(x0)

defined as (cf. (5.205))

LOMP,a/b(x0) =
∑

k∈[N ]

L
(ck(·),k)
Kk,a/b

(x0), (5.207)

where ck(·) is chosen as ck(·) = γk,OMP(x)−xk, with γk,OMP(x) , Ex

{
x̂k,OMP(y)

}
being the actual

mean function of the OMP estimator. We also plotted the lower bound LOMP,c(x0) obtained by

summing the lower bound (5.87), (5.88) (using γk,OMP−xk as prescribed bias function) in Theorem

5.4.1 over all indices k ∈ [N ]. By (2.21), we have that v(x̂OMP(·);x0) ≥ LOMP,c(x0).

The variance v(x̂OMP(·);x0) and the lower bounds LOMP,a/b/c(x0) are evaluated for parameter

vectors x0 =
√

SNRσx1, where x1 ∈ {0, 1}16, supp(x1) = {3, 6, 67, 70}, and
√

SNR varies between

0.1 and 100. The variance v(x̂OMP(·);x0) of the OMP estimator is estimated by means of Monte

Carlo simulation. For the evaluation of the bound LOMP,a/b/c(x0) (cf. (5.99), (5.110), (5.87),

(5.88)), we have to compute the first-order partial derivatives of the mean function γk,OMP(x).

We estimated these partial derivatives by means of Lemma 5.7.3 and a Monte Carlo simulation.

This method of estimating the derivative of an estimator bias or mean function is also used and

explained in detail in [56]. For simplicity, the index sets Kk in (5.207) are chosen as Kk = supp(x0)

for k ∈ supp(x0) and Kk = {k} for k /∈ supp(x0). This is the simplest non-trivial choice that yields
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a bound LOMP,b(x0) that is tighter than the bound LOMP,c(x0), which is based on the sparse CRB

in Theorem 5.4.1 (cf. [25]). In Fig. 5.2, we also indicated the “oracle CRB,” which is defined as the

CRB under the assumption that one knows the support of x0, i.e., the oracle bound is the CRB

of a linear Gaussian model with system matrix Hsupp(x0) and is thus given by [20]

σ2 Tr
{[

HT
supp(x0)

Hsupp(x0)

]−1} ≈ 4.19 × σ2. (5.208)

As can be seen from Fig. 5.2, there are two SNR regimes regarding the variance of the OMP

estimator: Below 20 dB, i.e., in the low-SNR regime the variance of x̂OMP(·) is significantly higher

than the oracle CRB and also significantly higher than the lower bounds LOMP,a/b/c(x0). This

suggests that there might exist estimators with a reduced variance but the same bias and mean

as the OMP estimator. Above 20 dB, i.e., in the high-SNR regime the variance x̂OMP(·) shows a

fast convergence towards the oracle CRB as well as to the bounds LOMP,a/b/c(x0), which is due to

the fact that for SNR values above 20 dB the OMP estimator is able to detect the support of x0

with very high probability. Note also that the curves of LOMP,a/b(x0) agrees with the discussion

around (5.117), i.e., that the bound LOMP,b(x0) tends to be higher than LOMP,a(x0) in general.

5.8.2 Minimum Variance Analysis of Estimators for the SSNM

Let us now consider the SSNM in (5.9) for N = 50, S = 5, and σ2 = 1. We will compute the

lower bound on the estimator variance given in (5.205) and compare it with the variance of two

established estimators, namely, the maximum likelihood (ML) estimator and the hard-thresholding

(HT) estimator. The ML estimator is given by

x̂ML(y) , argmax
x′∈XS

f(y;x′) = PS(y) ,

where the operator PS retains the S largest (in magnitude) entries and zeros out all others. The

HT estimator x̂HT(y) is given by

x̂HT,k(y) = x̂HT,k(yk) =




yk , |yk| ≥ T

0 , else,
(5.209)

where T is a fixed threshold. Note that in the limiting case where T = 0, the HT estimator coincides

with the least square (LS) estimator [20,21,41] for the SSNM x̂LS(y) = y. The prescribed bias ck(·)
in (5.205) is chosen as kth entry of the bias function of the ML and HT estimator, respectively.

The mean and variance of the HT estimator are given by

Ex

{
x̂HT,k(y)

}
=

1√
2πσ2

∫

yk∈RN\[−T,T ]
yk exp

(
− 1

2σ2
(yk − xk)

2

)
dyk (5.210)
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and

v(x̂HT(·),k;x)
(2.11)
= P (x̂HT,k(·);x) −

[
Ex

{
x̂HT,k(y)

}]2

=
1√
2πσ2

∫

yk∈R\[−T,T ]
y2k exp

(
− 1

2σ2
(yk − xk)

2

)
dyk −

[
Ex

{
x̂HT,k(y)

}]2
, (5.211)

respectively. The integrals are calculated using numerical integration. For the evaluation of the

mean and variance of the ML estimator, we used the (complicated) closed-form expressions derived

in [82].

Let us denote by cML,k(x) , b(x̂ML,k(·),x) and cHT,k(x) , b(x̂ML,k(·),x) the bias function of

the kth entry of the ML and HT estimator, respectively. Using these bias functions, we compare

the variance of the HT and ML estimators with the lower bounds

LML,a/b(x0) ,
∑

k∈[N ]

L
(cML,k(·),k)
Kk,a/b

(x0) (5.212)

and

LHT,a/b(x0) ,
∑

k∈[N ]

L
(cHT,k(·),k)
Kk,a/b

(x0), (5.213)

respectively. As before, the index set Kk ⊆ [N ] is allowed to vary with the index k. In particular,

we choose Kk = supp(x) for k ∈ supp(x) and Kk = {k} ∪ {supp(x0) \ {j0}} for k /∈ supp(x0),

where j0 denotes the index of the S-largest (in magnitude) entry of x0. It can be verified easily

that for these choices of the index sets Kk, the bounds for the HT estimator, L
(cHT,k(·),k)
Kk,a

(x0) and

L
(cHT,k(·),k)
Kk,b

(x0), as well as the bounds for the ML estimator, L
(cML,k(·),k)
Kk,a

(x0) and L
(cML,k(·),k)
Kk,b

(x0)

coincide for the SSNM (i.e., when H = I). Thus, we have in this case that LHT,a(x0) = LHT,b(x0)

and LML,a(x0) = LML,b(x0).

In order to evaluate the bounds L
(cML,k(·),k)
Kk,a/b

(x0) and L
(cHT,k(·),k)
Kk,a/b

(x0), we need to compute the

first-order partial derivatives of the mean function. This is accomplished by using Lemma 5.7.3 for

the HT estimator and by using a finite-difference quotient approximation [56] for the ML estimator,

i.e.,
∂Ex

{
x̂ML,k(y)

}

∂xl
≈ Ex+∆el

{
x̂ML,k(y)

}
− Ex

{
x̂ML,k(y)

}

∆
, (5.214)

where ∆ ∈ R+ is a small stepsize and the expectations are calculated using numerical integration.

We generated parameter vectors x0 =
√

SNRσx1, where x1 ∈ {0, 1}50, supp(x1) = [S], and

SNR varies between 0.01 and 100. (The fixed choice supp(x0) = [S] is justified by the fact that

neither the variances of the ML and HT estimators nor the corresponding variance bounds depend

on the location of supp(x0).) In Fig. 5.3, we plot the variances v(x̂ML(·);x0) and v(x̂HT(·);x0) (the

latter for four different choices of T in (5.209)) along with the corresponding bounds LML,a/b(x0)
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Figure 5.3: Variance of the ML and HT estimators and corresponding lower bounds versus the

SNR, for the SSNM with N=50, S=5 and σ2 = 1.

and LHT,a/b(x0) (cf. (5.212) and (5.212)), as a function of SNR. The variances are obtained by

numerical integration from (5.211) for the HT estimator and from the closed-form expression for

the variance of the ML estimator presented in [82]. It is seen that for SNR larger than about 18

dB, all variances and bounds are effectively equal (for the HT estimator, this is true if T is not

too small). However, in the medium-SNR range, the variances of the ML and HT estimators are

significantly higher than the corresponding lower bounds. We can conclude that there might exist

estimators with the same mean as that of the ML or HT estimator but a smaller variance. On the

other hand, a positive statement regarding the existence of an estimator that has the same mean

as the ML or HT estimator but a uniformly lower variance cannot be based on our analysis.

However, for the special case of diagonal estimators for the SSNM, such as the HT estimator,

Theorem 5.5.4 and Corollary 5.5.7 make a positive statement about the existence of estimators

that have locally a smaller variance than the HT estimator. In particular, we can use Corollary

5.5.7 to obtain the LMV estimator and corresponding minimum achievable variance at a parameter

vector x0 ∈ XS for the given bias function of the HT estimator.

As before, we generated parameter vectors x0 =
√

SNRσx1, where x1 ∈ {0, 1}50, supp(x1) =

[S], and SNR varies between 0.01 and 100. (The fixed choice supp(x0) = [S] is justified by the

fact that neither the variance of the HT estimators nor the corresponding minimum achievable

variance depend on the location of supp(x0).) In Fig. 5.4, we plot the variances v(x̂HT(·);x0)
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Figure 5.4: Variance of the HT estimator, v(x̂HT(·);x0), for different T (solid lines) and corre-

sponding minimum achievable variance (Barankin bound) LHT(x0) (dashed lines) versus the SNR,

for the SSNM with N=50, S=5, and σ2=1.

(obtained by numerical integration using (5.211)) for four different choices of T in (5.209), as a

function of SNR. We also plot the corresponding minimum achievable variance (Barankin bound)

LHT(x0) ,
∑

k∈[N ]LMk
applying to estimators for the SSNM that have the same bias (and mean

function) as the HT estimator. Note that, by definition, LHT(x0) ,
∑

k∈[N ]LMk
is the maximally

tight lower bound on the variance of any estimator that has the same bias (and mean function) as

the HT estimator. This bound is achieved by the LMV estimator given component-wise by (5.165)

with x̂k(yk) = x̂HT,k(yk). The minimum achievable variance LHT(x0) is obtained by summing the

minimum achievable variances LMk
of the scalar minimum variance problems Mk which coincide

with MSSNM using the parameter function g(x) = xk and prescribed bias c(x) = b(x̂HT,k(y),x).

We obtained LMk
by an application of Corollary 5.5.7 since the estimator x̂HT,k(y) is diagonal

and has finite variance at every x0 ∈ XS .

It is seen that for small T (in particular, for T =0 where the HT estimator reduces to the LS

estimator), the Barankin bound LHT(x0) is significantly below the corresponding variance curve.

However, as T increases, the gap between variance and Barankin bound LHT(x0) becomes smaller;

in particular, the two curves are already indistinguishable for T = 4. For high SNR, the Barankin

bound LHT(x0) converges to Sσ2 for any value of T ; this equals the variance of an oracle estimator

that knows the support of x.



Chapter 6

The Sparse Parametric Covariance

Model

6.1 Introduction

In the previous chapter, we considered the problem of estimating a sparse parameter vector using

a noisy and linearly distorted (by the system matrix H) observation. Now, we consider the

fundamentally different problem of estimating a sparse parameter vector which determines the

covariance matrix of a Gaussian signal vector of which a noisy version is observed.

More specifically, we consider a Gaussian signal vector s ∈ R
M , i.e., s ∼ N (µ,C) with the psd

covariance matrix C ∈ R
M×M , embedded in white Gaussian noise n ∼ N (0, σ2IM). The observed

vector is

y = s+ n, (6.1)

where s and n are independent and the signal mean µ ∈ R
M and noise variance σ2 > 0 are known.

These assumptions imply that the observation y is a Gaussian random vector with mean µ and

covariance matrix C+ σ2I, i.e., y ∼ N (µ,C+ σ2I). In what follows, we assume that µ = 0 since

a nonzero µ can always be removed from s by subtracting it from y.

The signal covariance matrix C ∈ R
M×M is unknown. We will parametrize it in a linear

manner by

C = C(x) =
∑

k∈[N ]

xkCk, (6.2)

with unknown nonrandom coefficients xk ∈ R+ and known psd “basis matrices” Ck ∈ R
M×M , i.e.,

Ck ≥ 0 with ranks rk , rank(Ck). It what follows, we will use

R ,
∑

k∈[N ]

rk (6.3)

139
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to denote the maximum overall dimension of the signal space. We use the term “maximum overall

dimension” since the dimension of the signal space is not equal to R in general. It is only equal to

R if the basis matrices Ck fulfill additional requirements. One such additional requirement would

be that the basis matrices span disjoint orthogonal subspaces of RM . Due to the parameterization

(6.2), the estimation of the covariance matrix C reduces to the estimation of the coefficient vector

x ,
(
x1, . . . , xN

)T ∈ R
N
+ .

Let

C̃(x) , C(x) + σ2I (6.4)

denote the covariance matrix of the Gaussian observation vector y (cf. (6.1)), i.e., cov{y} = C̃(x).

Due to the assumption that σ2 > 0, one can verify by Lemma 6.2.2 that ‖C̃(x)‖2 ≥ σ2, i.e., the

matrix C̃(x) is positive definite (C̃(x) > 0) for every parameter vector x ∈ R
N
+ . Another useful

fact which can be verified easily (see, e.g., [38]) is that it holds

‖C̃−1(x)‖2 ≤ σ−2 (6.5)

for every x ∈ R
N
+ .

The parameter vector x is assumed to be S-sparse, i.e.,

x ∈ XS,+ , XS ∩ R
N
+ =

{
x′ ∈ R

N
+

∣∣‖x′‖0 ≤ S
}
. (6.6)

While the sparsity degree S ∈ [N ] is assumed known, the support of x, i.e., supp(x) is unknown.

Typically, S ≪ N .

We now define the sparse parametric covariance model (SPCM) ESPCM as the estimation prob-

lem given as

ESPCM = (XS,+, fSPCM(y;x), g(x)) , (6.7)

with an arbitrary parameter function g(·) : XS,+ → R and the statistical model

fSPCM(y;x) =
1

(2π)M/2[det{C̃(x)}]1/2
exp

(
−1

2
yT C̃−1(x)y

)
. (6.8)

The statistical model of the SPCM belongs to an exponential family (see Section 2.6). In partic-

ular, it is obtained for the sufficient statistic Φ(y) = −1
2 vec{yyT }, parameter function u(x) =

vec
{
(C(x)+σ2I)−1

}
, weight function h(y) = 1√

(2π)M
, and cumulant function A(Φ)(x) = 1

2 log
(
det{C(x)+

σ2I}
)
.

Note that by contrast to the SLM, the entries of the parameter vector x ∈ XS,+ are non-

negative. Another difference from the SLM is that we allow for a general parameter function

g(·) : XS,+ → R instead of fixing the parameter function to g(x) = xk as for the SLM. However,

according to Theorem 2.3.1, this latter difference is only a notational one as long as we allow for
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arbitrary prescribed bias functions c(·) : XS,+ → R for the minimum variance problems arising

from the SLM ESLM.

Since the basis matrices Ck are assumed to be psd, we can factor them in the form Ck = HkH
T
k ,

where the factors Hk ∈ R
M×rk are not unique [38, 64]. One possible choice of Hk is obtained via

the thin EVD Ck = UΣUT by setting Hk = U
√
Σ. If we consider a specific factorization of the

basis matrices and stack the resulting factors Hk into the matrix

H ,

(
H1 H2 . . . HN

)
∈ R

M×R, (6.9)

we can rewrite the parameterization (6.2) as

C = C(x) = HD(x)HT . (6.10)

Here, D(x) ∈ R
R×R is a diagonal matrix which has on its main diagonal the entries of x ∈ R

N ,

where each entry xk appears rk times, i.e.,

D(x) =




x1Ir1 0 . . . 0

0 x2Ir2
. . .

...
...

. . . . . . 0

0 . . . 0 xNIrN



. (6.11)

A partial characterization of the set of basis matrices can be made based on

Definition 6.1.1. Given the SPCM ESPCM, we say that the set of basis matrices {Ck ∈ R
M×M}k∈[N ]

has RIP of order K with constant δK ∈ [0, 1] if there exist factorizations Ck = HkH
T
k such

that the singular values of any matrix H(I) =
(
Hi1 Hi2 . . . HiK

)
∈ R

M×∑
k∈I rk , where

I = {i1, . . . , iK} ⊆ [N ] is an arbitrary set of K different indices, are located in the interval

[1− δK , 1 + δK ] and moreover any matrix H(I) has full column rank, i.e., rank(H(I)) =
∑

k∈I rk.

The SPCM and estimation of x are relevant, e.g., in time-frequency analysis [95,96], where the

basis matrices Ck correspond to disjoint time-frequency regions and xk represents the mean signal

energy in the kth time-frequency region. Such a sparsity-based time-frequency analysis may be

used, e.g., for cognitive radio scene analysis [97]. Another application that fits our scope would

be compressive spectrum estimation [98,99], where classical (non-stationary) spectrum estimation

techniques are combined with novel CS methods.

An important special case of the SPCM is obtained if the basis matrices Ck appearing in the

parameterization (6.2) are orthogonal projection matrices on orthogonal subspaces of RM , i.e.,

CkCk′ = δk,k′Ck , ∀k, k′ ∈ [N ]. (6.12)
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Note that condition (6.12) implies that the basis matrices satisfy the RIP of any order K ∈ [N ]

with constant δK = 0. The so-obtained special case of the SPCM will be termed the sparse

diagonalizable parametric covariance model (SDPCM). This naming is due to the fact that for the

SDPCM, i.e., when the basis matrices Ck in (6.2) satisfy (6.12), the covariance matrix C(x) given

by (6.2) can be diagonalized by a signal transformation s′ = Us, with an orthonormal matrix

U ∈ R
M×M , i.e., UTU = I, that does not depend on the parameter vector x. We will denote by

ESDPCM the special case of the estimation problem ESPCM in (6.7) with basis matrices satisfying

(6.12). More specifically,

ESDPCM = (XS,+, fSDPCM(y;x), g(x)) , (6.13)

with an arbitrary parameter function g(·) : XS,+ → R and the statistical model

fSDPCM(y;x) =
1

(2π)M/2[det{C̃(x)}]1/2
exp

(
−1

2
yT C̃−1(x)y

)
, (6.14)

where C̃(x) is defined as in (6.4) but with basis matrices Ck satisfying (6.12).

The key results of this chapter have been presented in part in [100].

6.2 The D-restricted SPCM

As already observed in [35], the RKHS-based analysis of minimum variance estimation for esti-

mation problems where the parameter determines the covariance matrix of the observation (e.g.,

the SPCM) is more involved than for those problems where the parameter determines the mean

(e.g., the SLM). In particular, any minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0)

associated with the SPCM and parameter vector x0 ∈ XS,+ does not fulfill Postulate 4.1.1. This

precludes a direct RKHS approach to the SPCM.

One specific reason for the minimum variance problem MSPCM to fail in satisfying Postulate

4.1.1 is that the space L(MSPCM) (cf. (4.5)) with the inner product 〈 · , · 〉RV (see (4.3)) fails

to be a Hilbert space. An ad-hoc approach in order to facilitate an RKHS-based analysis of

the minimum variance problem MSPCM could be to reduce the space L(MSPCM) (consisting of

linear combinations of the elementary estimator functions ĝx(·) = ρM(·,x)) to obtain a Hilbert

space L′(MSPCM) ⊆ L(MSPCM). However, the resulting RKHS associated with L′(MSPCM)

depends on the completely arbitrary reduction of L(MSPCM) to L′(MSPCM ), and a convenient

analytical description of the resulting RKHS can be hardly expected in general. Therefore, as

discussed presently, we will pursue a different RKHS approach to the minimum variance problem

MSPCM = (ESPCM, c(·) ≡ 0,x0).

Specifically, in order to derive lower bounds on the minimum achievable variance LMSPCM
, we
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can further restrict the parameter set of ESPCM to obtain the so called “D-restricted” SPCM

E(D)
SPCM , (D, fSPCM(y;x), g(x)) (6.15)

with a certain set D ⊆ XS,+. Indeed, consider the minimum variance problem MSPCM =

(ESPCM, c(·) ≡ 0,x0) associated with the SPCM ESPCM and the “D-restricted” minimum variance

problem

MD,SPCM , MSPCM

∣∣
D =

(
E(D)

SPCM, c(·) ≡ 0,x0

)
(6.16)

associated with the D-restricted SPCM E(D)
SPCM and the same parameter vector x0 as used for

MSPCM. We do not require the set D to contain x0, i.e., we may have x0 /∈ D. According to

Theorem 2.5.2 (cf. also Section 4.3.4), we have then the inequality

LMSPCM
≥ LMD,SPCM

. (6.17)

The idea is now to choose the set D ⊆ XS,+ such that MD,SPCM fulfills Postulate 4.1.1, so that

the RKHS H(MD,SPCM) as in Definition 4.3.1 exists for the minimum variance problem MD,SPCM.

Based on (6.17), we can then find lower bounds for LMSPCM
by deriving lower bounds on LMD,SPCM

using the RKHS theory for H(MD,SPCM).

Postulate 4.1.1 can be written for the SPCM as (see (6.8))

Ex0

{(
fSPCM(y;x)

fSPCM(y;x0)

)2}
=

∫

y

fSPCM(y;x)fSPCM(y;x)

fSPCM(y;x0)
dy

=
1

(2π)M/2

[
det
{
C̃(x0)

}]1/2

det
{
C̃(x)

}
∫

y

exp

(
−1

2
yT
[
2C̃−1(x)− C̃−1(x0)

]
y

)
dy <∞. (6.18)

Since by (6.4) we have C̃(x) > 0 and therefore det
{
C̃(x)

}
> 0 for every x ∈ XS,+, we can conclude

from (6.18) that in order to satisfy Postulate 4.1.1, it is necessary and sufficient to choose the set

D such that
(
2C̃−1(x)− C̃−1(x0)

)
is positive definite, i.e.,

2C̃−1(x)− C̃−1(x0) > 0 ∀x ∈ D. (6.19)

We will now give a sufficient condition for the set D to fulfill (6.19). To that end, the following

two technical results will prove handy. Remember that given a square matrix H ∈ R
M×M , we

denote by ‖H‖2 its matrix 2-norm defined as ‖H‖2 , sup
‖x‖p=1

‖Hx‖2.
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Lemma 6.2.1. Consider an invertible matrix A ∈ R
M×M and a matrix E ∈ R

M×M . Then if

‖E‖2 < 1
‖A−1‖2 , we have that A+E is invertible and

∥∥ (A+E)−1 −A−1
∥∥
2
≤ ‖A−1‖22‖E‖2

1− ‖A−1‖2‖E‖2
. (6.20)

Proof. The statement follows by combining [38, Theorem 2.3.4] with the fact that for two matrices

N,M ∈ R
M×M we have ‖NM‖2 ≤ ‖N‖2‖M‖2 [38, p. 55].

In what follows, we denote the kth largest eigenvalue of a symmetric matrix C ∈ R
L×L, with

k ∈ [L], by λk(C), i.e.,

λL(C) ≤ . . . ≤ λ2(C) ≤ λ1(C). (6.21)

The eigenvalues of a symmetric matrix are nonnegative (positive) if and only if the matrix is positive

semi-definite (positive definite) [38, 101]. It can be verified that ‖C‖2 = max
{∣∣λ1(C)

∣∣,
∣∣λL(C)

∣∣}

[38, p. 394] and in turn

|λk(C)| ≤ ‖C‖2. (6.22)

Moreover, for any matrix C ∈ R
L×L it holds that [38, p. 310]

det
{
C
}
=
∏

k∈[L]
λk(C). (6.23)

Lemma 6.2.2. ([38, Theorem 8.1.5]) Consider two symmetric matrices A,E ∈ R
L×L, i.e., AT =

A and ET = E. We then have the double inequality

λk(A) + λL(E) ≤ λk(A+E) ≤ λk(A) + λ1(E), for every k ∈ [L]. (6.24)

Proof. [38]

The next result shows that D can be chosen as the intersection of XS,+ and a ball B(xc, r),

with a suitable center xc ∈ XS,+ and a sufficiently small radius r:

Theorem 6.2.3. Consider the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0). Any

set D given as

D = XS,+ ∩ B(xc, r), (6.25)
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with xc ∈ XS,+ such that

2C̃−1(xc)− C̃−1(x0) > 0, (6.26)

and a sufficiently small radius r > 0, satisfies (6.19). Two specific choices for xc which satisfy

(6.26) are xc = x0 and xc = 0.

Proof. Let us consider a parameter vector xc ∈ XS,+ such that (6.26) is satisfied. We can then

write C̃(x) = C̃(xc) +E(x), where

E(x) , C̃(x)− C̃(xc) =
∑

k∈[N ]

Ckx̄k (6.27)

is a symmetric matrix, i.e, ET (x) = E(x), with x̄k , xk −xc,k. For every x ∈ D = XS,+ ∩B(xc, r)

(implying that ‖x− xc‖2 ≤ r), we have that

|x̄k| = |xk − xc,k| =
√

|xk − xc,k|2 ≤
√∑

k∈[N ]

|xk − xc,k|2 = ‖x− xc‖2 ≤ r. (6.28)

This implies, via the triangle inequality for the matrix 2-norm, that

‖E(x)‖2 ≤ N q r, (6.29)

with q , maxk∈[N ] ‖Ck‖2. Indeed, we have

‖E(x)‖2
(6.27)
=

∥∥∥∥
∑

k∈[N ]

Ckx̄k

∥∥∥∥
2

≤
∑

k∈[N ]

‖Ckx̄k‖2

=
∑

k∈[N ]

|x̄k|‖Ck‖2
(6.28)

≤ r
∑

k∈[N ]

‖Ck‖2 ≤ rN max
k∈[N ]

‖Ck‖2. (6.30)

Let us now choose a radius r0 such that N q r0 <
1∥∥C̃−1(xc)

∥∥ which implies via (6.29) that

‖E(x)‖2 ≤ N q r0 <
1∥∥C̃−1(xc)

∥∥ (6.31)

for every x ∈ XS,+ ∩B(xc, r0). The fulfillment of condition (6.31) allows us then to invoke Lemma

6.2.1, using A = C̃(xc) and E = E(x), which yields that for every x ∈ XS,+ ∩ B(xc, r0) we have

C̃−1(x) = C̃−1(xc) +E0, (6.32)

with a symmetric matrix E0 ∈ R
M×M satisfying

‖E0‖2 =
∥∥C̃−1(x) − C̃−1(xc)

∥∥
2

(6.20),(6.27)

≤ ‖C̃−1(xc)‖22‖E(x)‖2
1− ‖C̃−1(xc)‖2‖E(x)‖2
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(6.31),(6.5)

≤ Nqr0σ
−4

1− σ−2Nqr0
. (6.33)

By choosing r0 small enough we can, according to (6.33), make ‖E0‖2 arbitrarily small. Observe

that by assumption the matrix F , 2C̃−1(xc) − C̃−1(x0) ∈ R
M×M is positive definite, which

implies that its eigenvalues λk(F) are positive, i.e., they satisfy λk(F) ≥ ε0 with some positive

constant ε0 > 0. We can then choose r0 such that ‖E0‖2 < ε0/2 (implying that |λM (E0)| < ε0/2)

for every x ∈ XS,+ ∩ B(xc, r0), which implies by Lemma 6.2.2 that the eigenvalues λk(G) of the

symmetric matrix

G , 2C̃−1(x)− C̃−1(x0)
(6.32)
= 2C̃−1(xc)− C̃−1(x0) + 2E0 = F+ 2E0. (6.34)

satisfy

λk(G) = λk(F+ 2E0)
(6.24)

≥ λk(F) + λM (2E0) = λk(F) + 2λM (E0) ≥ ε0 − 2‖E0‖2 > 0, (6.35)

i.e., all eigenvalues of the matrix G = 2C̃−1(x)− C̃−1(x0) are strictly positive. This in turn means

that the matrix 2C̃−1(x)− C̃−1(x0) is positive definite for every x ∈ XS,+ ∩ B(xc, r0).

Finally, for xc = x0, the matrix 2C̃−1(xc)− C̃−1(x0) = C̃−1(x0) is obviously positive definite

since the matrix C̃(x0) is positive definite. Also, for xc = 0, the matrix

2C̃−1(xc)− C̃−1(x0)
(6.4)
= 2

[
C(0) + σ2I

]−1 − C̃−1(x0)
(6.2)
= 2σ−2I− C̃−1(x0) (6.36)

is positive definite since its eigenvalues obey

λk(2C̃
−1(xc)− C̃−1(x0))

(6.36)
= λk(2σ

−2I− C̃−1(x0))
(6.24)

≥ λk(2σ
−2I) + λM (−C̃−1(x0))

= 2σ−2 + λM (−C̃−1(x0))
(6.5)

≥ 2σ−2 − σ−2 = σ−2 > 0, (6.37)

i.e., are all strictly positive.

In what follows, we will always assume that the set D is of the form (6.25). Note that any set

D ⊆ R
N of the form (6.25) is closed and bounded and therefore compact [5, Theorem 2.41]. If the

set D is chosen such that (6.19) is fulfilled, we obtain the kernel RMD,SPCM
(·, ·) : D ×D → R (see

(4.10) and (6.8)):

RMD,SPCM
(x1,x2) , Ex0 {ρMSPCM

(y,x1)ρMSPCM
(y,x2)} =

∫

y∈RM

fSPCM(y;x1)fSPCM(y;x2)

fSPCM(y;x0)
dy

=
(2π)−M/2

[
det
{
C̃(x0)

}]1/2
[
det
{
C̃(x1)

}
det
{
C̃(x2)

}]1/2
∫

y∈RM

exp

(
−1

2
yT
(
C̃−1(x1) + C̃−1(x2)− C̃−1(x0)

)
y

)
dy
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=
[
det
{
C̃(x0)

}]1/2[
det
{
C̃(x1)C̃(x2)

(
C̃−1(x1) + C̃−1(x2)− C̃−1(x0)

)}]−1/2

=
[
det
{
C̃(x0)

}]1/2[
det
{
C̃(x1) + C̃(x2)− C̃(x1)C̃

−1(x0)C̃(x2)
}]−1/2

, (6.38)

with C̃(x) as defined in (6.4). Obviously, according to elementary linear algebra [38], the kernel

RMD,SPCM
(x1,x2) is differentiable in the sense of Definition 3.4.1 up to any order m and therefore

also continuous. Moreover, since we assume that the set D is of the form (6.25), the function

k(·) : RN → R : k(x) = RMD,SPCM
(x,x) =

[
det
{
C̃(x0)

}]1/2[
det
{
2C̃(x)−C̃(x)C̃−1(x0)C̃(x)

}]−1/2

(6.39)

is bounded over its domain D. In order to verify the boundedness, we observe that (i) every set of

the form (6.25) is closed1 and (ii) the fact that det
{
2C̃−1(x)− C̃−1(x0)

}
is a continuous function

of x. It follows then from the extreme value theorem [5, Theorem 4.16] and the compactness, i.e.,

boundedness and closedness, of D that there must a exist a positive constant ε > 0 such that

det
{
2C̃−1(x)− C̃−1(x0)

}
≥ ε (6.40)

for every vector x ∈ D. This implies that

k(x) =
[
det
{
C̃(x0)

}]1/2[
det
{
2C̃(x)− C̃(x)C̃−1(x0)C̃(x)

}]−1/2

=
[
det
{
C̃(x0)

}]1/2
[[

det
{
C̃(x)

}]2
det
{
2C̃−1(x)− C̃−1(x0)

}]−1/2

det{A−1}=det−1{A}
=

[
det
{
C̃(x0)

}]1/2
det
{
C̃−1(x)

}[
det
{
2C̃−1(x)− C̃−1(x0)

}]−1/2

(6.5),(6.40)

≤
[
det
{
C̃(x0)

}]1/2
σ−2Mε−1/2, (6.41)

i.e., the function k(x) is bounded by the constant (w.r.t. x)
[
det
{
C̃(x0)

}]1/2
σ−2Mε−1/2. There-

fore, we can apply Theorem 3.4.3 to derive

Theorem 6.2.4. Consider the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0 ∈ XS,+)

and a set D = XS,+ ∩ B(xc, r) satisfying (6.19) so that RMD,SPCM
(·, ·) : D ×D → R exists. Then,

if the parameter function g(·) : XS,+ → R of the associated SPCM ESPCM has a discontinuity on

the set D, i.e., there exists a point x ∈ D at which the function g(·) is discontinuous, there exists

no allowed estimator (i.e., unbiased and with finite variance at x0) for MSPCM.

Proof. Consider the D-restricted minimum variance problem M′ = MSPCM

∣∣
D with the set D of

the form (6.25). The RKHS H(M′) associated to the kernel RM′ (see (6.38)) exists since the set D
1We implicitly assume the Hilbert space structure in R

N , which is induced by the inner product 〈x,y〉△xTy
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is assumed to satisfy (6.19). Moreover, according to our discussion above, Theorem 3.4.3 applies

to the RKHS H(M′). We have by Theorem 3.4.3 that H(M′) consists exclusively of continuous

functions. Therefore, it cannot contain any function with a discontinuity within the set D. By

Theorem 4.3.4, this implies that any discontinuous function is not estimable for M′. However,

since M′ is obtained by a reduction of the parameter set underlying MSPCM, it follows from

Theorem 2.5.2 that also for the minimum variance problem MSPCM every discontinuous function

is not estimable, i.e., there exists no unbiased estimator of a discontinuous (on D) function with

finite variance at x0 ∈ XS,+.

As for the SLM (cf. Theorem 5.3.2), we have also for the SPCM that there exists no finite-

variance unbiased estimator of an injective function of the support supp(x):

Corollary 6.2.5. There exists no estimator ĝ(y) of an injective real-valued function g(supp(x))

of the support of x ∈ XS,+ which uses only the observation (6.1) of the SPCM ESPCM, is unbiased

for every x ∈ XS, and has a finite variance at any x0 ∈ XS,+.

Proof. Consider a set D = XS,+∩B(0, r) with a sufficiently small radius r > 0 such that, according

to Theorem 6.2.3, the set D fulfills (6.19), and with an arbitrary parameter vector x0 ∈ XS,+. As

verified in the proof of Theorem 5.3.2, any injective function g(supp(x)) of the support must have at

least one discontinuity on the set D. Therefore, by Theorem 6.2.4, there does not exist an allowed

estimator for the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0 ∈ XS,+) associated

with the SPCM with parameter function g(supp(x)). By the definition of an allowed estimator,

this means that there exists no estimator of g(supp(x)) that is unbiased for every x ∈ XS,+ and

has finite variance at x0 .

6.3 Lower Bounds on the Estimator Variance for the SPCM

Let us consider the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0) associated with

the SPCM, for a parameter vector x0 ∈ XS,+. Note again that the prescribed bias c(·) is assumed

to vanish on XS,+, i.e., we consider only unbiased estimation. However, by Theorem 2.3.1, this is

no real restriction since we allow for general parameter functions g(x) in the SPCM. We then define

a second minimum variance problem MD,SPCM , MSPCM

∣∣
D =

(
E(D)

SPCM, c(·) ≡ 0,x0

)
associated to

the D-restricted SPCM, which is identical to MSPCM except for the parameter set D ⊆ XS,+.

We will now derive lower bounds on the minimum achievable variance LMSPCM
via (6.17). We

choose D such that Theorem 6.2.3 applies and therefore the RKHS H(MD,SPCM), associated with

the kernel RMD,SPCM
(·, ·) given in (6.38), exists. We will assume that the parameter function g(·)

is estimable for MSPCM, which implies via Theorem 2.5.2 that the restricted parameter function

g(·)
∣∣
D is estimable for MD,SPCM. This assumption is justified by the fact that the bounds that we
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will derive are always finite, i.e., they trivially apply also in the case when g(·)
∣∣
D is not estimable

for MD,SPCM, for which LMSPCM
= ∞. These bounds will be obtained by projecting the restricted

parameter function g
∣∣
D(·) : D → R, which is equal to the prescribed mean function γ(x) =

c(x) + g(x) of MD,SPCM since c(x) = 0, on suitable subspaces U of the RKHS H(MD,SPCM).

Our choice of U will be inspired by the derivation of the lower bounds for the SLM in Chapter 5.

Hence, there will be a natural correspondence between the bounds for the SPCM and the bounds

for the SLM presented in Chapter 5.

For the derivation of the bounds, we will need an identity which is stated in

Lemma 6.3.1. Consider the function f(·) : RN → R : f(x) = det
{
H(x)

}
, where the matrix-

valued function H(·) : RN → R
M×M is such that there exist the partial derivatives

∂p(H(x))m,n

∂xp

∣∣
x=x0

for any order p ∈ Z
N
+ with ‖p‖∞ ≤ 1 as well as the inverse H−1(x0). Then we have

∂f(x)

∂xk

∣∣∣∣
x=x0

= det{H(x0)}Tr
{
H−1(x0) (∂H(x0))

T }, (6.42)

where ∂kH(x0) is the matrix whose entry in the mth row and nth column is given by
∂(H(x))m,n

∂xk

∣∣∣∣
x=x0

.

Proof. [20, p. 73]

The first lower bound on LMSPCM
will be the “SPCM analogue” of the SLM bound given by

Theorem 5.4.1.

Theorem 6.3.2. Consider the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0) asso-

ciated with the SPCM with arbitrary psd basis matrices
{
Ck ∈ R

M×M
}
k∈[N ]

. If the parameter

function g(·) : XS,+ → R is such that the partial derivatives ∂g(x)
∂xl

∣∣
x=x0

exist for l ∈ [N ], we have

LMSPCM
≥ bTJ†b when ‖x0‖0 < S (6.43)

LMSPCM
≥ bT

x0
J†
x0
bx0 when ‖x0‖0 = S. (6.44)

Here, b ∈ R
N is defined elementwise by bl ,

∂g(x)
∂xl

∣∣
x=x0

, and bx0 ∈ R
S denotes the restriction to

the entries of b indexed by supp(x0) = (i1, . . . , iS), i.e.,
(
bx0

)
j
= bij . Furthermore, the matrix

J ∈ R
N×N is given elementwise by

(
J
)
m,n

=
1

2
Tr
{
C̃−1(x0)CmC̃−1(x0)Cn

}
, (6.45)

and the matrix Jx0 ∈ R
S×S is given elementwise by

(
Jx0

)
m,n

=
1

2
Tr
{
C̃−1(x0)CimC̃

−1(x0)Cin

}
. (6.46)
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Proof. Consider the minimum variance problem MD,SPCM = MSPCM

∣∣
D, where the set D is chosen

as in (6.25) with xc = x0, so that Theorem 6.2.3 applies, i.e., the RKHS H(MD,SPCM) exists. We

can assume that g(·) is estimable for MSDPCM, which implies via Theorem 2.5.2 that the restriction

g(·)
∣∣
D is estimable for MD,SDPCM. Thus, according to Theorem 4.3.4, the prescribed mean function

γ(·) : D → R : γ(x) = c(x) + g(x) = g(x) belongs to the RKHS H(MD,SPCM).

For the case ‖x0‖0 < S, in order to prove (6.43), consider the subspace U1 , span
{
w0(·) ∪

{wl(·)}l∈[N ]

}
spanned by the functions w0(·) , RMD,SPCM

(·,x0) and

wl(·) ,
∂elRMD,SPCM

(·,x2)

∂xel
2

∣∣∣∣
x2=x0

(6.47)

for l ∈ [N ]. We have trivially w0(·) ∈ H(MD,SPCM), and by Theorem 3.4.1 under the condition

‖x0‖0 < S, we have also that wl(·) ∈ H(MD,SPCM) for l ∈ [N ]. In a completely analogous

manner as the RKHS-based derivation of Theorem 4.4.4 (see Section 4.4.2), one can show that
〈
w0(·), wl(·)

〉
H(MD,SPCM)

= 0 (cf. (4.60)),
〈
w0(·), γ(·)

〉
H(MD,SPCM)

= γ(x0), and
〈
wl(·), γ(·)

〉
H(MD,SPCM)

=

bl (cf. (4.63)) for l ∈ [N ] (note that γ(·) = g(·)). For l, l′ ∈ [N ], we obtain by (6.38), Lemma 6.3.1,

and the obvious fact ∂el

∂xel
C̃(x) = Cl that

〈
wl(·), wl′(·)

〉
H(MD,SPCM)

=

〈
∂elRMD,SPCM

(·,x2)

∂xel
2

∣∣∣∣
x2=x0

,
∂el′RMD,SPCM

(·,x2)

∂x
el′
2

∣∣∣∣
x2=x0

〉

H(MD,SPCM)

(3.65)
=

∂el∂el′RMD,SPCM
(x1,x2)

∂xel
1 ∂x

el′
2

∣∣∣∣
x1=x2=x0

(6.38)
=

∂el∂el′
[
det
{
C̃(x0)

}]1/2[
det
{
C̃(x1) + C̃(x2)− C̃(x1)C̃

−1(x0)C̃(x2)
}]−1/2

∂xel
1 x

el′
2

∣∣∣∣
x1=x2=x0

(a)
= −1

2

[
det
{
C̃(x0)

}]1/2×

∂el Tr{C̃−1(x0)(I − C̃(x1)C̃
−1(x0))Cl′}

[
det
{
C̃(x1) + C̃(x0)− C̃(x1)

}]−1/2

∂xel
1

∣∣∣∣
x1=x0

= −1

2

∂el Tr{C̃−1(x0)(I − C̃(x1)C̃
−1(x0))Cl′}

∂xel
1

∣∣∣∣
x1=x0

=
1

2
Tr{C̃−1(x0)ClC̃

−1(x0)Cl′}
(6.45)
=

(
J
)
l,l′
. (6.48)

Here, the step (a) is due to Lemma 6.3.1 using H(x2) = C̃(x1) + C̃(x2) − C̃(x1)C̃
−1(x0)C̃(x2)

and the chain rule for differentiation [5]. The bound (6.43) is then obtained by projecting γ(·) on
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the subspace U1 as derived in the following. Using Theorem 4.3.4, and Theorem 3.1.6,

LMSPCM

(4.19)
= ‖γ(·)‖2H(MD,SPCM) −

[
γ(x0)︸ ︷︷ ︸
=g(x0)

]2 (3.30)

≥ ‖PU1γ(·)‖2 −
(
g(x0)

)2
. (6.49)

According to Theorem 3.1.9, this becomes further

LMSPCM

(3.38)

≥
〈
w0(·), γ(·)

〉2
H(MD,SPCM)〈

w0(·), w0(·)
〉
H(MD,SPCM)

+ bTJ†b−
[
g(x0)

]2

=

〈
RMD,SPCM

(·,x0), γ(·)
〉2
H(MD,SPCM)∥∥RMD,SPCM

(·,x0)
∥∥2
H(MD,SPCM)

+ bTJ†b−
[
g(x0)

]2

(a)
=

[
g(x0)

]2

1
+ bTJ†b−

[
g(x0)

]2

= bTJ†b, (6.50)

which is (6.43). In (6.50), the step (a) follows from the facts that

〈
RMD,SPCM

(·,x0), γ(·)
〉
H(MD,SPCM)

(3.43)
= γ(x0) = g(x0) (6.51)

and

∥∥RMD,SPCM
(·,x0)

∥∥2
H(MD,SPCM)

=
〈
RMD,SPCM

(·,x0), RMD,SPCM
(·,x0)

〉
H(MD,SPCM)

(3.43)
= RMD,SPCM

(x0,x0)
(4.11)
= 1. (6.52)

In an almost identical manner, one can prove the bound (6.44) for the case ‖x0‖0 = S. The

only difference is that instead of using the subspace U1 (which does not exist in this case), one has

to use the subspace U2 , span
{
w0(·) ∪ {wl(·)}l∈supp(x0)

}
, with wl(·) as defined in (6.47).

The bounds (6.43), (6.44) have a particular interpretation as the CRB of a non-sparse estima-

tion problem which is identical to the SPCM except for the sparsity constraint. More precisely,

the bounds (6.43), (6.44) are the CRB for a general non-sparse estimation problem with a Gaus-

sian observation y ∼ N (0,C(x)). Here, the covariance matrix C(x) depends arbitrarily on the

parameter vector x, which is not required to be sparse [20, p. 47].

A specific similarity of Theorem 6.3.2 to Theorem 5.4.1 becomes apparent when the corre-

sponding lower bounds are evaluated for the special case of the SPCM with g(x) = xk where

k /∈ supp(x0) and the basis matrices Cl = ele
T
l . This choice yields an instance of the SDPCM
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(that will be discussed presently). For this special case, we observe a discontinuity between the

two domains of X corresponding to ‖x‖0 = S and ‖x‖0 < S. In fact, while the bound in (6.43)

for ‖x0‖0 < S is then equal to 2σ4, the bound (6.44) for ‖x0‖0 = S is equal to 0.

In what follows, we will need a standard result in matrix calculus:

Lemma 6.3.3. Consider a matrix-valued function H(·) : R → R
M×M such that the derivatives of

any component function fm,n(x) , (H(x))m,n exist to a sufficient order. We denote by ∂H(x) ∈
R
M×M the specific matrix whose entries are given by

∂fm,n(x)
∂x . We then have the identity

∂H−1(x) = −H−1(x)∂H(x)H−1(x). (6.53)

Proof. [38]

Whereas Theorem 6.3.2 places no assumption on the basis matrices
{
Ck

}
k∈[N ]

of the SPCM,

the next result requires the basis matrices to satisfy the RIP of order S+1 with a sufficiently small

constant δS+1:

Theorem 6.3.4. Consider the minimum variance problem MSPCM = (ESPCM, c(·) ≡ 0,x0) associ-

ated with the SPCM with sparsity degree S and basis matrices
{
Ck

}
k∈[N ]

, with rank rk , rank(Ck),

that satisfy the RIP of order S + 1 with RIP constant δS+1 < 1/32. If the parameter function

g(·) : XS,+ → R is such that the partial derivatives bl ,
∂g(x)
∂xl

∣∣
x=0

exist for l ∈ [N ] \ supp(x0), we

have

LMSPCM
≥

2σ4b2l
rl

(σ2β)Q/2(σ2(1 + 5δS+1))
−rl/2

∏
k∈supp(x0)

(x0,k + σ2(1 + 5δS+1))rk/2
β2

[
rl
(12δS+1)

2

2
+ (12δS+1)

2 + β(6δS+1 + 1)

]−1

(6.54)

for any l ∈ [N ] \ supp(x0). Here,

β ,
1

(1 + δS+1)2

(
2− (1 + δS+1)

4

(1− δS+1)4

)
, (6.55)

and Q ,
∑

k∈supp(x0)
rk + rl.

Proof. Appendix B.

Note that Theorem 6.3.4 yields a lower bound on the minimum achievable variance LMSPCM

that is continuous with respect to the parameter vector x0. This is in contrast to the bound given

by Theorem 6.3.2 which yields a discontinuous bound in general.



6.4. THE SPARSE DIAGONALIZABLE PARAMETRIC COVARIANCE MODEL 153

However, as can be verified easily, for the special case of the SPCM given by the SDPCM with

parameter function g(x) = xk where k /∈ supp(x0), the lower bound (6.54) of Theorem 6.3.4 is in

general looser, i.e., lower, than the bound (6.43), (6.44) of Theorem 6.3.2.

In the following, we specialize our RKHS approach for the general SPCM to the SDPCM and

derive a lower bound that is both continuous with respect to x0 and, for the parameter function

g(x) = xk with k /∈ supp(x0), at least as tight as the bound given by (6.43) and (6.44).

6.4 The Sparse Diagonalizable Parametric Covariance Model

We now specialize and extend the results found for the general SPCM to the special case termed

the sparse diagonalizable parametric covariance model (SDPCM). The SDPCM is obtained from

the SPCM by restricting to basis matrices that are orthogonal projection matrices on orthogonal

subspaces and, thus, satisfy (6.12), i.e., CkCk′ = δk,k′Ck for all k, k′ ∈ [N ]. This special case, which

can be seen as the SPCM analogue of the SSNM,2 will allow for a slightly more precise analysis via

RKHS theory than was possible for the general SPCM. In particular, we will derive lower bounds

that are tighter than the bound given by Theorem 6.3.2 when specialized to the SDPCM. We

will use the generic notation MSDPCM = (ESDPCM, c(·) ≡ 0,x0) for a minimum variance problem

that is obtained from the SDPCM ESDPCM = (XS,+, fSDPCM(y;x), g(x)), the identically vanishing

prescribed bias (i.e., we consider unbiased estimation) and a parameter vector x0 ∈ XS,+.

Since the basis matrices Ck ∈ R
M×M are assumed psd, the condition (6.12) is equivalent to

requiring the basis matrices to be orthogonal projection matrices on orthogonal subspaces of RM .

The condition (6.12) evaluated for k′ = k, i.e., C2
k = Ck, is the defining requirement for the psd

matrix Ck to be an orthogonal projection matrix (cf. [38]), i.e., it can be written as

Ck =
∑

i∈[rk]
umk,i

uT
mk,i

. (6.56)

Here, {um ∈ R
M}m∈[R] is an orthonormal set of vectors, i.e., uT

mum′ = δm,m′ , and the sets

Uk , {umk,i
}i∈[rk ] are disjoint, so that they span orthogonal subspaces of RM . Indeed, assume that

for two different basis matrices Ck, Ck′ (k 6= k′), there would be at least two vectors a ∈ Uk, b ∈ Uk′

which are nonorthogonal, i.e., aTb 6= 0. Then, using (6.56), we would obtain CkCk′b = Ckb 6= 0,

2Indeed, by a suitable transformation of the observation vector y of the SDPCM, we have that within the SDPCM

and the SSNM, each entry xk of the parameter vector determines the statistics of an individual subset of the entries

of the observation vector. The difference between the SDPCM and the SSNM is then how the parameter vector

entry xk determines the statistics of the corresponding observation vector entries. In the SSNM xk determines the

mean, while in the SDPCM xk determines the variance. Another difference is that for the the SSNM, the subset

of observation vector entries that correspond to xk consist only of the single entry yk, while for the SDPCM these

subsets may contain more than one entry of the observation vector.
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which is a contradiction to (6.12). From the representation (6.56), it also follows that for the

SDPCM, there must be M ≥ R =
∑

k∈[N ] rk (in particular, M ≥ N).

Using the representation (6.56) of the basis matrices, we can interpret the observation model

of the SDPCM in (6.1) as a latent variable model

y =
∑

k∈[N ]

sk + n, (6.57)

with sk =
∑

i∈[rk] ξmk,i
umk,i

, where the ξmk,i
are independent zero-mean Gaussian random variables

with variance xk for all i, i.e., ξmk,i
∼ N (0, xk). This is similar to the latent variable model used

in probabilistic principal component analysis [102] except that our “factors” um are fixed.

Another useful implication of (6.56) is based on a fundamental result in linear algebra [4] which

states that we can add vectors {vl ∈ R
M}l∈[L], with L =M −R, to the set {um ∈ R

M}m∈[R] such

that their union U , {vl}l∈[L] ∪{um}m∈[R] forms an ONB for RM . This implies in particular that

we can represent the covariance matrix of the observation C̃(x) = C(x) + σ2I (cf. (6.4)), as

C̃(x) = U
[
D′(x) + σ2I

]
UT , (6.58)

where the columns of the orthonormal matrix U ∈ R
M×M are the vectors belonging to U . The

diagonal matrix D′(x) ∈ R
M×M has a main diagonal consisting of two parts: the first part of

length R contains the entries xk where each entry is repeated rk times, while the second part

consists of M −R zeros, i.e.,

D′(x) =




x1Ir1 0 . . . . . . . . . . . . 0

0 x2Ir2
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . xNIrN

. . . . . .
...

...
. . . . . . . . . 0

. . .
...

...
. . . . . . . . . . . . . . .

...

0 . . . . . . . . . . . . . . . 0




. (6.59)

6.4.1 The D-restricted SDPCM

As for the SPCM, we cannot associate a RKHS to the minimum variance problem MSDPCM

directly. Instead, we will work with the RKHS associated to the D-restricted minimum variance

problem MD,SDPCM = MSDPCM

∣∣
D, with a set D ⊆ XS,+ that satisfies (6.19).

For the SDPCM, the condition (6.19) can be rewritten due to (6.58) as

2(xi + σ2)−1 − (x0,i + σ2)−1 > 0 ∀x ∈ D,∀i ∈ [N ]. (6.60)
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This is because a matrix A ∈ R
M×M is positive definite, i.e., A > 0, if and only if VAVT > 0 for

any orthonormal matrix V ∈ R
M×M , i.e., satisfying VTV = I. The largest set D ⊆ XS,+ which

satisfies (6.60) is obviously given by

D0 , {x ∈ XS,+

∣∣xi < 2x0,i + σ2}. (6.61)

Note that the set D0 depends on x0.

Since the set D0 is the largest set satisfying (6.60), the corresponding minimum achievable

variance LMD0,SDPCM
will yield via (6.17) the tightest lower bound on LMSDPCM

among all bounds

that are obtained from LMD,SDPCM
with a set D that satisfies (6.60).

6.4.2 Variance Bounds for the SDPCM

We will now derive a lower bound on the minimum achievable variance LMSDPCM
by lower bounding

LMD0,SDPCM
, i.e., the minimum achievable variance of MD0,SDPCM, using the RKHS H(MD0,SDPCM)

which is associated to the kernel RMD0,SDPCM
(·, ·) : D0 ×D0 → R:

RMD0,SDPCM
(x1,x2) , Ex0

{
ρMD0,SDPCM

(y,x1)ρMD0,SDPCM
(y,x2)

}
. (6.62)

Using (6.38) and (6.58) and the identity det{AB} = det{A}det{B} valid for any two matrices

A,B ∈ R
M×M [38, p. 51], we obtain

RMD0,SDPCM
(x1,x2) =

[
det
{
C̃(x0)

}]1/2[
det
{
C̃(x1) + C̃(x2)− C̃(x1)C̃

−1(x0)C̃(x2)
}]−1/2

=

∏
k∈[N ]

(x0,k+σ2)rk

∏
k∈[N ]

[
(x0,k+σ2)2 − (x1,k−x0,k)(x2,k−x0,k)

]rk/2 . (6.63)

Note that the kernel RMD0,SDPCM
(·, ·) given by (6.63) is obviously differentiable up to any order

m.

The following result partly characterizes the RKHS H(MD0,SDPCM).

Theorem 6.4.1. The RKHS H(MD0,SDPCM) is differentiable up to any order. Let K ⊆ [N ] be an

arbitrary set of S different indices, i.e., |K| = S, and let p ∈ Z
N
+ be an arbitrary multi-index with

supp(p) ⊆ K. Then the function g(p,K)(·) : D0 → R defined as

g(p,K)(x) ,
∂pRMD0,SDPCM

(x,x2)

∂xp
2

∣∣∣∣
x2=xK

0

=
∏

k∈supp(p)

ck(xk − x0,k)
pk

(x0,k+σ2)2pk

∏

k∈supp(x0)\K

(x0,k+ σ2)rk
[
(x0,k+σ2)2 + (xk−x0,k)x0,k

]rk/2 , (6.64)
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where ck ,
∏

l∈[pk](rk/2 + (l − 1)), is an element of H(MD0,SDPCM), i.e.,

g(p,K)(·) ∈ H(MD0,SDPCM). (6.65)

The inner product of an arbitrary function f(·) ∈ H(MD0,SDPCM) with g(p,K)(·) is given by

〈
f(·), g(p,K)(·)

〉
H(MD0,SDPCM)

=
∂pf(x)

∂xp

∣∣∣∣
x=xK

0

. (6.66)

Proof. The statement follows straightforwardly from Theorem 3.4.1, since the kernel RMD0,SDPCM
(·, ·)

is differentiable up to any order.

Based on Theorem 6.4.1, we will now derive a lower bound on the minimum achievable variance

LMSDPCM
:

Theorem 6.4.2. Consider the minimum variance problem MSDPCM = (ESDPCM, c(·) ≡ 0,x0)

with sparsity degree S. Let {pl ∈ Z
N
+}l∈[L] be a set of multi-indices such that supp(pl) ⊆ K,

where K ⊆ [N ] is an arbitrary set of S different indices, i.e., |K| = S. If the parameter function

g(·) : XS,+ → R associated with ESDPCM is such that the partial derivatives ∂plg(x)
∂xpl

∣∣
x=xK

0
exist for

all l ∈ [L], we have

LMSDPCM
≥
∑

l∈[L]

1

ql(x0)

[
∂plg(x)

∂xpl

∣∣∣∣
x=xK

0

]2
−
[
g(x0)

]2
, (6.67)

where ql(x0) ,
∂pl∂plRMD0,SDPCM

(x1,x2)

∂x
pl
1 ∂x

pl
2

∣∣∣∣
x1=x2=xK

0

. Furthermore, there exists an unbiased estimator

ĝ(·) whose variance at x0 achieves this bound, i.e., v(ĝ(·);x0) =
∑

l∈[L]
1

ql(x0)

[
∂plg(x)
∂xpl

∣∣
x=xK

0

]2
−

[
g(x0)

]2
, if and only if it can be written as

ĝ(·) =
∑

l∈[L]
al
∂plρMD0,SDPCM

(·,x)
∂xpl

∣∣∣∣
x=xK

0

, (6.68)

with suitable (non-random) coefficients al ∈ R.

Proof. Since the bound in (6.67) is always finite, we assume without loss of generality that g(·) is

estimable for MSDPCM, which implies via Theorem 2.5.2 that the restriction g(·)
∣∣
D0

is estimable

for MD0,SDPCM. Thus we can assume by Theorem 4.3.4 that the prescribed mean function γ(·) :
D0 → R : γ(x) = c(x) + g(x) = g(x) belongs to the RKHS H(MD0,SDPCM).

Let us consider the subspace U , span
{
g(pl ,K)(·)

}
l∈[L] ⊆ H(MD0,SDPCM) spanned by the

functions g(pl,K)(·) ∈ H(MD0,SDPCM) as defined in Theorem 6.4.1. For the inner products between

g(pl ,K)(·) and g(pl′ ,K)(·), we obtain

〈
g(pl,K)(·), g(pl′ ,K)(·)

〉
H(MD0,SDPCM)

(6.66)
=

∂pl′g(pl,K)(x)

∂xpl′

∣∣∣∣
x=xK

0
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(6.64)
=

∂pl′

∂xpl′

∏

k∈supp(pl)

ck(xk − x0,k)
pk

(x0,k+σ2)2pk

∏

k∈supp(x0)\K

(x0,k+σ2)rk
[
(x0,k+σ2)2 + (xk−x0,k)x0,k

]rk/2

∣∣∣∣
x=xK

0

(a)
=
[ ∏

k∈supp(x0)\K

(x0,k+σ2)rk
[
(x0,k+σ2)2−x20,k

]rk/2
] ∂pl′

∂xpl′

∏

k∈supp(pl)

ck(xk − x0,k)
pk

(x0,k+σ2)2pk

∣∣∣∣
x=xK

0

, (6.69)

where step (a) is due to the fact that supp(pl), supp(pl′) ⊆ K. Evaluating (6.69) for l 6= l′ reveals

that the functions
{
g(pl,K)(·)

}
l∈[L] are orthogonal, i.e.

〈
g(pl ,K)(·), g(pl′ ,K)(·)

〉
H(MD0,SDPCM)

= δl,l′
〈
g(pl,K)(·), g(pl ,K)(·)

〉
H(MD0,SDPCM)

(6.66)
= δl,l′

∂pl′g(pl,K)(x)

∂xpl′

∣∣∣∣
x=xK

0

= δl,l′
∂pl∂plRMD0,SDPCM

(x1,x2)

∂xpl

1 ∂x
pl

2

∣∣∣∣
x1=x2=xK

0

= δl,l′ql(x0). (6.70)

Therefore, an ONB for the subspace U ⊆ H(MD0,SDPCM) is given by the set
{

1√
ql(x0)

g(pl,K)(·)
}
l∈[L]

.

Using the inner products (recall that γ(·) = g(·))
〈
γ(·), g(pl ,K)(·)

〉
H(MD0,SDPCM)

(6.66)
=

∂plg(x)

∂xpl

∣∣∣∣
x=xK

0

, (6.71)

the bound in (6.67) follows by projecting γ(·) onto the subspace U , since

LMSDPCM

(6.17)

≥ LMD0,SDPCM

(4.19)
= ‖γ(·)‖2H(MD0 ,SDPCM) −

[
γ(x0)︸ ︷︷ ︸
=g(x0)

]2

(3.30)

≥ ‖PUγ(·)‖2H(MD0 ,SDPCM) −
[
g(x0)

]2

(3.33)
=

∑

l∈[L]

〈
γ(·), g(pl ,K)(·)

〉2
H(MD0,SPCM)〈

g(pl ,K)(·), g(pl ,K)(·)
〉
H(MD0,SPCM)

−
[
g(x0)

]2

(6.70),(6.71)
=

∑

l∈[L]

1

ql(x0)

[
∂plg(x)

∂xpl

∣∣∣∣
x=xK

0

]2
−
[
g(x0)

]2
. (6.72)

Let us now show that if an unbiased estimator for MSDPCM achieves the bound (6.67), i.e.,

its variance at x0 equals
∑

l∈[L]
1

ql(x0)

[
∂plg(x)
∂xpl

∣∣
x=xK

0

]2
−
[
g(x0)

]2
(which also implies that g(·) is
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estimable for MSDPCM), it must be necessarily of the form (6.68). To that end, we note that

according to the above derivation of (6.72), the bound (6.67) holds also for LMD0,SDPCM
, i.e.,

LMD0,SDPCM
≥
∑

l∈[L]

1

ql(x0)

[
∂plg(x)

∂xpl

∣∣∣∣
x=xK

0

]2
−
[
g(x0)

]2
. (6.73)

Therefore, if an unbiased estimator exists whose variance at x0 achieves the bound (6.67), it also

achieves the bound (6.73), and thus is the unique LMV estimator (which is guaranteed to exist in

this case) for MD0,SDPCM. The variance at x0 of this LMV estimator, which is of course also the

minimum achievable variance LMD0,SDPCM
, attains the bound (6.67) if and only if the projection

PUγ(·) coincides with γ(·), since this is necessary and sufficient for the second inequality in (6.72)

to become an equality. This in turn, is the case if and only if γ(·) ∈ U , i.e., the prescribed

mean function γ(·) can be written as the linear basis expansion
∑

l∈[L] alg
(pl,K)(·) with coefficients

al ∈ R. However, in this case we can express the unique LMV estimator ĝ(x0)(·) for MD0,SDPCM

via Theorem 4.3.3 and Theorem 4.3.4 as

ĝ(x0)(·) (4.20)
= J

[
γ(·)

]
=
∑

l∈[L]
alJ
[
g(pl,K)(·)

]
(6.64),(4.16)

=
∑

l∈[L]
al
∂plρMD0,SDPCM

(·,x)
∂xpl

∣∣∣∣
x=xK

0

. (6.74)

Thus, if an estimator achieves the bound (6.67), it is necessarily of the form (6.68).

Conversely, if there exists an estimator ĝ(·) of the form (6.68) we have by Theorem 4.3.2 and

Theorem 4.3.3 that

γ(x)
(a)
= Ex{ĝ(y)} = Ex

{
∑

l∈[L]
al
∂plρMD0,SDPCM

(x,x2)

∂xpl

2

∣∣∣∣
x2=xK

0

}

= Ex

{
∑

l∈[L]
al
∂plρMD0,SDPCM

(x,x2)

∂xpl

2

∣∣∣∣
x2=xK

0

}
(6.64),(4.16)

= Ex

{
∑

l∈[L]
alJ

−1
[
g(pl ,K)(·)

]}

(4.14)
=

∑

l∈[L]
alg

(pl ,K)(x) ∈ U , (6.75)

where (a) follows from the assumption that ĝ(·) is unbiased (note that we consider unbiased

estimation since c(·) ≡ 0). Thus, the existence of an estimator ĝ(·) of the form (6.68) implies

that γ(·) ∈ U , which, as already shown above, is necessary and sufficient for the variance of the

estimator in (6.68), i.e., v(ĝ(·),x0) to achieve the bound (6.67).

Note that by Theorem 2.3.1, unbiased estimation of a parameter function g(x) is equivalent

to biased estimation of xk itself with bias g(x) − xk. Therefore, we have due to the definition of

the minimum achievable variance the following implication of Theorem 6.4.2 for the variance of a

biased estimator x̂k(y) of xk:
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Corollary 6.4.3. Consider an estimator x̂k(y) which uses the observation y of a SDPCM with

sparsity degree S and denote its mean function by mk(·) : XS,+ → R : mk(x) , Ex

{
x̂k(y)

}
. Let

{pl ∈ Z
N
+}l∈[L] be a set of multi-indices such that supp(pl) ⊆ K, where K ⊆ [N ] is an arbitrary set

of S different indices, i.e., |K| = S. If for a fixed parameter vector x0 ∈ XS,+, the partial derivatives
∂plmk(x)

∂xpl

∣∣
x=xK

0
of the mean function exist, the variance v(x̂k(·);x0) at x0 is lower bounded by

v(x̂k(·);x0) ≥
∑

l∈[L]

1

ql(x0)

[
∂plmk(x)

∂xpl

∣∣∣∣
x=xK

0

]2
−
[
mk(x0)

]2
(6.76)

Let us now present another lower bound on LMSDPCM
which depends only on the first-order

partial derivatives of the parameter function g(·) associated with the minimum variance problem

MSDPCM = (ESDPCM, c(·) ≡ 0,x0). This bound is derived by a slight modification of the proof of

Theorem 6.4.2.

Theorem 6.4.4. Consider the minimum variance problem MSDPCM = (ESDPCM, c(·) ≡ 0,x0) as-

sociated with the SDPCM ESDPCM = (XS,+, fSDPCM(y;x), g(x)) with sparsity degree S and denote

the value and index of the S-largest entry of x0 ∈ XS,+ by ξ0 and j0, respectively. We furthermore

define the sets Kl ,
{
{l} ∪

{
supp(x0) \ {j0}

}}
for l ∈ [N ] \ supp(x0) and Kl , supp(x0) for

l ∈ supp(x0). If the parameter function g(·) : XS,+ → R associated with ESDPCM is such that the

partial derivatives bl ,
∂elg(x)
∂xel

∣∣
x=x

Kl
0

exist, we have

LMSDPCM
≥ 2

∑

l∈supp(x0)

(x0,l + σ2)2

rl
b2l + 2σ4

[
1− ξ20

(ξ0 + σ2)2

] rj0
2 ∑

l∈[N ]\supp(x0)

b2l
rl
. (6.77)

Proof. As for the derivation of Theorem 6.4.2, we can assume that the prescribed mean function

γ(·) : D0 → R : γ(x) = g(x) belongs to the RKHS H(MD0,SDPCM). We then consider the subspace

U , span
{
{w0(·)}∪{g(el ,Kl)(·)}l∈[N ]

}
⊆ H(MD0,SDPCM) which is spanned by the functions w0(·) ,

RMD0,SDPCM
(·,x0) and g(el ,Kl)(·) ∈ H(MD0,SDPCM) as defined in Theorem 6.4.1, i.e., g(el ,Kl)(·) =

∂pRMD0,SDPCM
(·,x2)

∂x
el
2

∣∣∣∣
x2=x

Kl
0

.

The function w0(·) is orthogonal to any function g(el ,Kl)(·) for l ∈ [N ], since

〈
g(el,Kl)(·), w0(·)

〉
H(MD0,SDPCM)

=
〈
g(el,Kl)(·), RMD0,SDPCM

(·,x0)
〉
H(MD0,SDPCM)

(3.43)
=

∂elRMD0,SDPCM
(x0,x2)

∂xel
2

∣∣∣∣
x2=x

Kl
0

(4.11)
=

∂el1

∂xel
2

∣∣∣∣
x2=0

= 0. (6.78)
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The inner products between the functions
{
g(el ,Kl)(·)

}
l∈[N ]

are calculated according to (6.66) as

〈
g(el ,Kl)(·), g(el′ ,Kl′)(·)

〉
H(MD0,SDPCM)

(6.66)
=

∂el

∂xel
1

g(el′ ,Kl′)(x1)

∣∣∣∣
x1=x

Kl
0

(6.64)
=

∂el

∂xel
1

rl′(x1,l′ − x0,l′)

2(x0,l′ + σ2)2

∏

k∈supp(x0)\Kl′

(x0,k+σ2)rk
[
(x0,k+ σ2)2 + (x1,k−x0,k)x0,k

]rk/2

∣∣∣∣
x1=x

Kl
0

,

(6.79)

which is most conveniently evaluated by considering separately the case where l, l′ ∈ supp(x0) and

the complementary case where either l or l′ (or both) belong to [N ] \ supp(x0). Let us begin with

the latter case, where due to the symmetry of the inner product, we can assume without loss of

generality that l ∈ [N ] \ supp(x0) and l′ ∈ [N ] is arbitrary. In this case, (6.79) yields

〈
g(el,Kl)(·), g(el′ ,Kl′)(·)

〉
H(MD0,SDPCM)

=
∂el

∂xel
1

rl′(x1,l′ − x0,l′)

2(x0,l′ + σ2)2

∏

k∈supp(x0)\Kl′

(x0,k+σ2)rk
[
(x0,k+σ2)2 + (x1,k−x0,k)x0,k

]rk/2

∣∣∣∣
x1=x

Kl
0

l /∈supp(x0)
=

[
∏

k∈supp(x0)\Kl′

(x0,k+σ2)rk
[
(x0,k+σ2)2 + (x1,k−x0,k)x0,k

]rk/2

∣∣∣∣
x1=x

Kl
0

]
∂el

∂xel
1

rl′(x1,l′ − x0,l′)

2(x0,l′ + σ2)2

∣∣∣∣
x1=x

Kl
0

= δl,l′
〈
g(el ,Kl)(·), g(el ,Kl)(·)

〉
H(MD0,SDPCM)

. (6.80)

In the former case, where l, l′ ∈ supp(x0) and therefore Kl = Kl′ = supp(x0), we obtain by (6.79)

that

〈
g(el ,Kl)(·), g(el′ ,Kl′)(·)

〉
H(MD0,SDPCM)

=
∂el

∂xel
1

rl′(x1,l′ − x0,l′)

2(x0,l′ + σ2)2

∏

k∈supp(x0)\Kl′

(x0,k+σ2)rk
[
(x0,k+ σ2)2 + (x1,k−x0,k)x0,k

]rk/2

∣∣∣∣
x1=x

Kl
0

supp(x0)\Kl′=∅
=

∂el

∂xel
1

rl′(x1,l′ − x0,l′)

2(x0,l′ + σ2)2

∣∣∣∣
x1=x

Kl
0

= δl,l′
〈
g(el,Kl)(·), g(el ,Kl)(·)

〉
H(MD0,SDPCM)

. (6.81)

By combining (6.80) and (6.81), we obtain

〈
g(el ,Kl)(·), g(el′ ,Kl′)(·)

〉
H(MD0,SDPCM)

= δl,l′ql(x0), (6.82)
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with

ql(x0) ,
〈
g(el ,Kl)(·), g(el ,Kl)(·)

〉
H(MD0,SDPCM)

=
∂el

∂xel
1

rl(x1,l − x0,l)

2(x0,l + σ2)2

∏

k∈supp(x0)\Kl

(x0,k+σ2)rk
[
(x0,k+σ2)2 + (x1,k−x0,k)x0,k

]rk/2

∣∣∣∣
x1=x

Kl
0

=

[
∏

k∈supp(x0)\Kl

(x0,k+ σ2)rk
[
(x0,k+σ2)2 −x20,k

]rk/2

]
∂el

∂xel
1

rl(x1,l − x0,l)

2(x0,l + σ2)2

∣∣∣∣
x1=x

Kl
0

=





rl
2(x0,l+σ2)2

, if l ∈ supp(x0)

rl
2σ4

[
(ξ0+σ2)2

(ξ0+σ2)2−ξ20

]rj0/2
if l ∈ [N ] \ supp(x0).

(6.83)

Using the inner products (recall that γ(·) = g(·))

〈
γ(·), g(el ,Kl)(·)

〉
H(MD0,SDPCM)

(6.66)
=

∂elg(x)

∂xel

∣∣∣∣
x=x

Kl
0

= bl, (6.84)

the bound (6.77) follows then by projecting γ(·) onto the subspace U :

LMSDPCM

(6.17)

≥ LMD0,SDPCM

(4.19)
= ‖γ(·)‖2H(MD0 ,SDPCM) −

[
γ(x0)︸ ︷︷ ︸
=g(x0)

]2

(3.30)

≥ ‖PUγ(·)‖2H(MD0,SDPCM) −
[
g(x0)

]2

(3.38)
=

〈
γ(·), w0(·)

〉2
H(MD0,SPCM)〈

w0(·), w0(·)
〉
H(MD0,SPCM)

+
∑

l∈[N ]

〈
γ(·), g(el ,Kl)(·)

〉2
H(MD0,SPCM)〈

g(el ,Kl)(·), g(el ,Kl)(·)
〉
H(MD0,SPCM)

−
[
g(x0)

]2

=

〈
γ(·), RMD0,SDPCM

(·,x0)(·)
〉2
H(MD0,SPCM)〈

RMD0,SDPCM
(·,x0), RMD0,SDPCM

(·,x0)
〉
H(MD0,SPCM)

+
∑

l∈[N ]

〈
γ(·), g(el ,Kl)(·)

〉2
H(MD0,SPCM)〈

g(el,Kl)(·), g(el ,Kl)(·)
〉
H(MD0,SPCM)

−
[
g(x0)

]2

(3.43),(6.83)
=

[
γ(x0)

]2

RMD0,SDPCM
(x0,x0)

+
∑

l∈[N ]

〈
γ(·), g(el ,Kl)(·)

〉2
H(MD0,SPCM)

ql(x0)
−
[
g(x0)

]2
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(4.11)
=

[
γ(x0)

]2

1
+
∑

l∈[N ]

〈
γ(·), g(el ,Kl)(·)

〉2
H(MD0,SPCM)

ql(x0)
−
[
g(x0)

]2

γ(·)=g(·)
=

∑

l∈[N ]

〈
γ(·), g(el ,Kl)(·)

〉2
H(MD0,SPCM)

ql(x0)

(6.83),(6.84)
= 2

∑

l∈supp(x0)

(x0,l + σ2)2

rl
b2l + 2σ4

[
1− ξ20

(ξ0+σ2)2

]rj0/2 ∑

l∈[N ]\supp(x0)

b2l
rl
. (6.85)

In addition to being easily evaluated, the bound in (6.77) has two appealing properties. First,

it is continuous with respect to x0, and second, it is always at least as tight as the bound given by

Theorem 6.3.2 when specialized to the SDPCM. Indeed, the bounds (6.43) and (6.44) of Theorem

6.3.2 applied to the SDPCM yield LMSDPCM
≥∑l∈[N ] 2(x0,l+σ

2)2
b2
l

rl
for ‖x0‖0 < S and LMSDPCM

≥
∑

l∈supp(x0)
2(x0,l + σ2)2

b2
l

rl
when ‖x0‖0 = S. Comparing these expressions with (6.77) (note that

ξ0 = 0 when ‖x0‖0 < S), it can be shown that Theorem 6.4.4 yields always a lower bound that is

at least as tight, i.e., at least as high as the bound given by Theorem 6.3.2 applied to the SDPCM.

Similar to Corollary 6.4.3, we have the following corollary of Theorem 6.4.4, which considers

estimators for the SDPCM with an arbitrary bias function.

Corollary 6.4.5. Consider an estimator x̂k(y) which uses the observation y of a SDPCM with

sparsity degree S and denote its mean function by mk(·) : XS,+ → R : mk(x) , Ex

{
x̂k(y)

}
. Let

us fix a parameter vector x0 ∈ XS,+ and denote the value and index of the S largest entry of x0

by ξ0 and j0, respectively. Furthermore, we define the sets Kl ,
{
{l} ∪

{
supp(x0) \ {j0}

}}
for

l ∈ [N ] \ supp(x0) and Kl , supp(x0) for l ∈ supp(x0). Then, if mk(·) is such that the partial

derivatives bl ,
∂elmk(x)

∂xel

∣∣
x=x

Kl
0

exist, we have

v(x̂k(·);x0) ≥ 2
∑

l∈supp(x0)

(x0,l + σ2)2

rl
b2l + 2σ4

[
1− ξ20

(ξ0 + σ2)2

] rj0
2 ∑

l∈[N ]\supp(x0)

b2l
rl
. (6.86)

If we want to use Corollary 6.4.3 or Corollary 6.4.5 for the comparison of the actual variance

behavior of a given estimation scheme x̂k(·) with the lower bounds (6.76) and (6.86), respectively,

we have to ensure that the partial derivatives of the mean function mk(x) = Ex{x̂k(y)} of the

given estimator x̂k(·) exist. That this is indeed the case for a very broad class of estimators x̂k(·)
is stated in
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Lemma 6.4.6. Consider an estimator x̂k(y) which uses the observation y of a SDPCM, and

whose mean is mk(x). If x̂k(·) : RM → R is a Lebesgue-measurable function, and moreover

|x̂k(y)| ≤ C‖y‖L2 ∀y ∈ R
M , (6.87)

with arbitrary but fixed constants C,L ∈ R, then the partial derivatives ∂pmk(x)
∂xp exist for every

multi-index p ∈ Z
N
+ ∈ [N ]. For the case p = el with l ∈ [N ], the partial derivatives are given

explicitly by

∂elmk(x)

∂xel
= − rl

2(xl + σ2)
mk(x) +

1

2(xl + σ2)2
Ex

{
yTClyx̂k(y)

}
. (6.88)

Proof. Appendix C.

6.4.3 Special Case: Unbiased Spectrum Estimation

Let us now consider the special case of the SDPCM obtained for the parameter function g(x) = xk,

where k ∈ [N ] is an arbitrary but fixed index. Since the entries xk of the parameter vector x can be

interpreted as mean powers of the signal vector s within the subspace span(Ck) ⊆ R
M (cf. (6.2)),

the resulting estimation problem is that of unbiased nonstationary spectrum estimation [103,104]

if the basis matrices Ck correspond to well-localized regions in a time-frequency domain. The

specialization of Theorem 6.4.4 to the parameter function g(x) = xk yields

Corollary 6.4.7. Consider the minimum variance problem MSDPCM = (ESDPCM, c(·) ≡ 0,x0)

associated with the SDPCM ESDPCM = (XS,+, fSDPCM(y;x), g(x) = xk). For any estimator x̂k(·) :
R
M → R that is unbiased, i.e., Ex{x̂k(·)} = xk for every x ∈ XS,+, we have the following lower

bound on its variance at x0:

v(x̂k(·);x0) ≥





2

rk
(x0,k +σ2)2, k ∈ supp(x0)

2

rk
σ4

[
1− ξ20

(ξ0 + σ2)2

] rj0
2

, k 6∈ supp(x0),

(6.89)

where ξ0 and j0 denote the value and index, respectively, of the S-largest entry of x0.

Proof. This Corollary follows straightforwardly from Theorem 6.4.4 and the relation bl = δl,k where

bl as defined in Theorem 6.4.4.

The lower bound (6.89) can be achieved at least for the case |{k} ∪ supp(x0)| < S + 1. In this

case, the estimator given by (cf. (6.56))

x̂k(y) = βk(y)− σ2, with βk(y) ,
1

rk

∑

i∈[rk]

(
uT
mk,i

y
)2
, (6.90)
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is unbiased and its variance achieves the bound (6.89). Indeed, we have for the mean

Ex

{
x̂k(y)

}
= Ex

{
βk(y) − σ2

}
= Ex

{
1

rk

∑

i∈[rk]

(
uT
mk,i

y
)2
}
− σ2

=
1

rk

∑

i∈[rk]
Ex

{(
uT
mk,i

y
)2}− σ2 =

1

rk

∑

i∈[rk]
(xk + σ2)− σ2

=
1

rk
rk(xk + σ2)− σ2 = xk, (6.91)

where we used the fact

uT
mk,i

y ∼ N (0,uT
mk,i

C̃(x)umk,i
) = N (0, xk + σ2), (6.92)

which follows from y ∼ N (0, C̃(x)), (6.4) and (6.56). Using the shorthand zi , uT
mk,i

y, the

variance at an arbitrary parameter vector x0 ∈ XS,+ can be calculated as

v(x̂k(·);x0) = v(βk(·);x0)

= P (βk(·);x0)−
[
Ex0{βk(y)}

]2

= Ex0

{[
1

rk

∑

i∈[rk]
z2i

]2}
−
[
1

rk

∑

i∈[rk]
Ex0{z2i }

]2

=
1

r2k

∑

i,i′∈[rk]
Ex0

{
z2i z

2
i′
}
− 1

r2k

[ ∑

i∈[rk]
Ex0{z2i }

]2
. (6.93)

Using the fact that the random variables {zi}i∈[rk] are i.i.d. with zi ∼ N (0, xk + σ2), we obtain

further

v(x̂k(·);x0) =
1

r2k

[
∑

i∈[rk]
Ex0

{
z4i
}
+

∑

i,i′∈[rk]
i 6=i′

Ex0

{
z2i
}
Ex0

{
z2i′
}
−
[ ∑

i∈[rk]
Ex0{z2i }

]2]

=
1

r2k

[
∑

i∈[rk]
Ex0

{
z4i
}
+

[ ∑

i∈[rk]
Ex0{z2i }

]2
−
∑

i∈[rk]

[
Ex0

{
z2i
}]2 −

[ ∑

i∈[rk]
Ex0{z2i }

]2]

=
1

r2k

[
∑

i∈[rk]
Ex0

{
z4i
}
−
∑

i∈[rk]

[
Ex0

{
z2i
}]2
]
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=
1

r2k

[
∑

i∈[rk]
3(xk + σ2)2 −

∑

i∈[rk]
(xk + σ2)2

]

=
2

rk
(xk + σ2)2, (6.94)

where we used a well-known identity for the fourth-order central moment of a zero-mean Gaussian

random variable [45]. The estimator in (6.90) does not use the sparsity information and does not

depend on x0. Moreover, since this estimator is the unique LMVU estimator at any ‖x0‖0 < S, we

have that if a UMVU estimator existed for the unbiased spectrum estimation problem ESDPCM =

(XS,+, fSDPCM(y;x), g(x) = xk), it would necessarily coincide with the nonsparse estimator in

(6.90) and, thus, it would ignore the sparsity information x ∈ XS,+. This is an instance of the

general rule that unbiased estimation is usually not optimal for estimation problems with sparsity

constraints.

Let us define a “signal-to-noise ratio” (SNR) quantity as SNR(x0) , ξ0/σ
2. For SNR(x0)≪1,

where
[
1− ξ20

(ξ0+σ2)2

] rj0
2 ≈ 1, the lower bound (6.89) in Corollary 6.4.7 is approximately 2

rk
(x0,k+σ

2)2

for any k, which does not depend on S and moreover equals the variance of the unbiased estimator

(6.90). Since that estimator does not exploit any sparsity information, Corollary 6.4.7 suggests

that, in the low-SNR regime, unbiased estimators cannot exploit the prior information that x

is S-sparse, i.e., x ∈ XS,+. However, in the high-SNR regime (SNR(x0) → ∞), (6.89) becomes
2
rk
(x0,k +σ2)2 for k ∈ supp(x0) and 0 for k 6∈ supp(x0), which can be shown to equal the variance

of the oracle estimator that knows supp(x0) (this oracle estimator yields x̂k = x0,k = 0 for all

k 6∈ supp(x0)). The transition of the lower bound (6.89) from the low-SNR regime to the high-

SNR regime has a polynomial characteristic; it is thus much slower than the exponential transition

of the analogous lower bound for the SLM given by Theorem 5.4.3. This slow transition suggests

that the optimal unbiased estimator for low SNR—which ignores the sparsity information— will

also be a nearly optimal unbiased estimator over a relatively wide SNR range. This further suggests

that, for unbiased covariance estimation based on the SDPCM, prior information of sparsity is not

as helpful as for minimum variance estimation for the SLM.

Based on the specific estimator given by (6.90), we can also show that for the SDPCM, similarily

to the SLM (see Section 5.6), the strict sparsity requirement x ∈ XS,+ is necessary in order to allow

for the existence of unbiased spectrum estimators x̂k(·) whose variance at x0 is smaller than the

variance of the nonsparse estimator in (6.90). We will also show that the variance of the estimator

in (6.90) is simultaneously the theoretical minimum variance that can be achieved without any

sparsity constraints.

Indeed, consider any minimum variance problem M′ = (E ′, c(·) ≡ 0,x0) associated with the

estimation problem E ′ = (X ′, fSPCM(y;x), g(x) = xk) (with arbitrary k ∈ [N ]), where the sta-
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tistical model fSPCM(y;x) (cf. (6.8)) is defined using basis matrices Ck satisfying (6.12). Thus,

the minimum variance problem M′ is identical to the minimum variance problem MSDPCM =

(ESDPCM, c(·) ≡ 0,x0) with ESDPCM = (XS,+, fSDPCM(y;x), g(x) = xk) except for the parameter

set which is X ′ instead of XS,+. Let us assume that the parameter set X ′ contains an open ball

B(x0, r), i.e., B(x0, r) ⊆ X ′ with some radius r > 0. We can then apply Theorem 4.4.4, i.e.,

the ordinary unconstrained CRB for a general nonsparse estimation problem with Gaussian ob-

servation y ∼ N (0,C(x)) [20], to obtain the lower bound v(x̂k(·);x0) ≥ 2
rk
(x0,k + σ2)2, which is

achieved by the estimator in (6.90). From this, we conclude that if the parameter set is chosen in

particular as X ′ = R
N
+ ∩ Bq(S) with q > 0 (cf. (5.178)), i.e., consisting of approximately S-sparse

vectors, then the UMVU estimator is always given by the estimator in (6.90), whose variance is in

general strictly larger than the bound (6.89) for the case k /∈ supp(x0). In particular for the case

‖x0‖0 = S, i.e., ξ0 > 0 we have

2

rk
σ4
[
1− ξ20

(ξ0 + σ2)2
] rj0

2

︸ ︷︷ ︸
<1

<
2

rk
(x0,k +σ2)2. (6.95)

However, for the SDPCM with the strictly sparse parameter set XS,+, there exist in the

general case unbiased estimators x̂k(·) for MSDPCM = (ESDPCM, c(·) ≡ 0,x0) with ESDPCM =

(XS,+, fSDPCM(y;x), g(x) = xk), that have a variance that is strictly smaller than that of the

estimator (6.90) at a certain parameter vector x0 ∈ XS,+. In particular, consider the simplest

configuration of the SDPCM where Ck =
∑

i∈[rk] ejk,ie
T
jk,i

, N > 1, and S = 1. For this instance

of the SDPCM, one can find the LMVU estimator x̂(x0)
k (·) for the minimum variance problem

MSDPCM = (ESDPCM, c(·) ≡ 0,x0) (with parameter function g(x) = xk):

Theorem 6.4.8. Consider the minimum variance problem MSDPCM = (ESDPCM, c(·) ≡ 0,x0),

with x0 ∈ XS,+, N > 1, S = 1, and g(x) = xk. Denoting by ξ0 and j0 the value and index,

respectively, of the only nonzero entry of x0, the LMVU estimator for MSDPCM can be written as

x̂
(x0)
k (y) =




βk(y)− σ2, k = j0

α(y;x0)
(
βk(y)−σ2

)
, k 6= j0 ,

(6.96)

where

α(y;x0) , a(x0) exp
(
−rj0b(x0)βj0(y)

)
(6.97)

with a(x0) ,
[
2ξ0+σ2

ξ0+σ2

]rj0/2
, b(x0) ,

1
2

(
1
σ2 − 1

ξ0+σ2

)
, and βk(y) as defined in (6.90).

Proof. Appendix D.
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6.5 Comparison of the Bounds with Existing Estimators

We will now compare the lower bound (6.76) (in Corollary 6.4.3) on the variance of estimators for

the SDPCM, with the actual variance behavior of two practical estimation schemes. The first is

an ad-hoc adaptation of the hard-thresholding (HT) estimator [23] to SDPCM-based covariance

estimation. It is defined componentwise as (cf. (6.90))

x̂HT,k(y) ,
1

rk

∑

i∈[rk]
ϕ2
T

(
uT
mk,i

y
)
− σ2,

where ϕT : R→R denotes the hard-thresholding function with threshold T ≥ 0, i.e.,

ϕT (y) =




y , |y| ≥ T

0 , else.
(6.98)

The second standard method is the maximum likelihood (ML) estimator

x̂ML(y) , argmax
x′∈XS,+

fSDPCM(y;x′) .

For the ML estimator, we obtain

x̂ML(y) , argmax
x′∈XS,+

fSDPCM(y;x′)

(6.14)
= argmax

x′∈XS,+

1

(2π)M/2[det{C̃(x′)}]1/2
exp

(
−1

2
yT C̃−1(x′)y

)

(a)
= argmax

x′∈XS,+

log

[
1

[det{C̃(x′)}]1/2
exp

(
−1

2
yT C̃−1(x′)y

)]

= argmax
x′∈XS,+

{
− 1

2
yT C̃−1(x′)y − 1

2
log
[
det{C̃(x′)}

]}

= argmax
x′∈XS,+

{
− yT C̃−1(x′)y − log

[
det{C̃(x′)}

]}
, (6.99)

where the step (a) follows from the fact that the logarithm is monotonically increasing on its

domain R+ \ {0}, i.e., it preserves the position of the maximum. Using (6.58) and (6.59), we

obtain further

x̂ML(y) = argmax
x′∈XS,+

{
−
∑

k∈[N ]

rk

[
βk(y)

x′k + σ2
+ log

(
x′k + σ2

)]
}
, (6.100)

with βk(y) as defined in (6.90).

We have
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Theorem 6.5.1. The ML estimator for the SDPCM is given componentwise as

x̂ML,k(y) =




βk(y)− σ2, k ∈ L1∩L2

0 , else,
(6.101)

where βk(y) is defined in (6.90), L1 consists of the S indices k ∈ [N ] for which rk
[
βk(y)/σ

2−
log(βk(y)/σ

2)−1
]

is largest, and L2 consists of all indices k for which βk(y) ≥ σ2.

Proof. Appendix E.

In what follows, we will denote by L(mk(·))(x0) the bound (6.76) in Corollary 6.4.3 for an

estimator x̂k(·) with mean function Ex

{
x̂k(y)

}
= mk(·), using the index set K = supp(x0) when

k ∈ supp(x0) and K =
{
supp(x0) \ {j0}

}
∪ {k} else, where j0 ∈ [N ] denotes the index of the S-

largest entry of x0. We furthermore use the choices L=2, p1=0, and p2= ek for the application

of Corollary 6.4.3. In order to evaluate the bound L(mk(·))(x0), we need to compute the first-order

partial derivatives of the mean function mk(·). This is accomplished by using Lemma 6.4.6 for the

HT estimator and by using a finite-difference quotient approximation [56] for the ML estimator,

i.e.,
∂Ex

{
x̂ML,k(y)

}

∂xl
≈ Ex+∆el

{
x̂ML,k(y)

}
− Ex

{
x̂ML,k(y)

}

∆
, (6.102)

where ∆ ∈ R+ is a small stepsize and the expectations are calculated using numerical integration.

Given an estimator x̂(·) whose mean is equal to m(x) , Ex

{
x̂(·)

}
, we obtain due to (2.21) a

lower bound on the estimator variance v(x̂(·);x0) by summing the quantities L(mk(·))(x0), i.e.,

v(x̂(·);x0) ≥ L(m(·))(x0) ,
∑

k∈[N ]

L(mk(·))(x0). (6.103)

For a numerical evaluation, we considered the SDPCM with N = 50, S = 5, and Ck = eke
T
k .

We generated parameter vectors x0 = SNR · σ2x1, where x1 ∈ {0, 1}50, supp(x1) = [S], and SNR

varies between 0.01 and 100. (The fixed choice supp(x0) = [S] is justified by the fact that neither

the variances of the ML and HT estimators nor the corresponding variance bounds depend on the

location of supp(x0).) In Fig. 6.1, we show the variance at x0, v(x̂(·);x0) =
∑

k∈[N ] v(x̂k(·);x0)

(computed by means of numerical integration), for the HT estimator using various choices of

T and for the ML estimator. The variance is plotted versus SNR. Along with each variance

curve, we display the corresponding lower bound L(m(·))(x0), using for m(·) the mean function of

the respective estimator (HT or ML). (The mean functions of the HT and ML estimators were

computed by means of numerical integration.) In Fig. 6.1, all variances and bounds are normalized

by 2(SNR+1)2σ4, which is the variance of an optimum unbiased oracle estimator for the SDPCM

with S = 1 and the nonzero entry of x0 being equal to SNR · σ2. The computation of the oracle
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Figure 6.1: Normalized variance of the ML and HT estimators and corresponding lower bounds

versus the SNR, for the SDPCM with N=50, S=5, σ2=1, and Ck= eke
T
k .

estimator presupposes the knowledge of the position of the nonzero entry of x0, i.e., it knows

supp(x0).

It can be seen from Fig. 6.1 that in the high-SNR regime, for both estimators, the gap between

the variance and the corresponding lower bound is quite small. This indicates that the variances

of both estimators are nearly minimal (for the respective bias functions). Indeed, for high SNR,

all variance curves approach the variance of an optimum unbiased oracle estimator that knows the

position of the nonzero entries of x0, i.e., it knows supp(x0). The variance of this oracle estimator

is given by 2S(SNR + 1)2σ4 (this expression is only valid for parameter vectors x0 with exactly

S nonzero entries whose values are all equal to SNR · σ2). However, in the low-SNR regime, the

variances of the estimators tend to be significantly higher than the bounds. This means that there

may be estimators with the same bias function as that of the HT or ML estimator but a lower

variance. However, the actual existence of such estimators is not shown by our analysis.
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Chapter 7

Conclusion and Outlook

This thesis specialized the RKHS approach to minimum variance estimation [3, 35] to estimation

problems with sparsity constraints on the unknown parameter vector to be estimated. After a brief

introduction to the main concepts of classical (non-Bayesian) estimation and Hilbert space theory

- with emphasis on RKHS - we reviewed the RKHS approach to minimum variance estimation.

This approach is based on two isometric Hilbert spaces, one of them being a RKHS, which can be

associated in a natural manner to a minimum variance problem. We presented two fundamental

facts about minimum variance estimation using the RHKS approach, which seem to be novel,

to the best of the author’s knowledge. The first fact is that the minimum achievable variance,

viewed as a function of the parameter vector x0 at which the variance is minimized, is a lower

semi-continuous function. The second fact is that the RKHS associated to a minimum variance

problem remains unchanged if the observation of the minimum variance problem is replaced by

a sufficient statistic. This fact is closely related in spirit to the Rao-Blackwell-Lehmann-Scheffé

theorem of classical estimation.

The core of this thesis are Chapter 5 and Chapter 6, in which we considered classical estimation

problems with sparsity constraints. In Chapter 5, we considered the SLM, where the unknown

sparse parameter vector is linearly distorted and corrupted by additive white Gaussian noise. The

SLM can be used to model the recovery problem in a linear compressed sensing scheme. We

analyzed the minimum variance estimation problem using the RKHS approach and derived novel

lower bounds on the estimator variance for a prescribed estimator bias. These lower bounds are

obtained by an orthogonal projection of the prescribed mean function onto a subspace of the

RKHS that is associated to the SLM. The bounds share the characteristic that they vary between

two extreme cases. On the one hand, we have a low-SNR regime where the entries of the true

parameter vector are small compared with the noise variance. Here, our bounds predict that

the a-priori information of a sparse parameter vector does not help much for the SLM if the

171
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estimator bias is approximately zero. However, by allowing a nonzero bias it is possible to reduce

the variance. On the other hand, we have a high-SNR regime where the nonzero entries of the

sparse parameter vector are all considerable larger than the noise variance. Here, our bounds

coincide with the CRB of an associated LGM that is obtained from the SLM if the support of the

unknown parameter vector is known. Our bounds ehibit a very steep transition between these two

regimes. In general, this transition has an exponential decay. For the special case of the SLM given

by the SSNM, we strengthened the results and derived closed-form expressions for the minimum

achievable variance and corresponding LMV estimator. This includes the (unbiased) Barankin

bound and LMVU estimator for the SSNM. We also compared our lower bounds on the variance

as well as the expressions for the minimum achievable variance to the actual variance behavior of

popular estimation schemes for the SLM and SSNM.

In Chapter 6, we considered the SPCM, where the unknown sparse parameter vector determines

the covariance matrix of a random signal vector of which a noisy version is observed. The SPCM is

relevant, e.g., in the context of spectrum estimation for scene analysis in cognitive radio systems.

We discussed the fact that the RKHS approach is more involved for the SPCM than for the SLM.

We presented one particular method of associating a RKHS to the SPCM. Based on this RKHS, we

derived lower bounds on the estimator variance for estimators with a given bias function. As for the

SLM, these bounds were obtained by projecting the corresponding mean function onto a subspace

of the RKHS. For the special case of the SPCM which is given by the SDPCM, we strengthened

our results and derived the minimum achievable variance and corresponding LMVU estimator for

the case where the parameter vector is known to have at most one nonzero entry. As for the SLM

and SSNM, also the lower bounds for the SPCM and SDPCM exhibit a transition from a low-SNR

regime to a high-SNR regime, and the bounds for the high-SNR regime again coincide with the

CRB of an associated estimation problem without sparsity constraints. However, a remarkable

difference between the bounds for the SDPCM and for the SSNM is that the transition of the

SDPCM bounds is only polynomial in the SNR whereas that of the SSNM bounds is exponential.

This further suggests that in terms of minimum variance estimation, for covariance estimation

based on the SDPCM, prior information of sparsity is not as helpful as for estimating the parameter

vector of the SSNM.

Topics for future research that may be addressed using this thesis as a starting point include

the following.

• Asymptotic Analysis. Can we find (classes of) estimators that come close to the lower

variance bounds asymptotically, i.e., when we consider not only one observation but an

ensemble of i.i.d. observations whose number tends to infinity? Intuitively, the class of ML

estimators should achieve the variance bounds asymptotically in the unbiased case. However,

a rigorous proof of this claim seems to be nontrivial for the sparse parameter set XS. Indeed,
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most approaches to the analysis of the asymptotic behavior of ML estimators assume that the

parameter set is an open subset of RN [41,69,105], which is not the case for the parameter set

XS. Another popular class of estimators is given by the M-estimators or penalized maximum

likelihood estimators, for which a characterization of their asymptotic behavior is available

(cf. [57, 105, 106]). Moreover, under mild conditions, the class of M-estimators allows an

efficient implementation via convex optimization techniques.

• Finite-Rate-of-Innovation Signals. Another desirable generalization of our results would

be to consider estimation of finite-rate-of-innovation signals, which are in some sense the

continuous-time analogue of sparse vectors in the finite-dimensional setting [107].

• Block Sparsity. A popular generalization of the concept of strict sparsity that we used in

our thesis is block or group sparsity [108,109], where a block structure is pre-specified for the

parameter vector x ∈ R
N . Block sparsity then refers to the fact that only few blocks contain

at least one nonzero entry. The traditional notion of strict sparsity is reobtained when the

block size is equal to one. Block sparsity could be useful, e.g., in the context of spectrum

estimation for sparse underspread processes [98, 99] if the process energy occurs in clusters

in the time-frequency plane.

• Sparse Exponential Family. The SLM and SPCM are estimation problems with a sta-

tistical model that is a special case of the exponential family. It would be interesting to

study estimation problems with sparsity constraints whose statistical model is the general

exponential family. In particular, it would be interesting to study how the cumulant function

of the exponential family relates to the RKHS and its geometric properties.

• Random System Matrix and Basis Matrices.

Another class of estimation problems that may be interesting to consider is obtained by a

modification of the SLM and SPCM in which the system matrix H and basis matrices Ck,

respectively, are modeled as random matrices. In particular, a characterization of the RKHS

for a SLM with a random system matrix H, corresponding to the compressed sensing mea-

surement model, would be desirable. Similarly, one could investigate the RKHS associated

to a SPCM with random basis matrices Ck. The resulting RKHS could be used to analyze

the compressive spectrum estimators proposed in [98, 99].
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Appendix A

Proof of Theorem 5.5.4

Proof. We give two different (though similar) proofs for the case | supp(x0)∪{k}| < S+1 and the

complementary case | supp(x0) ∪ {k}| = S + 1.

Case I: | supp(x0) ∪ {k}| < S + 1:

Consider the functions

h(l)(·) : XS → R : h(l)(x) =
σl√
l!

∂lekRMSSNM
(x,x2)

∂xlek
2

∣∣∣∣
x2=x0

(5.117)
=

1

σl
√
l!
(x1,k − x0,k)

l, (A.1)

with l ∈ Z+. By Theorem 3.4.1 (note that N supp(lek)
x0 ⊆ XS) we have that the functions {h(l)(·)}l∈Z+

belong to H(MSSNM) and moreover are orthonormal, since

〈
h(l)(·), h(l′)(·)

〉
H(MSSNM)

(A.1)
=

〈
σl√
l!

∂lekRMSSNM
(x,x2)

∂xlek
2

∣∣∣∣
x2=x0

,
σl

′

√
l′!

∂l
′ekRMSSNM

(x,x2)

∂xl′ek
2

∣∣∣∣
x2=x0

〉

H(MSSNM)

(3.65)
=

σl√
l!

σl
′

√
l′!

∂lek∂l
′ekRMSSNM

(x1,x2)

∂xlek
1 ∂xl′ek

2

∣∣∣∣
x1=x2=x0

(5.117)
=

σl√
l!

σl
′

√
l′!

∂lek∂l
′ek exp

(
1
σ2 (x1 − x0)

T (x2 − x0)
)

∂xlek
1 ∂xl′ek

2

∣∣∣∣
x1=x2=x0

=
σl√
l!

σl
′

√
l′!

1

σ2l
′

∂lek(x1,k − x0,k)
l′

∂xlek
1

∣∣∣∣
x1=x0

= δl,l′ . (A.2)

Obviously, then the function

sN (·) : XS → R : sN (x) ,
∑

l∈[N ]

mlσ
l

√
l!
h(l)(x) +m0h

(0)(x) (A.3)

also belongs to H(MSSNM) and has squared norm ‖sN (·)‖2H(MSSNM) = m2
0 +

∑
l∈[N ]

m2
l

l! σ
2l.
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Now let us assume that (5.150) is satisfied. Since (for N > N ′)

‖sN (·)− sN ′(·)‖2H(MSSNM) =
∑

l∈[N ]\[N ′]

m2
l

l!
σ2l, (A.4)

we have from (5.150) that the sequence {sN (·)}N→∞ is a Cauchy sequence and therefore converges

in the RKHS H(MSSNM). Since, by (A.1) and (5.149), this sequence moreover converges pointwise

to the prescribed mean function γ(x), we have by Theorem 3.3.3 that

lim
N→∞

sN (·) = γ(·), (A.5)

which implies that γ(·) ∈ H(MSSNM) and in turn that the prescribed bias function c(·) is valid.

We have then by Theorem 4.3.4 that

LMSSNM
= ‖γ(·)‖2H(MSSNM) −

[
γ(x0)

]2
= lim

N→∞
‖sN (·)‖2H(MSSNM) −m2

0 =
∑

l∈N

m2
l

l!
σ2l, (A.6)

where we have used that γ(x0) = m0 (according to (5.149)). Thus, we have verified the sufficiency

of (5.150) for a bias function to be valid and for the expression (5.151) for the minimum achievable

variance.

It remains to verify the necessity of (5.150) for a bias function to be valid. We will prove this

by contradiction. Assume that (5.150) is not fulfilled, i.e., the sums
∑

l∈T
m2

l

l! σ
2l with a finite index

set T ⊆ Z+ can be arbitrarily large, but the bias function c(·) is valid, i.e., γ(·) ∈ H(MSSNM). By

Theorem 3.1.6, we then have for any subspace U , span{h(l)(·)}l∈T with a finite set T ⊆ Z+ that1

‖γ(·)‖2H(MSSNM)

(3.30)

≥ ‖PUγ(·)‖2H(MSSNM)

(3.32)
=

∑

l∈T

〈
γ(·), h(l)(·)

〉2
H(MSSNM)

(3.65)
=

∑

l∈T

σ2l

l!

[
∂lekγ(·)
∂xlek

∣∣∣∣
x=x0

]2

(5.149)
=

∑

l∈T

m2
l

l!
σ2l, (A.7)

where we also used Theorem 3.1.7 and Theorem 3.4.1. However, since (5.150) is not satisfied,

i.e., we can make
∑

l∈T
m2

l

l! σ
2l arbitrarily large by using a suitable finite index set T , it follows

from (A.7) that the squared norm ‖γ(·)‖2H(MSSNM) is unbounded, which is impossible because

γ(·) ∈ H(MSSNM).

1Note that, trivially, {h(l)(·)}l∈T is an ONB for U .
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Finally, we will show (5.152). If the prescribed bias is valid, we can by (A.5) represent the

corresponding mean as

γ(·) = lim
N→∞

sN (·) =
∑

l∈Z+

ml√
l!
σlh(l)(·). (A.8)

From this, we obtain the LMV estimator in (5.152) from (A.1), Theorem 3.4.1, Theorem 4.3.3,

Theorem 4.3.4 and the identity

mlσ
2l

l!

∂l exp
(
− 1

2σ2 (2y(x0 − x) + x2 − x20)
)

∂xl

∣∣∣∣
x=x0

=
mlσ

2l

l!

∂l exp
(
− 1

2σ2 ((x− y)2 − y2 + 2yx0 − x20)
)

∂xl

∣∣∣∣
x=x0

=
mlσ

2l

l!
exp

(
1

2σ2
(y − x0)

2

)
∂l exp

(
− 1

2σ2 (x− y)2
)

∂xl

∣∣∣∣
x=x0

(
x′,

x−y

σ

)

=
mlσ

l

l!
exp

(
1

2σ2
(x0 − y)2

)
∂l exp

(
−1

2x
′2)

∂x′l

∣∣∣∣
x′=

x0−y

σ

=
mlσ

l

l!
(−1)lHl

(
x0 − y

σ

)
=
mlσ

l

l!
Hl

(
y − x0
σ

)
. (A.9)

Indeed, we have

x̂
(x0)
k (y)

(4.20)
= J

[
γ(·)

] (A.8)
= J

[ ∑

l∈Z+

ml√
l!
σlh(l)(·)

]
=
∑

l∈Z+

ml√
l!
σlJ
[
h(l)(·)

]

(A.1)
=

∑

l∈Z+

ml

l!
σ2lJ

[
∂lekRMSSNM

(·,x)
∂xlek

∣∣∣∣
x=x0

]

(4.16)
=

∑

l∈Z+

ml

l!
σ2l

∂lekρMSSNM
(y,x)

∂xlek

∣∣∣∣
x=x0

(5.145)
=

∑

l∈Z+

mlσ
2l

l!

∂lek exp
(

1
σ2y

T (x− x0)− 1
2σ2 (‖x‖22 − ‖x0‖22)

)

∂xlek

∣∣∣∣
x=x0

(A.9)
=

∑

l∈Z+

mlσ
l

l!
Hl

(
yk − x0,k

σ

)
. (A.10)
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Case II: | supp(x0) ∪ {k}| = S + 1:

We will assume without loss of generality2 that k = S + 1 and supp(x0) = [S]. The proof for

Case II is similar to that for Case I. However, a considerable difference is that the functions h(l)(·)
defined in (A.1) do not belong to the RKHS H(MSSNM) in this case.

Consider the functions

v(l)(·) : XS → R : v(l)(x) ,
1

σll!
xlkνx0(x), (A.11)

where l ∈ Z+ and νx0(x) = exp
(
− 1

2σ2 ‖x0‖22 + 1
σx

Tx0

)
as defined in Theorem 5.5.2.

Using the Taylor expansion exp(x) =
∑

l∈Z+

xl

l! of the exponential function [6], we obtain

v(l)(x) =
1

σll!
xlkνx0(x) =

1

σll!
exp

(
−‖x0‖22

2σ2

)
xlk
∑

p∈ZS
+

1

p!

∏

j∈[S]

(x0,jxj
σ

)pj

(a)
= exp

(
−‖x0‖22

2σ2

) ∑

p∈A(l)

1

p!
x̃
p
0x

p

= exp

(
−‖x0‖22

2σ2

) ∑

p∈A(l)

x̃
p
0√
p!
g(p)(x), (A.12)

where x̃0 , 1
σ

(
x0,1, . . . , x0,S , 1, . . . , 1

)T ∈ R
N , A(l) ,

{
p ∈ Z

N
+ ∩ XS |pk = l, supp(p) ⊆ [S + 1]

}
,

and the functions g(p)(·) : XS → R : g(p)(x) = 1√
p!

∂pRe(x,x2)
∂xp

2

∣∣
x2=0

as defined in (5.120) of Theorem

5.5.1). The step (a) in (A.12) follows from the fact that the function v(l)(x) is defined only on the

domain XS on which every monomial xp (p ∈ Z
N
+ ) with ‖p‖0 > S vanishes.

By Theorem 5.5.1, the functions g(p)(·) belong to H(Re) and are orthonormal, i.e.,

〈
g(p)(·), g(p′)(·)

〉
H(Re)

= δp,p′ . (A.13)

Since the coefficient sequence of (A.12) satisfies x̃
p
0√
p!

∈ ℓ2(ZN
+ ∩ XS), we then have also that

v(l)(·) ∈ H(Re).

Based on the orthonormality of the functions
{
g(p)(·)

}
p∈A(l) , we can calculate the squared

norm of v(l)(·) as

‖v(l)(·)‖2H(Re)
= exp

(
−‖x0‖22

σ2

) ∑

p∈A(l)

x̃
2p
0

p!

2Indeed, consider the minimum variance problem MSSNM = (ESSNM, c(·),x0) with observation y ∈ R
N and an

arbitrary support supp(x0) and index k ∈ [N ]\supp(x0). According to Section 2.4.1, we then have that the minimum

variance problem M′ that arises from MSSNM by applying an invertible permutation matrix P ∈ {0, 1}N×N to the

observation y, is completely equivalent to MSSNM. By a suitable choice of the permutation matrix P, the modified

minimum variance problem M′ coincides with MSSNM = (ESSNM, c(·),x′
0) where supp(x′

0) = [S] and k = S + 1.
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= exp

(
−‖x0‖22

σ2

) ∑

p∈A(l)

∏

j∈[N ]

x̃
2pj
0,j

pj!

(a)
= exp

(
−‖x0‖22

σ2

) ∑

m∈[S]

∑

p∈A(l)
m

∏

j∈[N ]

x̃
2pj
0,j

pj!
, (A.14)

where

A(l)
m ,

{
p ∈ Z

N
+ ∩ XS

∣∣pn > 0 for n ∈ [m− 1], pm = 0, pk = l, supp(p) ⊆ [S + 1]
}

=
{
p ∈ Z

N
+

∣∣pn > 0 for n ∈ [m− 1], pm = 0, pn ≥ 0 for n ∈ [S] \ [m], pk = l,

supp(p) ⊆ [S + 1]
}
. (A.15)

The step (a) in (A.14) follows from the fact that the sets
{
A(l)

m

}
m∈[S] form a partition of the

set A(l), i.e., the sets are disjoint (A(l)
m ∩ A(l)

m′ = ∅ for m 6= m′) and their union equals A(l), i.e.,

A(l) =
⋃

m∈[S]A
(l)
m . Further developing (A.14) yields

‖v(l)(·)‖2H(Re)
= exp

(
−‖x0‖22

σ2

) ∑

m∈[S]

∑

p∈A(l)
m

(
∏

n∈[m−1]

x̃2pn0,n

pn!

)
x̃2pm0,m

pm!

(
∏

n′∈[S]\[m]

x̃
2p′n
0,n′

p′n!

)
x̃2pk0,k

pk!

pm=0, pk=l
=

1

σ2ll!
exp

(
−‖x0‖22

σ2

) ∑

m∈[S]

(
∏

n∈[m−1]

∑

pn∈N

x̃2pn0,n

pn!

)(
∏

n′∈[S]\[m]

∑

pn′∈Z+

x̃
2pn′

0,n′

pn′ !

)

=
1

σ2ll!
exp

(
−‖x0‖22

σ2

) ∑

m∈[S]

∏

n∈[m−1]

[
exp

(
x20,n
σ2

)
− 1

]
∏

n′∈[S]\[m]

exp

(
x20,n′

σ2

)

=
1

σ2ll!

∑

m∈[S]
exp

(
−
x20,m
σ2

) ∏

n∈[m−1]

[
1− exp

(
−
x20,n
σ2

)]
. (A.16)

It can also be verified by the orthonormality (cf. Theorem 5.5.1) of the functions g(p)(·), that the

functions {v(l)(·)}l∈Z+ are orthogonal, i.e.,
〈
v(l)(·), v(l′)(·)

〉
H(Re)

= δl,l′‖v(l)(·)‖2H(Re)
.

Now consider the function

wN (·) : XS → R : wN (x) ,
∑

l∈[N ]

mlσ
2lv(l)(x) +m0v

(0)(x), (A.17)

which obviously belongs to the RKHS H(Re) as the functions v(l)(·) do. In the following we will

use the relation

‖v(l)(·)‖2H(Re)
=

1

σ2ll!
‖v(0)(·)‖2H(Re)

, (A.18)
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which can be verified easily by (A.16). Based on (A.16) and the orthogonality of the functions

{v(l)(·)}l∈Z+ we obtain

‖wN (·)‖2H(Re)
= m2

0‖v(0)(·)‖2H(Re)
+
∑

l∈[N ]

m2
l σ

4l‖v(l)(·)‖2H(Re)

(A.18)
=

(
m2

0 +
∑

l∈[N ]

m2
l

l!
σ2l
)
‖v(0)(·)‖2H(Re)

. (A.19)

If (5.150) is satisfied, we have by (A.19) that the sequence {wN (·)}N→∞ is a Cauchy sequence

and therefore converges in the RKHS H(Re). Indeed, by a similar calculation as used in (A.19),

we have for N ′ > N that

‖wN ′(·) −wN (·)‖2H(Re)
= ‖v(0)(·)‖2H(Re)

∑

l∈[N ′]\[N ]

m2
l

l!
σ2l, (A.20)

which must become arbitrarily small for N ′, N sufficiently large since otherwise the sum in (5.150)

cannot be finite. Moreover we have that the sequence {wN (·)}N→∞ converges pointwise to the

function γ̃(·) : XS → R : γ̃(x) , γ(σx)νx0(x) = Ke[γ(·)]. Here, we denote by Ke[·] : H(MSSNM) →
H(Re) the congruence defined by (5.119) in Theorem 5.5.1. This pointwise convergence can be

seen from

lim
N→∞

wN (x)
(A.17)
= lim

N→∞

∑

l∈[N ]

mlσ
2lv(l)(x) +m0v

(0)(x)

(A.11)
= lim

N→∞

∑

l∈[N ]

mlσ
2l 1

σll!
xlkνx0(x) +m0νx0(x)

= νx0(x)
∑

l∈Z+

mlσ
l

l!
xlk

(5.149)
= γ(σx)νx0(x). (A.21)

Therefore, we have by Theorem 3.3.3 that

lim
N→∞

wN (·) = γ̃(·) (A.22)

and therefore γ̃(·) ∈ H(Re). However, since γ̃(·) is the image of the prescribed mean function γ(·)
under the congruence Ke[·] : H(MSSNM) → H(Re), we have that γ(·) ∈ H(MSSNM), i.e., that the

prescribed bias function c(·) is valid.
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We then have also by Theorem 4.3.4 and Theorem 5.5.1 that

LMSSNM

(4.19)
= ‖γ(·)‖2H(MSSNM) −

[
γ(x0)

]2

(5.119)
= ‖γ(σx)νx0(x)‖2H(Re)

−
[
γ(x0)

]2

= ‖γ̃(·)‖2H(Re)
− (γ(x0))

2

(A.19),(A.22)
= lim

N→∞

(
m2

0 +
∑

l∈[N ]

m2
l

l!
σ2l
)
‖v(0)(·)‖2H(Re)

−
[
γ(x0)

]2

(A.16)
=

( ∑

l∈Z+

m2
l

l!
σ2l
) ∑

m∈[S]
exp

(
−
x20,m
σ2

) ∏

n∈[m−1]

[
1− exp

(
−
x20,n
σ2

)]
−
[
γ(x0)

]2
,

(A.23)

which is equal to (5.153).

In order to verify the expression (5.154) for the LMV estimator, we first consider the function

r(l)(·) , K
−1
e [v(l)(·)]. (A.24)

From (A.12), (5.119), and (5.120) it follows that

r(l)(x) = K
−1
e [v(l)(·)]

(A.12)
= K

−1
e

[
exp

(
−‖x0‖22

2σ2

) ∑

p∈A(l)

x̃
p
0√
p!
g(p)(x)

]

(5.119)
=

1

νx0

(
x
σ

) exp
(
−‖x0‖22

2σ2

) ∑

p∈A(l)

x̃
p
0

p!
g(p)

(
x

σ

)

(5.120)
=

1

νx0

(
x
σ

) exp
(
−‖x0‖22

2σ2

) ∑

p∈A(l)

x̃
p
0

p!

∂pRe

(
x
σ ,x2

)

∂xp
2

∣∣∣∣
x2=0

(5.118)
= exp

(
− 1

σ2
xTx0

) ∑

p∈A(l)

x̃
p
0

p!

∂p exp
(
1
σx

Tx2

)

∂xp
2

∣∣∣∣
x2=0

(5.117)
=

∑

p∈A(l)

x̃
p
0

p!

∂p
[
RMSSNM

(x, σx2) exp
(
− 1

σ2 ‖x0‖22 + 1
σx

T
2 x0

)]

∂xp
2

∣∣∣∣
x2=0

. (A.25)
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The image of r(l)(·) under the congruence J[·] : H(MSSNM) → L(MSSNM) as defined in Theorem

4.3.2 can be calculated due to the expansion (A.25) and Theorem 4.3.3 as

J[r(l)(·)](y) (4.16)
=

∑

p∈A(l)

x̃
p
0

p!

∂p
[
ρMSSNM

(y, σx2) exp
(
− 1

σ2 ‖x0‖22 + 1
σx

T
2 x0

)]

∂xp
2

∣∣∣∣
x2=0

(5.145)
= exp

(
− 1

2σ2
‖x0‖22

) ∑

p∈A(l)

x̃
p
0

p!

∂p exp
(

1
σ2y

T (σx2 − x0) +
1
σx

T
2 x0 − 1

2‖x2‖22
)

∂xp
2

∣∣∣∣
x2=0

.

(A.26)

Using the partition A(l) =
⋃

m∈[S]A
(l)
m , this becomes

J[r(l)(·)](y) = exp

(
− 1

2σ2
‖x0‖22

) ∑

m∈[S]

∑

p∈A(l)
m

x̃
p
0

p!

∂p exp
(

1
σ2y

T (σx2 − x0) +
1
σx

T
2 x0 − 1

2‖x2‖22
)

∂xp
2

∣∣∣∣
x2=0

= exp

(
− 1

2σ2
‖x0‖22

)

×
∑

m∈[S]

∑

p∈A(l)
m

∏

n∈[N ]

x̃pn0,n
pn!

∂pn exp
(

1
σ2 yn(σx2,n − x0,n) +

1
σx2,nx0,n − 1

2x
2
2,n

)

∂xpn2,n

∣∣∣∣
x2,n=0

= exp

(
− 1

2σ2
‖x0‖22

) ∑

m∈[S]

∑

p∈A(l)
m

x̃pm0,m
pm!

∂pm exp
(

1
σ2 ym(σx2,m − x0,m) + 1

σx2,mx0,m − 1
2x

2
2,m

)

∂xpm2,m

∣∣∣∣
x2,m=0

×
[

∏

n∈[m−1]

∑

pn∈N

x̃pn0,n
pn!

∂pn exp
(

1
σ2 yn(σx2,n − x0,n) +

1
σx2,nx0,n − 1

2x
2
2,n

)

∂xpn2,n

∣∣∣∣
x2,n=0

]

×
[

∏

n′∈[S]\[m]

∑

pn′∈Z+

x̃
pn′

0,n′

pn′ !

∂pn′ exp
(

1
σ2 yn′(σx2,n′ − x0,n′) + 1

σx2,n′x0,n′ − 1
2x

2
2,n′

)

∂x
pn′

2,n′

∣∣∣∣
x2,n′=0

]

×
x̃pk0,k
pk!

∂pk exp
(

1
σ2 yk(σx2,k − x0,k) +

1
σx2,kx0,k − 1

2x
2
2,k

)

∂xpk2,k

∣∣∣∣
x2,k=0

= exp

(
− 1

2σ2
‖x0‖22

) ∑

m∈[S]
exp

(
− 1

σ2
ymx0,m

)

×
[

∏

n∈[m−1]

∑

pn∈N

x̃pn0,n
pn!

∂pn exp
(

1
σ2 yn(σx2,n − x0,n) +

1
σx2,nx0,n − 1

2x
2
2,n

)

∂xpn2,n

∣∣∣∣
x2,n=0

]
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×
[

∏

n′∈[S]\[m]

∑

pn′∈Z+

x̃
pn′

0,n′

pn′ !

∂pn′ exp
(

1
σ2 yn′(σx2,n′ − x0,n′) + 1

σx2,n′x0,n′ − 1
2x

2
2,n′

)

∂x
pn′

2,n′

∣∣∣∣
x2,n′=0

]

× 1

l!σl

∂l exp
(

1
σykx2,k − 1

2x
2
2,k

)

∂xl2,k

∣∣∣∣
x2,k=0

. (A.27)

Using the Taylor expansion of the exponential function [6], we obtain further

J[r(l)(·)](y) = exp

(
− 1

2σ2
‖x0‖22

) ∑

m∈[S]
exp

(
− 1

σ2
ymx0,m

)

×
∏

n∈[m−1]

[
exp

(
1

2σ2
x20,n

)
− exp

(
− 1

σ2
ynx0,n

)] ∏

n′∈[S]\[m]

exp

(
1

2σ2
x20,n′

)

× 1

l!σl

∂l exp
(

1
σykx2,k − 1

2x
2
2,k

)

∂xl2,k

∣∣∣∣
x2,k=0

. (A.28)

Using the identity

∂l exp
(
1
σyx− 1

2x
2
)

∂xl

∣∣∣∣
x=0

=
∂l exp

(
−1

2

(
x− y

σ

)2
+ 1

2
y2

σ2

)

∂xl

∣∣∣∣
x=0

(
x′ ,

y

σ
− x
)

= exp

(
1

2

y2

σ2

)
∂l exp

(
−1

2x
′2)

∂x′l

∣∣∣∣
x′=− y

σ

= Hl

( y
σ

)
, (A.29)

we finally have that

J[r(l)(·)](y) (A.28)
= exp

(
− 1

2σ2
‖x0‖22

) ∑

m∈[S]
exp

(
− 1

σ2
ymx0,m

)

×
∏

n∈[m−1]

[
exp

(
1

2σ2
x20,n

)
− exp

(
− 1

σ2
ynx0,n

)] ∏

n′∈[S]\[m]

exp

(
1

2σ2
x20,n′

)

× 1

l!σl
Hl

(yk
σ

)

=
1

l!σl
Hl

(yk
σ

) ∑

m∈[S]
exp

(
− 1

2σ2
(x20,m + 2ymx0,m)

) ∏

n∈[m−1]

[
1− exp

(
− 1

2σ2
(x20,n + 2ynx0,n)

)]
,

(A.30)



184 APPENDIX A.

By Theorem 4.3.4, we have that if the prescribed bias function c(·) is valid, i.e., γ(·) ∈
H(MSSNM) and in turn γ̃(·) ∈ H(Re), the corresponding LMV estimator is given by

x̂
(x0)
k (y)

(4.20)
= J[γ(·)] = J[K−1

e [γ̃(·)]] (A.22)
= J

[
K
−1
e

[
lim

N→∞
wN (·)

]]
(A.17)
= J

[
K
−1
e

[
lim

N→∞

∑

l∈[N ]∪{0}
mlσ

2lv(l)(·)
]]

= lim
N→∞

∑

l∈[N ]∪{0}
mlσ

2l
J
[
K
−1
e

[
v(l)(·)

]] (A.24)
= lim

N→∞

∑

l∈[N ]∪{0}
mlσ

2l
J
[
r(l)(·)

]

(A.30)
=

∑

l∈Z+

ml

l!
σlHl

(yk
σ

) ∑

m∈[S]
exp

(
− 1

2σ2
(x20,m + 2ymx0,m)

)

×
∏

n∈[m−1]

[
1− exp

(
− 1

2σ2
(x20,n + 2ynx0,n)

)]
, (A.31)

which is equal to (5.154).

It remains to verify the necessity of the condition (5.150) for a bias function c(·) to be valid.

To that end, assume that (5.150) is not fulfilled, i.e., the sums
∑

l∈T
m2

l

l! σ
2l can be made arbi-

trary large by using a suitable finite index set T ⊆ Z+, but the bias function c(·) is valid, i.e.,

γ(·) ∈ H(MSSNM). However, γ(·) ∈ H(MSSNM) implies, due to the congruence Ke[·] in (5.119) of

Theorem 5.5.1, that we also have γ̃(·) = γ(σx)νx0(x) = Ke[γ(·)] ∈ H(Re). By Theorem 3.1.6, we

then have for any subspace U , span{v(l)(·)}l∈T that3

‖γ(·)‖2H(MSSNM) = ‖Ke[γ(·)]‖2H(Re)
= ‖γ̃(·)‖2H(Re)

(3.30)

≥ ‖PU γ̃(·)‖2H(Re)

(3.32)
=

∑

l∈T

[〈
γ̃(·), v(l)(·)/‖v(l)(·)‖H(Re)

〉
H(Re)

]2

(A.22)
=

∑

l∈T

[〈
lim

N→∞
wN (·), v(l)(·)/‖v(l)(·)‖H(Re)

〉
H(Re)

]2

(a)
=
∑

l∈T

[
lim

N→∞

〈
wN (·), v(l)(·)/‖v(l)(·)‖H(Re)

〉
H(Re)

]2

(A.17)
=

∑

l∈T

[
mlσ

2l

‖v(l)(·)‖H(Re)

〈
v(l)(·), v(l)(·)

〉
H(Re)

]2

3An ONB for U is given by
{

v(l)(·)/‖v(l)(·)‖H(Re)

}

l∈T
since the functions v(l)(·) are orthogonal.
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=
∑

l∈T

[
mlσ

2l‖v(l)(·)‖H(Re)

]2

(A.18)
=

∑

l∈T

[
mlσ

l

√
l!

‖v(0)(·)‖H(Re)

]2
=
∑

l∈T

m2
l

l!
σ2l‖v(0)(·)‖2H(Re)

, (A.32)

where in (a) the change of the order of taking the limit limN→∞ and computing the inner product

with v(l)(·)/‖v(l)(·)‖H(Re), respectively, is due to the fact that the inner product is a continuous

mapping (see, e.g., [6, Theorem 4.6]). However, since (5.150) is not satisfied, it follows from

(A.32) that the squared norm ‖γ(·)‖2H(MSSNM) is unbounded, which is impossible because γ(·) ∈
H(MSSNM).
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Appendix B

Proof of Theorem 6.3.4

Proof. The statement is derived by considering the minimum variance problem MD,SPCM =

MSPCM

∣∣
D, where the set D is chosen as

D =
(
B(0, r) ∪ B(x0, r)

)
∩
{
x ∈ XS,+

∣∣ supp(x) ⊆ K
}
, (B.1)

where

K ,
{
{l} ∪ supp(x0)

}
= {i1, . . . , iK} (B.2)

with K ≤ S + 1 and an arbitrary but (for the rest of the proof) fixed index l ∈ [N ] \ supp(x0).

Furthermore, the radius r is sufficiently small such that Theorem 6.2.3 applies for the two sets

B(0, r) ∩ XS,+ and B(x0, r) ∩ XS,+ separately. Therefore, the condition (6.19) is also satisfied for

their union
(
B(0, r) ∪ B(x0, r)

)
∩ XS,+ and in turn also for the set D given in (B.1), since this set

is contained in the union. Thus, the set D given in (B.1) satisfies (6.19) and therefore the RKHS

H(MD,SPCM) exists. Since we can assume that g(·) is estimable for MSDPCM, which implies via

Theorem 2.5.2 that the restriction g(·)
∣∣
D is estimable for MD,SDPCM, we have that the prescribed

mean function γ(·) : D → R : γ(x) = c(x) + g(x) = g(x) belongs to the RKHS H(MD,SPCM).

The outline of the rest of the proof is as follows: We will construct a subspace

U , span{w0(·), w1(·)} ⊆ H(MD,SPCM) (B.3)

that is spanned by two orthogonal functions w0(·) and w1(·), respectively. We can then invoke

Theorem 4.3.4 and Theorem 3.1.6 to lower bound the minimum achievable variance LMD,SPCM
by

projecting the mean function γ(·) on the subspace U . However, we will not compute the squared

norm of the projection PUγ(·) explicitly, but lower bound it by deriving an upper bound on the

squared norm of the function w1(·). The so obtained lower bound on LMD,SPCM
yields then via

(6.17) a lower bound on LMSPCM
.
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Consider the matrix HK ,
(
Hi1 , · · · ,HiK

)
∈ R

M×Q, where Q ,
∑

k∈K rk, and its thin SVD

HK = U1Σ1V
T
1 . (B.4)

Due to the assumption that the basis matrices
{
Ck

}
k∈[N ]

satisfy the RIP of order S + 1, the

diagonal entries of the diagonal matrix Σ1 ∈ R
Q×Q, i.e., the singular values of HK, belong to

the interval [1 − δS+1, 1 + δS+1]. This also implies that the matrix HK has full column rank, i.e.,

rank(HK) = Q, and that the matrix Σ1V
T
1 ∈ R

Q×Q appearing in the thin SVD (B.4) is invertible.

For every x ∈ D, we have due to (B.4) that

C̃(x)
(6.4),(6.10)

= HDK(x)HT + σ2I =
∑

k∈K
HkxkH

T
k + σ2I

= HKDK(x)
(
HK)T + σ2I

= U1Σ1V
T
1 D

K(x)V1Σ1U
T
1 + σ2PK + σ2(I−PK)

= U1Σ1V
T
1 D

K(x)V1Σ1U
T
1 + σ2U1U

T
1 + σ2(I −PK)

= U1Σ1V
T
1 C

K(x)V1Σ1U
T
1 +

(
I−PK)σ2. (B.5)

Here, we used

DK(x) ,




xi1Iri1 0 . . . 0

0 xi2Iri2
. . .

...
...

. . . . . . 0

0 . . . 0 xiK IriK



, (B.6)

CK(x) , DK(x) + σ2V1Σ
−2
1 VT

1 = DK(x) + σ2I+E1, (B.7)

E1 , σ2
(
V1Σ

−2
1 VT

1 − I
)
, (B.8)

and

PK , HK(HK)† = U1Σ1V
T
1 V1Σ

−1
1 UT

1 = U1U
T
1 (B.9)

denotes the orthogonal projection matrix on the subspace span(HK) ⊆ R
M . Note that

(I−PK)U1 = U1 −U1U
T
1 U1 = U1 −U1 = 0. (B.10)

Since, by (B.5), the matrix C̃(x) is the sum of two matrices which act (viewed as a linear trans-

formation) independently on the two complementary subsets span(U1), span
(
I − PK) ⊆ R

M we



189

have by [4, 38] that

det
{
C̃(x)

}
= det

{
Σ1V

T
1 C

K(x)V1Σ1

}
σ2(M−Q). (B.11)

The 2-norm of the matrix E1 can be bounded as

‖E1‖2
(a)

≤ σ2
4δS+1

1− 2δS+1

(b)

≤ σ25δS+1. (B.12)

Here, step (b) follows from δS+1 < 1/32. In order to verify step (a) in (B.12), note that for an

arbitrary vector x ∈ RN with ‖x‖2 = 1, we obtain (note that the diagonal elements of Σ−2
1 belong

to the interval
[
(1 + δS+1)

−2, (1− δS+1)
−2
]
)

xTE1x = σ2
(

xTV1Σ
−2
1 VT

1 x︸ ︷︷ ︸
∈
[
(1+δS+1)−2,(1−δS+1)−2

]
−xTx︸︷︷︸

=1

)
∈ σ2

[
(1 + δS+1)

−2 − 1, (1− δS+1)
−2 − 1

]
. (B.13)

From (B.13) it follows via the EVD of the symmetric matrix E1 [38] that the eigenvalues λk(E1)

belong to the interval σ2
[
(1 + δS+1)

−2 − 1, (1 − δS+1)
−2 − 1

]
, i.e.,

λk(E1) ∈ σ2
[
(1 + δS+1)

−2 − 1, (1 − δS+1)
−2 − 1

]
. (B.14)

This further implies that

‖E1‖2 = max
{∣∣λQ(E1)

∣∣,
∣∣λ1(E1)

∣∣} ≤
∣∣λQ(E1)

∣∣+
∣∣λ1(E1)

∣∣

(B.14)

≤ σ2
[
(1− δS+1)

−2 − 1
]
− σ2

[
(1 + δS+1)

−2 − 1
]

= σ2
[
(1− δS+1)

−2 − (1 + δS+1)
−2
]
= σ2

(1 + δS+1)
2 − (1− δS+1)

2

(1− δS+1)2(1 + δS+1)2

= σ2
4δS+1

(1− δS+1)2(1 + δS+1)2
≤ σ2

4δS+1

(1− δS+1)2
= σ2

4δS+1

1− 2δS+1 + δ2S+1

≤ σ2
4δS+1

1− 2δS+1
, (B.15)

where step (a) follows from the fact that E1 is symmetric, i.e., ET
1 = E1 (cf. [38]). It is important

to note that the matrix E1 appearing in (B.7) does not depend on x.

From (B.5), we have via elementary linear algebra [38] that the kernel RMD,SPCM
(·, ·) in (6.38)

can be rewritten as

RMD,SPCM
(x1,x2) =

[
det
{
C̃(x0)

}]1/2[
det
{
C̃(x1) + C̃(x2)− C̃(x1)C̃

−1(x0)C̃(x2)
}]−1/2
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(B.5),(B.11)
=

[
det
{
Σ1V

T
1 C

K(x0)V1Σ1

}]1/2×
[
det
{
Σ1V

T
1

(
CK(x1) +CK(x2)−CK(x1)

[
CK(x0)

]−1
CK(x2)

)
V1Σ1

}]−1/2

(a)
=
[
det
{
CK(x0)

}]1/2[
det
{
CK(x1) +CK(x2)−CK(x1)

[
CK(x0)

]−1
CK(x2)

}]−1/2
,

(B.16)

where (a) is due to the identity det
{
MN

}
= det

{
M
}
det
{
N
}

for two square matrices M,N [4].

Let us now define the subspace U , span{w0(·), w1(·)} ⊆ H(MD,SPCM) spanned by the two

functions w0(·) , RMD,SPCM
(·,x0) ∈ H(MD,SPCM) and

w1(·) ,
∂elRMD,SPCM

(·,x2)

∂xel
2

∣∣∣∣
x2=0

, (B.17)

where l ∈ [N ] \ supp(x0) is the specific index which is used in the definition of the set K in

(B.2). By Theorem 3.4.1 (using the function g
(p)
xc (·) with p = el and xc = 0), we have that

w1(·) ∈ H(MD,SPCM) and moreover

〈
w0(·), w1(·)

〉
H(MD,SPCM)

(3.65)
=

∂elRMD,SPCM
(x2,x0)

∂xel
2

∣∣∣∣
x2=0

(4.11)
=

∂el1

∂xel
2

∣∣∣∣
x2=0

= 0. (B.18)

Therefore, an ONB for U is given by
{ w0(·)
‖w0(·)‖H(MD,SPCM)

, w1(·)
‖w1(·)‖H(MD,SPCM)

}
.

By projecting the prescribed mean function γ(x) = g(x) + c(x) = g(x) of MD,SPCM onto the

subspace U , we obtain

LMSPCM

(6.17)

≥ LMD,SPCM

(4.19)
= ‖γ(·)‖2H(MD,SPCM) −

[
γ(x0)

]2 (4.21)

≥ ‖PUγ(·)‖2H(MD,SPCM) −
[
γ(x0)

]2

(a)
=

〈γ(·), w0(·)〉2H(MD,SPCM)

〈w0(·), w0(·)〉H(MD,SPCM)
+

〈γ(·), w1(·)〉2H(MD,SPCM)

〈w1(·), w1(·)〉H(MD,SPCM)
−
[
γ(x0)

]2

=
〈γ(·), RMD,SPCM

(·,x0)〉2H(MD,SPCM)

〈RMD,SPCM
(·,x0), RMD,SPCM

(·,x0)〉H(MD,SPCM)
+

〈γ(·), w1(·)〉2H(MD,SPCM)

〈w1(·), w1(·)〉H(MD,SPCM)
−
[
γ(x0)

]2

(3.43),(4.11)
=

[
γ(x0)

]2

1
+

〈γ(·), w1(·)〉2H(MD,SPCM)

〈w1(·), w1(·)〉H(MD,SPCM)
−
[
γ(x0)

]2

γ(·)=g(·)
=

[
g(x0)

]2

1
+

〈g(·), w1(·)〉2H(MD,SPCM)

〈w1(·), w1(·)〉H(MD,SPCM)
−
[
g(x0)

]2

(b)
= b2l ‖w1(·)‖−2

H(MD,SPCM), (B.19)
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where bl ,
∂g(x)
∂xl

∣∣
x=0

; step (a) follows from Theorem 3.1.9, and step (b) is due to Theorem 3.4.1

(using the function g(p)xc (·) with p=el and xc=0).

The last and central step of the proof derives an upper bound on the squared norm ‖w1(·)‖2H(MD,SPCM),

which combined with (B.19) yields the bound in (6.54). By combining Theorem 3.4.1 (using the

function g(p)xc (·) with p=el and xc=0), Lemma 6.3.1, and Lemma 6.3.3 we obtain

‖w1(·)‖2H(MD,SPCM) =
〈
w1(·), w1(·)

〉
H(MD,SPCM)

(3.65)
=

∂el∂elRMD,SPCM
(x1,x2)

∂xel
1 ∂x

el
2

∣∣∣∣
x1=x2=0

(B.16)
=

[
det
{
CK(x0)

}]1/2 ∂el∂el
[
det
{
CK(x1) +CK(x2)−CK(x1)

[
CK(x0)

]−1
CK(x2)

}]−1/2

∂xel
1 ∂x

el
2

∣∣∣∣
x1=x2=0

(6.42),(B.22)
= −1

2

[
det
{
CK(x0)

}]1/2

× ∂el

∂xel
1

Tr
{[

CK(x1) +CK(0)−CK(x1)
[
CK(x0)

]−1
CK(0)

]−1[
I−CK(x1)

[
CK(x0)

]−1]
Pl

}
[
det
{
CK(x1) +CK(0)−CK(x1)

[
CK(x0)

]−1
CK(0)

}]1/2

∣∣∣∣
x1=0

(6.53),(B.22)
=

[
det
{
CK(x0)

}

det
{
N
}

]1/2

×
[
1

4
Tr
{
N−1

[
I−CK(0)

[
CK(x0)

]−1]
Pl

}
Tr
{
N−1Pl

[
I−

[
CK(x0)

]−1
CK(0)

]}

+
1

2
Tr{N−1Pl

[
I−

[
CK(x0)

]−1
CK(0)

]
N−1

[
I−CK(0)

[
CK(x0)

]−1]
Pl}

+
1

2
Tr
{
N−1Pl

[
CK(x0)

]−1
Pl

}
]
, (B.20)

where

N , 2CK(0) −CK(0)
[
CK(x0)

]−1
CK(0) (B.21)

and

Pl ,
∑

l′∈Il
el′e

T
l′ =

∂el

∂xel
CK(x), (B.22)

with the index set

Il ,
{ ∑

k∈[l−1]

rk + 1,
∑

k∈[l−1]

rk + 2, . . . ,
∑

k∈[l−1]

rk + rl − 1

}
. (B.23)
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The index set Il consists of the indices of the main diagonal entries of DK(x) in (6.11) that

correspond to xl as defined by (6.11). Note that Pl is a psd orthogonal projection matrix, i.e.,

PlPl = Pl.

The various terms in (B.20) can be bounded by using Lemma 6.2.1, the assumption δS+1 <

1/32, and the Definition in (B.7), as follows. First, observe that by Lemma 6.2.2, the eigenvalues

λl′
k
(CK(x0)) of the matrix CK(x0) (cf. (B.7)), that correspond to the kth largest entry x0,k of x0,

are upper bounded as

λl′
k
(CK(x0))

(6.24)

≤ λl′
k
(DK(x0) + σ2I) + λ1(E1)

(6.22)

≤ λl′
k
(DK(x0) + σ2I) + ‖E1‖2 = x0,k + σ2 + ‖E1‖2

(B.12)

≤ x0,k + σ2(1 + 5δS+1). (B.24)

Note that there are rk eigenvalues λl′
k
(CK(x0)) that correspond to x0,k. From this it follows that

[
det
{
CK(x0)

}]1/2 (6.23)
=

[ ∏

k∈K

∏

l′
k

λl′
k
(CK(x0))

]1/2 (B.24)

≤
∏

k∈K

[
x0,k + σ2(1 + 5δS+1)

]rk/2

(B.2)
=
[
σ2(1 + 5δS+1)

]rl/2 ∏

k∈supp(x0)

[
x0,k + σ2(1 + 5δS+1)

]rk/2. (B.25)

Similar to the bound (B.24), we also have

λl′(C
K(x0))

(B.7)
= λl′(D

K(x0) + σ2V1Σ
−2
1 VT

1 )

(6.24)

≥ λl′(σ
2V1Σ

−2
1 VT

1 ) + λQ(D
K(x0))

≥ λl′(σ
2V1Σ

−2
1 VT

1 ) = σ2λl′(Σ
−2
1 ) ≥ σ2(1 + δS+1)

−2, (B.26)

and

λl′(C
K(0))

(B.7)
= λl′(D

K(0) + σ2V1Σ
−2
1 VT

1 )

(B.6)
= λl′(σ

2V1Σ
−2
1 VT

1 ) = σ2λl′(Σ
−2
1 ) ∈ σ2[(1 + δS+1)

−2, (1 − δS+1)
−2], (B.27)

where the last step in (B.26) and (B.27), respectively, follow from the fact that the basis matrices

satisfy the RIP of order S + 1. From (B.26) and we can conclude that

∥∥[CK(x0)
]−1∥∥

2
≤ (1 + δS+1)

2σ−2 (B.28)
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and in turn

∥∥CK(0)
[
CK(x0)

]−1
CK(0)

∥∥
2
≤
∥∥CK(0)

∥∥2
2

∥∥[CK(x0)
]−1∥∥

2

(B.28),(B.27)

≤ σ2
(1 + δS+1)

2

(1− δS+1)4
. (B.29)

This yields further

λl′(N)
(6.24)

≥ λl′(2C
K(0)) + λQ(−CK(0)

[
CK(x0)

]−1
CK(0)

(6.22)

≥ λl′(2C
K(0))−

∥∥CK(0)
[
CK(x0)

]−1
CK(0)

∥∥
2

(B.29)

≥ λl′(2C
K(0)) − σ2

(1 + δS+1)
2

(1− δS+1)4

(B.27)

≥ 2σ2(1 + δS+1)
−2 − σ2

(1 + δS+1)
2

(1− δS+1)4

= σ2
1

(1 + δS+1)2

(
2− (1 + δS+1)

4

(1− δS+1)4

)
= σ2β, (B.30)

and in turn

[
det
{
N
}]1/2 (6.23)

=

[ ∏

k∈K

∏

l′
k

λl′
k
(N)

]1/2 (B.30)

≥
(
σ2β

)Q/2
. (B.31)

Note that (B.30) also implies that

‖N−1‖2 =
1

minl′∈[Q] |λl′(N)| ≤ σ2β. (B.32)

Since we have (cf. (B.6))
∥∥(DK(x0) + σ2I

)−1∥∥
2
≤ 1/σ2, it holds that

∥∥(DK(x0) + σ2I
)−1 · E1

∥∥
2
≤
∥∥(DK(x0) + σ2I

)−1∥∥
2
· ‖E1‖2

(B.12)

≤ 5δS+1

δS+1<1/32
< 1. (B.33)

This allows us to involve Lemma 6.2.1, with the choices A = DK(x0) + σ2I and E = CK(x0) −[
DK(x0) + σ2I

]
= E1 (cf. (B.7)), to obtain

[
CK(x0)

]−1
=
[
DK(x0) + σ2I

]−1
+E′ (B.34)

with an error term E′ that satisfies

‖E′‖2 =
∥∥[CK(x0)

]−1 −
[
DK(x0) + σ2I

]−1∥∥
2

(6.20)

≤
∥∥[DK(x0) + σ2I

]−1∥∥2
2
‖E1‖2

1−
∥∥[DK(x0) + σ2I

]−1∥∥
2
‖E1‖2

≤ 1

σ4
‖E1‖2

1− ‖E1‖2/σ2
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(B.12)

≤ 1

σ4
σ25δS+1

1− 5δS+1

δS+1<1/32

≤ 1

σ2
5δS+1

1− 5/32
≤ 1

σ2
6δS+1. (B.35)

In what follows, we will also need the identity [38]

Tr{A} =
∑

l′∈[Q]

uT
l′Aul′ (B.36)

valid for any matrix A ∈ R
Q×Q and any set

{
ul′ ∈ R

T
}
l′∈[Q]

of vectors that form an ONB for RQ.

We then obtain

∣∣Tr
{
N−1

[
I−CK(0)

[
CK(x0)

]−1]
Pl

}∣∣

(B.36)
=

∣∣∣∣
∑

l′∈[N ]

eTl′N
−1
[
I−CK(0)

[
CK(x0)

]−1]
Plel′

∣∣∣∣
(B.22)
=

∣∣∣∣
∑

l′∈Il
eTl′N

−1
[
I−CK(0)

[
CK(x0)

]−1]
el′

∣∣∣∣

(B.7),(B.34)
=

∣∣∣∣
∑

l′∈Il
eTl′N

−1

[
I− (σ2I+E1)

[
(DK(x0) + σ2I)−1 +E′]

]
el′

∣∣∣∣

=

∣∣∣∣
∑

l′∈Il
eTl′N

−1(I− σ2(DK(x0) + σ2I)−1 −E1(D
K(x0) + σ2I)−1 − σ2E′ −E1E

′)el′
∣∣∣∣. (B.37)

Using the assumption that l /∈ supp(x0), implying that (DK(x0) + σ2I)−1el′ = el′/σ
2 for every

l′ ∈ Il, this further becomes

∣∣Tr
{
N−1

[
I−CK(0)

[
CK(x0)

]−1]
Pl

}∣∣

=

∣∣∣∣
∑

l′∈Il
eTl′N

−1
[
el′ − el′ −E1(D

K(x0) + σ2I)−1el′ − σ2E′el′ −E1E
′el′
]∣∣∣∣

=

∣∣∣∣
∑

l′∈Il
eTl′N

−1
[
−E1(D

K(x0) + σ2I)−1el′ − σ2E′el′ −E1E
′el′
]∣∣∣∣

≤
∑

l′∈Il

∣∣∣∣e
T
l′N

−1
[
−E1(D

K(x0) + σ2I)−1el′ − σ2E′el′ −E1E
′el′
]∣∣∣∣

(b)

≤ rl
1

σ2β
(5δS+1 + 6δS+1 + 30δ2S+1)

δS+1<1/32

≤ rl
1

σ2β
12δS+1, (B.38)

where (b) follows from the inequality ‖AB‖2 ≤ ‖A‖2‖B‖2, which is valid for any two matrices

A,B ∈ R
Q×Q [38]. For the step (b) we also used (B.12), (B.32), and (B.35).
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Similar to (B.38), one can also derive the inequalities

∣∣Tr
{
N−1Pl

[
I−

[
CK(x0)

]−1
CK(0)

]}∣∣ ≤ rl
1

σ2β
12δS+1

∣∣Tr
{
N−1Pl

[
I−

[
CK(x0)

]−1
CK(0)

]
N−1

[
I−CK(0)

[
CK(x0)

]−1]
Pl

}∣∣ ≤ rl(12δS+1)
2 1

σ4β2

|Tr{N−1Pl

[
CK(x0)

]−1
Pl}| ≤ rl

1

βσ4
(6δS+1 + 1). (B.39)

The bound in (6.54) follows then finally by inserting the bounds (B.25), (B.31), (B.38), (B.39)

into (B.20) and using (B.19).
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Appendix C

Proof of Lemma 6.4.6

Proof. For the following, we restrict ourselves to the case where p = el with an arbitrary index

l ∈ [N ] and introduce the function z(x) : R
N
+ → R

N
+ defined elementwise by zk(x) = 1

xk+σ2 .

Moreover, we define the modified mean function m̃k(z) by requiring that m̃k(z(x)) = mk(x). We

have

m̃k(z(x)) = mk(x) = Ex{x̂k(y)} =

∫

y∈RM

x̂k(y)fSDPCM(y;x)dy

(6.14)
=

1

(2π)M/2[det{C̃(x)}]1/2
∫

y∈RM

x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

(6.56),(6.58)
=

1

(2π)M/2[det{C̃(x)}]1/2

×
∫

y∈RM

x̂k(y) exp


−1

2

[ ∑

k∈[N ]

zk(x)
∑

i∈[rk ]

[
uT
mk,i

y
]2

+
1

σ2
yTPny

]
 dy

(6.58)
=

1

(2π)M/2

1∏
k∈[N ](xk + σ2)rk/2

1

σM−R

×
∫

y∈RM

x̂k(y) exp


−1

2

[ ∑

k∈[N ]

zk(x)
∑

i∈[rk ]

[
uT
mk,i

y
]2

+
1

σ2
yTPny

]
 dy

=
1

(2π)M/2σM−R

∏

k∈[N ]

(zk(x))
rk/2
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×
∫

y∈RM

x̂k(y) exp


−1

2

[ ∑

k∈[N ]

zk(x)
∑

i∈[rk ]

[
uT
mk,i

y
]2

+
1

σ2
yTPny

]
 dy

ỹ=Uy
=

1

(2π)M/2σM−R

∏

k∈[N ]

(zk(x))
rk/2

×
∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk(x)
∑

i∈[rk ]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ, (C.1)

where Pn denotes the projection matrix on the subspace of RM which is orthogonal to the sub-

space
⋃

k∈[N ] span(Ck) with Ck being the basis matrices of the SDPCM. The matrix U, used

for the substitution y → ỹ, is the orthonormal matrix that appears in (6.58). The existence of

the integrals in (C.1) follows from the dominated convergence theorem [5, 6, 73] since the func-

tion x̂k(y) exp
(
−1

2y
T C̃−1(x)y

)
is measurable, since x̂k(y) is assumed measurable [73]. Moreover,

because of (6.87), the above function is upper bounded in magnitude (dominated) by the func-

tion C‖y‖L2 exp
(
−1

2y
T C̃−1(x)y

)
, which is obviously integrable. Let us now calculate the partial

derivative ∂elm̃k(z)
∂zel .

∂elm̃k(z)

∂zel
(C.1)
=

1

(2π)M/2σM−R

∂el

∂zel

∏

k∈[N ]

z
rk/2
k

×
∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

(a)
=

1

(2π)M/2σM−R

{[
∂el

∂zel

∏

k∈[N ]

z
rk/2
k

]∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

+
∏

k∈[N ]

(zk)
rk/2

[
∂el

∂zel

∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]}

(b)
=

1

(2π)M/2σM−R
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{[
∂el

∂zel

∏

k∈[N ]

z
rk/2
k

]∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

+
∏

k∈[N ]

(zk)
rk/2

[∫

ỹ∈RM

x̂k(U
T ỹ)

∂el

∂zel
exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]}

=
1

(2π)M/2σM−R

×
{[∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]
rl
2zl

∏

k∈[N ]

z
rk/2
k

+

[∫

ỹ∈RM

−∑i∈[rl] ỹ
2
mi,l

2
x̂k(U

T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]
∏

k∈[N ]

z
rk/2
k

}
,

(C.2)

where (a) follows from the product rule for differentiation [5] and (b) results from a change of

the order of differentiation and integration [41, Theorem 1.5.8], which can be verified, e.g., by a

standard argument using the dominated convergence theorem [5,61,73]. From (C.2), we obtain by

the chain rule for differentiation [5, Theorem 9.15] that

∂elmk(x)

∂xel
=
∂elm̃k(z)

∂zel
∂zl(x)

∂xl
=
∂elm̃k(z)

∂zel
−1

(xl + σ2)2

(C.2)
=

1

(2π)M/2σM−R
· −1

(xl + σ2)2

×
{[∫

ỹ∈RM

x̂k(U
T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]
rl
2zl

∏

k∈[N ]

z
rk/2
k

+

[∫

ỹ∈RM

−∑i∈[rl] ỹ
2
mi,l

2
x̂k(U

T ỹ) exp


−1

2

[ ∑

k∈[N ]

zk
∑

i∈[rk]
ỹ2mi,k

+
1

σ2

∑

k∈[M ]\[R]

ỹ2k

]
 dỹ

]
∏

k∈[N ]

z
rk/2
k

}

(6.56),(6.58)
=

1

(2π)M/2σM−R
· −1

(xl + σ2)2

×
{[∫

y∈RM

x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

]
rl
2zl

∏

k∈[N ]

z
rk/2
k
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+

[∫

y∈RM

−yTCly

2
x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

]
∏

k∈[N ]

z
rk/2
k

}

(6.58)
=

1

(2π)M/2[det{C̃(x)}]1/2
· −1

(xl + σ2)2

×
{[∫

y∈RM

x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

]
rl
2zl

+

[∫

y∈RM

−yTCly

2
x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

]}

=
1

(2π)M/2[det{C̃(x)}]1/2

×
{[∫

y∈RM

x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

] −rl
2(xl + σ2)

+
−1

(xl + σ2)2

∫

y∈RM

−yTCly

2
x̂k(y) exp

(
−1

2
yT C̃−1(x)y

)
dy

}

= − rl
2(xl + σ2)

Ex

{
x̂k(y)

}
+

1

2(xl + σ2)2
Ex

{
yTClyx̂k(y)

}

= − rl
2(xl + σ2)

mk(x) +
1

2(xl + σ2)2
Ex

{
yTClyx̂k(y)

}
.

(C.3)

The existence of the higher order partial derivatives ∂pmk(x)
∂xp can then be verified recursively.
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Proof of Theorem 6.4.8

Proof. We prove the statement separately for the two complementary cases where k = j0 and the

case where k 6= j0. First, consider the case k = j0, where we have obviously that |{k}∪supp(x0)| =
|{k}| = 1 < S + 1. This implies that the estimator (6.96) equals the estimator (6.90), which is

unbiased (cf. (6.91)) and whose variance achieves the bound (6.89) (for the case k ∈ supp(x0)) of

Corollary 6.4.7 (cf. (6.93)). Therefore, the estimator (6.96) must be the LMVU for the case k = j0.

Next, we consider the complementary case k 6= j0. We calculate the mean Ex{x̂(x0)
k (y)}

separately for parameter vectors x such that supp(x) = j0 and parameter vectors such that

supp(x) 6= j0.

• supp(x) 6= j0: We obtain for the mean of x̂(x0)
k (y)

Ex

{
x̂
(x0)
k (y)

}
= Ex

{
α(y;x0)

(
βk(y)−σ2

)} (a)
= Ex

{
α(y;x0)

}
Ex

{
βk(y)−σ2

}

(6.91)
= xkEx

{
α(y;x0)

}
= xkEx

{
a(x0) exp

(
−rj0b(x0)βj0(y)

)}

= xka(x0)Ex

{
exp

(
−rj0b(x0)βj0(y)

)}

(6.90)
= xka(x0)Ex

{
exp

(
−rj0b(x0)

1

rj0

∑

i∈[rj0 ]

(
uT
mj0,i

y
)2)}

(b)
= xka(x0)

∏

i∈[rj0 ]
Ex

{
exp

(
−b(x0)z

2
i

)}
, (D.1)

where zi , uT
mj0,i

y (cf. (6.56)). Note that the random variables {zi}i∈[rj0 ] are i.i.d. with zi ∼
N (0, σ2), which can be verified by (6.58) and the fact that we consider the case supp(x) 6=
j0. The steps (a) and (b) are due to the statistical independence of the random variables
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{βl(y)}l∈[N ], which can be verified by (6.58). We now use the identity

E{exp(−Bz2)} =
[
(2B + c−2)c2

]−1/2
, (D.2)

which is valid for a Gaussian random variable z ∼ N (0, c2) with arbitrary variance c2 [45],

to obtain from (D.1) that

Ex

{
x̂
(x0)
k (y)

}
= xka(x0)

∏

i∈[rj0 ]

[
(2b(x0) + σ−2)σ2

]−1/2

= xka(x0)
[
(2b(x0) + σ−2)σ2

]−rj0/2

= xka(x0)
[
(2(σ−2 − (ξ0 + σ2)−1)/2 + σ−2)σ2

]−rj0/2

= xka(x0)
[
1− σ2(ξ0 + σ2)−1 + 1

]−rj0/2

= xka(x0)
[
2− σ2(ξ0 + σ2)−1

]−rj0/2

= xka(x0)
[
2(ξ0 + σ2)− σ2

]−rj0/2(ξ0 + σ2)rj0/2

= xka(x0)(2ξ0 + σ2)−rj0/2(ξ0 + σ2)rj0/2 = xk. (D.3)

• supp(x) = j0: In this case, we have k 6= supp(x) (since k 6= j0 is assumed) and thus xk = 0.

Hence, we obtain for the mean of x̂(x0)
k (y)

Ex

{
x̂
(x0)
k (y)

}
= Ex

{
α(y;x0)

(
βk(y)− σ2

)}

(a)
= Ex

{
α(y;x0)

}
Ex

{
βk(y)−σ2

} (b)
= 0 = xk, (D.4)

where (a) follows from the statistical independence of the random variables {βl(y)}l∈[N ] and

(b) is due to Ex

{
βk(y)−σ2

}
= xk = 0 (again see (6.91)).

To summarize, we have shown that for the case k 6= j0, the estimator (6.96) is unbiased for every

x ∈ XS=1,+.

Finally, we show that the variance at x0 of the estimator (6.96) achieves the lower bound

(6.89) (for the case k /∈ supp(x0)) of Corollary 6.4.7. Indeed, we obtain under the assumption

k 6= j0 = supp(x0) and using the shorthand zi , uT
mj0,i

y

v(x̂
(x0)
k (·);x0)

(a)
= P (x̂

(x0)
k (·);x0)
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= Ex0

{
α2(y;x0)

(
βk(y)−σ2

)2}

(b)
= Ex0

{
α2(y;x0)

}
Ex0

{(
βk(y)−σ2

)2}
. (D.5)

Here, for step (a) we used the fact that the estimator x̂(x0)
k (·) is unbiased as has been proven just

before and step (b) is due the statistical independence of the random variables {βl(y)}l∈[N ]. We

have Ex0

{(
βk(y)− σ2

)2}
= 2σ4

rk
because of (6.94). Thus, we obtain from (D.5) that

v(x̂
(x0)
k (·);x0) =

2σ4

rk
Ex0

{
α2(y;x0)

}

(a)
=

2σ4

rk
a2(x0)

∏

i∈[rj0 ]
Ex0

{
exp

(
−2b(x0)z

2
i

)}

(D.2)
=

2σ4

rk
a2(x0)

∏

i∈[rj0 ]

[
2
[
σ−2 − (ξ0 + σ2)−1

]
+
(
ξ0 + σ2

)−1]−1/2(
ξ0 + σ2

)−1/2

=
2σ4

rk
a2(x0)

∏

i∈[rj0 ]

[
2σ−2

(
ξ0 + σ2

)
− 1
]−1/2

=
2σ4

rk
a2(x0)

[
2σ−2

(
ξ0 + σ2

)
− 1
]−rj0/2

=
2σ4

rk
a2(x0)σ

rj0
(
2ξ0 + σ2

)−rj0/2

=
2σ4

rk

[
2ξ0 + σ2

ξ0 + σ2

]rj0
σrj0

(
2ξ0 + σ2

)−rj0/2

=
2σ4

rk

(
2ξ0σ

2 + σ4
)rj0/2

(
ξ0 + σ2

)rj0

=
2σ4

rk

[
(ξ0 + σ2)2 − ξ20

]rj0/2
(
ξ0 + σ2

)rj0

=
2

rk
σ4

[
1− ξ20

(ξ0 + σ2)2

] rj0
2

, (D.6)

which is (6.89) (for the case k /∈ supp(x0)). Here, the step (a) is due to the fact that the random

variables {zi}i∈[rj0 ] are i.i.d. with zi ∼ N (0, σ2 + ξ0).
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Appendix E

Proof of Theorem 6.5.1

Proof. Consider the function

hk(x) : R+ → R : hk(x) , −rk
[
βk(y)

x+ σ2
+ log

(
x+ σ2

)]
. (E.1)

This function is continuous on its domain and differentiable at every point x > 0, with derivative

h′k(x) = rk

[
βk(y)

(x+ σ2)2
− 1

x+ σ2

]
. (E.2)

As can be verified easily, if βk(y) < σ2, then the derivative in (E.2) is always negative, which

implies via the mean value theorem [5] that the function hk(x) is monotonically decreasing and

attains its maximum at x = 0. Thus, we have

βk(y) < σ2 ⇒ max
x∈R+

hk(x) = hk(0) = −rk
[
βk(y)

σ2
+ log

(
σ2
)]
. (E.3)

On the other hand, if βk(y) ≥ σ2, then we can distinguish two cases: (i) for x ∈ [0, βk(y) − σ2],

the derivative h′k(x) is nonnegative, implying that hk(x) is monotonically increasing; (ii) for x ≥
βk(y)−σ2, the derivative is negative, implying that hk(x) is monotonically decreasing. These two

facts imply that the maximum of hk(x) must occur at x = βk(y) − σ2, i.e.,

βk(y) ≥ σ2 ⇒ max
x∈R+

hk(x) = hk(βk(y)− σ2) = −rk
[
1 + log

(
βk(y)

)]
. (E.4)

In what follows we will use the shorthand

H(x) ,
∑

k∈[N ]

hk(xk), (E.5)

which allows us to rewrite the ML estimator (cf. (6.100)) as

x̂ML(y) = argmax
x′∈XS,+

{
∑

k∈[N ]

hk(x
′
k)

}
= argmax

x′∈XS,+

H(x′). (E.6)
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Let us now show by contradiction that supp(x̂ML(y)) ⊆ L2, i.e., x̂k,ML(y) = 0 for every index

k /∈ L2. Let x̃ , x̂ML(y), and assume that the ML estimate x̃ has a nonzero entry x̃k′ with index

k′ /∈ L2. Consider then a new parameter vector x2 ∈ XS,+ which is obtained from x̃ by zeroing

the entry with index k′ and retaining the rest. We can then write the difference of the objective

values H(x) for the parameter vectors x̃ and x2 as

H(x̃)−H(x2)
(E.5)
=

{
∑

k∈[N ]

hk(x̃k)

}
−
{
∑

k∈[N ]

hk(x2,k)

}

=

{
∑

k∈[N ]\{k′}
hk(x̃k)

}
+ hk′(x̃k′)−

{
∑

k∈[N ]\{k′}
hk(x2,k)

}
− hk′(x2,k′)

= hk′(x̃k′)− hk′(x2,k′)

= hk′(x̃k′)− hk′(0). (E.7)

Because k′ /∈ L2 we have βk′(y) < σ2 and in turn that the derivative (E.2) (for k = k′) is strictly

negative for all x ∈ R+. It then follows from (E.7) and (E.3) that

H(x̃)−H(x2) < 0. (E.8)

Thus, we have that the new parameter vector x2 yields a larger value of the objective H(x) than

x̃. However, this contradicts the assumption that x̃ is the ML estimator, i.e., the parameter vector

in XS,+ that maximizes H(x). Thus, we have shown that supp(x̂ML(y)) ⊆ L2, i.e., x̂k,ML(y) = 0

for every index k /∈ L2.

Let I be a given set of indices such that I ⊆ L2 and |I| ≤ S, and let us denote by HI the

maximum value of H(x′) under the additional constraint that supp(x′) ⊆ I , i.e.,

HI , max
x′∈RN

+

supp(x′)⊆I

H(x′)

= max
x′∈RN

+

supp(x′)⊆I

∑

k∈[N ]

hk(x
′
k)

= max
x′∈RN

+

supp(x′)⊆I

∑

k/∈I
hk(0) +

∑

k∈I
hk(x

′
k)

(E.4)
=
∑

k/∈I
hk(0) +

∑

k∈I

{
− rk

[
1 + log

(
βk(y)

)]}
. (E.9)
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(E.10)

Up to now, we have verified that the ML estimate x̃ must satisfy supp(x̃) ⊆ L2. We will now

show that the vector x3 given by (6.101) yields the ML estimate, i.e., H(x̃) = H(x3). Note that

there may be multiple ML estimates x̃ which yield the global maximum in (6.100); we will show

that x3 yields one of these solutions. By the definition of x3,

H(x3)
(E.5)
=

∑

k∈[N ]

hk(x3,k)

(6.101)
=

∑

k/∈L1∩L2

hk(0) +
∑

k∈L1∩L2

hk(βk(y)− σ2)

(E.1)
=

∑

k/∈L1∩L2

hk(0) +
∑

k∈L1∩L2

{
− rk

[
1 + log

(
βk(y)

)]}

(E.9)
= HL1∩L2 . (E.11)

Consider then an arbitrary parameter vector x′ ∈ XS,+ which satisfies supp(x′) ⊆ L2 and

denote its support by I ′ , supp(x′). Obviously, we have that I ′ ⊆ L2 and |I ′| ≤ S which implies

that

|I ′| ≤ min{S, |L2|}. (E.12)

The difference of the objective values H(x) for the parameter vectors x3 and x′ then satisfies

H(x3)−H(x′)
(E.11)
= HL1∩L2 −H(x′)

(E.9)

≥ HL1∩L2 −HI′

(E.9)
=

∑

k∈
(
L1∩L2

)

{
− rk

[
1 + log

(
βk(y)

)]}
+

∑

k/∈
(
L1∩L2

)
hk(0)

−
∑

k∈I′

{
− rk

[
1 + log

(
βk(y)

)]}
−
∑

k/∈I′

hk(0)

=
∑

k∈
(
L1∩L2∩I′

)

{
− rk

[
1 + log

(
βk(y)

)]}
+

∑

k∈
(
L1∩L2

)
\I′

{
− rk

[
1 + log

(
βk(y)

)]}

+
∑

k∈[N ]\
(
(L1∩L2)∪I′

)
hk(0) +

∑

k∈I′\
(
L1∩L2

)
hk(0)
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−
∑

k∈
(
L1∩L2∩I′

)

{
− rk

[
1 + log

(
βk(y)

)]}
−

∑

k∈I′\
(
L1∩L2

)

{
− rk

[
1 + log

(
βk(y)

)]}

−
∑

k∈[N ]\
(
(L1∩L2)∪I′

)
hk(0)−

∑

k∈
(
L1∩L2

)
\I′

hk(0)

(E.9)
=

∑

k∈
(
L1∩L2

)
\I′

{
− rk

[
1 + log

(
βk(y)

)]
− hk(0)

}

−
∑

k∈I′\
(
L1∩L2

)

{
− rk

[
1 + log

(
βk(y)

)]
− hk(0)

}

=
∑

k∈
(
L1∩L2

)
\I′

{
− rk

[
1 + log

(
βk(y)

)]
+ rk

[
βk(y)

σ2
+ log

(
σ2
)]}

−
∑

k∈I′\
(
L1∩L2

)

{
− rk

[
1 + log

(
βk(y)

)]
+ rk

[
βk(y)

σ2
+ log

(
σ2
)]}

=
∑

k∈
(
L1∩L2

)
\I′

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

−
∑

k′∈I′\
(
L1∩L2

)
rk′

[
βk′(y)

σ2
− log

(
βk′(y)

σ2

)
−1

]
(E.13)

Note that by definition |L1 ∩ L2| = min{S, |L2|}, implying due to (E.12) that

|L1 ∩ L2| ≥ |I ′|, (E.14)

and in turn

|
(
L1 ∩ L2

)
\ I ′| ≥ |I ′ \

(
L1 ∩ L2

)
|. (E.15)

From (E.15), we have that there exists an injective index map Ω(k′) : I ′\
(
L1∩L2

)
→
(
L1∩L2

)
\I ′,

such that for each summand (with index k′ ∈ I ′ \
(
L1 ∩L2

)
) of the second summand in (E.13), we

can associate a distinct summand (with index Ω(k′) ∈
(
L1 ∩ L2

)
\ I ′) of the first sum in (E.13).

However, for any Ω(k′) ∈
(
L1 ∩ L2

)
\ I ′ (implying that Ω(k′) ∈ L1 ∩ L2) and k′ ∈ I ′ \

(
L1 ∩ L2

)

(implying that k′ ∈ L2 \ L1, since we assume that I ′ ⊆ L2) we have

rΩ(k′)

[
βΩ(k′)(y)

σ2
− log

(
βΩ(k′)(y)

σ2

)
−1

]
≥ rk′

[
βk′(y)

σ2
− log

(
βk′(y)

σ2

)
−1

]
. (E.16)
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Consider the inequality

x− (log(x) + 1) ≥ 0, (E.17)

valid for every x ≥ 1, which can be verified by inspecting the derivative of the left hand side. This

inequality implies that for any index k ∈ L2 (i.e., βk(y) ≥ σ2) we have

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]
≥ 0. (E.18)

Let us introduce the shorthand I ′′ ,
[(
L1 ∩ L2

)
\ I ′] \ Ω

(
I ′ \

(
L1 ∩ L2

))
, and observe that

I ′′ ∪ Ω
(
I ′ \

(
L1 ∩ L2

))
=
(
L1 ∩ L2

)
\ I ′, (E.19)

and

I ′′ ∩ Ω
(
I ′ \

(
L1 ∩ L2

))
= ∅, (E.20)

which is due to the obvious fact that Ω
(
I ′ \

(
L1∩L2

))
⊆
(
L1∩L2

)
\I ′. We then have from (E.13)

that

H(x3)−H(x′)
(E.13)
=

∑

k∈
(
L1∩L2

)
\I′

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

−
∑

k′∈I′\
(
L1∩L2

)
rk′

[
βk′(y)

σ2
− log

(
βk′(y)

σ2

)
−1

]

(E.19),(E.20)
=

∑

k∈I′′

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

+
∑

k∈Ω
(
I′\
(
L1∩L2

))
rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

−
∑

k′∈I′\
(
L1∩L2

)
rk′

[
βk′(y)

σ2
− log

(
βk′(y)

σ2

)
−1

]

=
∑

k∈I′′

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

+
∑

k′∈I′\
(
L1∩L2

)

{
rΩ(k′)

[
βΩ(k′)(y)

σ2
− log

(
βΩ(k′)(y)

σ2

)
−1

]
− rk′

[
βk′(y)

σ2
− log

(
βk′(y)

σ2

)
−1

]}
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(E.16)

≥
∑

k∈I′′

rk

[
βk(y)

σ2
− log

(
βk(y)

σ2

)
−1

]

(E.18)

≥ 0. (E.21)

Thus, we have verified that H(x3) ≥ H(x′) for all x′ ∈ XS,+ such that supp(x′) ⊆ L2. This means

that the vector x3 given by (6.101) yields the global maximum in (6.100), i.e., it yields an ML

estimate.
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