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ABSTRACT 
The visualization and analysis of dynamic networks have become 
increasingly important in several fields, for instance sociology or 
economics. The dynamic and multi-relational nature of this data 
poses the challenge of understanding both its topological structure 
and how it changes over time. In this paper we propose a visual 
analytics approach for analyzing dynamic networks that 
integrates: a dynamic layout with user-controlled trade-off 
between stability and consistency; three temporal views based on 
different combinations of node-link diagrams (layer 
superimposition, layer juxtaposition, and two-and-a-half-
dimensional view); the visualization of social network analysis 
metrics; and specific interaction techniques for tracking node 
trajectories and node connectivity over time. This integration of 
visual, interactive, and automatic methods supports the multi-
faceted analysis of dynamically changing networks. 

Categories and Subject Descriptors 
H.5.m [Information Systems]: Information Interfaces And 
Presentation (e.g., HCI) – Miscellaneous , I.3.6 [Computing 
Methodologies]: Computer Graphics – Methodology and 
Techniques, J.5 [Computer Applications]: Social and Behavioral 
Sciences. 

General Terms 
Design. 

Keywords 
Dynamic layout, dynamic networks, graph drawing, interaction, 
social network analysis, information visualization, visual 
analytics. 

1. INTRODUCTION 
Dynamic social networks are social networks that take into 
account changes over time [10]. They not only model relations 
between human beings in terms of interpersonal interactions, but 
also consider the evolution of these relations, i.e. the way and the 
extent by which they change over time. Dynamic social networks 
can be useful to model and analyze human relationships in several 
potential scenarios: the informal social relationships of individuals 
within a family or a group of friends; the structured collaboration 

of employees in a large enterprise; the widespread connections 
through social networking services; or the covert activities of 
small, interconnected terrorist cells.  

On the one hand, dynamic networks are capable of modeling 
such diverse problems, but on the other hand, they are complex in 
many respects and they are not easy to grasp for non-expert users. 
For this reason we designed and developed a research prototype 
aiming to facilitate the interactive exploration of dynamic 
networks, the comprehension of their structure and in particular 
how these structures change over time. We adopted a visual 
analytics approach by combining interactive visualization 
techniques with automated analysis methods, taking into account 
some basic perceptual aspects. The main features of our proposed 
solution are: 

• A dynamic interactive layout, whose balance between 
stability and consistency can be controlled by the users, 
in order to adapt it to the tasks s/he wants to complete 
and the data s/he needs to examine. 

• Three alternative views for visualizing network 
dynamics, and animated smooth transitions between 
them.  

• The integration of automatically computed Social 
Network Analysis (SNA) metrics into the interactive 
visualization. 

• The visualization of node trajectories by which users 
can focus on specific nodes and track their evolution. 

• A specific interaction technique to highlight particular 
nodes and their neighbors. 

In section 2, we discuss related work. Then we describe the 
problem we considered and provide some details about users and 
tasks in section 3. In section 4 we illustrate our design and explain 
the choices we made. Finally, we outline our future plans for 
improving and substantiating this work in section 5. 

2. RELATED WORK 
Since the first sociogram was introduced in 1934 [36], several 
methods have been proposed for visualizing static social networks 
[20]. Recently, the interactive visualization of dynamic networks 
and its integration with analytical methods has become an 
emerging research field. 

2.1 Static networks 
If we disregard at first the dynamics and consider the problem of 
visualizing static networks only, we find several visualization 
techniques proposed in Graph Drawing [14], Information 

 



Visualization [28], and Data Mining [13] communities. While the 
usual way to draw a network on a two-dimensional surface is a 
node-link diagram, we may also draw a network using a matrix-
based representation [25]. While node-link diagrams do not scale 
well for large graphs, matrix-based representations make it harder 
to find a path between two nodes. Besides the choice of a model 
for the visual representation, a layout model is needed. Pure 
network data, indeed, do not provide any a priori criterion to 
determine the geometric properties for a representation. For 
matrix-based representations, for example, the reorderable-matrix 
layout is computed by permuting rows and columns in order to 
block similar nodes [4]. With reference to node-link diagrams, 
several proposed criteria could drive the optimization of the graph 
layout in order to enhance its perception. Examples for such 
criteria that are also referred to as aesthetics are [12]: minimizing 
edge crossings, preserving symmetry, minimizing edge bends, 
minimizing edge lengths. Since absolute position is a prominent 
visual variable, a ‘good layout’ not only has to enhance 
perception, but also has to maximize the conveyed information. 
For instance, spring-embedder algorithms use a physical metaphor 
that models nodes as repulsing particles and edges as elastic 
springs [24, 29].  

2.2 Dynamic networks 
The paradigm shift from structures to dynamics, i.e., the trend to 
shift from the structure-centric paradigm to the visualization of 
dynamic properties of underlying phenomena, has been described 
as one of the top unsolved information visualization problems 
[11]. Once we have explored different possibilities for the 
network representation and for the layout, it is worth to notice that 
the issue of visualizing network dynamics is not solved by 
obtaining a temporal sequence of static images. We need to obtain 
a sequence of dynamic layouts that facilitates the perception of 
changes by taking into account additional criteria, such as 
ensuring repeatability, comparability and stability [3]; preserving 
orthogonality, proximity and topology [8]; preserving planarity 
[19]; preserving edge directions [5]; preserving position and 
distances [9]; and restricting adjustments to small parts [34]. In a 
general sense, a good dynamic layout must preserve the user’s 
mental map [17]; it must minimize unnecessary changes while 
emphasizing temporal trends or patterns. This causes a conflict 
between two opposite needs: on the one hand, each layout in the 
sequence must comply with the aesthetics criteria and must be 
consistent with the metaphor on which it is based and with its 
meaning; on the other hand, all layouts must preserve the user’s 
mental map. The aforementioned criteria have led to the 
development of several dynamic layout techniques, which we can 
group mainly to two families: offline and online algorithms. 
Offline algorithms need the entire sequence of temporal graphs, 
which are then aggregated into a compound graph, i.e., an overall 
or ‘foresighted’ layout is computed as a base for obtaining stable 
layouts [15, 30]. Online algorithms can compute a dynamic layout 
in an incremental fashion, by taking into account only previous 
time slices [23, 31]. Moody et al. [35] provide a common 
conceptual framework for both approaches: binding nodes to 
anchors ensures the dynamic stability. Anchors can be put on 
random or fixed positions as well as based on the positions of the 
nodes in the aggregated layout or the positions of the nodes in the 
previous time slice. Anchors can also consist in the position of 
other instances of the same node in the other time slices [18].  

Scholars have proposed different analytical methods to 
automatically set the balance between stability and consistency 
[37], or between stability and local quality [7]. Empirical studies, 

nevertheless, have shown that the preservation of the mental map 
is not important in every circumstance [41] and that the extent of 
this preservation (or, conversely, the extent of the allowed 
difference between graph layouts in the sequence) depends on the 
data and the task [40], and presumably on the user, too. 

Given the sequence of dynamic layouts obtained by any of 
the aforementioned algorithms, we can rely on different proposed 
approaches to visualize them: animation (obtained as a simple 
flip-book-like series of dynamically laid out node-link diagrams 
or morphed through smooth interpolations [5, 22, 32]); 
superimposition (in which diagrams overlay one another [6]); 
juxtaposition (side-by-side displacement [1]); two-and-a-half-
dimensional view (where two-dimensional diagrams are arranged 
in a stacked pile [16, 18, 26]). 

2.3 Analytics 
Analytical methods usually employed for social network analysis 
are based on models, metrics, and algorithms of Graph Theory 
[45]. Examples for common metrics are different kinds of node 
centralities that determine the relative importance of a given node 
on the base of its connection to other nodes. Popular algorithms 
are those for finding communities, i.e., node clusters with dense 
connections within them and sparse connections between them. 
The integration of analytical methods into an interactive 
visualization can support the comprehension of relational and 
temporal aspects of dynamic networks. A common approach is to 
compute some static SNA metrics associated to nodes and edges 
and mapping them to any visual variable (see for example [39], 
where information visualization and statistical methods are 
combined, and [46], where event-driven information for 
characterizing temporal evolution is used). Perer and Shneiderman 
[38] and Tomiski et al. [43] also exploit these metrics to perform 
dynamic filtering and some form of multidimensional data 
reduction, also combining visualization and exploratory data 
analysis techniques. Besides metrics associated to nodes and 
edges, analytical methods can compute overall metrics and thus 
provide synthetic descriptions of the entire network at given 
instants or intervals. Such synthetic descriptions can enable a 
coarse-grained visual comparison of a large number of networks 
[21]. 

3. PROBLEM DESCRIPTION 
Time is only one of several aspects of the complexity of dynamic 
(social) networks. Such networks are of course temporal but in 
general they can also be large, multipex, multi-modal, and 
probabilistic [10]. They are large because they have a large 
number of nodes and edges and a complex topology. They are 
multiplex, because more than one edge is allowed for each pair of 
vertices, and also multi-relational, if these edges are of different 
types. They are multimodal, since there can be also different types 
of nodes and they are probabilistic, since a probability is 
associated to the occurrence of edges and to their attributes. In our 
contribution we particularly refer to organizational networks, i.e., 
networks within an organization, like for example an enterprise. 
Moreover, we disregard the multi-modality, considering only 
employees as nodes and leaving out roles, skills, tasks, and any 
other organizational data. We also disregard probabilistic aspects 
but we consider multiple types of relations (e.g. communication, 
collaboration, reporting). As for size, we limit ourselves to 
companies with up to one hundred employees. Network data are 
collected on a regular basis via questionnaires. Hence, our time 
domain is not continuous, but consisting of a sequence of time 
slices. 



Having defined the scope and the features of the data, we 
conducted preliminary interviews with potential users to outline 
their needs and a list of requested features. We chose subjects to 
interview from two groups: network analysis experts and business 
users with managing function (i.e., non-experts with respect to 
network analysis).  We questioned 11 persons using a semi-
structured interview method. The questions consisted of potential 
application scenarios (e.g., what managers need to know about 
networks), data handling (e.g., online questionnaires), network 
measurements (e.g., static and dynamic methods) and 
visualization techniques (e.g., graph drawing). The interviews 
lasted between one and two hours each. Then we analyzed the 
audio recordings with a qualitative method [42]. Based on this, we 
identified the most important tasks and functionalities, and elicited 
a list of both simple and complex tasks. A simple task, for 
example, is the monitoring of a network indicator for a certain 
person over time; a complex task could be a before/after 
comparison of the entire network to evaluate management 
intervention. Given a rough sketch of data, users, and tasks, we 
engaged in the design of our visual analytics prototype. 

4. DESIGN CHOICES 
The first choice when dealing with the visualization of networks 
concerns the basic mapping of entities and relationships to a 
certain representation. In our case we chose a node-link diagram 
because they are the most popular kind of visualization for 
dynamic networks and consequently they require a shorter 
learning period to be effectively used than other forms of 
representation. We also considered matrix-based visualizations, 
which are popular in different contexts and might also be easy to 
understand, but they are not as efficient for visualizing paths and, 
most of all, multiplex and multi-relational networks that are the 
focus of our research.     

4.1 Dynamic layout 
Once we have chosen a specific visualization, the next step is the 
graph layout. The layout is a very important part of the design of 
the network visualizations, since 'position' is one of the most 
prominent visual variables. We aimed for a layout that enhances 
the perception of both, the relational aspects (the network 
structure) and the temporal aspects (the network evolution). Here 
we find the well-know conundrum already introduced in section 2: 
stability versus consistency. An additional requirement was the 
high interactivity of the visualization, like for example the direct 
manipulation of the networks, which involves the possibility for 
the user to drag-and-drop single nodes while the layout 
automatically reacts to these changes and adjusts accordingly. 
Moreover, we assume that a simple physical metaphor would 
further enhance the comprehension for non-expert users while 
algorithms based on more formal mathematical concepts would 
require longer learning periods.  

According to this last consideration we decided to adopt a 
force-directed algorithm using the spring-embedder metaphor: 
nodes are modeled as repulsing particles while edges are modeled 
as elastic springs. This physical model roughly ensures that nodes 
with more connections tend to occupy a more central position, 
while nodes with fewer connections are pushed towards the 
periphery. Moreover, it clusters connected nodes and, finally, it 
can deal with multi-relational networks treating different types of 
relations as edges with different weights. Then, we adopted an 
incremental and continuously running algorithm for the layout 
that allows the users to directly manipulate the diagram and also 
enables more sophisticated interaction techniques. Next, we 
tackled the issue of choosing a good layout to deal with the 

topology and the evolution in an appropriate manner, i.e., a 
manner that enhances their perception. Since the ideal balance 
between stability and consistency seems to be dependent on the 
task and on the data, tuning this trade-off by automatic methods 
could result in counter-intuitive representations. For this reason 
we provided the user with the possibility to interactively control 
this balance. In order to do so, we adopted an anchoring 
mechanism and made the anchors dynamic. We discarded the use 
of predetermined positions (they would not allow for free direct 
manipulation), then we discarded anchors consisting of the 
positions of nodes in the aggregated graph (which ensure stability 
but not consistency) and also discarded anchors consisting of the 
positions of nodes in the previous time slice (because our layout 
must be computed all at once in order to enable full interactivity). 
Finally, we adopted a dynamic anchoring mechanism, similar to 
the one used in GraphAEL [18], but we used a continuously 
running layout algorithm with a user-controllable trade-off 
between stability and consistency. All the instances of that node in 
precedent and subsequent time slices are considered as anchors for 
that node, and the positions of all instances are computed 
simultaneously. Particularly, we introduced new edges (red lines 
in Figure 1) that link different instances of the same node in 
different time slices in a chain fashion. The length and the force 
constant of these new edges, which compose the chain, are 
interactively controlled by the user. The parameters of existing 
edges that connect different nodes in the same time slices do not 
vary. A simple slider in the GUI allows the user to select 
seamlessly between stability and consistency. When the user 
moves the slider towards consistency, the force constant of the 
chain decreases and its length increases. Hence, the different 
instances of the same node become almost independent and their 
positions are computed according only to other nodes and edges in 
the same time slice (Fig 1.d). Conversely, when s/he moves the 
slider towards stability, the force constant of the chain increases 
and its length decreases. Thus, the different instances of the same 
node end up at approximately the same position (Fig 1.e)  

In Figure 2 we show an example of a social network over 
two time slices. When the balance of the dynamic layout is set to 
maximum stability (Fig. 2.a), nodes hold approximately their 
position and it is easier to locate a certain person and track social 

Figure 1. Dynamic chain model for a network with three 
time slices: (a, b, c) independently computed static layouts; 
(d) dynamic layout computed with maximum consistency; 
(e) dynamic layout computed with maximum stability. 

 



relationships over time slices. Setting the balance to maximum 
consistency (Fig. 2.b) enables the perception of an overall insight, 
for example the fact that small groups of five to six persons merge 
into bigger ones. We think that this integration of graph drawing 
algorithms with interaction techniques, driven by perceptual 
principles, can support the visual analysis of dynamic networks.   

In our prototypical implementation we used a force-directed 
layout based on the Barnes-Hut algorithm [2]. In order to 
implement our dynamic chain mechanism, we added the inter-
time edges, whose spring forces and lengths are user-controlled, 
and reduced repulsing forces between nodes in different time 
slices. The setting of parameters, namely the residual repulsing 
force between nodes in different time slices as well as the length 

and the elastic coefficient of inter-time edges, is tricky. We want 
some residual force to avoid node overlapping. But if this force is 
too strong with respect to the elastic force of inter-time edges the 
node instances create large clusters according to their time slice 
only and the results fail to meet the objective of our dynamic 
chain layout concept. As for computational complexity, the 
additional edges do not overly affect the occupation of memory 
and the speed of computation, since they are n for each time slice 
(n being the number of nodes), while normal edges are n2 for each 
time slice in the worst case.  

4.2 Views 
In the previous section we introduced a technique for improving 
the layout of dynamic networks. In this section we discuss how 

Figure 2. Two juxtaposition views of a network, each view showing two time slices. The balance of the dynamic layout is set to 
maximum stability in (a), enabling the detailed tracking of single nodes since they approximately hold their positions, and to 
maximum consistency in (b), enabling the perception of an overall insight (small clusters merge into bigger ones). The node 
highlighting (discussed in section 4.5) is performed in edges-first mode in (a) and in trajectories-first mode in (b). 

. 



adequate visualizations can support their exploration and in 
particular how the temporal dimension can be visually encoded. 
Mapping time to time (i.e., animation) is a popular approach, and 
there is evidence that it enhances the perception of change [33]. In 
contrast to that, some of the experts we interviewed pointed out 
that animation might interfere with a detailed exploration and 
might also hamper the comparison between different time slices, 
which can be performed only in the user’s memory. Focusing on 
changes over time, we decided to explore alternative views and 
their combination.  

4.2.1 Juxtaposition view 
By placing node-link diagrams of different time slices side by 
side, we obtain a juxtaposition view (Fig. 2.a and b) that we may 
understand as a mapping of time to space (the horizontal axis, in 
our case). This view applies the principle of small multiples [44] 
and allows the reader to compare the time slices and find 
commonalities and differences. Visual analysis is further 

facilitated by linking the different frames by interaction features 
like coordinated zooming & panning and coordinated 
highlighting, which make exploration and comparison easier. The 
drawback of juxtaposition is that it takes up more display space: 
the more time slices we want to visualize, the more display space 
is needed. 

4.2.2 Superimposition view 
With respect to screen occupancy, we can attain a better 
performance by superimposing the diagrams (Fig. 3). In this case, 
a visual variable must be employed to differentiate between time 
slices (hence we can refer to superimposition as a mapping of time 
to visual variable). We used transparency, so that more recent 
elements are more opaque. Besides the fact that less screen space 
is used, this has the advantage of reducing the eye movement from 
one slice to the other compared to juxtaposition and preserves the 
context. The main disadvantage of this view is the concentration 
of all edges and nodes within the same diagram with a large 
number of edge crossings and occlusions that impair readability. 
In order to reduce visual clutter, we allow users to interactively 
select the elements (trajectories, nodes or edges) to be shown 
persistently or by hovering.      

4.2.3 Two-and-a-half-dimensional view 
Mapping time to an additional spatial dimension results in a two-
and-a-half-dimensional view (Fig. 4). In such a view, we draw 
diagrams for each time slice on separate transparent planes, 
stacked along the horizontal time axis. It combines some of the 
advantages of the two aforementioned views. Moreover, the added 
spatial dimension offers us the opportunity to include additional 
information within this view, as we will describe in section 4.4.  
The disadvantage is that diagrams are distorted and occlusion may 
occur between planes. We let the user find the best viewpoint to 
reduce this occlusion, providing her/him with 3D zooming, 
rotating, and panning controls. 

4.2.4 Combination of the three views 
Each of the three views introduced in the previous sections has 
advantages and disadvantages and might be efficient for certain 
data or a particular task. Hence, we exploited them all, and 
integrated them into our prototype. Moreover, exploring a 
complex network, the user might happen to switch repeatedly 
between views. Therefore, we wanted to preserve the user’s 
mental map (in a broader sense than the one we have discussed in 

Figure 4. A two-and-a-half-dimensional view of four time slices. Trajectories of selected nodes are visualized as polygonal 
chains. An SNA centrality metric is mapped to the color of nodes and trajectories, enabling the tracking of their evolution: 
values are about constant for “Pa” (green trajectory) while they are decreasing for “Je” (blue-green trajectory). 

 

Figure 3.  A superimposition view of four time slices. 
Trajectories of all nodes are visualized as gray directed 
polygonal chains. The node “Ja” under the mouse cursor 
is highlighted in red, while its neighbors are highlighted 
in yellow. The most recent instances are opaque, previous 
ones are increasingly transparent. “Ja” has been loosing 
connections, so it moves from the center to the periphery. 



section 4.1) and provide a common context for the interactive 
exploration of the three views. In order to do so, we designed an 
interaction metaphor and developed a set of smoothly animated 
transitions between views (Fig. 5). According to this metaphor, 
the planes onto which the diagrams are drawn are rendered as 
transparent sheets. They are stacked upon each other in the 
superimposition view (Fig. 5.a), then translated alongside the time 
axis in juxtaposition view (Fig. 5.b), and finally rotated by 90 
degrees around their vertical axes in the two-and-a-half 
dimensional view (Fig. 5.c). 

In our prototypical implementation, we used the Prefuse 
visualization toolkit [27] for the interactive visualization of 
diagrams on planes, and the Java binding for the OpenGL API 
(JOGL)1 for developing the three views and the transitions 
between them in three-dimensional space. 

4.3 SNA integration 
As mentioned in section 2, the integration of analytical methods 
with visualization and interaction techniques can support and 
enhance the comprehension of network data. As a first step 
towards the combination of visual and analytical methods, we 
considered classic SNA metrics for static (i.e., non-temporal), 
single-relational networks and integrated their computation into 
our prototype. In this way, a user can interactively select a certain 
SNA metric to be computed for a certain type of relation s/he is 
interested in. The entire temporal multi-relational network is 
partitioned into as many static single-relational networks as there 
are time slices and the requested metric is computed for each of 
them. Then, the resulting values are mapped to visual variables in 
the visualization (color, size, etc.) for each time slice. In Figure 4, 
for example, the eigenvector centrality is mapped to node color. In 
general, this integration supports the analysis by enriching the 
node-link diagram with the values of global and local topological 
properties. It also enables the tracking of the network evolution 
through the trend of its analytical measures as explained in the 
following section.  

4.4 Trajectories 
While it is important to analyze and understand the topology of 
the network, in other words its relational structure (i.e., its edges), 
nodes are just as important, representing the actors of all the social 
interaction. Therefore, a good visual analytics approach 
supporting dynamic network analysis should stress the node 
properties and the changes they undergo over time. In particular, 
given the importance we give to the layout and the information it 
conveys, we should provide users with a mechanism to track a 
node over time and to find its position in each time slice in a more 
immediate way than by just preserving stability. We accomplished 
this requirement by showing the node trajectories with an 
adequate interaction technique for each view. 

                                                                    
1 http://jogamp.org/jogl/ 

In the case of the superimposition view, we get an obvious 
solution from our dynamic chain layout: by simply displaying the 
special edges connecting the instances of a given node in different 
time slices, we obtain a polygonal chain that is exactly the 
trajectory of that node (Fig. 3). Unfortunately, the superimposition 
view is already cluttered with nodes and edges of all the time 
slices, and consequently edge crossing. Moreover, many visual 
variables that could have been used to differentiate trajectories 
from nodes are already exploited (color and bending to distinguish 
different types of relations, transparency to distinguish recent and 
old time slices). Thus, we allow users to alternatively visualize 
edges and trajectories or to visualize them only on demand. 
However, the fact that all nodes lie on the same plane region 
should provide some sort of a context that facilitates exploration 
and comparison even if not all edges and trajectories are displayed 
at the same time.  

The lack of this proximity context, jointly with the 
persistence of the crossing of both edges and trajectories, makes it 
very cumbersome to exploit the trajectories in the juxtaposition 
view.  

Conversely, the two-and-a-half-dimensional view is very 
well suited for the visualization of trajectories, which can link 
node instances in different time slices along the spatial dimension 
dedicated to time (Fig. 4). In this case, at least for certain datasets 
and tasks, it might be effective to also visualize all the trajectories 
at once. Moreover, in that spatial dimension there are visual 
variables to which we can map additional information. For 
instance, we can shade different colors along the trajectory of a 
given node to show how its values for a certain metric vary over 
time. In this way, the results of analytics methods are integrated 
directly into the main visualization of the network, enabling the 
user to examine its relational and temporal aspects simultaneously 
without any additional diagram. In the organizational network of 
Figure 4, we observe that “Pa” has constantly little importance 
(green trajectory) while “Je” has a very important role at the 
beginning but progressively loses it (trajectory shading from blue 
to green). Moreover, “Pa” increases her relations from six in the 
first time slice to eight in the last, while “Je” loses his relations till 
he remains connected to “Pa” only. 

4.5 Dual-mode highlighting 
The need to combine the analysis of the trajectory of any given 
node with the analysis of its ‘neighbors’ (adjacent nodes, i.e., 
those nodes to which it is directly connected in one step) led to the 
design of an additional interaction technique that can be referred 
to as a dual-mode highlighting. The dual mode relates to the way 
the graph is traversed and adjacent edges and nodes are 
highlighted on mouse over. In the first mode (Fig. 2.a) adjacent 
edges are traversed first when the user hovers over a node and the 
nodes that are connected to the selected node in the same time 
slice are found. Then, the trajectories of all these nodes are 
traversed. Thus, the same set of nodes is highlighted in each time 
slice, even if they are not adjacent in the other time slices. The 

Figure 4. Sketch of the transitions between different 
views: superimposition (a), juxtaposition (b), two-and-
a-half- dimensional (c)  (TODO: hand drawn ->  
computer graphics, smaller) 

Figure 5. Sketch of transitions between different views: (a) superimposition, (b) juxtaposition, (c) two-and-a-half- dimensional. 



second mode (Fig. 2.b) works the other way round: when the user 
hovers over a node, the graph is traversed with a trajectories-first 
criterion. First trajectories that lead to other instances of that node 
in other time slices are found, and then edges. Thus, all node 
instances that are adjacent to the correspondent instance of the 
selected node for each time slice are highlighted. By clicking on 
the selected node, the user can switch from one mode to the other 
according to her/his needs. The former mode, for example, might 
be useful to track the temporal evolution of a fixed group of nodes 
(the neighbors of the hovered one in the hovered time slice). In the 
example network (Fig. 2.a) we see that all persons that are 
connected to P.K. (the red node) in the first time slice, remain 
‘near’ to her in the bigger group in the second time slice.  The 
latter mode might help to follow the evolution of a single node 
and to explore the connections it establishes over time. In our 
example P.K. is directly connected with all of the four persons in 
her group in the first time slice. In the second time slice, she is 
directly connected with eight persons, but there are some persons 
in the bigger group to whom she has no relation (Fig. 2.b). 

5. CONCLUSION AND NEXT STEPS 
In this paper we have presented a visual analytics approach to 
explore and analyze dynamic social networks. We have discussed 
an interactive dynamic layout algorithm, outlined a possible 
integration of visual and analytical methods for dynamic 
networks, and introduced specific visualization and interaction 
techniques for task-specific exploration of dynamic networks. The 
main contribution is an approach to dynamic networks based on 
the integration of interactive visualizations with analytical 
methods (namely layout algorithms and graph-theoretical metrics) 
driven by basic perceptual principles.  

Our future plans comprise an evaluation of our research 
prototype. Via user studies with both experts and non-experts we 
plan to validate our design and implementation choices. Then, we 
aim to carry out some improvements and extensions as for 
example exploring alternative representations besides node-link 
diagrams (e.g., matrix-based representations), further integrating 
visual and analytical methods, also going from static metrics and 
algorithms to dynamic ones. Finally, even if our design is 
confined to social networks and in particular organizational 
networks, some concepts and ideas might be applicable to 
dynamic networks in different contexts, in which both relational 
and temporal aspects are important and graph-theoretical 
algorithms are applicable and meaningful.   
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