
Evaluation of Description Logic
Programs using an RDBMS

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Patrik Schneider, BSc.
Matrikelnummer 0627383

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung

Betreuer: O.Univ.Prof. Dipl.-Ing. Dr. techn. Thomas Eiter

Mitwirkung: Dipl.-Ing. Thomas Krennwallner

Wien, 30.12.2010

(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Patrik Schneider
Postfach 668
9490 Vaduz
Liechtenstein

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30.12.2010

(Unterschrift Verfasser)

v

Abstract

We propose a novel approach to evaluate description logic programs (dl-programs) using
a Relational Database Management System (RDBMS). Such dl-programs are a state-of-
the-art Semantic Web formalism of combining rules and ontologies, whereby rules are
expressed as logic programs and ontologies are expressed in Description Logics (DL).
In dl-programs a modular concept of plug-ins was introduced, which allows to combine
dl-programs with different DL reasoner. Grounding in dl-programs is still considered
a performance bottleneck, caused by having exponentially many rules to process. But
for the success of the Semantic Web technologies, it is crucial to efficiently process vast
amounts of data. The goal of this work is to show, that dl-programs can be efficiently
evaluated by using RDBMSs. For this purpose we report on a prototype implementation,
where SQL is generated by an existing DL-Lite reasoner, which is incorporated into a
Datalog rewriter. For testing the prototype, we develop a benchmark suite with pure
Datalog and Datalog/DL tests. Based on the benchmark suite, we produce experimental
results. These results are used to compare the prototype with the reasoners of the DLV
family.

Zusammenfassung

Wir entwickeln einen neuen Ansatz, bei dem Description Logic Programs (dl-programs)
auf einem relationalen Datenbank System (RDBMS) evaluiert werden. Die dl-programs
sind ein vielversprechender Semantik Web Formalismus um Regeln und Ontologien zu
kombinieren. Dabei werden die Regeln als Logische Programme und die Ontologien
in Beschreibungslogiken (DL) ausgedrückt. Bei der bottom-up Auswertung eines dl-
programs gibt es aber immer noch Geschwindigkeitseinbussen, da exponentiell viele
Regeln im Verhältnis zur Grösse des Programms entstehen können. Ein wichtiger Faktor
für die Akzeptanz von Semantik Web Technologien besteht aber darin, dass grosse Daten-
mengen effizient verarbeitet werden können. Das Ziel dieser Arbeit ist nun zu zeigen, dass
dl-programs mit Hilfe von RDBMS effizient verarbeitet werden können. Um dieses Ziel
zu erreichen, wurde ein Prototyp entwickelt, bei dem mit Hilfe eines DL-Lite und eines
Datalog Systems, SQL generiert wird. Um die Effizienz des Prototyps zu zeigen, werden
Benchmarks entwickelt, welche aus Datalog und Datalog/DL Tests bestehen. Aufgrund
dieser Benchmarks wird dann der Prototyp an den Systemen der DLV-Familie gemessen.

Acknowledgements

First of all, I owe my sincerest gratitude to my supervisor, Thomas Eiter, who gave
me the opportunity to write my thesis, supported me throughout with his patience and
knowledge, while giving me enough space to work in my own pace. He gave me great
insight into the field of Knowledge Representation and Reasoning as well as into scien-
tific research as a whole. Moreover, I have learned good practise for scientific writing.
Particularly, I enjoyed the session about princesses, dragons, and heroes.

I would also like to thank Thomas Krennwallner, who provided me with many important
hints, remarkably, when I exactly needed them. Moreover, I am indebted to the staff of
KBS, for supporting me whenever needed.

Lastly, I am truly grateful to my family providing me with support and a loving environ-
ment. Writing a thesis is often a long journey with many obstacles, but it is definitely a
valuable experience, especially with great backing.

Contents

1. Introduction 1
1.1. Logic Programming . 3

1.1.1. Datalog . 3
1.1.2. Answer-Set Programming . 4
1.1.3. Tools . 5

1.2. Semantic Web Technologies . 6
1.2.1. OWL . 7
1.2.2. OWL 2 EL . 8
1.2.3. OWL 2 QL . 9
1.2.4. OWL 2 RL . 9
1.2.5. Tools . 10

1.3. Combining Rules and Ontologies . 11
1.3.1. Loose Coupling . 11
1.3.2. Tight Semantic Integration . 12
1.3.3. Full Integration . 12

1.4. Structure of the Thesis . 12

2. Preliminaries 13
2.1. Relational Algebra . 13
2.2. Stratified Programs . 14

2.2.1. Syntax and Semantics of Positive Programs 15
2.2.2. Dependency Graphs of Logic Programs 16
2.2.3. Fixpoint Theory . 16
2.2.4. Syntax of Stratified Programs . 17
2.2.5. Semantics of Stratified Programs 18
2.2.6. Complexity of Stratified Programs 21

2.3. DL-Lite and the Notion of FOL-Reducibility 22
2.3.1. The DL-Lite Family . 22
2.3.2. Reasoning in DL-LiteR . 24
2.3.3. FOL-Reducibility . 24
2.3.4. KB Satisfiability is FOL-Reducible in DL-LiteR 25
2.3.5. Query Answering over DL-LiteR Ontologies 28
2.3.6. Complexity Results for DL-LiteR 30

2.4. Description Logic Programs . 30
2.4.1. Syntax of Description Logic Programs 30
2.4.2. Well-Founded Semantics for Description Logic Programs 31

vii

Contents viii

3. Combining Datalog with DL-Lite 33
3.1. Rewriting Datalog to Relational Algebra extended with Fixpoint Evaluation 33

3.1.1. Nonrecursive Datalog . 33
3.1.2. Positive Recursive Datalog . 36
3.1.3. Datalog with Negation . 39
3.1.4. Stratified Datalog . 40

3.2. An Algorithm for Improving Query Answering over DL-LiteR Ontologies 40
3.3. First-Order Rewritable Case of Description Logic Programs 43
3.4. Stratified Evaluation of Description Logic Programs 46

4. Implementation 51
4.1. Overview . 51
4.2. Design . 52

4.2.1. Architecture . 52
4.2.2. Data- and Control-Flow . 53

4.3. Details of Rewriting Datalog to SQL . 54
4.3.1. Datatypes . 54
4.3.2. Rewriting the EDB . 55
4.3.3. Rewriting Nonrecursive Rules . 56
4.3.4. Rewriting Recursive Rules . 58

4.4. Interfacing Owlgres with the DL Plug-in 59
4.4.1. DL-Atoms . 60
4.4.2. Owlgres Overview . 61
4.4.3. Owlgres KB Management . 62
4.4.4. Rewriting the Standard DL-Atom 63
4.4.5. Rewriting the Update DL-Atom . 63
4.4.6. Adaptions in Owlgres 0.1 . 64

4.5. Limitations . 65

5. Experiments 67
5.1. Methodology . 67
5.2. Scenario 1 - Datalog . 67

5.2.1. Large Join Benchmark . 68
5.2.2. Default Negation Benchmark . 68
5.2.3. Stratified Negation Benchmark . 68

5.3. Scenario 2 - Derived DBpedia . 69
5.3.1. Simple Benchmark . 69
5.3.2. Advanced Benchmark . 70
5.3.3. Update Benchmark . 70
5.3.4. DBpedia queries . 71

5.4. Scenario 3 - Derived LUBM . 71
5.4.1. Simple Benchmark . 71
5.4.2. Advanced Benchmark . 71
5.4.3. Update Benchmark . 72

ix Contents

5.4.4. LUBM queries . 72
5.5. Scenario 4 - Limitations and Extensions 73

5.5.1. Well-Founded Semantics . 73
5.5.2. Combining DLVDB with generated Owlgres queries 73

6. Experimental Results 75
6.1. Scenario 1 - Datalog . 76

6.1.1. Large Join Benchmark . 76
6.1.2. Default Negation Benchmark . 77
6.1.3. Stratified Negation Benchmark . 77

6.2. Scenario 2 - Derived DBpedia . 78
6.2.1. Simple Benchmark . 78
6.2.2. Advanced Benchmark . 79
6.2.3. Update Benchmark . 79

6.3. Scenario 3 - Derived LUBM . 80
6.3.1. Simple Benchmark . 80
6.3.2. Advanced Benchmark . 81
6.3.3. Update Benchmark . 82

6.4. Scenario 4 - Limitations and Extensions 82
6.4.1. Well-Founded / Stable-Model Semantics 82
6.4.2. Combining DLVDB with Owlgres 83
6.4.3. Summary of Results . 83

7. Conclusion 85
7.1. Evaluation Results . 85
7.2. Future Work and Further Studies . 86

A. Installation and Use: 87
A.1. Prerequisites . 87
A.2. Installation . 87
A.3. Calling MOR from the Command Line . 88

Bibliography 89

1. Introduction

The Semantic Web, anticipated by Tim Berners-Lee in 2001, is by 2010 becoming an im-
portant topic in the World Wide Web (WWW) and the information system community.
This is observable through mature standards like the Resource Description Framework1

(RDF) and the Web Ontology Language1 (OWL), but also through evolving projects
like Ontorule, DBpedia, or SIOC.2 In their Scientific American article Berners-Lee et al.
capture the Semantic Web as follows [Berners-Lee et al., 2001]: Knowledge representa-
tion (KR), ontologies and agents are central to the Semantic Web and should lead to
an “evolution of knowledge”. KR is crucial, so the WWW can be better understood by
computer systems and humans. Ontologies, expressed in Description Logics (DL), are a
central part of the “understanding”, adding taxonomies and inference rules to the infor-
mation of a web page or a document. Software agent will collect and process information
using these ontologies. Taking the idea further, an agent could “bootstrap” new reason-
ing capabilities when discovering new ontologies. Several agents can be linked together
creating a “value chain” of information processing, whereby every agent is “adding value”
to parts of the information product.

This thesis is inspired by the idea of “adding value” to the information process by ex-
tending ontology based inference with Logic Programming (LP) based inference rules. In
recent years, combining rules and ontologies become an important focus of Semantic Web
research. The W3C founded the Rule Interchange Format (RIF) working group, which
aim is to create a standard for exchanging rules among rule based systems.3 Extending
the idea of exchanging rules, a W3C working draft was written concerning “RIF RDF and
OWL Compatibility”, which considers the import of RDF and OWL in RIF.4 The RIF
working group also specified different rule languages, which led to a Core, a Basic Logic
Dialect (BLD), and a Production Rules Dialect (PRD) dialect [Kifer, 2008]. Related
to the RIF and OWL compatibility, we focus on the strain of research, where rules are
expressed as logic programs and a loose coupling of rules and ontologies is considered.
As the starting point of this thesis, we take the state-of-the-art approach of description
logic programs (dl-programs) for loose coupling. Dl-programs were introduced by several
papers of Eiter et al., describing dl-programs under the answer set semantics [Eiter et al.,
2004] and under the well-founded semantics [Eiter et al., 2009b]. The papers mentioned
show that dl-programs regarding to their “advanced” expressive power are still decidable.
Furthermore, a modular concept of plug-ins was introduced, which allows to combine

1
http://www.w3.org/RDF/ and http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

2
http://ontorule-project.eu/, http://dbpedia.org/, and http://sioc-project.org/

3
http://www.w3.org/2005/rules/

4
http://www.w3.org/TR/rif-rdf-owl/

1

2

dl-programs with different DL reasoners. The concept of plug-ins was generalized to
HEX-programs and lead to the successful development of the reasoner dlvhex 5 [Eiter
et al., 2006].

Another inspiring idea is related to the size of projects like DBpedia. We observe that a
vast amount of data is collected and linked to ontologies. For the acceptance of Semantic
Web applications it is crucial, that these data is processed efficiently. Efficient data
processing was a main reason for the advent of relational database (DB) technology, so
we will use this technology as the foundation of our inference system. DL-Lite, which
was introduced by Calvanese et al., builds the link needed between DL-based inference
and a Relational Database Management System (RDBMS) [Calvanese et al., 2007].

DLV6 or dlvhex, belonging to the group of Answer Set (AS) solvers, which first ground
a logic program before the solutions are computed. Even with highly efficient grounding
algorithms, we might encounter a grounding bottleneck, caused by having exponentially
many rules to process [Eiter et al., 2007, 2009a]. If we reason with a large Knowledge
base (KB), we definitely need a more efficient technique for inference, however without
sacrificing the expressibility.

The main aim of this thesis is to show the feasibility of an efficient implementation of
dl-programs using an RDBMS. In particular, we answer the emerging questions of how
expressible the proof of concept is, what technical limitations are encountered, and how
scalable the implementation is.

The following list gives a brief overview of the contributions of this thesis:

1. We show that dl-programs under stratified semantics are rewritable into SQL, with
the restriction that the DL-Lite plug-in provides positive Datalog. To achieve this
rewriting, we leverage from stratified Datalog and DL-Lite, since both formalisms
are rewritable in SQL.

2. We report on a prototype implementation, called MOR, where an existing DL-Lite
reasoner is incorporated into our Datalog rewriter. The Datalog rewriter takes
advantage of linear recursive queries in SQL:1999 [ISO, 1999].

3. For showing the scalability of MOR, we develop a benchmark suite considering
expressibility and performance. The suite is separated into a scenario for plain
Datalog and two scenarios for Datalog combined with DL-Lite.

4. Based on the benchmark suite, we produce and compare experimental results with
MOR and the reasoners of the DLV family. We can remark in advance that the
results are encouraging.

An example should illustrate the need for our efforts. Take a “smart” route planner, which
should provide the user not just with short routes, but with customized routes. These
custom routes, tailored to the needs of an user, could consider environmental, monetary,
or even shopping objectives. Ontologies would be needed to define different means of

5
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

6
http://www.dbai.tuwien.ac.at/proj/dlv/

3 Introduction

transport, geographical locations, and different types of shops. Furthermore ontologies
would be needed to link different types of information to each other. The data for this
information would be extracted from several external sources (e.g. public rail system,
maps, routes, yellow pages, etc.). Then we would need rule based reasoning to calculate
the shortest, cheapest, most environmental friendly or most “interesting” way. This
could be even extended with the capabilities for user to formulate their own constraints
regarding transport, money or their personal interests. This example illustrates that new
kinds of applications could be captured by integration ontologies with rules in a scalable
fashion.

1.1. Logic Programming

In the 1970s and 1980s, LP evolved out of a debate about two different paradigms
of KR. One paradigm, procedural knowledge representation, advocated mainly at MIT
around Marvin Minsky, features recursive procedures that operate on lists. Lisp, based
on Lambda Calculus, become the main programming language for this paradigm [Mc-
Carthy, 1960]. It is still in considerable use by AI-researchers.7 The other paradigm,
declarative knowledge representation, features logic as a declarative language, which is
evaluated by a theorem-prover or model-generator. This paradigm was advocated around
John McCarthy of Standford, Pat Hayes, and Bob Kowalski of Edinburgh. The main idea
evolved from the deduction method Resolution Principle, developed by John Alan Robin-
son in 1965 [Robinson, 1965]. This deduction method was then implemented by Alain
Colmerauer in Prolog. The principle of Prolog can be subsumed as: ALGORITHM =
LOGIC + CONTROL [Colmerauer, 1985]. As Lisp, Prolog attracted and held a strongly
devoted user community. Carl Hewitt in [Hewitt, 2009] gives an in-depth view of the
developments and controversies in LP research around the 1970s.

1.1.1. Datalog

Strongly influenced by the research in the relational DB field, Datalog restricts LP and
particularly Prolog, to a function-free first-order vocabulary. Due to its use in the DB
field, facts are not stored in the logic program itself, but kept in an extensional database
(EDB) usually maintained by an RDBMS. Datalog can be traced back to several re-
searchers, particularly to H. Gallaire and J. Minker, which were researching the intersec-
tion between LP and DBs [Gallaire et al., 1977]. The name “Datalog” was coined later
by David Maier. An interesting property of Datalog is related to its semantics. Datalog
comes with three different equivalent semantics, namely model-theoretic, fixpoint, and
proof-theoretic semantics [Abiteboul et al., 1995]. We will have a closer look at Datalog
in Chapter 2.

According to Abiteboul et al. Datalog can be distinguished from LP as follows [Abiteboul
et al., 1995]:

7
See the conference for the 50th anniversary of Lisp: http://www.lisp50.org/

Logic Programming 4

• Syntax: In Datalog only relation symbols are allowed, hence functions symbols are
excluded. Furthermore variables in Datalog rules have to fulfill certain safeness
conditions.

• Model-theoretic semantics: Datalog programs always have finite models, in oppo-
site to infinite models in LP.

• Fixpoint semantics: Fixpoint semantics does not certainly provide a constructive
semantics for LP.

• Proof-theoretic semantics: In LP, SLD resolution is crucial, due to the infiniteness
of answers, whereby bottom-up approaches are not feasible. In Datalog, resolution
is rather used for optimization (e.g. magic sets).

• Expressive power: LP can express all recursive enumerable languages predicates,
whereby Datalog’s expressive power is in PTIME.

Example 1. The ancestor problem is a well-known example for Datalog:

parent(a, b). parent(b, c).
parent(b, d). parent(d, e).
ancestor(X,Y) ← parent(X,Y).
ancestor(X,Y) ← parent(X,Z), ancestor(Z, Y).

1.1.2. Answer-Set Programming

Answer-Set Programming (ASP) is a nonmonotonic LP paradigm based on the Stable
Model Semantics [Gelfond and Lifschitz, 1988] and extended with classical negation in
[Gelfond and Lifschitz, 1991]. The development of ASP was surely influenced by certain
limitations of Prolog. One limitation is the absence of a purely declarative representation
of Prolog programs, because the order of the rules in Prolog are important for their
evaluation. If negation-as-failure (NAF) is interpreted in the Stabe Model Semantics,
the NAF of a literal means that the literal is “not known”, which differs to the classical
interpretation of the literal’s negation. In Prolog classical negation is simply omitted.
Moreover the solution of a Prolog program is not encoded in a model. With ASP some
limitations of Prolog were overcome and a more general problem solving strategy evolved.
This strategy can be outline according to [Eiter et al., 2009a] as follows:

1. A problem instance is encoded in a (nonmonotonic) logic program, such that the
solutions are represented by the models of the program;

2. some models of the program are computed using an ASP solver; and

3. a solution for the problem is extracted from the model.

This strategy is well suited to solve NP-complete problems like three-colorability of a
graph [Eiter et al., 2009a].

5 Introduction

Example 2. To illustrate the method of ASP, we take the strategic companies problem
as an example. Central to this problem is the concept of a strategic set, which is a
minimal set of companies, being controlled by three other strategic companies. Based
on this, it should be determined which companies can be sold, whereby all products still
have to be produced and no company should be controlled by its holding company after
selling:

prod_by(p1, c1, c2). prod_by(p2, c2, c3).
prod_by(p3, c3, c4). prod_by(p4, c4, c5).
contr_by(c1, c2, c3, c4). contr_by(c2, c1, c3, c4).
contr_by(c4, c2, c3, c1). contr_by(c3, c1, c2, c4).
strateg(C1) ∨ strategic(C2) ← prod_by(P,C1, C2).
strateg(C) ← contr_by(C,C1, C2, C3), strateg(C1), strateg(C2), strateg(C3).

An ASP solver would return several answer sets for this example.

1.1.3. Tools

For Prolog, SWI-Prolog8 is a widely used open source implementation. Datalog is more
a conceptional language and has effected RDBMS standards. For example the SQL:1999
standard is partly influenced by Datalog [ISO, 1999]. Furthermore Datalog had an impact
on deductive DB systems like XSB9.

ASP has been implemented by the following systems:

• DLV10, a joint development of University of Calabria and Vienna University of
Technology, extends ASP with weak constraints, aggregates, and a SQL front-end
[Leone et al., 2006]. DLVDB 11 is an extended development of DLV for evaluat-
ing ASP on RDBMS [Terracina et al., 2008]. Finally, in dlvhex12 the concept of
modularization was introduced [Eiter et al., 2006]. We will use DLV, DLVDB, and
dlvhex in our experiments.

• Smodels13 , developed at Helsinki University of Technology, extending ASP with
similar functions as DLV [Niemelä and Simons, 1997].

• Clasp14, developed at University of Potsdam and using a conflict-driven solving
technique [Gebser et al., 2007a].

8
http://www.swi-prolog.org/

9
http://xsb.sourceforge.net/

10
http://www.dbai.tuwien.ac.at/proj/dlv/

11
http://www.mat.unical.it/terracina/dlvdb/

12
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

13
http://www.tcs.hut.fi/Software/smodels/

14
http://www.cs.uni-potsdam.de/clasp/

Semantic Web Technologies 6

1.2. Semantic Web Technologies

Figure 1.1.: Semantic Web Stack

Created by Tim Berners-Lee, the Semantic Web Stack15 (see Figure 1.1), also called
Semantic Web Layer Cake, illustrates the architecture of the Semantic Web. Naturally
in this stack-based architecture, every technology is based on the layer below. In the
following, we give a quick overview of the main technologies:

• URI/IRI (Uniform / Internationalized Resource Identifier):16 This level provides
a way to identify a name or resource on the Internet or in a XML-document.

• XML (Extensible Markup Language):17 XML is designed as a general markup lan-
guage and it is used to specify semi-structured documents in a well-formed format.

• RDF: RDF defines a directed labeled graph, which is represented by statements
called triples. The triples themselves have the form of (Subject Predicate Object),

15
http://www.w3.org/2007/03/layerCake.svg

16
http://tools.ietf.org/html/rfc3986 and http://tools.ietf.org/html/rfc3987

17
http://www.w3.org/XML/

7 Introduction

whereby
- the Subject is a vertice and the tail of the edge representing the triple;
- the Object is a vertice and head of the triple’s edge;
- the Predicate is defined as the label of the edge.

A Subject is represented by either a resource (URI) or a blank node; an Object
is represented by either a resource, a blank node, or a data type literal.

• RDFS (RDF Schema):18 RDFS extends RDF with a basic vocabulary for ontolo-
gies, e.g. Class, Property, and Label.

• SPARQL:19 SPARQL is a RDF query language loosely based on SQL. SPARQL
can be seen as the main technology to retrieve information from RDF graphs.

• OWL: In the following section we will have a closer look at it.

• RIF and Unifying Logic: RIF serves as an interchange format between existing rule
systems. RIF is, as well as Unifying Logic an important focus of current Semantic
Web research, whereby Unifying Logic is aiming for a combined formalisms of rules
and ontologies. These topics are a key issues of this thesis and will be discussed in
the following chapters.

• Proof: This layer is concerned with proof techniques for the underlying ontologies,
rules, and unifying logic.

• Trust and Crypto: The provided information are validated and supported regarding
sound and complete reasoning and trusted sources.

• User Interface & Applications: This level relates to applications which make use of
the Semantic Web or give access to one of the different layers.

1.2.1. OWL

Already ongoing for several years, a main focus of Semantic Web research was shaping an
adequate language for ontology modeling. As one of the achievements of this research,
in 2004, OWL was for the first time recommended [Schreiber and Dean, 2004]. Now, the
most recent recommendation by the W3C is OWL 2 [Krötzsch et al., 2009]. There are
still speculations about the confusion of “W” by “O” in OWL. According to Tim Finin,
OWL is primary an acronym for the bird, which is easy to illustrate and associated
with wisdom. Additionally OWL relates to an early KR language called One World
Language.20

In the OWL 2 Primer the main two alternative semantics for OWL 2 are outlined. A
RDF-based semantics, called OWL 2 Full, which allows the full expressivity of RDFS,
with the unfavorable drawback of being undecidable. On the other hand, a DL based
18

http://www.w3.org/TR/rdf-schema/
19

http://www.w3.org/TR/rdf-sparql-query/
20

http://lists.w3.org/Archives/Public/www-webont-wg/2001Dec/0169.html

Semantic Web Technologies 8

semantics, called OWL DL, which puts syntactic restrictions on RDFS [Krötzsch et al.,
2009].

DL is a family of KR formalisms based on a fragment of first-order logic (FOL). A DL
knowledge base (KB) is separated into an intentional knowledge base (TBox) and an
extensional knowledge base (TBox). The base vocabulary of a DL consists of Individuals,
Classes, and Roles. Furthermore, Classes and Roles are put in relations to eachother and
Individuals are asserted to them [Baader et al., 2004]. We assume that DL was chosen
due its well-defined computational properties and modular concept. A modular concept
in that sense, that most families of DL are based on the simple DL called ALC, whereas
ALC expressivity is extended with new language constructs. For example SHOIN (D)
extends ALC with transitivity, cardinality, equivalence between Individuals, functional
Roles, and more. For further details, we refer the interested reader to [Baader et al.,
2004].

The DL SHOIN (D) provides the formal base of OWL DL and enables, due to its
computational properties, the development of efficient reasoning systems. Notice that
undecidability in OWL Full results mainly from not distinguishing between the sets of
Individuals, Classes, and Roles. In contrast to this, these types are pairwise disjunctive
sets in SHOIN (D).

With OWL 2 a further extension called OWL 2 Profiles was introduced by the W3C
[Motik et al., 2009]. The aim of these profiles is, formally called fragments, trading
expressive power for lower complexity. As we will see with OWL 2 QL, this trade-off
establishes capabilities of using technologies like RDBMS. Note that in DL, most of the
reasoning systems are based on tableaux based algorithms.

Figure 1.2 gives an example of a geospatial OWL ontology.21 In this ontology spatial
relationships are defined based on the existing ontologies Geonames22 and GeoOWL23.
For example the RoadFeature is a subclass of TypedFeature, which has the property
hasFeatureCode.

1.2.2. OWL 2 EL

The authors of [Motik et al., 2009] describe this profile as: “OWL 2 EL is particularly
useful in applications employing ontologies that contain very large numbers of properties
and/or classes. This profile captures the expressive power used by many such ontologies
and is a subset of OWL 2 for which the basic reasoning problems can be performed in
time that is polynomial with respect to the size of the ontology [EL++].”

Motivated by negative conclusions regarding complexity in DL research, EL++ was in-
troduced in [Baader et al., 2006] to provide a tractable formalism, which is expressive

21
http://www.geospatialmeaning.eu/wp-content/uploads/2008/07/geoconcepts_ontology_skelet.gif

22
http://www.geonames.org/

23
http://www.w3.org/2005/Incubator/geo/XGR-geo/

9 Introduction

Figure 1.2.: A Geospatial Ontology

enough to capture ontologies used in practice. For example, the biomedical ontology
SNOMED CT24 is expressible in EL++.

1.2.3. OWL 2 QL

In [Motik et al., 2009] this profile was summarized as: “OWL 2 QL is aimed at ap-
plications that use very large volumes of instance data, and where query answering is
the most important reasoning task. In OWL 2 QL, conjunctive query answering can
be implemented using conventional relational database systems. Using a suitable rea-
soning technique, sound and complete conjunctive query answering can be performed in
LOGSPACE with respect to the size of the data (assertions).”

OWL 2 QL will be one of the main focus points of this thesis, due its capabilities of
answering conjunctive query over a DL KB using an RDBMS. In Chapter 2 we will have
a in-depth look at the DL-Lite family and particularly at DL-LiteR [Calvanese et al.,
2007].

1.2.4. OWL 2 RL

Again in [Motik et al., 2009] this profile is characterized as: “OWL 2 RL is aimed at ap-
plications that require scalable reasoning without sacrificing too much expressive power.
24

http://www.ihtsdo.org/snomed-ct/

Semantic Web Technologies 10

It is designed to accommodate OWL 2 applications that can trade the full expressivity
of the language for efficiency, as well as RDF(S) applications that need some added ex-
pressivity. OWL 2 RL reasoning systems can be implemented using rule-based reasoning
engines. The ontology consistency, class expression satisfiability, class expression sub-
sumption, instance checking, and conjunctive query answering problems can be solved in
time that is polynomial with respect to the size of the ontology.”
According to Motik et al. the design of OWL 2 RL was influenced by Description Logic
Programs and pD*, which enables the implementation of reasoning capabilities by rule-
based reasoner [Motik et al., 2009].

1.2.5. Tools

Depending on the level of the Semantic Web Stack, different tools come into use. For
editing RDF any XML-Editor can be used, for editing OWL the open-source editor
Protégé25 is convenient. For developing Semantic Web applications the Jena26 framework
provides a favorable starting poing.
However, our interest is more related to the DL reasoning systems. For OWL DL well-
known systems are:27

• FaCT++28,
• Hermit29,
• KAON230,
• Pellet31, and
• RacerPro32, which will be used in combination with dlvhex for parts of our exper-

iments.
The following OWL 2 Profiles are supported by:

• CEL supports OWL EL33,
• QuOnto34 and Owlgres35 supports DL-LiteRand OWL QL, whereas we will have a

in-depth look at Owlgres in Chapter 4, and
• ORACLE 11g36 supports OWL RL.

25
http://protege.stanford.edu/

26
http://jena.sourceforge.net/

27
A comprehensive list of DL reasoners can be found on

http://www.cs.manchester.ac.uk/~sattler/reasoners.html
28

http://owl.man.ac.uk/factplusplus/
29

http://hermit-reasoner.com/
30

http://kaon2.semanticweb.org/
31

http://clarkparsia.com/pellet/
32

http://www.racer-systems.com/products/racerpro/
33

http://lat.inf.tu-dresden.de/systems/cel/
34

http://www.dis.uniroma1.it/~quonto/
35

http://pellet.owldl.com/owlgres/
36

http://www.oracle.com/database/

11 Introduction

1.3. Combining Rules and Ontologies

In the past couple of years, another focus of Semantic Web research was towards finding
a combined KR formalism for rules and ontologies. The discussion was encouraged by
certain shortcomings of DL. The authors of [Motik et al., 2006] point out some reasons
for extending DL with rules:

• Higher Relational Expressivity: DL is designed to model relations in a tree-like
manner, whereby in LP general relational structures can be defined.

• Polyadic Predicates: In DL only unary (Classes) and binary (Roles) predicates are
intended. Particularly in the DB field, larger predicates are common.

• Closed-World Reasoning: Again in the relational and deductive DB field, it is
desired, that if no proof of a positive ground literal is found, then the negation of
that literal is assumed true [Reiter, 1977].

• Integrity Constraints: In FOL expressing constraints as used in ASP, is not possible.
In ASP, constraints are special rules with an empty head and effect the filtering of
unwanted models.

• Modeling Exceptions: In DL being a strict subset of FOL, NAF is not express-
ible, which is considered an important capability of non-monotonic formalisms.
The famous “usually birds fly, but penguins cannot fly” is used to illustrate this
shortcoming.

The Semantic Web Rule Language (SWRL) was one of the first proposals to overcome
these limitations. The rule layer in SWRL was set on top of OWL, achieved by allowing
material implication of OWL expressions [Horrocks et al., 2004]. This leads to undecid-
ability in general, however, fragments of SWRL are implemented in several DL reasoner
(e.g. KAON2 and Pellet).

In Eiter et al. [Eiter et al., 2008b] an interesting taxonomy of combination approaches
is given. The approach is mainly based on the level of integration. Another taxonomy is
given by the authors of [Mei et al., 2006], which differs between homogeneous and hybrid
approaches, taking into account safeness condition and information flow. We will have a
detailed look at the taxonomy of [Eiter et al., 2008b].

1.3.1. Loose Coupling

The rule and DL KB are kept as separate, independent components. An interface mech-
anism connects both components allowing the exchange of knowledge between them.
The interface is designed in a way, that decidability is guaranteed for the combined KB.
Furthermore the knowledge flow can be uni- or bi-directional.

Resulting from dl-programs [Eiter et al., 2004], HEX-programs [Eiter et al., 2006] belong
to the loose coupling approach. In Chapter 3 we will view dl-programs more detailed.

1.3.2. Tight Semantic Integration

In this approach the rule and DL KB are kept distinct. The integration will not occur
through an interface mechanism, but through the integration of the rule and DL models,
whereby each model should satisfy its domain and “agree” with the other model.

CARIN [Levy and Rousset, 1998] and DL+ log [Rosati, 2006] represent this approach.

1.3.3. Full Integration

The authors of [Eiter et al., 2006] describe full integration the following way: “Full
integration approaches are mostly distinct by the absence of separation between two
vocabularies at hand: the two universes are treated to a large extent in a homogeneous
way”.

Description Logic programs (DLP) [Grosof et al., 2003], Hybrid MKNF knowledge bases
[Motik et al., 2006], first-order Autoepistemci Logic [de Bruijn et al., 2006], and Open
Answer Set Programs [Heymans et al., 2007] can be counted to this approach.

1.4. Structure of the Thesis

The structure of the thesis is the following. Chapter 2 provides the formal foundation
of combining rules and ontologies. In Chapter 3 the evaluation of dl-programs under
stratified Datalog is presented. Furthermore, the reformulation of dl-programs to SQL is
described. Chapter 4 highlights the technical aspects of the prototype MOR. In Chapter
5 we introduce a benchmark suite regarding the evaluation of rule based and combined
programs. In Chapter 6 we report on the empirical results relating the performance of
MOR in comparison with similar reasoning systems. In Chapter 7 the main results are
summarized and we outline future work and further studies.

2. Preliminaries

In Chapter 1 we gave a brief introduction to Datalog, which will be further elaborated in
this chapter. In Datalog it is feasible to express program classes with unstratified negation
(e.g. normal programs under well-founded semantics [Gelder et al., 1991] or under stable
model semantics [Gelfond and Lifschitz, 1991]). However, we consider the less expressive
class of stratified programs, which impose some syntactic restrictions on normal programs
[Apt et al., 1988]. For current SQL standards, namely SQL:1999, stratified programs
suffice to capture the expressivity of SQL [ISO, 1999]. Afterwards, we capture the DL-
Lite family and the notion of First-Order Reducibility (FOL-reducibility) for different
reasoning tasks. This introduction is kept close to the paper of [Calvanese et al., 2007].
Then, we introduce the formalism of dl-programs. The main idea of dl-programs is
combining normal programs under well-founded semantics with different fragments of
DL [Eiter et al., 2009b]. Again we remain close to the mentioned paper.

2.1. Relational Algebra

General relational algebra is a well studied field and already Tarski was concerned with it.
However his algebra is solely based on binary relations [Tarski, 1941]. Codd’s Relational
Algebra (RA) as an algebraic notation is associated with the Relational Data Model and
still is an important formalism in the DB field [Codd, 1970]. Despite RA was introduced
in 1970, it is used as a basic concept of RDBMS. We follow the definitions for RA
from [Ceri et al., 1990] and [Ullman, 1988]. Particularly Ullmann elaborated the relation
between RA and Datalog and showed that except recursion RA is as expressive as Datalog
[Ullman, 1988].

Definition 3. [Ullman, 1988] The relational data model consists of relations and do-
mains. Let D1, ..., Dn be sets, called domains, where D = D1 × ... × Dn. A relation
defined on D1, ..., Dn is any subset R of D. Elements of relations are called tuples, de-
fined as �d1, ..., dn� with d1 ∈ D1, ..., dn ∈ Dn. The columns of a relation are called
attributes. The set of attributes for a relation R is denoted the schema of R. The
attributes of R can either be referred by their name or by their position in the schema.

We assume that domains are finite sets, because in the context of RDBMS infinite do-
mains can be neglected. Since a relation is a set, the tuples are distinct but not ordered.

Definition 4. [Ullman, 1988] Relational Algebra has the following basic operators:

13

Stratified Programs 14

• Union (∪): Given relations R and S, R ∪ S is the set-theoretic union of the tuples
belonging to R and S. To ensure the result is again a relation, R and S must have
identical schemas. This condition is also called union-compatibility.

• Difference (–): Given relations R and S, R – S is the set-theoretic difference of the
tuples belonging to R and S. Union-compatibility must be fulfilled.

• Cartesian product (×): Given relations R and S, R × S is the set of all tuples t
such that t is the concatenation of a tuple r ∈ R and a tuple s ∈ S.

• Projection (πL): Given a list of attributes L, the tuples of the result are derived
from the tuples of the operand relation by elimination of the attributes which are
not in L.

• Selection (σF): Let F be a formula involving operands that are constants, at-
tributes, arithmetic comparison operators (e.g. <,>,≤, ...), and logical operators
(e.g. ¬,∨,∧). Then, the result of a selection σF on a relation R is the set of tuples
of R which fulfill formula F .

Definition 5. [Ullman, 1988] The Relational Algebra operators Intersection (∩), Com-
plement (\), Natural join (��), θ-join (θ), Semijoin (�), Antijoin (�), and Outer join
can be derived from by the basic operators.

Definition 6. [Ceri et al., 1990] If we exclude the difference operator, we obtain the
sublanguage Positive Relational Algebra (RA+).

Due to the success of SQL, RA never become a query language for RDBMS, nevertheless
it is often used for the internal representation of queries. Following the definitions from
[Ceri et al., 1990], we show that SQL can be interpreted in RA.

Definition 7. [Ceri et al., 1990] Let Q be a set of relations and let S be a SQL block of
the form:

SELECT �A� FROM �Q� WHERE �F �,

where S is interpreted by applying selection σF to Q and projection πA to Q. Q is defined
as the Cartesian product of all relations in Q. If F contains a join condition, instead
of the Cartesian product a θ-join can be directly evaluated. Furthermore, several SQL
blocks can be combined with the set-based operators union, natural join, and difference
to build new SQL blocks.

Out of Definition 7, we can also apply the reversal to rewrite RA expressions into SQL.

2.2. Stratified Programs

First we give a brief introduction to positive programs and extend them to stratified
programs.

15 Preliminaries

2.2.1. Syntax and Semantics of Positive Programs

The following definitions are taken from [Eiter et al., 2009a].

Definition 8. A program P is defined on an alphabet Φ = (S,V, C), consisting of the
nonempty sets of predicates S, variables V , and constants C. A term is either a constant
or a variable. An atom is defined as p(t1, ..., tk), where p ∈ S, each t1, ..., tk is a term,
and k is called the arity of p. A classical literal is a positive (resp. negative) atom a
(resp. ¬a). A negation-as-failure (NAF) literal has the form of the default-negated atom
a, denoted as not a. Propositional atoms are atoms with arity k = 0.

Definition 9. A positive program is a finite set of rules (clauses) of the form:

a ← b1, ..., bm. ,

where a, b1, ..., bm are atoms based on alphabet Φ. We refer to H(C) as the head of C
and the conjunction b1, ..., bm is denoted as the body B(C). We denote rule C as a fact
iff m = 0.

Definition 10. Given a program P , the Herbrand universe HUP is the set of all ground
terms which can be formed from the alphabet Φ. The Herbrand base HBP is the set of
all ground atoms which can be formed from predicates in S and the terms in HUP . For
any rule C ∈ P , we call ground(C) the set of all possible ground instances of C.

Definition 11. A (Herbrand) interpretation is an interpretation I over HUP , such that
I is a subset of HBP .

Definition 12. A ground rule C is satisfied in an interpretation I, if the head literal is
true in I or at least one body literal is false in I. It is falsified if the head literal is false
in I and all body literals are true in I.

Definition 13. Let I be an interpretation. Then I is a model of

• a ground rule C = a ← b1, ..., bm, denoted I � C, if the rule C is satisfied;

• a rule C, denoted I � C, if I � C � for every C � ∈ ground(C);

• a program P , denoted I � P , if I � C for every rule C ∈ P .

In LP there is usually no distinction between predicates appearing in the head or body.
By contrast in Datalog predicates are separated into distinct sets, according to Abiteboul
et al. defined as:

Definition 14. [Abiteboul et al., 1995] Let P be a Datalog program, the extensional
database denoted EDB(P) (resp. intensional database IDB(P)) is the set of all predi-
cates p ∈ P , iff there exists a rule C ∈ P such that p ∈ B(C) (resp. p ∈ H(C)).

Stratified Programs 16

Definition 15. [Ceri et al., 1990] Let P be a Datalog program, rule C ∈ IDB(P) has
to satisfy the following conditions:

(i) The predicate occurring in the head of C belongs to IDB(P).

(ii) All variables which occur in the head of C also occur in the body of C. (ii)
is called safety condition.

2.2.2. Dependency Graphs of Logic Programs

Adopted from [Ullman, 1988] we give the definition for a dependency graph of a logic
program.

Definition 16. [Ullman, 1988] Let P be a program. The dependency graph of P is
defined as a directed labeled graph G = (V,E, L), where V consist of all predicates of
P , L = {+,−} such that, (i) for all p, q ∈ V , �p, q,+� ∈ E, iff there is a rule C ∈ P such
that p ∈ head of C and q ∈ postive body of C, (ii) for all p, q ∈ V , �p, q,−� ∈ E, iff there
is a rule C ∈ P such that p ∈ head of C and q ∈ negative body of C.

In the context of a dependency graph the notion of topological sorting is interesting.

Definition 17. [Tarjan, 1976] Let G(V,E) be a directed acyclic graph. A topological
sort of G is the sequence S =

�
v1, v2, ..., v|V |

�
in which each vertex of V appears exactly

once. For every pair vi and vj of distinct vertices in S, if there is an edge in G from vi
to vj , then i < j.

2.2.3. Fixpoint Theory

Knaster-Tarski Theorem and Kleene’s fixed-point Theorem are used in several proofs.

Definition 18. Let X be a set and the operator T : P(X) → P(X) be a function . We
say that T is monotone, if for all X,Y ,X ⊆ Y it follows T (X) ⊆ T (Y). We say that T
is finitary if for every infinite sequence S0 ⊆ S1 ⊆ ...,

T

� ∞�
n=0

Sn

�
⊆

∞�
n=0

T (Sn)

holds. If T is both monotonic and finitary then it is called continuous. Another often
used equal definition of continutiy is for every infinite sequence S0 ⊆ S1 ⊆ ..., it is

T

� ∞�
n=0

Sn

�
=

∞�
n=0

T (Sn).

Observe that each continuous operator is also monotone, but the other direction does
not hold.

17 Preliminaries

Theorem 19. [Knaster-Tarski’s Fixpoint Theorem] Let T be a monotonic operator on
a nonempty set X. Then T has a least fixpoint, denoted lfp(T):

lfp(T) =
�

{X : T (X) ⊆ X} =
�
{X : T (X) = X}

Definition 20. Let T be a monotonic operator on a nonempty set X. For each finite and
transfinite ordinal the ordinal power of T is defined as follows, where n is an arbitrary
ordinal and ω is an arbitrary limit ordinal:
T ↑0 (X) = X

T ↑n+1 (X) = T (T ↑n (X))
T ↑ω (X) =

�
n<ω

T ↑n (X)

Theorem 21. [Kleene’s Fixpoint Theorem] Let T be a continuous operator. Then
lfp(T) = T ↑ω holds (ω is the first limit ordinal, the one corresponding to N).

2.2.4. Syntax of Stratified Programs

In stratified programs positive programs are extended with NAF literal, keeping certain
syntactic restrictions regarding the NAF literal.

Definition 22. [Eiter et al., 2009a] A normal program is a finite set of rules based on
the alphabet Φ, where a rule is in the form:

a ← b1, ..., bk, not bk+1, ..., not bm. ,

where a, b1, ..., bm are atoms and m � k � 0.

By convention, which is also used in the DLV family, variable names start with uppercase
letters, whereas predicate and constant names start with lowercase letters. Furthermore
underscore “_” denotes an anonymous variable, which stands for a variable which is not
used anywhere else in the program.

Definition 23. [Eiter et al., 2009a] For a rule C of a normal program, we refer to H(C)
as the head of C, the conjunction of b1, ..., bk, not bk+1, ..., not bm is denoted as the body
B(C). B(C) can be separated into B+(C) and B−(C), where the former represents all
positive atoms b1, ..., bk and the later all default-negated atoms not bk+1, ..., not bm.

Definition 24. [Apt et al., 1988] Let P be a normal program. A stratification is a
partition P = P1, ..., Pn such that for i = 1, ..., n holds:

(i) if a positive literal occurs in a clause in Pi then its relation symbol is defined
within

�
j≤i

Pj .

(ii) if a negative literal occurs in a clause in Pi then its relation symbol is defined
within

�
j<i

Pj .

Stratified Programs 18

Note that P1 can be empty. We denote each Pi as a stratum.

Lemma 25. [Apt et al., 1988] A normal program P is stratified iff its dependency graph
GP has no cycle containing a negative labeled edge.

Lemma 26. [Apt et al., 1988] A normal program P is stratified iff there exists a strati-
fication of P .

2.2.5. Semantics of Stratified Programs

Stratification is a syntactic property, however it also has “nice” semantical properties.
Apt et al. introduced an iterated fixpoint semantic for stratified programs [Apt et al.,
1988]. They provide the notions and results, which are recalled in shortened form for this
thesis. For this section, we denote by I a Herbrand interpretation following Definition
11.

Definition 27. An interpretation I of program P is supported iff for each atom a ∈ I
there exists a ground clause C with a ∈ H(C) and B(C) is true in I .

Lemma 28. Let P be a program. Then I is a model iff TP (I) ⊆ I.

Proof. See [Lloyd, 1984] for the proof for programs without negation.

Lemma 29. Let P be a program. Then I is supported iff TP (I) ⊇ I.

Proof. Direct from definition.

Operators are studied over an arbitrary, fixed, complete lattice. The least element is
denoted as φ and the elements of the lattice as I, J,M . The order relation on the lattice
is denoted as ⊆.

Lemma 30. If T is finitary then for all I

T (T ↑ω (I)) ⊆ T ↑ω (I).

Proof. See Lemma 4 in [Apt et al., 1988].

Lemma 31. If T is growing then for all I.

T (T ↑ω (I)) ⊆ I ∪ T ↑ω (I).

Proof. See Lemma 5 in [Apt et al., 1988].

19 Preliminaries

Now we take the fixed, complete lattice I, J,M and introduce the notion of iterations.
Let T1, ..., Tn be operators . We put

N0 = I
N1 = T1 ↑ω (N0)
...
Nn = Tn ↑ω (Nn−1)

Notice that Nn is computed using Ti in an iterative fashion, which is expressed by the
operator iter(T1, ..., Tn, I). We need to define the properties local and growing for this
operator.

Definition 32. A sequence of operators T1, ..., Tn is local, if for all I, J and i = 1, ..., n

I ⊆ J ⊆ Nn implies Ti(J) = Ti(J ∩Ni).

Local means that each Ti is determined by its values on the subsets of Ni.

Lemma 33. Suppose that the sequence T1, ..., Tn is local and that all Ti are finitary.
Then

(
n�

i=1
Ti)(iter(T1, ..., Tn, I)) ⊆ iter(T1, ..., Tn, I).

Proof. See Lemma 6 in [Apt et al., 1988].

Lemma 34. Suppose that the sequence T1, ..., Tn is local and each Ti is growing. Then

iter(T1, ..., Tn, I) ⊆ I ∪ (
n�

i=1
Ti)iter(T1, ..., Tn, I)).

Proof. See Lemma 7 in [Apt et al., 1988].

Corollary 35. Suppose that sequence T, ..., Tn is local and that all Ti are finitary and
growing. Then

iter(T1, ..., Tn, I) ⊆ I ∪ (
n�

i=1
Ti)iter(T1, ..., Tn, I)).

Thus for a local sequence T, ..., Tn of finitary and growing operators iter(T1, ..., Tn,φ) is

a fixed point of
n�

i=1
Ti.

Theorem 36. Suppose that the sequence T1, ..., Tn is local and that all Ti are growing.
If

I ⊆ J ⊆ iter(T1, ..., Tn, I) and

(
n�

i=1
Ti)(J) ⊆ J then

J = iter(T1, ..., Tn, I) .

Stratified Programs 20

Proof. See Theorem 1 in [Apt et al., 1988].

To relate iter(T1, ..., Tn, I) with (
n�

i=1
Ti) ↑ω (I), we need the following notion.

Definition 37. A sequence of operators T1, ..., Tn is raising if for all I, J,M and i =
1, ..., n

I ⊆ J ⊆ M ⊆ Nn implies Ti(J) = Ti(M).

Apt et al. introduce two equivalent definitions for the minimal model of a stratified
program. We focus on the main definition which is more operational, since it is based
on the iterations of the operator TP [Apt et al., 1988]. This definition shows that for a
program P stratified by P = P1, ..., Pn the interpretation of P is:

M1 = TP1 ↑ω (φ)
M2 = TP2 ↑ω (M1)
...
Mn = TPn ↑ω (Mn−1).

Let MP = Mn.

Theorem 38. For all programs P , TP is finitary.

Proof. See Theorem 4 in [Apt et al., 1988].

Definition 39. A program P is called semi-positive, if none of its negated relation
symbols occurs in a head of a clause. Furthermore we define:

NegP ={A: ¬A is a variable-free instance of a negative literal in a clause in P} and

DefP ={A: A is a variable-free instance of a head of a clause in P}.

Lemma 40. Let P be a subprogram of P �. Then

I ⊆ J ⊆ UP � and I ∩NegP = J ∩NegP implies TP (I) ⊆ TP (J).

Proof. See Lemma 10 in [Apt et al., 1988].

Informally, P � and UP � are used to regard TP on a larger space.

Theorem 41. If P is semi-positive, then TP is growing.

Proof. See Theorem 5 in [Apt et al., 1988].

Theorem 42. If the sequence P1, ..., Pn defines new relations, then the sequence of the
operators TP1 , ..., TPn considered on the space UP1∪...∪Pn is local.

Proof. See Theorem 6 in [Apt et al., 1988].

21 Preliminaries

Theorem 43. 1. MP is a model of P .

2. MP is supported.

Proof. See Theorem 7 in [Apt et al., 1988].

Theorem 44. MP is a minimal model of P .

Proof. See Theorem 8 in [Apt et al., 1988].

We have not shown yet that the model MP does not depend on the explicit way how P
is stratified.

Theorem 45. Let P be a stratified program. Then the model MP is independent of the
stratification of P .

Proof. We refer to Theorem 11 in [Apt et al., 1988].

2.2.6. Complexity of Stratified Programs

We assume the reader is familiar with the concept of Computational Complexity and
complexity classes (cf. [Papadimitriou, 1993]). We follow mostly [Dantsin et al., 1997].
Due to our focus on Datalog and RDBMS, we mainly consider the data complexity.

Definition 46. The data complexity is the complexity of checking whether Din ∪P � A
for a fixed Datalog program P and variable EDB Din and ground atoms A.

The program complexity is the complexity of checking whether Din ∪ P � A for variable
Datalog programs P and ground atoms A over a fixed EDB Din. We recall that if Din

is fixed, then the set of constants that may appear in P and A is fixed too.

The combined complexity is the complexity of checking whether Din ∪P � A for variable
Datalog programs P , ground atoms A, and EDB Din.

Theorem 47. Datalog is data complete in P.

Proof. See Theorem 3.4 in [Dantsin et al., 1997].

Theorem 48. Datalog is program complete in DEXPTIME.

Proof. See Theorem 3.5 in [Dantsin et al., 1997].

Theorem 49. Stratified propositional LP is P-complete. Stratified Datalog is data com-
plete in P and program complete in DEXPTIME.

Proof. Implicit in [Apt et al., 1988].

DL-Lite and the Notion of FOL-Reducibility 22

2.3. DL-Lite and the Notion of FOL-Reducibility

Calvanese et al. introduced in 2005 a new family of Description Logics (DL), called
DL-Lite [Calvanese et al., 2005]. DL-Lite is designed for tractable reasoning and efficient
query answering. An interesting feature of DL-Lite is, while keeping a low complexity for
reasoning a variety of ontology languages are still representable. Namely conceptual data
models (e.g. Entity-Relationship-Models [Abiteboul et al., 1995]) and object-oriented
models (e.g. basic UML class diagrams [Larman, 2001]) are still covered by DL-Lite. In
the development of DL-Lite the focus was put on answering conjunctive queries over DL
KB. This is again an interesting issue for this thesis, due the capabilities of DL-Lite to
maintain an ABox in an RDBMS and rewriting conjunctive queries into SQL.

2.3.1. The DL-Lite Family

In [Calvanese et al., 2007] the DL-Lite family was further refined. A base DL called
DL-Litecore was extended to DL-LiteF and DL-LiteR. Our focus will be mainly on
DL-LiteR, because it is the logical foundation of OWL 2 QL. The following definitions
are taken from [Calvanese et al., 2007].

2.3.1.1. Syntax of DL-Litecore and DL-LiteR

We first describe the syntax of DL-Litecore.

Definition 50. Let Ψ = (A,P) be the base vocabulary, where A denotes an atomic
concept, P denotes an atomic role and P− the inverse of the atomic role P .

Definition 51. Based on the vocabulary Ψ, the following syntax can be formed:

B −→ A | ∃R
C −→ B | ¬B
R −→ P |P−

E −→ R | ¬R

where B denotes a basic concept, R denotes a basic role, C denotes a general concept, E
denotes a general role, and ∃R is an unqualified existential quantification on a basic role.

Furthermore the authors use the notation R−, which means that R− = P− if R = P ,
and R− = P , if R = P− . A similar notation is used for ¬C and ¬E.

Definition 52. A DL KB K = �T ,A� consists of a DL-Litecore or DL-LiteR TBox T ,
the intentional knowledge, and an ABox A, the extensional knowledge, where:

(i) The DL-Litecore TBox is defined as a finite set of inclusion assertions of the
form: B � C .

23 Preliminaries

(ii) The DL-LiteR TBox is defined as a finite set of inclusion assertions of the
form: (i) or R � E .

(iii) The ABox is defined as a finite set of membership assertions of the form:
A(a) and P (a, b), where a and b are constants.

The set of inclusion assertions can be extended with B1 �B2 � C which is equivalent to
B1 � C and B2 � C , and with B � C1�C2 which is equivalent to B � C1 and B � C2.
We can use the constructs � to shorten A � ¬A and ⊥ to shorten A � ¬A.

Definition 53. A conjunctive query (CQ) q is a query of the form:
�→
x | ∃→y .conj(→x,→y)

�

where conj(
→
x,

→
y) is a conjunction of atoms and equalities with free variables →

x and →
y .

A union of conjunctive queries (UCQ) q is defined as:
�

→
x |

�
i=1,...,n

∃→yi.conji(
→
x,

→
yi)

�

where each conji(
→
x,

→
yi) is defined as before.

2.3.1.2. Semantics of DL-Litecore and DL-LiteR

We now define the semantics of DL-Litecore, which is straightforward extendable to
DL-LiteR.

Definition 54. An interpretation I = (∆I , ·I) consists of a non-empty interpretation
domain ∆I and an interpretation function ·I that assigns to each concept C a subset CI

of ∆I , and to each role R a binary relation RI over ∆I . For the constructs of DL-Litecore
we have:

AI ⊆ ∆I ;
P I ⊆ ∆I ×∆I ;

(P−)I =
�
(a, b)|(b, a) ∈ P I

�
;

(∃R)I =
�
x|∃y : (x, y) ∈ RI

�
;

(¬B)I = ∆I \BI ;
(¬R)I = ∆I ×∆I \RI .

An interpretation I is a model of an inclusion assertion B � C , if BI ⊆ CI . This can
be extended to a more general form. An interpretation I is a model of C1 � C2 (resp.
E1 � E2), where C1 and C2 (resp. E1 and E2) are general concepts (resp. general roles),
if CI

1 ⊆ CI
2 (resp. EI

1 ⊆ EI
2).

For membership assertions the interpretation function is extended to constants by as-
signing to each constant a a distinct object aI ∈ ∆I . This implies that the unique name

DL-Lite and the Notion of FOL-Reducibility 24

assumption [Baader et al., 2004] on constants is enforced. An interpretation I is a model
of a membership assertion A(a), (resp. P (a, b)) if aI ∈ AI (resp. (aI , bI) ∈ P I).

Given any assertion α, and an interpretation I, we denote by I |= α that I is a model
of α. Given a finite set of assertions κ, we denote by I |= κ that I is a model of every
assertion in κ. A model of a KB K = �T ,A� is an interpretation I such that I |= T and
I |= A, furthermore we write I |= K if I |= T and I |= A. A KB K is satisfiable, if it has
at least one model. A KB K (resp. a TBox T) logically implies an assertion α, written
K |= α (resp. T |= α), if all models of K (resp. T) are also models of α.

It is important to note that by the extended inclusion assertions in DL-LiteR the seman-
tics does not need to be reformulated. Furthermore DL-Litecore and DL-LiteR enjoy
the finite model property [Baader et al., 2004], due to the absence of assertions of the
form (funct R).

Definition 55. Given a conjunctive FOL query q and a KB K, the answer to q over K is
the set ans(q,K) of tuples →

a of constants appearing in K such that →
a M ∈ qM, for every

model M of K.

Definition 56. Given a conjunctive FOL query q and a KB K, the set of all possible
tuples of constants in K whose arity is the one of q is denoted AllTup(q,K).

2.3.2. Reasoning in DL-LiteR

The following reasoning task are covered by the DL-Lite family:

• Knowledge base satisfiability, i.e. decide if a given KB K is satisfiable.

• Logical implication of KB assertions, which covers as well:
- instance checking; and
- subsumption of concepts or roles.

• Query answering, i.e. given a KB K and a query q over K , compute the set
ans(q,K).

In this thesis the main focus will be on query answering, especially with the capabilities
of DL-LiteR to deal with large volumes of membership assertions stored in an RDBMS.

2.3.3. FOL-Reducibility

Before we can cover the reasoning task the notion of FOL-reducibility has to be defined.

Definition 57. Given an ABox A, an interpretation db(A) =
�
∆db(A), ·db(A)

�
is defined

as follows:

(i) ∆db(A) is the non-empty set consisting of all constants in A,

(ii) adb(A) = a , for each constant a,

25 Preliminaries

(iii) Adb(A) = {a |A(a) ∈ A}, for each atomic concept A, and

(iv) P db(A) = {(a1, a2) |P (a1, a2) ∈ A}, for each atomic role P .

Notice that the interpretation db(A) is a minimal model of A.

Definition 58. Satisfiability in a DL L is FOL-reducible, if for every TBox T expressed
in L, there exists a Boolean FOL query q over the alphabet of T , such that for every
non-empty ABox A, �T ,A� is satisfiable iff q evaluates to false in db(A).

Definition 59. Query answering in a DL L for unions of conjunctive queries is FOL-
reducible, if for every union of conjunctive queries q and every TBox T expressed in L,
there exists a FOL query q1, over the alphabet of T , such that for every non-empty ABox
A and every tuple of constants →

a occuring in A, →
a ∈ ans(q, �T ,A�), iff →

a db(A) ∈ qdb(A)
1 .

The idea behind FOL-reducibility is the following: instead of using common DL tech-
niques (e.g. tableau calculus) for satisfiability or query answering, a FOL query is eval-
uated over the ABox, which is viewed as a relational DB.

2.3.4. KB Satisfiability is FOL-Reducible in DL-LiteR

As a starting point it can be shown that KB Satisfiability is FOL-reducible. The concepts
of positive inclusion (PI) and negative inclusion (NI) are crucial for this, where a positive
inclusion (resp. negative inclusion) is an assertion of the form B1 � B2 (resp. B1 � ¬B2)
or R1 � R2 (resp. R1 � ¬R2). Calvanese et al. recognized that the NIs have to be closed
with respect to the PIs. They introduced NI-closure as a function of the original TBox.

Definition 60. The NI-closure of a DL-LiteR TBox T , denoted by cln(T), is defined
inductively as following:

1. all NI assertions in T are also in cln(T);

2. if B1 � B2 is in T and B2 � ¬B3 or B3 � ¬B2 is in cln(T), then also
B1 � ¬B3 is in cln(T);

3. if R1 � R2 is in T and ∃R2 � ¬B or B � ¬∃R2 is in cln(T), then also
∃R1 � ¬B is in cln(T);

4. if R1 � R2 is in T and ∃R−
2 � ¬B or B � ¬∃R−

2 is in cln(T), then also
∃R−

1 � ¬B is in cln(T);

5. if R1 � R2 is in T and R2 � ¬R3 or R3 � ¬R2 is in cln(T), then also
R1 � ¬R3 is in cln(T);

6. if one of the assertions ∃R � ¬∃R, ∃R− � ¬∃R− or R � ¬R is in cln(T),
then all three such assertions are in cln(T).

DL-Lite and the Notion of FOL-Reducibility 26

To fully understand the NI-closure we have to consider can(K), the canonical interpre-
tation of K. We can see can(K) as an application of PIs on the ABox. This this is done
stepwise, creating new membership assertions out of PIs (see Definition 62).

Definition 61. The function ga is defined as follows:

ga(R, a, b) =

�
P (a, b), if R = P

P (b, a), if R = P−

where R is a basic role, a and b are constants, and the result P is a membership assertion.

Definition 62. Let K = �T ,A� be a DL-LiteR KB, let Tp be the set of PI assertions in
T . Let n be the number of membership assertions in A, where the membership assertions
are numbered from 1 to n according to their lexicographic order. Let ΓN be the set of
constants defined above. Consider next the following definition:

• S0 = A,

• Sj+1 = Sj ∪{fnew}, where fnew is a membership assertion numbered with n+ j+1
in Sj+1 and obtained as follows:
Let f be the first membership assertion in Sj such that there exists a PI α ∈ Tp
applicable in Sj to f ; let α be the lexicographically first PI applicable in Sj to
f ; and let αnew be the constant of ΓN that follows lexicographically all constants
occurring in Sj .
Case α, f of
(cr1) α = A1 � A2, f = A1(a) then fnew = A2(a);
(cr2) α = A � ∃R and f = A(a) then fnew = ga(R, a, anew);
(cr3) α = ∃R � A and f = ga(R, a, b) then fnew = A(a);
(cr4) α = ∃R1 � ∃R2 and f = ga(R1, a, b) then fnew = ga(R2, a, anew);
(cr5) α = R1 � R2 and f = ga(R1, a, b) then fnew = ga(R2, a, b).

Then, we define chase of K, denoted chase(K), as follows: chase(K) =
�
j∈N

Sj .

Definition 63. Let K = �T ,A� be a DL-LiteR KB. We define the canonical interpreta-
tion can(K) as the interpretation

�
∆can(K), ·can(K)

�
, where:

(i) ∆can(K) is the set consisting of all constant symbols in A,

(ii) acan(K) = a, for each constant a occurring in chase(K),

(iii) Acan(K) = {a |A(a) ∈ chase(K)}, for each atomic concept A, and

(iv) P can(K) = {(a1, a2) |P (a1, a2) ∈ chase(K)}, for each atomic role P .

Lemma 64. Let K = �T ,A� be a DL-LiteR KB and let Tp be the set of positive inclusion
assertions in T . Then, can(K) is a model of �Tp,A�.

Proof. See Lemma 7 in [Calvanese et al., 2007].

27 Preliminaries

Lemma 65. Let K = �T ,A� be a DL-LiteR KB. Then, can(K) is a model of K iff
db(A) is a model of �cln(T),A�.

Proof. See Lemma 12 in [Calvanese et al., 2007].

Now the algorithm Consistent(K) can be introduced. It computes db(A) and cln(T),
then evaluates over db(A) the union of all FOL formulas as a Boolean FOL query. The
FOL formulas are created by the following function δ.

Definition 66. Translation function δ rewrites assertions of cln(T) to FOL formulas as
follows:

(i) δ(B1 � ¬B2) = ∃x.γ1(x) ∧ γ2(x),

(ii) δ(R1 � ¬R2) = ∃x, y.ρ1(x, y) ∧ ρ2(x, y),

where
γi(x) = Ai(x) if Bi = Ai,
γi(x) = ∃yi.Pi(x, yi) if Bi = ∃Pi,
γi(x) = ∃yi.Pi(yi, x) if Bi = ∃P−

i ,

and
ρi(x, y) = Pi(x, y) if Ri = Pi,
ρi(x, y) = Pi(y, x) if Ri = P−

i .

Algorithm 2.1 Consistent
Input: DL-LiteR KB K = �T ,A�
Result: true, if K is satisfiable, false otherwise
qunsat ← ⊥;
foreach α ∈ cln(T) do

qunsat ← qunsat ∨ δ(α);
end
if qdb(A)

unsat = ∅ then
return true;

else
return false;

end

Lemma 67. Let K = �T ,A� be DL-LiteR KB. Then, algorithm Consistent(K) termi-
nates, and K is satisfiable, iff Consistent(K) = true.

Proof. See Lemma 16 in [Calvanese et al., 2007].

Lemma 68. Knowledge base satisfiability in DL-LiteR is FOL-reducible.

Proof. A direct consequence of Lemma 67.

DL-Lite and the Notion of FOL-Reducibility 28

2.3.5. Query Answering over DL-LiteR Ontologies

Query answering in DL-LiteR is realized in two steps. First, the TBox axioms are
rewritten into the main query, which results in a union of queries. Second, the result of
the first step is evaluated over the ABox. For reformulating query q the function gr(g, I)
is central and used in Algorithm 2.2.

Definition 69. Let I be an inclusion assertion that is applicable to atom g. Then,
gr(g, I) rewrites g as follows:

1. if g = A(x) and I = A1 � A, then gr(g, I) = A1(x);

2. if g = A(x) and I = ∃P � A, then gr(g, I) = P (x,_);

3. if g = A(x) and I = ∃P− � A, then gr(g, I) = P (_, x);

4. if g = P (x,_) and I = A � ∃P , then gr(g, I) = A(x);

5. if g = P (x,_) and I = ∃P1 � ∃P , then gr(g, I) = P1(x,_);

6. if g = P (x,_) and I = ∃P−
1 � ∃P , then gr(g, I) = P1(_, x);

7. if g = P (_, x) and I = A � ∃P−, then gr(g, I) = A(x);

8. if g = P (_, x) and I = ∃P1 � ∃P−, then gr(g, I) = P1(x,_);

9. if g = P (_, x) and I = ∃P−
1 � ∃P−, then gr(g, I) = P1(_, x);

10. if g = P (x1, x2) and either I = P1 � P or I = P−
1 � P− , then gr(g, I) =

P1(x1, x2);

11. if g = P (x1, x2) and either I = P1 � P− or I = P−
1 � P , then gr(g, I) =

P1(x2, x1).

Similar to some dialects in Datalog, the symbol underscore denotes an non-distinguished,
non-shared variable and shows that an argument is unbound. Particularly function τ
and reduce in Algorithm 2.2 make use of unbound variables. Function τ replaces all
unbound variables in a conjunctive query with underscores. Function reduce calculates
the most general unifier (mgu) of the atoms g1 and g2 in a conjunctive query. Note that
by unifying g1 and g2, each underscore symbol in g1 is replaced with the corresponding
argument of g2 and vice-versa.

29 Preliminaries

Algorithm 2.2 PerfectRef
Input: Conjunctive query q, DL-LiteR TBox T
Result: Union of conjunctive queries PR

PR ← {q};
repeat

PR� ← PR;
foreach query q ∈ PR� do

/* Step (a) */
foreach atom g in q do

foreach PI I in T do
if I is applicable to g then PR ← PR ∪ {q[g/gr(g, I)]};

end
end
/* Step (b) */
foreach atom g1, g2 in q do

if g1 and g2 unify then PR ← PR ∪ {τ(reduce(q, g1, g2))};
end

end
until PR� = PR

return PR;

Lemma 70. Let T be DL-LiteR TBox, and let q be a conjunctive query over T . Then,
the algorithm PerfectRef(q, T) terminates.

Proof. See Lemma 34 in [Calvanese et al., 2007].

The second step of query answering is simple. Algorithm 2.3 computes the answer for a
union of conjunctive queries over a DL-LiteR KB. Furthermore algorithm Consistent(K)

is used to determine whether a KB is satisfiable; if not, all tuples of constants are returned.

Algorithm 2.3 Answer
Input: Union of conjunctive queries Q, DL-LiteR KB K = �T ,A�
Result: set of tuples ans(Q,K)

if not Consistent(K) then
return AllTup(Q,K);

else
return (

�
qi∈Q

PerfectRef(qi, T))db(A);

end

Lemma 71. Let K = �T ,A� be a DL-LiteR KB, and let Q be a union of conjunctive
queries. Then, the algorithm Answer(Q,K) terminates.

Proof. See Lemma 37 in [Calvanese et al., 2007].

Description Logic Programs 30

The correctness of Answer(Q,K)is illustrated by the following theorem:

Theorem 72. Let K = �T ,A� be a DL-LiteR KB, Q be a union of conjunctive queries,
and

→
t a tuple of constants in K. Then,

→
t ∈ ans(Q,K) iff

→
t ∈ Answer(Q,K). Therefore

answering unions of conjunctive queries in DL-LiteR is FOL-reducible.

Proof. See Theorem 40 and 41 in [Calvanese et al., 2007].

2.3.6. Complexity Results for DL-LiteR

The complexity results are one of the main reasons for our interest in DL-LiteR. The
authors of [Calvanese et al., 2007] point out that the worst-case complexity of query
answering is exponential in the size of the queries. This is unavoidable, because it is
given by the complexity of relational DB query evaluation.

Theorem 73. Answering unions of conjunctive queries in DL-LiteR is PTIME in the
size of the TBox, and LOGSPACE in the size of the ABox (data complexity).

Proof. See Theorem 43 in [Calvanese et al., 2007].

Theorem 74. Answering unions of conjunctive queries in DL-LiteR is NP-complete in
combined complexity.

Proof. See Theorem 44 in [Calvanese et al., 2007].

2.4. Description Logic Programs

Introduced by [Eiter et al., 2004], dl-programs combine DL and normal programs under
stable model semantics. Later they were extended in [Eiter et al., 2009b] to well-founded
semantics. Due to the strict semantic seperation of the DL KB and logic program,
dl-programs belong to the loose coupling approaches.

2.4.1. Syntax of Description Logic Programs

Definition 75. A dl-program consists of a KB = (L, P), where P denotes a generaliza-
tion of a normal program as in Definition 22 and L a DL KB. The specification of L can
be found in Definition 52.

Notice that the DL KB L could also be replaced with more expressive DLs, like SHIF(D)
or SHOIN (D). In our case this is not desired, because the focus of this thesis is primarily
on DL-Lite.

31 Preliminaries

Definition 76. [Eiter et al., 2009b] To couple P and L we introduce the notion of a
dl-query Q(t), which is either:

(i) a concept inclusion assertions F or its negation ¬F , where t is empty; or

(ii) of the forms C(x) or ¬C(x), where C is a concept, and x is a term and equal
to t; or

(iii) of the forms R(x1, x2) or ¬R(x1, x2), where R is a role, and x1 and x2 are
terms and elements of argument list t; or

(iv) of the forms = (x1, x2) or �= R(x1, x2), where x1 and x2 are terms and
elements of argument list t.

Definition 77. [Eiter et al., 2009b] Extending Definition 22, we introduce a new type
of atoms, called dl-atom. A dl-atom solely occurs in the rule body and has the form:

DL[S1op1p1, ..., Smopmpm;Q](t), m ≥ 0,

where each Si is either a concept or a role, opi ∈ {�, −∪}, pi is a unary resp. binary
predicate symbol, and Q(t) is a dl-query.

Roughly speaking, p1, ..., pm are the input predicate symbols modifying the ABox of L
by adding positive (�) resp. negative (−∪) assertion to the concepts or roles of S1, ..., Sm.
In [Eiter et al., 2004] a nomonotonic operator −∩ is defined, however it is not considered
in this thesis.

2.4.2. Well-Founded Semantics for Description Logic Programs

Eiter et al. generalized the well-founded semantics for ordinary programs to dl-programs
[Eiter et al., 2009b]. They introduced the notion of unfounded set for dl-programs; first
we need some preliminary definitions.

Definition 78. [Eiter et al., 2009b] Let KB = (L, P) be a dl-program and P be a
normal program. We denote HBP the Herbrand base of P , ground(P) the set of all
ground instances in P and, LitP the set of all ground literals in P . A set of ground
literals S ⊆ LitP is consistent iff S ∩ ¬.S = ∅, where ¬.S = {¬.l | l ∈ S}. We call I a
(three-valued) interpretation relative to P , where I ⊆ LitP .

Definition 79. [Eiter et al., 2009b] Let I ⊆ LitP be consistent. A set U ⊆ HBP is an
unfounded set of KB = (L, P) relative to I iff the following holds:

for every atom a ∈ U and every rule r ∈ ground(P) with H(r) = a, either

(i) ¬b ∈ I ∪ ¬.U for some ordinary atom b ∈ B+(r), or

(ii) b ∈ I for some ordinary atom b ∈ B−(r), or

(iii) for some dl-atom b ∈ B+(r), it holds that S+ �L b for every consistent
S ⊆ LitP with I ∪ ¬.U ⊆ S, or

(iv) for some dl-atom b ∈ B−(r), I+ �L b.

From Definition 79 the first lemma can be derived.

Lemma 80. [Eiter et al., 2009b] Let KB = (L, P) be a dl-program and let I ⊆ LitP be
consistent. Then, the set of unfounded sets of KB relative to I is closed under union.

Proof. We refer to Lemma 4.5 in [Eiter et al., 2009b].

Definition 81. [Eiter et al., 2009b] The operators TKB, UKB and WKB on all consistent
I ⊆ LitP are defined as follows:

(i) atom a ∈ TKB(I) iff a ∈ HBP and some rule r ∈ ground(P) exists s.t.
(a) H(r) = a,
(b) I+ �L b. for all b ∈ B+(r),
(c) ¬b ∈ I for all ordinary atoms b ∈ B−(r), and
(d) S+ �L b for each consistent S ⊆ LitP with I ⊆ S, for all dl-atoms
b ∈ B−(r);

(ii) UKB(I) is the greatest unfounded set of KB relative to I; and

(iii) WKB(I) = TKB(I) ∪ ¬.UKB(I).

Lemma 82. [Eiter et al., 2009b] Let KB = (L, P) be a dl-program. Then TKB, UKB

and WKB are monotonic.

Proof. We refer to Lemma 4.7 in [Eiter et al., 2009b].

Due to the monotonicity of operator WKB, it has a least fixpoint. Based on the least
fixpoint the well-founded semantics for dl-programs is defined as follows:

Definition 83. Let KB = (L, P) be a dl-program. The well-founded semantics of KB,
denoted WFS(KB), is defined as lfp(WKB). An atom a ∈ HBP is well-founded (resp.
unfounded) relative to KB iff a (resp. ¬a) belongs to WFS(KB).

3. Combining Datalog with DL-Lite

In this chapter we present our approach of combining Datalog with DL-LiteR. We first
exhibit the rewriting of stratified Datalog to RA extended with fixpoint evaluation [Ull-
man, 1988]. Then, we introduce an improvement for query answering over DL-LiteR on-
tologies. This rewriting refinement produces nonrecursive Datalog queries for a DL-LiteR
KB and conjunctive queries [Rosati and Almatelli, 2010]. Afterwards we highlight the re-
sults of [Eiter et al., 2009b], which show that acyclic dl-programs coupled with DL-LiteR
are FO-rewritable. The combination of these results will lead to the evaluation of dl-
programs under stratified Datalog. Finally we outline the straightforward conversion of
RA to SQL, which is needed for the evaluation of dl-program using an RDBMS.

3.1. Rewriting Datalog to Relational Algebra extended with

Fixpoint Evaluation

In Chapter 3 of [Ullman, 1988] the connection between Datalog and RA is illustrated.
Ullman provides the necessary results and algorithms for rewriting nonrecursive Datalog
into RA. Furthermore Ullman introduces a fixpoint evaluation on RA expressions to
deal with recursion in Datalog. Based on his work, we give a step-wise introduction of
the algorithms and results. First we show how to rewrite a single rule and a positive
nonrecursive program into RA (Algorithm 3.1, 3.2, and 3.3). Second, we extend positive
programs with recursion (Algorithm 3.4 and 3.5). Third, we integrate the handling of
negation in the algorithms (Algorithm 3.6). Finally the algorithm for rewriting stratified
Datalog programs is introduced (Algorithm 3.7).

3.1.1. Nonrecursive Datalog

Algorithm 3.1 is used in 3.3 for computing the RA expression for a single rule body.

33

Rewriting Datalog to Relational Algebra extended with Fixpoint Evaluation 34

Algorithm 3.1 EvalRule
Input: Rule body B(r), set of computed relations R

Result: Relational algebra expression I

sets Q ← E ← G ← ∅;
/* Handle terms appearing in body predicates (Section A) */
X ←set of appearing variables in B(r);
foreach predicate p ∈ B(r) do

sets Fi ← Vi ← ∅;
Ti ←set of terms in p;
Ri ←relation for p in R;
foreach variable k ∈ Ti do

if another variable l ∈ Ti is the same as k then
/* Selection of variables */
add (position(k, Ri) = position(l, Ri)) to Fi;

end
add position(k, Ri) to Vi; /* Projection of variables */

end
foreach constant c ∈ Ti do

add (position(c, Ri) = c) to Fi; /* Selection of constants */
end
add πVi(σFi(Ri)) to Q;

end
/* Handle variables not appearing in body predicates (Section B) */
T ←set of all terms in B(r);
foreach variable x ∈ X such that x /∈ T do

find a term y which is equated to x through a sequence of atoms;
if y is a constant then add {y}(x) to Q;
if y is a variable in Ri then add πposition(y,Ri)(Ri) to Q;

end
/* Build the RA natural joins of the expressions (Section C) */
foreach expression q ∈ Q do

E ← E �� q;
end
/* Handle build-in predicates (Section D) */
foreach predicate (XB operator YB) ∈ B(r) do

G ← G ∧ XB operator YB;
end
I ← σG(E);
return I;

Lemma 84. [Ullman, 1988] Algorithm 3.1 is correct, in the sense that the relation R
produces has all and only those tuples {a1, ..., am} such that, when we substitute each aj
for Xj every subgoal Si is made true.

35 Combining Datalog with DL-Lite

Proof. We refer to Theorem 3.1 in [Ullman, 1988].

Algorithm 3.2 rectifies rules to enforce constraints in the head predicate to the body
predicates.

Algorithm 3.2 RectifyRules
Input: Datalog program P

Result: Rectified Datalog program P �

P � ← P;
foreach rule r ∈ P � do

T ←set of terms in H(r);
/* Handle constants in the head */
foreach constant c ∈ T do

c� ← c;
replace c with new variable x in H(r);
B(r) ← B(r) ∧ (x = c�);

end
/* Handle identical variables in the head */
foreach variable v ∈ T such that w ∈ T and v = w do

v� ← v;
replace v with new variable x in H(r);
B(r) ← B(r) ∧ (x = v�);

end
end
return P �;

Lemma 85. [Ullman, 1988] Algorithm 3.2 is rectifying each rule r in P into r� such
that:

(i) If r is safe, so is r�;

(ii) Rules r and r� are equivalent, in the sense that, given relations for the predicates of
their subgoals, there is substitution for the variables of r that makes all its subgoals true
and makes the head become p(c1, ..., cn) iff there is some substitution for the variables of
r� that makes the head of r� become p(c1, ..., cn).

Proof. See Lemma 3.1 in [Ullman, 1988].

In Algorithm 3.3 all parts are put together to evaluate an nonrecursive and positive
program.

Rewriting Datalog to Relational Algebra extended with Fixpoint Evaluation 36

Algorithm 3.3 NonrecursivePositiveEval
Input: Nonrecursive positive Datalog program P, set of EDB relations RE

Result: Set I of relational algebra expressions
set I ← ∅;
set R ← RE;
P � ←RectifyRules(P);
/* Order of evaluation */
G ←dependency graph of P �;
O ←topological sort of G;
/* Build the RA unions of all rules with the same predicate in the head */
foreach predicate p ∈ O do

E ← ∅;
foreach rule r ∈ P � such that p = H(r) do

Er ←EvalRule(B(r), R);
X ←set of appearing variables in B(r);
foreach relation q in Er such that q /∈ RE

/* Replace already created atoms */
replace q with related RA expressions e ∈ I;

end
E ← E ∪ πX(Er);

end
add p to R;
add E to I;

end
return I;

Note that the symbol ∪ is purposely chosen as the RA union operator.

Theorem 86. [Ullman, 1988] Algorithm 3.3 correctly computes for a positive nonrecur-
sive Datalog program P the relation for each predicate, in the sense that the expression
it constructs for each IDB predicate yields both:

(i) The set of facts for that predicate that can be proved from the database, and

(ii) The unique minimal model of the rules.

Proof. We refer to Theorem 3.2 in [Ullman, 1988].

3.1.2. Positive Recursive Datalog

It is well known that conventional RA is not sufficient expressible to capture recursion
in Datalog. We will show according to Ullman that recursion can be expressed with
RA, if we extend RA with a fixpoint evaluation. Recursion was introduced in SQL with
version SQL:1999. Unfortunately, the form of recursion in SQL:1999 is limited to linear

37 Combining Datalog with DL-Lite

recursion. Indirect recursion over several predicates is not covered by SQL:1999. Grosof
et al. discuss this limitation in their paper on DLP and give some methods e.g. magic
template procedure to overcome it [Grosof et al., 2003]. Note that DLP should not be
mistaken with dl-programs, since only dl-programs support NAF.

Definition 87. Linear recursion can be formulated in Datalog as:

t(X,Y) ← g(X,Y).
t(X,Y) ← g(X,Z), t(Z, Y).

where g is a graph and t its transitive closure [Abiteboul et al., 1995].

It is obvious that recursive rules will result in a cyclic dependency graph, hence a topo-
logical sort is impossible and Algorithm 3.3 is not suitable for this class of programs.
A fixpoint evaluation overcomes the need of a dependency graph and gives a powerful
machinery for handling recursion in general.

Ullman provides a “naive” fixpoint evaluation algorithm, which calculates a set of tuples
[Ullman, 1988]. We extend in Algorithm 3.4 and 3.5 Ullman’s version to calculate also
the RA expressions. From an implementation perspective the RA expressions can be
neglected, but we need the RA expressions to show that the merging of Datalog and
DL-Lite is feasible.

Algorithm 3.4 FixpointEvalSub
Input: Predicate p, set of rules U, set of old tuples Q, set of EDB relations R

Result: Set of tuples T, relational algebra expressions I

set I ← ∅;
/* Bottom-up evaluation of rules for a predicate */
foreach rule r ∈ U such that p = H(r) do

X ←set of appearing variables in B(r);
Er ←EvalRule(B(r), R);
I ← I ∪ πX(Er);

end
T ←calculate result tuples for I incorporating Q;
return T,I;

Lemma 88. [Ullman, 1988] The relational algebra operators union, Cartesian product,
projection, and selection are monotone.

Proof. We refer to Theorem 3.3 in [Ullman, 1988].

Lemma 89. [Ullman, 1988] The relational algebra operators natural join and θ-join are
monotone.

Proof. Both operations are composites of the monotone operations defined in Lemma
88.

Rewriting Datalog to Relational Algebra extended with Fixpoint Evaluation 38

Algorithm 3.5 NaiveFixpointEvaluation
Input: Recursive positive Datalog program P, set of EDB relations R, set of existing
tuples C

Result: Set of tuples T, set of relational algebra expressions I

set I ← ∅;
m ←count predicates in P;
/* Initialize tuple sets, add precalculated tuples */
foreach i ← 1 to m such that predicate pi ∈ P do

if C is empty then
Ti ← ∅;

else
Ti ←get tuples from C for pi;

end
end
repeat

/* Save old tuple sets */
foreach i ← 1 to m do

Qi ← Ti;
end
/* Bottom-up evaluation of rules for prediactes */
foreach i ← 1 to m such that predicate pi ∈ P do

U ←set of appearing rules in P;
Ti, Fi ←FixpointEvalSub(pi,U,Qi,R);
add Fi to I;

end
/* Stop if tuple sets are not altered by evaluation anymore */

until ∀i≤m(Qi = Ti)

T ← T1 ∪ ... ∪ Tm;
return T, I;

Note, RA in general is non-monotonic due to the difference operator.

Lemma 90. [Ullman, 1988] The operation FixpointEvalSub of algorithm 3.5 is mono-
tone.

Proof. By taking all RA operators used in algorithm 3.1 and 3.4, only union, Cartesian
product, projection, selection, natural join, and θ-join are used. All of this operators are
monotone, hence operation FixpointEvalSub is also monotone.

Theorem 91. [Ullman, 1988] Algorithm 3.5 produces the least fixpoint of a positive
Datalog program, with respect to the given EDB relations.

Proof. We refer to Theorem 3.4 in [Ullman, 1988].

39 Combining Datalog with DL-Lite

3.1.3. Datalog with Negation

Again Ullman gives the intuitive idea, that a negated atom’s predicate in a rule can be
seen as the complement of a relation, in relation to a domain of possible values [Ullman,
1988].

Definition 92. [Ullman, 1988] Let r be a rule of the following form:

a ← b, not c.

where a, b, and c are atoms. An atom is defined as in Definition 8.

Then r can be rewritten in RA as:

A(t1, ..., tn) = B(t1, ..., tn)− C(t1, ..., tn).

There is one case not covered by this simple translation. A variable appearing only in
the positive body predicate, but not in any negated predicate.

Definition 93. [Ullman, 1988] Let r be a rule of the following form:

a ← b, not c.

where a and b are defined as in Definition 92 with the exception that atom c is as
p(t1, ..., tm) and n > m.

Then r can be rewritten in RA as:

A(t1, ..., tn) = B(t1, ..., tn)− (C(t1, ..., tm)× πtm+1,...,tn(B(t1, ..., tn))).

To rewrite a single negated atom, section C in Algorithm 3.1 has to be replaced with
Algorithm 3.6, however we do not yet consider Definition 93 for our algorithm.

Algorithm 3.6 EvalNegativeRule
foreach expression q ∈ Q do

if literal t for q is negative then
E ← E − q;

else
E ← E �� q;

end
end

Minimal model semantics of positive programms do not suffice to capture negation in
Datalog. According to [Ceri et al., 1990] there are two semantics for dealing with nega-
tion. Namely the approaches are stratified evaluation of Datalog (stratified Datalog) and
inflationary semantics for Datalog. We will focus solely on stratified Datalog.

An Algorithm for Improving Query Answering over DL-LiteR Ontologies 40

3.1.4. Stratified Datalog

Algorithm 3.7 is based on the concept of splitting a program P into strata, which are
evaluated sequently as subprograms. The result of this algorithm reflects two purposes.
Namely, the tuples represent the supported minimal model of the program and the RA
expressions represent a sequence of algebraic expressions.

Algorithm 3.7 StratifiedEvaluation
Input: Stratified Datalog program P, set of EDB relations R

Result: Set of tuples T, set of relational algebra expressions I

I ← ∅;
T ← ∅;
O ←stratification of P;
foreach strata p ∈ O do

/* Fixpoint evaluation with tuples from last strata */
Tp, Fp ←NaiveFixpointEvaluation(p, R, T);
add Fp to I;
T ← T ∪ Tp;

end
return T, I;

Theorem 94. Algorithm 3.7 correctly computes the supported minimal model of a strat-
ified Datalog program, with respect to its EDB relations.

Proof. (Sketch) Let P1, ..., Pn be the stratification of P . We define M1, ...,Mn as the
sequence of minimal models relating to the strata P1, ..., Pn as follows:

M1 = lfp(TP1∪EDB);
M2 = lfp(TP2∪M1);
...;
Mn = lfp(TPn∪Mn−1) = MP ,

where MP is the supported minimal model by Theorem 44. The existence of a fixpoint
for a stratum Pi is given by Theorem 91, which shows that NaiveFixpointEvaluation

produces the least fixpoint for TPi∪Mi−1 .

3.2. An Algorithm for Improving Query Answering over

DL-LiteR Ontologies

The perfect reformulation of conjunctive queries as shown in Algorithm 2.2 and the
storage of the ABox in an RDBMS allows to process very large DL-LiteR ABoxes.
However the authors of [Rosati and Almatelli, 2010] point out that there is a serious
bottleneck in the algorithm. Namely, the computed perfect reformulation of conjunctive

41 Combining Datalog with DL-Lite

queries increases exponentially with the number of atoms in the queries. They refer to
empirical studies, which show that queries with more than 5-7 atoms lead to FOL queries
too large to be handled by current RDBMS (e.g. a union of thousands of conjunctive
queries).

In [Rosati and Almatelli, 2010] they introduced the algorithm Presto(Q, T) to over-
come the above mentioned limitation. See Algorithm 3.8 for a detailed description. In
Presto(Q, T), instead of a union of conjunctive queries a nonrecursive Datalog query is
generated. Employing this technique, the exponential blow-up by using the disjunctive
normal form is avoided.

First, we need to address a few functions used in Presto(Q, T) [Rosati and Almatelli,
2010]:

• Function Rename(Q) replaces every role R(t, t1) (resp. concept A(t)) of query Q by
a new ontology-annotated predicate p2R(t, t1) (resp. p1A(t)).

• By introducing new predicates with lower arity function DeleteUnboundV ars(Q) is
used to eliminate unbound variables of query Q in a systematic way.

• DeleteRedundantAtoms(Q, T) eliminates redundant atoms of query Q taking inclusion
assertions of the TBox T into account. Three of several elimination rules are, where
rule r ∈ Q :

– If p2R(t1, t2) and p2S(t1, t2) occur in r and T |= R � S, then eliminate p2S(t1, t2)
from r ;

– If p1B(t) and p1C(t) occur in r and T |= B � C, then eliminate p1C(t) from r ;

– If p1B(t) and p0α occur in r and T |= B0 � α0, then eliminate p0α from r ;

• In function Split(Q), the body of every rule in Q is split into a subset of atoms
connected by bound join variables. For every subset a new rule with an auxiliary
predicate in the head and the subset of atoms in the body is created.

• Function EliminateEJV ar(r, x, T) handles a sequence of resolution steps taken from
PerfectRef(q, T) and Requiem [Pérez-Urbina et al., 2009]. This function imple-
ments a crucial optimization for the reduce rule of PerfectRef(q, T). This is done
by using the most general subsumees of concept and role expressions with respect
to the TBox, hence useless unifications are avoided.

We have a closer look at function DefineAtomV iew(V, T), because we will need this defi-
nition later.

Definition 95. [Rosati and Almatelli, 2010] Let T be a DL-LiteR TBox and let V be
an ontology-annotated predicate. Then, the function DefineAtomV iew(V, T) is defined as
follows:

(i) if V = p2R with R a role name, then the following set of rules is defined
�
p2R(x, y) ← P (x, y) |P is a role name and T |= P � R

�
∪�

p2R(x, y) ← P (y, x) |P is a role name and T |= P− � R
�
;

An Algorithm for Improving Query Answering over DL-LiteR Ontologies 42

(ii) if V = p1B with B a basic concept, then the following set of rules is defined
�
p1B(x) ← A(x) |A is a concept name and T |= A � B

�
∪�

p1B(x) ← R(x,_) |R is a role name and T |= ∃R � B
�
∪�

p1B(x) ← R(_, x) |R is a role name and T |= ∃R− � B
�
;

(iii) if V = p0N with N a concept or role name, then the following set of rules is defined
�
p0N ← A(_) |A is a concept name and T |= A0 � N0

�
∪�

p0N ← R(_,_) |R is a role name and T |= R0 � N0
�
;

Algorithm 3.8 Presto
Input: Union of conjunctive queries Q, DL-LiteR TBox T
Result: Nonrecursive Datalog query Q�

Q� ← Rename(Q);
Q� ← DeleteUnboundV ars(Q�);
Q� ← DeleteRedundantAtoms(Q�, T);
Q� ← Split(Q�);
repeat

if there exist r ∈ Q� and existential-join-var x in r such that
Eliminable(x, r, T) = true and x has not already been eliminated from r then

Q�� ← EliminateEJV ar(r, x, T);
Q�� ← DeleteUnboundV ars(Q��);
Q�� ← DeleteRedundantAtoms(Q��, T);
Q� ← Q� ∪ Split(Q��);

end
until Q� has reached a fixpoint
foreach ontology-annotated predicate pnα occurring in Q� do

Q� ← Q� ∪ DefineAtomV iew(pnα, T);
end
return Q�;

Theorem 96. [Rosati and Almatelli, 2010] Let T be a DL-LiteR TBox, let Q be an
union of conjunctive queries, and let Q� be the nonrecursive Datalog query returned by
Presto(Q, T). Then, for every ABox A such that �T ,A� is a satisfiable DL-LiteR KB,
�T ,A� � Q iff Q� is satisfied in can(K).

Proof. See Theorem 2 in [Rosati and Almatelli, 2010].

Example 97. [Rosati and Almatelli, 2010] Consider the DL-LiteR TBox T , where
A,A1, B, C are concepts and P,R, S, T are roles:

43 Combining Datalog with DL-Lite

T : A � A1 ∃T � ∃S T � R
A1 � B ∃T− � ∃P T � R−

∃R � ∃U ∃T− � ∃A1 T− � S
∃R � A ∃U � ∃C T � P−

∃R− � A ∃U− � ∃P U � S−

∃R � ∃U T � P U � T−

Let q be a conjunctive query as follows:

q(y) ← T (x,w), R(y, w), A1(z).

Applying Presto(q, T) we will get the following Datalog program:

(R0) q(y) ← q1(y).
(R1) q1(y) ← p1∃T−(w), p2R(y, w).
(R2) q1(y) ← p1∃T−(y).
(R3) q1(y) ← p1∃U (y).

and
p1∃T−(x) ← U(x,_). p1∃U (x) ← T (x,_). p2R(x, y) ← U(x, y).
p1∃T−(x) ← U(_, x). p1∃U (x) ← U(x,_). p2R(x, y) ← T (x, y).
p1∃T−(x) ← R(x,_). p1∃U (x) ← R(x,_). p2R(x, y) ← R(x, y).
p1∃T−(x) ← T (x,_). p1∃U (x) ← U(_, x). p2R(x, y) ← U(y, x).
p1∃T−(x) ← T (_, x). p1∃U (x) ← T (_, x). p2R(x, y) ← U(y, x).

3.3. First-Order Rewritable Case of Description Logic

Programs

In [Eiter et al., 2009b] the authors show, that computing the general complexity of well-
founded semantics for dl-programs over the DL SHIF(D) is EXPTIME, furthermore
deciding whether a literal l ∈ WFS(KB) holds is EXPTIME-complete.

We focus our work primarily on RDMBS, therefore data complexity is more interesting.
Considering this for a dl-program KB = (L, P), only the facts in P and membership
assertion in L do vary. By choosing Horn-SHIQ [Hustadt et al., 2005], reasoning and
conjunctive query answering in PTIME under data complexity is feasible [Eiter et al.,
2008a]. At this point the data complexity is the same as with ordinary normal programs
under well-founded semantics.

Definition 98. Let K = �T ,A� be a DL KB and MS(K) the set of membership asser-
tions. The closed world assumption (CWA) of K is defined as:

CWA(K) = {¬p | p ∈ MS(K)}.
CWA-satisfiable of K is defined by the entailment relation �cwa for any membership or
inclusion assertion α:

K �cwa α iff K ∪ CWA(K) �cwa α.

First-Order Rewritable Case of Description Logic Programs 44

Theorem 99. [Eiter et al., 2009b] Given KB = (L, P) and a literal l ⊆ LitP , where
every dl-atom in P can be evaluated in PTIME , deciding whether l ∈ WFS(KB) is
complete for PTIME under data complexity.

Proof. See Theorem 7.2 in [Eiter et al., 2009b].

As mentioned in Theorem 73, answering unions of conjunctive queries in DL-LiteR is
LOGSPACE in the size of the ABox. DL-LiteR data complexity and query answering
capabilities makes it a plausible choice to couple with dl-programs. Hence the authors
of [Eiter et al., 2009b] introduce the concept of first-order rewritability, where a dl-query
can be rewritten into a FOL formula over the ABox. To achieve first-order rewritability
for a normal program P , they restrict P to be acyclic and rewrite ordinary predicates of
P to FOL formulas.

Notice, that (i), (ii) and, (iii) of Definition 76 can be expressed as a conjunctive query.
We recall the Theorems 7.3 and 7.4 of [Eiter et al., 2009b] and introduce some minor
adaptions.

Theorem 100. [Eiter et al., 2009b] Let KB = (L, P) be an acyclic dl-program and a
literal l ∈ LitP , where

(i) every dl-query in P is first-order rewritable, and

(ii) if the operator −∪ occurs in P , then L is defined over a DL, that

(ii.a) is CWA-satisfiable, and

(ii.b) allows for first-order rewritable concept and role membership, deciding whether
l ∈ WFS(KB) is first-order rewritable.

Proof. Since KB is acyclic, there is an acyclic dependency graph GP . We derive from GP

the strict partial order of GP the mapping of predicate symbols K : PP → {0, 1, ..., n}.
We call K(p) the rank of p. By Theorem 72, every dl-query in P can be expressed in
terms of a FOL formula over the set A of all membership and inclusion assertions in L.
We now show by induction on K(p) ∈ {0, 1, ..., n} that each predicate symbol p ∈ PP can
be expressed in terms of a FOL formula over the set F of all membership and inclusion
assertions in L and the EDB(P).

Basis: Each predicate p ∈ PP of rank 0 can trivially be expressed in terms of a FOL
formula over F .

Induction: We have to consider the evaluation of a dl-atom DL[λ;QLite](c) and the
definition of a predicate p ∈ PP via the set of all rules in P with p ∈ H(r):

(i) Consider the dl-atom DL[λ;QL](c) with λ = λ+,λ−, where λ+ = S1 � p1, ..., Sl � pl,
λ− = Sl+1−∪pl+1, ..., Sm−∪pm, and m ≥ l ≥ 0. The dl-query QL(c) can be expressed
in terms of a FOL formula α(x) over A, that is, L � QL(c) iff IA � α(c). Since the
underlying DL allows first-order rewritable membership and inclusion assertions, every

45 Combining Datalog with DL-Lite

Si in λ−, l < i ≤ m, can be expressed in terms of a FOL formula ψSi(y) over A, that
is, L � Si(c) iff IA � ψSi(c) for every c. By the induction hypothesis, every input
predicate pj in λ can be expressed in terms of a FOL formula ψj(x) over F , that is,
pj(c) ∈ WFS(KB) iff IF � ψj(c). We define the FOL formula δ(x) for DL[λ;QL](x)
over F as follows:

δ(x) = αλ+
(x) ∨

m�

j=l+1

∃y(ψλ+

Sj
(y) ∧ ψj(y)),

where βλ+ is obtained from β by replacing every Si(s) such that Si occurs in λ+ by
Si(s) ∨ ψi1(s) ∨ ... ∨ ψiki

(s), where Si1 , ..., Siki
are all occurrences of Sj in λ+.

Note that IF � Si(c) iff IF � Si(c) ∈ L, for all 1 ≤ i ≤ l. Hence,

IF � Si(c) ∨ ψi1(c) ∨ ... ∨ ψiki
(c)

iff Si(c) ∈ L or pij (c) ∈ WFS(KB), for some 1 ≤ j ≤ ki

iff Si(c) ∈ L ∪
l�

i=1
Ai(WFS(KB))

iff IA� � Si(c), where A� = A ∪
l�

i=1
Ai(WFS(KB)).

It follows from this that

IF � αλ+
(c) iff IA� � α(c) and IF � ψλ+

Sj
(c) iff IA� � ψSj (c), for all l < j ≤ m.

This in turn implies that

IF � δ(c) iff (i) L ∪A� � QL(c), or (ii) L ∪A� � Sj(d) and pj(d) ∈ WFS(KB), for some
l < j ≤ m and d.

Let A�� = A� ∪
m�

j=l+1
Aj(WFS(KB)). If L ∪ A�� � QL(c), then clearly both (i) and (ii)

are false; conversely, if L∪A� � QL(c)) and L∪A� � Sj(d) for every pj(d) ∈ WFS(KB)
where l < j ≤ m, then L∪A�� � QL(c) holds since the underlying DL is CWA-satisfiable.

In summary, this shows that IF � δ(c) iff L ∪ A�� � QL(c) iff WFS(KB) satisfies
DL[λ;QL](c). That is, δ(x) is a FOL formula for DL[λ;Q](x) over F .

(ii) Consider next the set of all rules in P with p ∈ H(r). W.l.o.g., the heads p(x) of
all these rules coincide. Let α(x) denote the disjunction of the existentially quantified
bodies of these rules, where the default negations in the rule bodies are interpreted as
classical negations. By the induction hypothesis, every body predicate in α(x) can be
expressed in terms of a FOL formula over F , and the same holds for every dl-atom in
α(x). Let α�(x) be obtained from α(x) by replacing all but the predicates of rank 0 by
these FOL formulas. Then α�(x) is a FOL formula over F for p.

Example 101. Consider the DL-LiteR TBox T , where A,A1, B, C are concepts and
P,R, S, T are roles:

Stratified Evaluation of Description Logic Programs 46

Theorem 102. [Eiter et al., 2009b] Let KB = (L, P) be an acyclic dl-program and a
literal l ∈ LitP , where

(i) L is defined in the description logic DL-LiteR, and

(ii) all dl-queries in P are membership or inclusion assertions in L, where concepts and
roles are atomic.

Then deciding whether l ∈ WFS(KB) is first-order rewritable.

Proof. We apply Theorem 67, 72, and 100. Observe that in DL-LiteR KB satisfiability
and query answering are FOL-reducible, where FOL-reducible corresponds to first-order
rewritable. Observe also that DL-LiteR is a CWA-satisfiable DL [Calvanese et al., 2007],
and thus Theorem 100 also allows operator −∪ to occur in P . All dl-atoms with dl-
queries of the form C(t) and R(t1, t2) are immediately first-order rewritable. Dl-queries
of the form C � D resp. ¬(C � D) can be reduced to conjunctive queries as follows:
L� � C � D iff L� ∪ {C(e), D�(e), D� � ¬D,A�(d), A� � ¬A} � A(d) resp. L� � ¬(C � D)
iff L� ∪ {C � � D,A�(d), A� � ¬A} � A(d), where d and e are fresh individuals, and A, A�,
and D� are fresh atomic concepts. By Theorem 100, it thus follows that deciding whether
l ∈ WFS(KB) is first-order rewritable.

Example 103. [Eiter et al., 2009b] Consider the DL KB L = �T ,A� , where C is a
concept in T and C(a) is an membership assertion in A. Let (L, P) be a dl-program as
follows:
p(c). q(b).
r ← p(x).
r ← DL [C � p;C] (x).
s ← not DL [C � p, C−∪q;C] (x).

The dl-program (L, P) can be expressed by the following formulas:

• The query Q(x) is expressed by α(x) = C(x) over A = {C(a)};
• the predicates p and q as ψp(x) = p(x) and ψq(x) = q(x) over F = {C(a), p(c), q(b)};

• the dl-atom DL [C � p;C] (x) is translated into δ1(x) = αλ+
(x) = C(x) ∨ p(x) over

F (note that m = l);

• the dl-atom DL [C � p, C−∪q;C] (x) is expressed by δ2(x) = (C(x)∨p(x))∨∃y((C(y)∨
p(y)) ∧ q(y)) over F .

3.4. Stratified Evaluation of Description Logic Programs

By Theorem 100 and 102, we have shown that acyclic dl-programs can be coupled with
DL-LiteR. Next, we extend dl-programs to be evaluated under stratified Datalog. The
evaluation is split into a preprocessing part and a standard stratified evaluation part. The
first part is concerned with the rewriting of the dl-atoms by compiling the DL-LiteR KB

47 Combining Datalog with DL-Lite

and the conjunctive query into Datalog. Then, the adapted dl-program can be rewritten
into RA expressions extended with fixpoint evaluation. In Algorithm 3.9 we give a
detailed description.

Algorithm 3.9 dl-program Evaluation
Input: Stratified dl-program (L, P) with a DL-LiteR KB L = �T ,A�,

set of EDB relations R

Result: Set of tuples T, set I of relational algebra expressions

/* Step (a): Preprocessing ABox */
write ABox A to EDB R;

/* Step (b): Preprocessing dl-atoms */
for each dl-atom d ∈ P do

qf ← rewrite TBox T and conjunctive query Q of d

to a nonrecursive Datalog query with Presto(Q, T);
qd ← rewrite query qf to include DL update predicates;
extend P with query qd;
replace dl-atom d in P with a new ordinary atom referring to qd;

end

/* Step (c): Datalog to RA */
set of RA expressions I=∅;
S = stratification of P;
foreach strata st ∈ S do

/* Fixpoint evaluation with tuples from last strata */
Tp, Fp ←NaiveFixpointEvaluation(st, R, T);
add RA expressions Fp to I;
T ← T ∪ Tp;

end

return T, I;

Theorem 104. Algorithm 3.9 correctly computes the supported minimal model of a strat-
ified dl-program KB = (L, P), with respect to its EDB relations R, where

(i) L is defined in the description logic DL-LiteR,

(ii) dl-queries in P are positive membership or inclusion assertions in L, where concepts
and roles are atomic, and

(iii) in dl-atoms, only update operators of the form � are allowed.

Proof. (Sketch) . We need to show that rewriting the ABox(L) and dl-atoms in P to
nonrecursive Datalog queries is (a) feasible and (b) the queries stay positive, resulting in
program P �.

Stratified Evaluation of Description Logic Programs 48

(a) The membership assertions of an ABox(L) can be immediately rewritten to EDB facts
of P . Next, consider the dl-atom DL[λ;QLite](c), the dl-query QLite can be reduced to
the conjunctive query QCQ according to Theorem 102. By Theorem 96 of Algorithm
Presto(Q, T), the conjunctive query QCQ can be rewritten to a positive nonrecursive
Datalog query R. A dl-update λ of the form Si � pi rewrites the query R by (Si ∨ pi) for
every occurrence of Si in the rule bodies of R.

(b) Observe that by condition (ii) and Definition 95 of Algorithm Presto(Q, T) the
nonrecursive Datalog query R is positive. Furthermore by (iii) only positive inclusion
assertions by the dl-update λ are allowed.

Thus by (a) and (b) rewriting P to P � preserves the stratification of P , because only
positive atoms are introduced. Then by Theorem 94, the supported minimal model for
the stratified dl-program P � is computed correctly.

Finally, we need to rewrite the generated RA expressions with fixpoint evaluation into
SQL. This is primarily achieved by applying the reversal of Definition 7 to create SQL
statements from the RA expressions.

The RA expressions can be rewritten into a single large SQL statement or to an inter-
mediate DB, containing views for every IDB relation. We favor the second approach. By
any approach, the created SQL statements can be evaluated on an RDBMS, exploiting
the efficient query optimizers in modern RDBMSs.

Example 105. Consider the DL KB L = �T ,A�, where R and Q are roles and T is
defined as R � Q. Furthermore Q(c1, c2) and Q(c2, c3) are membership assertion in A.
Let DLP = (L, P) be a dl-program as follows:

b(c1). b(c2).
a(x, y) ← b(x), not s(x, y).
s(x, y) ← DL [R � t;R] (x, y).
b(x, y) ← DL [;Q] (x, y).
t(x, y) ← b(x, y).
t(x, z) ← t(x, y), t(y, z).

The dl-program DLP can be rewritten to the following Datalog rules, where the first
part is directly taken and the second part is adapoted according to Algorithm 3.9:

b(c1). b(c2).
q(x, y) ← a(x), not s(x, y).
t(x, y) ← b(x, y).
t(x, z) ← t(x, y), t(y, z).

and

q(c1, c2). q(c2, c3).
p2R(x, y) ← q(x, y).
s(x, y) ← dl1(x, y).
dl1(x, y) ← p2R(x, y).
dl1(x, y) ← t(x, y).
b(x, y) ← dl2(x, y).
dl2(x, y) ← q(x, y).

At this point we could rewrite the Datalog rules into RA expressions using fixpoint
evaluation for the rule t(x, z) ← t(x, y), t(y, z).

4. Implementation

4.1. Overview

In this chapter we introduce the experimental implementation of a RDBMS-based solver,
called MOR. MOR is the abbreviation for MergeOntologyRule. The implementation
stands as a proof of concept for the theories developed in Chapter 3.

We setup the following design goals for MOR:

1. Taking fully advantage of RDBMS technology;

2. reusing existing Open Source software components;

3. interfacing a DL reasoner through plug-ins; and

4. using an object-oriented programming language for the implementation.

With respect to Goal 4, Java 1.6 was chosen, because its accepted use in academia
and the availability of a wide range of components (particularly the JGraphT library1).
Crucial to Goal 3 is the existence of DL reasoners supporting DL-LiteR, namely Owl-
gres2 and QuOnto3. As for Goal 1, PostgreSQL 8.44 was chosen due its support for
the SQL:1999 standard and its efficient query optimizer. Particularly the capability of
evaluating recursive queries opened up interesting extensions for this thesis.

Resulting from the design goals, the implementation of MOR was carried out in three
steps:

1. Developing a basic rewriter for Datalog to SQL.

2. Designing and developing a DL plug-in for using Owlgres 0.1 and possible other
OWL2 QL reasoners.

3. Adapting Owlgres 0.1 for extracting rewritten SQL statements,

For the first step, already existing Datalog-based inference engine were considered. Par-
ticularly KAON [Bozsak et al., 2002] was promising, but the following limitations speak
against it:5

1
http://www.jgrapht.org/

2
http://pellet.owldl.com/owlgres/

3
http://www.dis.uniroma1.it/quonto/

4
http://www.postgresql.org/

5
http://sourceforge.net/projects/kaon/

51

Design 52

• The main developing efforts appear to be in KAON2, while the last changes in
KAON happened in 2005,

• KAON is not plug-able, so major changes in the source code would have been
necessary, and

• some steps of the query evaluation are not based on recursion based on SQL.

4.2. Design

4.2.1. Architecture

The UML class diagram of Figure 4.1 gives a brief overview of the architecture. We omit
the architecture on class level but refer to the source code of MOR (see Appendix A).
Briefly, MOR consists of the following libraries:

• The base library,

• the main library, and

• SQL-based plug-in libraries.

The base library is made of the basic classes representing a logic program (e.g. Rule,
Predicate, and Literal) and auxiliary classes used by the builder and the plug-ins.

The main library covers the control flow, the access to the RDBMS, the parsing, and
the rewriting strategy. Depending on the configuration, plug-ins are loaded and called
on demand by this library.

As for the plug-in libraries, the bridge pattern [Gamma et al., 1995] was chosen, so MOR
can be extended with different SQL based plug-ins. The idea of using plug-ins with logic
programs was adopted from HEX-programs [Eiter et al., 2006].

The first developed plug-in library is the DL plug-in, which encapsulates the DL-LiteR
reasoner Owlgres. Beside interfacing Owlgres, parsing of DL predicates, creating auxil-
iary views and reprocessing SQL statements of Owlgres are implemented in this library.

The Owlgres reasoner, a Java library itself, performs the rewriting of conjunctive queries
according to DL-LiteR. A more detailed picture of Owlgres and the plug-in will be given
in Section 4.4.

53 Implementation

Figure 4.1.: System Architecture of MOR

4.2.2. Data- and Control-Flow

Besides standard RDBMS parameter (e.g. DB name, DB user or DB password) the main
input for MOR is a logic program file, containing the program P .

The program P is parsed by the parser module, where plug-ins can overwrite the standard
parsing. After successful parsing, P will be separated into a set of EDB facts and IDB
rules.

The EDB of P will be directly written to the RDBMS. A valid schema of tables relating
to the predicates is required and has to be created by the user beforehand.

For determining an efficient rewriting order, a dependency graph of P ’s IDB is build.
The graph is fed into the JGraphT library6, which computes the topological sorting of
P . The careful reader will notice, that a topological sorting of stratified programs is
not feasible. To retrieve a sorting, the strongly connected components of the IDB would
have to be computed. Due to our current limitation to linear recursion, all cycles in the
IDB are between two rules. We take advantage of this restriction, hence every pair of
recursive rules can be reduced to a single rule. After reducing all recursive rules, the
topological sorting of P is viable.

The detailed implementation of the rewriter is discussed in Section 4.3. Briefly, the
rewriter converts the IDB rules into SQL by taking the plug-ins into account.

Finally, the SQL executor runs the generated SQL statements on the RDBMS. After
successfully executing them, the results will be outputted.

Figure 4.2 gives a complete overview of the data- and control-flow.
6
http://www.jgrapht.org/

Details of Rewriting Datalog to SQL 54

Figure 4.2.: Data- and Control-flow

4.3. Details of Rewriting Datalog to SQL

The theoretical results of Chapter 3 give an appropriate outline for rewriting Datalog
to SQL. Based on this results we will define rewriting functions, which convert Datalog
directly into SQL omitting RA entirely.

The Datalog program of Figure 4.3 will be taken as a running example.

4.3.1. Datatypes

Datatypes are not covered by RA, but when using an RDBMS every field has datatypes
assigned. We choose the simple approach of specifying datatypes according to the con-
stants in the input program. For simplicity, just the following XML datatypes are sup-
ported :7

• xsd:string

• xsd:integer

• xsd:long

• xsd:float

• xsd:double

If a variable is unbound, denoted by “_” , it will be ignored for further rewriting.
7
http://www.w3.org/TR/xmlschema-2/

55 Implementation

(1) husband_of(greco,pugliese).
(2) husband_of(pietro,famularo).
(3) migrated(pietro).

(4) married(X,Y) :- husband_of(X,Y).
(5) married(Y,X) :- husband_of(X,Y).
(6) married(X,Y) :- wife_of(X,Y,Z), Z > 18.
(7) married(Y,X) :- wife_of(X,Y,Z), Z > 18.
(8) parent(X,Y) :- father_of(X,Y).
(9) parent(X,Y) :- mother_of(X,Y).
(10) parent(X,Y) :- married(X,Z), father_of(Z,Y).
(11) parent(X,Y) :- married(X,Z), mother_of(Z,Y), not migrated(Y).

(12) ancestor(X,Y) :- parent(X,Y).
(13) ancestor(X,Y) :- ancestor(X,U), ancestor(U,Y).

Figure 4.3.: A program representing the ancestor problem

4.3.2. Rewriting the EDB

The EDB can be mapped straightforward to entries in related DB tables.

Definition 106. A fact a is defined as an atom p(c1, ..., cn), where p is a predicate,
each c1, ..., cn is a constant, and n � 0. The rewriting function fEDB on P is defined as
follows:

fEDB(P) =
�

i=1,...,|EDB(P)|

fF (ai)

where

fF (a) : INSERT INTO MOR_a FIELDS(attra,1, ..., attra,n) VALUES(ca,1 , ..., ca,n);

Notice that the prefix MOR_ is used to name custom tables and to avoid conflicts with
existing DB tables.

Example 107. The following example illustrates the result of function fF on the EDB
facts (1), (2), and (3) of Figure 4.3:

INSERT INTO TABLE MOR_husband(’greco’,’pugliese’);
INSERT INTO TABLE MOR_husband(’pietro’,’famularo’);
INSERT INTO TABLE MOR_migrated(’pietro’);

Details of Rewriting Datalog to SQL 56

4.3.3. Rewriting Nonrecursive Rules

In SQL there are several syntactical ways to expess joins. We will use the implicit join
notation, where the joined tables are simply listed in the FROM clause.

Any variable of a body atom is chosen for the projection, if it matches a variable in the
head atom. Any variable of a body atom is taken for the selection, if it matches a variable
of another body atom. Every unmatched variable is considered unbound and ignored.
For rewriting a nonrecursive rule we can distinguish four different cases, depending on
the occurance of NAF literals and SQL operators.

Definition 108. Let a rule r be defined as:

a ← b1, ..., bk, not bk+1, ..., not bm, fr, ..., fs.

where a, b1, ..., bm are atoms, fr, ..., fs are built-in functions, m � k � 0, and s � r � 0.
We recall Definition 8 for the atoms. A built-in function is defined as (t1 op t2), where op
is a SQL operator with op ∈ {≥, >,≤, <,=, ! =, LIKE, BETWEEN, IN} and t1, t2 are terms.
Furthermore the Datalog safety condition has to be fullfilled.

The following sets are defined over r:

P =
�
tb | ta ∈ a(t1, ..., tna) ∧ tb ∈ bj(t1, ..., tnj) ∧ j ≤ k ∧ ta = tb

�
;

S+ =
�
�t1, t2� | t1 ∈ bi(t1, ..., tni) ∧ t2 ∈ bj(t1, ..., tnj) ∧ i ≤ j ≤ k ∧ bi �= bj ∧ t1 = t2

�
;

S− =
��

bj ,
→
t1,

→
t2
�
| t1 ∈ bi(t1, ..., tni) ∧ t2 ∈ bj(t1, ..., tnj) ∧ i ≤ k < j ∧ t1 = t2

�
;

Sop = {�t1, op, t2� | (t1 op t2) ∈ fi ∧ s � i � r} .
Then we define the rewriting function fB on r as the following four cases f∅

B, f+
B , f−

B ,
and fop

B :

1. The case f∅
B with S− = ∅, S+ = ∅, and Sop = ∅ is defined as follows, where p ∈ P :

f∅
B(r, P) : SELECT DISTINCT p1 , ..., pn FROM b1 , ..., bk ;

2. The case f+
B with S− = ∅ and Sop = ∅ is defined as follows, where s+ ∈ S+ and

p ∈ P :
f+
B (r, P, S+) : SELECT DISTINCT p1 , ..., pn FROM b1 , ..., bk

WHERE s+1,1 = s+1,2 AND, ..., s
+
n,1 = s+n,2;

3. The case f−
B with Sop = ∅ is defined as follows, where s− ∈ S−, s+ ∈ S+, and

p ∈ P :

f−
B (r, P, S+, S−) : SELECT DISTINCT p1 , ..., pn FROM b1 , ..., bk

WHERE s+1,1 = s+1,2 AND, ..., s
+
n,1 = s+n,2 AND

(s−1 ,2 ,1 , ..., s
−
1 ,2 ,n) NOT IN(SELECT s−1 ,3 ,1 , ..., s

−
1 ,3 ,n FROM s−1 ,1)

AND, ..., (s−n,2 ,1 , ..., s
−
n,2 ,n) NOT IN

(SELECT s−n,3 ,1 , ..., s
−
n,3 ,n FROM s−n,1);

57 Implementation

4. The case fop
B with S− = ∅ and S+ = ∅ is defined as follows, where sop ∈ Sop, and

p ∈ P :
fop
B (r, P, Sop) : SELECT DISTINCT p1 , ..., pn FROM b1 , ..., bk

WHERE sop1,1 op1 s
op
1,2. AND, ..., s

op
n,1 opn sopn,2;

The four cases just define the basic rewriting functions of a nonrecursive rule. As a
consequence we can combine them to extend the rewriting as follows:

f+op
B (r, P, S+, Sop) : f+

B (r, P, S+) and fop
B (r, P, Sop);

f−op
B (r, P, S+, S−, Sop) : f−

B (r, P, S+) and fop
B (r, P, Sop).

Definition 109. Let r be a rule of program P and let p be a predicate as in Definition
108. Let V be the set of all predicates in P . The rewriting function fIDB on P is defined
as follows:

fIDB(P) =
�

i=1,...,|V |

fR(vi, Ri)

where R is the set of rules as follows:

R = {r | v ∈ H(r)}, for a predicate v ∈ V and every rule r ∈ IDB(P).

Then we define the rewriting function fR on v and R as follows, where r ∈ R:

fR(v,R) : CREATE OR REPLACE VIEW MOR_v(attrv,1, ..., attrv,n) AS
fB(r1) UNION ...fB(rn);

Roughly speaking, in the function fIDB the rules of a program are divided into subsets
according to the criteria of sharing the same predicate in the head atom. For every subset
the function fB is applied to every rule and the results are merged by an UNION clause.

Example 110. The Rules (8), (9), (10), and (11) from Figure 4.3 are rewritten the
following way:

CREATE OR REPLACE VIEW MOR_parent(att1, att2) AS
(SELECT DISTINCT MOR_father_of.att1, MOR_father_of.att2 FROM MOR_father_of
UNION
SELECT DISTINCT MOR_mother_of.att1, MOR_mother_of.att2 FROM MOR_mother_of
UNION
SELECT DISTINCT MOR_married.att1, MOR_father_of.att2 FROM MOR_married, MOR_father_of
WHERE MOR_married.att2=MOR_father_of.att1
UNION
SELECT DISTINCT MOR_married.att1, MOR_mother_of.att2 FROM MOR_married, MOR_mother_of
WHERE MOR_married.att2=MOR_mother_of.att1 AND
(MOR_mother_of.att2) NOT IN (SELECT MOR_migrated.att1 FROM MOR_migrated));

Details of Rewriting Datalog to SQL 58

4.3.4. Rewriting Recursive Rules

For this thesis, the rewriting of Datalog to SQL would have been less appealing without
the introduction of recursion to the DB field. This occurred with the SQL:1999 standard
[ISO, 1999] and fortunately, some RDBMS vendor have implemented SQL:1999 almost
entirely. The listed RDBMS support recursive queries:

• PostgreSQL with version 8.4,8

• Microsoft SQL Server with version 2008,9

• IBM DB2 with version 7.2,10 and

• Oracle with version 9i release 2.11

As already pointed out in Chapter 3, the main drawback of SQL:1999 is its limitation to
linear recursion.

Definition 111. In PostgreSQL 8.4, the syntax of linear recursive queries is taken from
the upcoming SQL:2008 standard:

WITH RECURSIVE < query name > AS (< table subquery >)

{...} [SEARCH clause | CYCLE clause] < SELECT body >

Definition 112. The rewriting function f rec
B for linear recursive rules is an additional

case of function fB. Let the rules r1 and r2 of program P be defined as:

r1 : a ← b, c1, ..., ck.

r2 : a1 ← a2, a3, c1, ..., ck.

where the rules, atoms, predicates, and terms are defined as in Definition 108. Further-
more the atoms a, a1, a2, and a3 share the same predicate.

The following sets are defined over r1 and r2:

P 1 = {tb | r1 ∧ ta ∈ a(t1, ..., tna) ∧ tb ∈ b(t1, ..., tnb) ∧ ta = tb} ;

P 2 = {tc | r2 ∧ ta ∈ a1(t1, ..., tna1
) ∧ ((tc ∈ a2(t1, ..., tna2

) ∧ ta = tc) ∨

(tc ∈ a3(t1, ..., tna3
) ∧ ta = tc))};

S =
�
�t1, t2� | r2 ∧ t1 ∈ a2(t1, ..., tna2

) ∧ t2 ∈ a3(t1, ..., tna3
) ∧ t1 = t2

�
;

8
http://www.postgresql.org/

9
http://www.microsoft.com/sqlserver/

10
http://www.ibm.com/db2/

11
http://www.oracle.com/database/

59 Implementation

The function f rec
B is defined as follows, where s ∈ S, p1 ∈ P 1, p2 ∈ P 2, and lm ∈ N :

f rec
B (r1, r2, P 1, P 2, S, lm) : CREATE OR REPLACE VIEW MOR_a_base(attra,1 , ..., attra,n) AS

(SELECT DISTINCT p11 , ..., p
1
n FROM b);

CREATE OR REPLACE VIEW MOR_a(p21 , ..., p
2
n) AS(

WITH RECURSIVE MOR_a_rc(p21 , ..., p
2
n) AS

((SELECT DISTINCT p11 , ..., p
1
n FROM MOR_a_base)

UNION

(SELECT DISTINCT p21 , ..., p
2
n ,

FROM MOR_a_rc, MOR_a_base
WHERE s1 ,1 = s1 ,2 AND, ..., sn,1 = sn,2))
SELECT p21 , ..., p

2
n FROM MOR_a_rc LIMIT lm);

If there are cycles in the EDB, the recursive query evaluation of PostgreSQL will not
terminate. In the PostgreSQL documentation this issue is stated as: “When working
with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely.”12 As commented by
the PostgreSQL developers, the recursive query evaluation is implemented as follows:13

1. Evaluate the non-recursive term of the SEARCH clause.

2. Evaluate the CYCLE clause by applying a breadth-first search, where a working table
and a result table is kept.

We decided to introduce the LIMIT parameter, to restrict the rows which are fetched by
the parent query. This has the effect, that a circular evaluation will stop after a certain
amount of iteration in the breadth-first search. It is crucial to set the LIMIT parameter
not less than the size of the expected result set. An incorrect parameter will cause a
incomplete result set. A better approach and valuable extension of MOR would be the
introduction of a native DB function, which tracks all visited vertices to break cycles.
See the PostgreSQL documentation for an in-depth discussion of this issue.14

4.4. Interfacing Owlgres with the DL Plug-in

As a second step, an intermediate layer between MOR and Owlgres had to be developed.
We follow the design of dlvhex and HEX-programs (see [Eiter et al., 2006]) and introduce
a DL plug-in to interface with Owlgres and possible other DL reasoner.

The authors of [Stocker and Smith, 2008] put the focus of Owlgres as: “Owlgres aims
at both efficient querying over a scalable persistent store and automatic reasoning for
RDF and OWL data.” Owlgres in its beta-release 0.1 is optimized for PostgreSQL, but
12

http://www.postgresql.org/docs/8.4/static/queries-with.html
13

http://archives.postgresql.org/pgsql-hackers/2008-02/msg00642.php
14

http://www.postgresql.org/docs/8.4/static/queries-with.html

Interfacing Owlgres with the DL Plug-in 60

could be adapted to other RDBMS. Owlgres can act as server, awaiting queries through
TCP/IP. We decided to used Owlgres directly by referencing it as a component.

The DL plug-in covers two major cases:

• The first case is querying the DL KB. This is realized by calling Owlgres with a
given SPARQL query.

• The second case extends the simple query with updates to Owlgres’ DL KB.

4.4.1. DL-Atoms

In HEX-programs a strict approach for querying the DL KB with DL atoms was chosen.
This has the advantage of uniformly interfacing different DL reasoner with different query
languages. Thereby users of the system are strictly guided with the formulation of their
DL query. According to Eiter et al. DL atoms of HEX-programs support the following
queries [Eiter et al., 2006]:

• Concept queries with the &dlC atom,

• object role queries with the &dlR atom,

• data role queries with the &dlDR atom, and

• conjunctive queries (resp. union of conjunctive queries) with &dlCQ (resp. &dlUCQ)
atom.

In MOR on the contrary, accessing the DL KB is accomplished by SPARQL queries.
The main reason for using SPARQL is influenced by the fact, that Owlgres uses it as
the language for query answering. Since Owlgres is not full SPARQL-complete, there are
some limitation regarding expressivity. For example the expression OPTIONAL is not sup-
ported by Owlgres [Stocker and Smith, 2008]. Opposed to DL atoms of HEX-programs,
the SPARQL queries are stored in external files and referenced in the DL atom. Using
SPARQL directly has the nice advantage, that it opens up the full expressibility of the
language. Thus any extensions in SPARQL and Owlgres are immediately available in
MOR.

We follow the notion of dl-atom and dl-query introduced in Chapter 3. We use the
dl-atom for practical purposes in two forms, namely as a standard atom and an update
atom.

Definition 113. The standard dl-atom is defined the following way:

&dlQS[query_uri](X1, ..., Xn) ,

where query_uri is the URI of a SPARQL query and X1, ..., Xn is the list of output terms.

Example 114. The following example is a plain dl-program. It references a query do
Dbpedia, which retrieves all books of a certain type:

61 Implementation

book(X,Y) :- &dlQS["books.rq"](X,Y). ,

where the SPARQL query books.rq is defined as:
SELECT ?s ?n WHERE { ?s rdf#type yago:Book106410904 . ?s dbpedia:name ?n . }

Definition 115. The update dl-atom extends the DL KB access with concept, object-role
and data-role updates:

&dlQU[query_uri, op1, pred1, op2, pred2, op3, pred3](X1, ..., Xn) ,

with the following parameter:

query_uri ... is the URI of a SPARQL query.
op1 ... denoting a positive (+) or negative (-) concept assertions.

pred1 ... designating the binary predicate for concept extensions, where the first
term is a DL class and the second term is a DL individual.

op2 ... similar to op1 but for object-role assertions.
pred2 ... designating the ternary predicate for concept extensions, where the first

term is a DL individual, the second a DL role and the third again an DL
individual.

op3 ... is similar to op1 but it is intended for data-role assertion.
pred3 ... is similar to pred2 but the third term is plain text instead of an DL

individual.
X1, ..., Xn denotes the list of output terms. Note that the output terms have to match

the variables of the SPARQL query defined in query_uri.

Example 116. The following dl-program extends Example 114 with membership asser-
tions of a Spanish book.

book(X,Y) :- &dlQU["data/dbpedia_query.rq",+,updateC,+,updateOR,+,updateDR](X,Y).
updateC(http://dbpedia.org/class/yago/Book106410904,study_Spanish_1).
updateDR(study_Spanish_1,http://dbpedia.org/property/name,einführungSpanish1).
updateOR(study_Spanish_1,http://dbpedia.org/property/successor,study_Spanish_2).

4.4.2. Owlgres Overview

The Owlgres DL KB has to be initialized by creating the TBox and filling the ABox.
This is accomplished in the command line interface by the following commands [Stocker
and Smith, 2008]:

• Creating the TBox is achieved by using the sh/create command. The name of
the RDBMS and the URI of the OWL file with the TBox definitions have to be
provided.

• Loading the ABox assertions is done with sh/load command. Furthermore the
RDBMS’s name and the URI of the OWL file with the ABox definition have to be
given.

Interfacing Owlgres with the DL Plug-in 62

For each DB instance, the TBox needs to be created once, the ABox can be loaded several
times. By loading the TBox, a static DB schema is created, which builds the underlying
structure for query answering.

For evaluating the update dl-atom, the DB schema of the Owlgres needs to be temporarily
changed. Thus a closer look at the DB schema is needed to illustrate further steps. The
relevant DB tables of Owlgres are shown in Table 4.2. Note that the id fields are the
primary and foreign keys to reference the different tables to each other:

Table Fields Description
concept_assertion concept (id),

individual (id)

Concept(Individual)

data_role_assertion data_role (id)

individual (id)

value (text)

datatype (text)

language (text)

DataRole(Individual, V alue)

individual_name individual (id)

name (text)

An id and name is assigned to
every Individual

object_role_assertion object_role (id)

a (id)

b (id)

ObjectRole(A,B)

tbox_concept_inclusion sub (id)
super (id)
positive (bool)

SubConcept � SuperConcept or
SubConcept � ¬SuperConcept

tbox_data_role_inclusion sub (id)
super (id)

∃SubDataRole.Concept �
∃SuperDataRole.Concept

tbox_name id (id)

type (text)

auxiliary (text)

frequency (text)

name (text)

An id, name, type and its
frequency is assigned to every
Class, ObjectRole, DataRole,
Namespace

tbox_object_role_inclusion sub (id)
super (id)

∃SubObjectRole.Concept �
∃SuperObjectRole.Concept

Table 4.2.: Owlgres 0.1 DB Schema

4.4.3. Owlgres KB Management

As mentioned before, the TBox is closely tied to the DB schema. Thus for every new
TBox a new DB instance is needed. For the purpose of our experiments, we did not see
any real drawback with this technique.

63 Implementation

4.4.4. Rewriting the Standard DL-Atom

The rewriting of the standard dl-atom is straightforward. The query_uri and the
RDBMS parameter are forwarded to the rewrite function of Owlgres. After Owlgres
is called, the resulting SQL statements are embedded into a newly created DB view.
The rewrite function of Owlgres is an implementation of the Algorithm Answer(Q,K) in
DL-LiteR (we refer to Chapter 2). As described in [Stocker and Smith, 2008], the stan-
dard rewriting of [Calvanese et al., 2007] was extended with three types of optimizations:

• Query simplification,

• selectivity optimization, and

• rewriting a set of conjunctive queries as a single query of UNION clauses.

4.4.5. Rewriting the Update DL-Atom

The following requirements have to be considered by rewriting the update dl-atom:

• After updating and accessing the DL KB, we need to transform it in its prior state,
and

• as discussed in Section 4.3.3, a cascade of DB views and SQL statements is created
and evaluated synchronous.

Note that otherwise the DL KB could be directly manipulated on the RDBMS.

The update process, which is shown in Algorithm 4.1 has the following steps:

• First, the original DB tables are renamed;

• Second, the auxiliary tables are created;

• And third, the auxiliary tables are “unionized” with the renamed tables using their
original name.

In Algorithm 4.1 the update of the DL KB occurs in stages. A stage is represented by the
variable lvl. The introduction of stages is needed, otherwise different update dl-atoms
would interfere with each other. Through stages, every update dl-atom constructs its
own temporary state of the DL KB.

The statements UNION (resp. EXCEPT) are used to implement positive (resp. nega-
tive) membership assertion. As apparent from the DB schema in Table 4.2, there
are no negative assertion defined in concept_assertion, object_role_assertion, and
data_role_assertion. Thus we decided to use EXCEPT for excluding the negative asser-
tions from the result.

Furthermore, for every created individual, a temporary id is created, otherwise the new
individual would collide with already existing individuals. For creating new ids without
materializing the individuals, we used PostgreSQL’s sequence function, which creates
unique identifiers on demand.15

15
http://www.postgresql.org/docs/8.4/static/sql-createsequence.html

Interfacing Owlgres with the DL Plug-in 64

Algorithm 4.1 Update DL KB
Input: Set A of update dl-atoms
Result: Set S of SQL commands, set U of undo SQL commands
lvl = 1;
foreach atom a ∈ A do

pred1 ← pred1 of a;
pred2 ← pred2 of a;
pred3 ← pred3 of a;
/* Rename current state and create new state of ABox */
S ∪ RENAME tables individual_name, concept_assertion, data_role_assertion,

object_role_assertion to in_+lvl, ca_+lvl, da_+lvl, oa_+lvl;
S ∪ CREATE auxiliary tables aux_in_+lvl, aux_ca_+lvl, aux_da_+lvl, aux_oa_+lvl;
S ∪ SELECT INTO aux_in FROM view pred1;
S ∪ SELECT INTO aux_ca FROM INNER JOIN view pred1, table tbox_name;
S ∪ SELECT INTO aux_da FROM INNER JOIN view pred2, table individual_name,

table tbox_name;
S ∪ SELECT INTO aux_oa FROM INNER JOIN view pred3, table individual_name,

table tbox_name;
/* Union (except) of old and new state of ABox */
S ∪ UNION of in_+lvl and aux_in calling it individual_name;
S ∪ UNION or EXCEPT of ca_+lvl and aux_ca calling it concept_assertion;
S ∪ UNION or EXCEPT of da_+lvl and aux_da calling it data_role_assertion;
S ∪ UNION or EXCEPT of oa_+lvl and aux_oa calling it object_role_assertion;
U ∪ reverse of S;
increase lvl by 1;

end
return S, U;

4.4.6. Adaptions in Owlgres 0.1

The third step is adapting Owlgres 0.1 in a way, such that plain SQL statements can be
extracted, and no transactions are performed on the RDBMS. Performing any transaction
during the rewriting step would considerable decrease the performance of MOR.

The main adaptions in Owlgres are as follows:

1. In the library Owlgres_CLI the new class queryRewrite was introduced. This class
works as an entry point for external systems (e.g. MOR).

2. In several intermediate classes (e.g. OWLGres) a method called queryRewrite()
was added to forward the rewriting call to the Owlgres_Core library.

3. In the class StoreConnectionBase of the Owlgres_Core library, a SQLQueryBuilder
is created and the SQL statements retrieved.

4. In the class DLLKB, which calls StoreConnectionBase, the original design had to be
altered. In the original class, calls to rewrite a query always created a ResultSet,

which decrease the performance of the overall system. This was adapted, that in
case of queryRewrite() only a string and not the whole result set is returned.

4.5. Limitations

As already mentioned, MOR is an experimental system, and due to “usual” limitation of
resources (e.g. time), we did not implement the following functions yet:

• As discussed in Chapter 3, only linear recursion and not general recursion is sup-
ported;

• Algorithm RectifyRules of Chapter 3 is not considered;

• Other OWL2 QL reasoners (e.g. QuOnto) could be integrated;

• A generic SQL plug-in is missing;

• The public interface of the MOR libraries have to be reconsidered, so MOR could
be used as a software component in other systems;

• Replacing the LIMIT parameter with a native DB function, which handles cycles in
recursive queries.

5. Experiments

5.1. Methodology

The Asparagus competition was a major step in the field of ASP for benchmarking ASP
reasoners [Gebser et al., 2007b, Denecker et al., 2009]. Also for OWL several benchmark
suites as Lehigh University Benchmark (LUBM) and Ontology Benchmark (UOBM) have
evolved. We refer the interested reader to [Guo et al., 2005, Ma et al., 2006]. For more
general rule-based systems, OpenRuleBench was developed to benchmark different types
of reasoners, namely Prolog-based, Deductive Database, Productive Rule, and Reactive
Rule systems [Liang et al., 2009].

None of the mentioned benchmarks is designed to cover dl-programs. Fortunately, Open-
RuleBench includes some useful benchmarks, which could be adopted for these exper-
iments. When reasoning systems are benchmarked, there is an ongoing discussion on
the separation of loading and inference time [Liang et al., 2009]. In contrast to Open-
RuleBench, this benchmark does not separate loading and inference time. This is done
because we focus on RDBMS technology, where important optimizations are done in the
loading step.

The experiment is split into four different scenarios, whereby the last does not contain
benchmarks:

1. This scenario is composed of ordinary Datalog programs.

2. In this scenario Datalog programs query a DBpedia DL KB.

3. More complex than the second scenario, a LUBM DL KB is queried instead.

4. This scenario shows extensions and limitations of our prototype.

To cover a wide area of testing, both random and “real world” data is used. The generated
data for each scenario contains approximately 10,000, 100,000, 500,000, and 1,000,000
facts or assertions.

5.2. Scenario 1 - Datalog

This scenario focuses just on Datalog programs. Based on three benchmarks, some
features like recursion and default negation are tested.

MOR is compared to the following systems:

67

Scenario 1 - Datalog 68

• DLV using its ODBC interface [Leone et al., 2006], and

• DLVDB using the auxiliary directives USE for importing the EDB and CREATE for
defining the IDB [Terracina et al., 2008].

5.2.1. Large Join Benchmark

This benchmark is taken from OpenRuleBench, whereby the EDB consists of the relations
c2, c3, c4, d1, d2, and ex. These relations are first randomly generated and then imported
to PostgreSQL. Note that the #import directive in MOR is used as in DLV, mapping DB
relations to the EDB. For implications the symbol :- is used instead of ←.

Definition 117. The first benchmark is a non-recursive program evaluating a tree of
binary joins:

#import(c2). #import(c3). #import(c4). #import(d1). #import(d2).
% Query
result(X,Y) :- b1(X,Z), b2(Z,Y).
% Main
b1(X,Y) :- c1(X,Z), c2(Z,Y).
b2(X,Y) :- c3(X,Z), c4(Z,Y).
c1(X,Y) :- d1(X,Z), d2(Z,Y).

5.2.2. Default Negation Benchmark

Definition 118. This benchmark is extending the previous program simply with default
negation:

#import(c2). #import(c3). #import(c4). #import(d1). #import(d2). #import(ex).
% Query
result(X,Y) :- b1(X,Z), b2(Z,Y).
% Main
b1(X,Y) :- c1(X,Z), c2(Z,Y), not ex(Y).
b2(X,Y) :- c3(X,Z), c4(Z,Y), not ex(Y).
c1(X,Y) :- d1(X,Z), d2(Z,Y), not ex(X).

5.2.3. Stratified Negation Benchmark

The well know ancestor problem is taken to show recursion and default negation. Again
the relations of the EDB are generated randomly, hence certain instances of the EDB
might be cyclic.

Definition 119. This program captures the transitive closure of the relation parent. It
consists of the following rules:

69 Experiments

#import(migrated). #import(husband_of). #import(wife_of). #import(father_of).
#import(mother_of).
% Query
result(X,Y) :- married(X,Y), not ancestor(X,Y).
% Main
married(X,Y) :- husband_of(X,Y).
married(Y,X) :- husband_of(X,Y).
married(X,Y) :- wife_of(X,Y,Z), Z > 18.
married(Y,X) :- wife_of(X,Y,Z), Z > 18.
parent(X,Y) :- father_of(X,Y).
parent(X,Y) :- mother_of(X,Y).
parent(X,Y) :- married(X,Z), father_of(Z,Y).
parent(X,Y) :- married(X,Z), mother_of(Z,Y), not migrated(Y).
% Recursion
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- ancestor(X,U), ancestor(U,Y).

5.3. Scenario 2 - Derived DBpedia

Being the goal of this work, the capabilities of combining Datalog and DL-Lite based on
an RDBMS are shown. This scenario is split into three benchmarks, whereby the first is
a simple access to the DL layer, the second has access to the DL layer and negation is
included, and the third combines access and update to the DL layer.

MOR is benchmarked agains dlvhex, using the Description Logic Plug-in with RacerPro
1.9.2 [Eiter et al., 2006].

We extracted three types of literature (e.g. books, periodicals, and publications) from
the DBpedia DB1. The extracted data was then imported to Owlgres filling the ABox.

Definition 120. We defined the TBox as follows, because the whole TBox of DBpedia
is not capturable with Owlgres:

Book � Publication
Periodical � Publication
∃Name.nameString
�publication, nameString� : Name

.

5.3.1. Simple Benchmark

Definition 121. This program is simple merging two DL queries for books and journals:
1
http://wiki.dbpedia.org/OnlineAccess

Scenario 2 - Derived DBpedia 70

% Query
result(X,Y) :- book(X,Y).
result(X,Y) :- journ(X,Y).
% DL Access
book(X,Y) :- &dlQS["dbpedia_query1"](X,Y).
journ(X,Y) :- &dlQS["dbpedia_query2"](X,Y).

5.3.2. Advanced Benchmark

Definition 122. This program selects all available books and excludes the periodicals
from the total set. Then a given range of books are chosen from the total set:

% Query
result(X,Y) :- journ_sel_a(X,Y).
result(X,Y) :- journ_sel_d(X,Y).
% Main
journ_sel_a(X,Y) :- journ(X,Y), Y > ’Book 1000’, Y < ’Book 1500’.
journ_sel_d(X,Y) :- journ(X,Y), Y > ’Book 8000’, Y < ’Book 8500’.
journ(X,Y) :- publ(X,Y), not book(X,Y).
% DL Access
book(X,Y) :- &dlQS["dbpedia_query1"](X,Y).
publ(X,Y) :- &dlQS["dbpedia_query3"](X,Y).

5.3.3. Update Benchmark

Definition 123. In this program the ABox is extended with three Spanish books:

% Query
result(X,Y) :- book(X,Y).
result(X,Y) :- journ(X,Y).
% DL Access and Update
book(X,Y) :- &dlQU["dbpedia_query1",+,updateConcept,+„+,updateData](X,Y).
journ(X,Y) :- &dlQS["dbpedia_query2"](X,Y).
% Update Predicates
updateConcept(X,Y) :- uc(X,Y).
updateData(X,Y,Z) :- ud(X,Y,Z).
uc(yago:Book106410904,study_Spanish_1).
uc(yago:Book106410904,study_Spanish_2).
uc(yago:Book106410904,study_Spanish_3).
ud(study_Spanish_1,dbpedia:name,einführungSpanish1).
ud(study_Spanish_2,dbpedia:name,einführungSpanish2).
ud(study_Spanish_3,dbpedia:name,enführungSpanish3).

71 Experiments

5.3.4. DBpedia queries

Definition 124. The following list contains all SPARQL queries used in the DL plug-in
for this scenario:

dbpedia_query1: SELECT ?s ?n WHERE
{?s rdf:type yago:Book106410904. ?s dbpedia:name ?n.}

dbpedia_query2: SELECT ?s ?n WHERE
{?s rdf:type yago:Periodical106593296. ?s dbpedia:name ?n.}

dbpedia_query3: SELECT ?s ?n WHERE
{?s rdf:type yago:Publication106589574. ?s dbpedia:name ?n.}

5.4. Scenario 3 - Derived LUBM

Similar to the previous scenario, MOR is benchmarked against dlvhex.

LUBM is one of the standard data sets to benchmark Semantic Web applications. A data
generator2 is part of LUBM, so an ABox of generic universities can be generated. The
DL KB consists mainly of universities, departments, professors, students and courses.
We refer to [Guo et al., 2005] for a detailed definition of the TBox.

5.4.1. Simple Benchmark

Definition 125. This program is adopted from the LUBM examples. The program
retrieves all students which take certain courses:

% Query
result(X) :- takesCourse(X,Y), u_important(Y), graduateStudent(X).
% Main
u_important(http://www.Department0.University0.edu/GraduateCourse0).
u_important(http://www.Department0.University0.edu/GraduateCourse2).
u_important(http://www.Department0.University0.edu/GraduateCourse4).
% DL Access
graduateStudent(X) :- &dlQS["lubm_query1"](X).
takesCourse(X,Y) :- &dlQS["lubm_query2"](X,Y).

5.4.2. Advanced Benchmark

Definition 126. This program is also taken from the LUBM, but extended with nega-
tion. The program is seeking students which take courses of faculty advisors, whereby
the advisors should not be full professors.

2
http://swat.cse.lehigh.edu/projects/lubm/

Scenario 3 - Derived LUBM 72

% Query
result(X) :- advisor(X,Y), teacherOf(Y,Z), takesCourse(X,Z),

student(X), faculty(Y), course(Z), not fullprof(Y).
% DL Access
takesCourse(X,Y) :- &dlQS["lubm_query2"](X,Y).
advisor(X,Y) :- &dlQS["lubm_query3"](X,Y).
teacherOf(X,Y) :- &dlQS["lubm_query4"](X,Y).
student(X) :- &dlQS["lubm_query5"](X).
faculty(X) :- &dlQS["lubm_query6"](X).
course(X) :- &dlQS["lubm_query7"](X).
fullprof(X) :- &dlQS["lubm_query8"](X).

5.4.3. Update Benchmark

Definition 127. In this benchmark we overcome the lack of transitivity in DL-LiteR
and OWL 2 QL [Motik et al., 2009]. This is done by calculating the transitive closure of
the organization hierarchy in the Datalog program. Then, the results are injected back
to the DL KB. Finally, the altered DL KB is queried for the main result. Note, that
we introduce a new role called subOrganizationOfTC, which assures that the transitive
closure is not conflicting with the original role subOrganizationOf.

% Query
result(X,Y,Z) :- graduateStudent(X), memberOf(X,Z), ugDegreeFrom(X,Y),

univ(Y), dept(Z), subOrgOf(Y,Z).
% DL Access
graduateStudent(X) :- &dlQS["lubm_query1"](X).
memberOf(X,Y) :- &dlQS["lubm_query9"](Y,X).
ugDegreeFrom(X,Y) :- &dlQS["lubm_query10"](Y,X).
univ(X) :- &dlQS["lubm_query11"](X).
dept(X) :- &dlQS["lubm_query12"](X).
% DL Access and Update
subOrgOf(X,Y) :- &dlQU["lubm_query14",+„+,updateRole,+,](Y,X).
% Recursion and Update Predicate
updateRole(X,Y,Z) :- u_roletc(Y), updateSubOrg(X,Z).
baseOrg(X,Y) :- &dlQS["lubm_query13"](X,Y).
updateSubOrg(X,Y) :- baseOrg(X,Y).
updateSubOrg(X,Z) :- updateSubOrg(X,Y), updateSubOrg(Y,Z).
u_roletc(lubm:subOrganizationOfTC).

5.4.4. LUBM queries

Definition 128. All SPARQL queries for this scenario are defined as follows:

lubm_query1: SELECT ?s WHERE {?s rdf:type lubm:GraduateStudent.}
lubm_query2: SELECT ?s ?n WHERE {?s lubm:takesCourse ?n.}
lubm_query3: SELECT ?s ?n WHERE {?s lubm:advisor ?n.}
lubm_query4: SELECT ?s ?n WHERE {?s lubm:teacherOf ?n.}
lubm_query5: SELECT ?s WHERE {?s rdf:type lubm:Student.}
lubm_query6: SELECT ?s WHERE {?s rdf:type lubm:Faculty.}
lubm_query7: SELECT ?s WHERE {?s rdf:type lubm:Course.}
lubm_query8: SELECT ?s WHERE {?s rdf:type lubm:FullProfessor.}
lubm_query9: SELECT ?s ?n WHERE {?s lubm:memberOf ?n.}

lubm_query10: SELECT ?s ?n WHERE {?s lubm:undergraduateDegreeFrom ?n.}
lubm_query11: SELECT ?s WHERE {?s rdf:type lubm:University.}
lubm_query12: SELECT ?s WHERE {?s rdf:type lubm:Department.}
lubm_query13: SELECT ?s ?n WHERE {?s lubm:subOrganizationOf ?n.}
lubm_query14: SELECT ?s ?n WHERE {?s lubm:subOrganizationOfTC ?n.}

5.5. Scenario 4 - Limitations and Extensions

5.5.1. Well-Founded Semantics

The known win-not-win test introduced by [Gelder et al., 1991] is taken to show recursion
and default negation. For this test the generated EDB is cyclic. We expect problems
with the rewriting to SQL, because the program is only evaluable under well-founded or
stable-model semantics.

Definition 129. The program consists of a single recursive rule:

#import(wnw_move).
% Query and Main
win(X) :- wnw_move(X,Y), not win(Y).

5.5.2. Combining DLVDB with generated Owlgres queries

The similarity between MOR and DLVDB suggest, that DLVDB could be extendend with
a DL plug-in. This test should give a first insight into such an extension. As a first step,
all needed DB views are generated by MOR. Then, the DB views will be imported as
the EDB to DLVDB. Finally, DLVDB will be run on top of the Owlgres DB views. We
will use the simple LUBM benchmark of Definition 125 with 1,000,000 assertions for this
test.

6. Experimental Results

In this chapter, we present and discuss the results for our experiments. The test were
performed on a server running on openSUSE 11.1 (x86_64) with the following specifica-
tion:

• Processor (CPU): Intel® Xeon® CPU E5450 @ 3.00GHz;

• Total memory (RAM): 15.7 GB.

The standard installation of PostgreSQL 8.4 in openSUSE 11.1 was taken. To utilize the
available RAM, the parameters shared_buffers was set to 4096 MB (from 32 MB) and
work_mem was set to 512 MB (from 1 MB) . These recommendations for performance
optimization were taken from PostgreSQL wiki.1 Further optimization of PostgreSQL,
such as creating DB indices, was not considered for the Datalog scenario, but for the
combined scenarios the DL reasoner Owlgres creates useful indices on its initialization.

For every system/benchmark combination, the experiment followed the following proce-
dure:

1. Initializing PostgreSQL to clear its cache.

2. Five rounds of calls with the respective tool and the respective benchmark’s pro-
gram file are executed, whereby start- and finishing times are logged. To avoid any
bias in measuring, the result output is turned off for every system.

3. After a timeout of 12 hours the particular experiment is canceled.

4. The average of the five execution times is taken to calculate the final result, which
is kept in seconds.

Notice, that we consciously decided to initialize PostgreSQL only at the beginning, so
the query optimizer of PostgreSQL could take advantage of cached data. In Section 6.1.1
we will discuss the results related to caching.

To validate the correctness of every benchmark, the resulting sets were counted and
compared with the other systems. We did not encounter any differences in the resulting
sets.

1
http://wiki.postgresql.org/wiki/Performance_Optimization

75

Scenario 1 - Datalog 76

6.1. Scenario 1 - Datalog

6.1.1. Large Join Benchmark

The results (see Figure 6.1) show that MOR and DLVDB have linear runtime behavior2,
whereby MOR is about 45% faster than DLVDB. We explain this difference, even both are
based on an RDBMS, that in DLVDB the IDB is temporarily materialized, where in MOR
the IDB is rewritten into DB views. We refer regarding the details of materialization
in DLVDB to [Terracina et al., 2008]. By importing the EDB from the RDBMS and
evaluating the IDB internally, DLV falls behind after 10,000 instances.

n MOR DLV DLVDB

10000 0 2 0
100000 2 270 3
250000 5 2274 9
500000 10 8096 18
1000000 22 32644 42

Time (s)

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Size (n)

T
im

e
 (

s)

MOR

DLV

DLVDB

Figure 6.1.: Large Join Results

In Table 6.1 the detailed log for a single experiment with MOR is shown. We suggest,
that the results of the particular rounds are almost identical, hence we can conclude that
caching with 5 repetition has no effect on the evaluation time.

Round Start End Result (s)
1 19:30:37 19:30:59 00:00:22
2 19:30:59 19:31:21 00:00:22
3 19:31:21 19:31:42 00:00:21
4 19:31:42 19:32:04 00:00:22
5 19:32:04 19:32:26 00:00:22

Table 6.1.: Log for MOR with Large Join Benchmark

2
We use runtime behavior (e.g. linear) in a descriptive sense and not as the worst-case behavior.

77 Experimental Results

6.1.2. Default Negation Benchmark

This benchmark (see Figure 6.2) gives a similar picture as the previous. An interesting
point is that the intermediate result of this benchmark is identical with the previous
benchmark. Still the performance for any system is by 50% better. This indicates that
the optimizer of PostgreSQL calculates reasonably the set difference before the set union.

n MOR DLV DLVDB

10000 0 1 0
100000 1 105 1
250000 3 977 4
500000 5 2795 9
1000000 11 11446 19

Time (s)

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Size (n)

T
im

e
 (

s)

MOR

DLV

DLVDB

Figure 6.2.: Default Negation Results

6.1.3. Stratified Negation Benchmark

In Figure 6.3 we can observe that MOR and DLVDB have an outlier with 250,000 in-
stances. So we do not have a smooth curve for any system. We still can reveal, that
MOR is about 3 times faster than DLVDB. DLV exceeded the timeout of 12 hours with
250,000 instances.

A reason for the uneven curve is related to the test data. The data for this benchmark
is randomly generated, so depth and occurrence of cycles can vary from instance to
instance.

For example, the instances of size 500,000 and 1,000,000 contain cycles, which have a
profound influence on the runtime behavior of MOR. As already discussed in Chapter
4, MOR uses the LIMIT parameter for breaking cycles in recursive queries in SQL:1999.
After we had changed the LIMIT parameter from 100,000,000 to 2,000,000, the runtime
behavior of MOR improved drastically:

• For the instance size of 500,000 runtime decreased from 3,221 to 17 seconds;

• For the instance size of 1,000,000 runtime dropped from 16,856 to 21 seconds.

This result indicates, that the LIMIT parameter has a strong impact on the performance
of recursive query evaluation in PostgreSQL 8.4.

Scenario 2 - Derived DBpedia 78

n MOR DLV DLVDB

10000 0 1 1
100000 1 254 5
250000 16 timeout 255
500000 17 timeout 56
1000000 21 timeout 239

Time (s)

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

Size (n)

T
im

e
 (

s)

MOR
DLV
DLVDB

Figure 6.3.: Stratified Negation Results

6.2. Scenario 2 - Derived DBpedia

This benchmark, having a very simple TBox, should not pose any problem for the tested
systems. Generic books and periodicals were additionally generated to reach the desired
instance size. Note that the instance size is measured in total of assertions and not total
of individuals.

6.2.1. Simple Benchmark

The result in Figure 6.4 shows that MOR performs nicely and exhibits almost linear
runtime behavior.

Unfortunately we could not test dlvhex with an instance size bigger than 10,000 (resp.
100,000). The reasoner RacerPro 1.9.1 is used in the dlvhex DL plug-in. The following
error was thrown by RacerPro:

“Plugin Error in dlC["dbp_100.rdf",a,b,c,d, "yago:Book106410904"](X) in line 10:

An explicit gc call caused a need for 139460608 more bytes of heap. The

operating system will not make the space available because of a lack of swap

space or some other operating system imposed limit or memory mapping collision.”

The AllegroGraph Library probably causes this error, which is used by RacerPro 1.9.1
as the RDF triple store [Racer Systems GmbH & Co. KG, 2009]. The AllegroGraph
Library has in its Free Edition a limited heap size of 60 MB.3

3
http://www.franz.com/downloads/

79 Experimental Results

n MOR dlvhex
10000 1 7
100000 1 error
250000 2 error
500000 3 error
1000000 5 error

Time (s)

0 200 400 600 800 1000
1

2

3

4

5

6

7

Size (n)

T
im

e
 (

s)

MOR
DLVHEX

Figure 6.4.: DBpedia Simple Results

6.2.2. Advanced Benchmark

After introducing negation, still linear runtime behavior of MOR can be observed (see
Figure 6.5).

n MOR dlvhex
10000 1 7
100000 1 error
250000 2 error
500000 4 error
1000000 7 error

Time (s)

0 200 400 600 800 1000
1

2

3

4

5

6

7

Size (n)

T
im

e
 (

s)

MOR

DLVHEX

Figure 6.5.: DBpedia Advanced Results

6.2.3. Update Benchmark

Again we observe similar runtime behavior of MOR as in the previous benchmarks.
Furthermore we observed an interesting behavior of dlvhex. For the instance size of

Scenario 3 - Derived LUBM 80

10,000, dlvhex has the same runtime in any DBpedia benchmark. This observation
indicates, concerning the small instance size, that the main share of runtime is not used
for instance retrieval, but for initializing the system.

n MOR dlvhex
10000 1 7
100000 2 error
250000 4 error
500000 7 error
1000000 13 error

Time (s)

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Size (n)

T
im

e
 (

s)

MOR

DLVHEX

Figure 6.6.: DBpedia Update Results

6.3. Scenario 3 - Derived LUBM

Compared to the DBpedia scenario, the LUBM TBox is considerable more complex. Still
the degree of inference is mainly based on sub-classes, sub-properties, and transitivity
relations. The standard LUBM TBox could not be loaded because DL-LiteR and OWL 2
QL do not support transitive properties and intersection in superclass expressions [Motik
et al., 2009]. After removing these expressions from the TBox, loading with Owlgres
succeeded.

6.3.1. Simple Benchmark

As already described in Section 6.2.1, we encounter again the error with RacerPro. For-
tunately, also instances with size 100,000 could be benchmarked, giving a better insight
into runtime behavior of dlvhex.

For MOR, the first three instances are below one second, hence the results are not fine
grained enough to draw any conclusion for its behavior. Still we can say, that the overall
performance for this benchmark is very good.

81 Experimental Results

n MOR dlvhex
10000 1 13
100000 1 41
250000 1 error
500000 2 error
1000000 3 error

Time (s)

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

Size (n)

T
im

e
 (

s)

MOR
DLVHEX

Figure 6.7.: LUBM Simple Results

6.3.2. Advanced Benchmark

The results (see Figure 6.8) illustrate that MOR has again a linear runtime behavior,
where MOR is about 30 times faster than dlvhex. Of all the benchmarks, this benchmark
has the longest absolute runtime for the large instances. This might be explained by the
structure of the program. Four relations and one negated relation are joined, whereby
all relations have a low selectivity among the join attributes. The low selectivity cancels
the advantage of RDBMS, which use index techniques like the B-tree index.

n MOR dlvhex
10000 1 36
100000 4 117
250000 11 error
500000 20 error
1000000 44 error

Time (s)

0 200 400 600 800 1000
0

20

40

60

80

100

120

Size (n)

T
im

e
 (

s)

MOR
DLVHEX

Figure 6.8.: LUBM Advanced Results

Scenario 4 - Limitations and Extensions 82

6.3.3. Update Benchmark

This benchmark is regarding expressivity the most interesting one. The transitive closure
of a DL query is calculated in the Datalog program and injected back to the DL KB.
Then the injected tuples are accessed in another DL query. The performance issues from
Section 6.1.3 did not effect these results, due to the acyclicity of the generated data.
Again we observed nice linear runtime behavior of MOR (see Figure 6.9).

n MOR dlvhex
10000 1 35
100000 1 108
250000 2 error
500000 4 error
1000000 11 error

Time (s)

0 200 400 600 800 1000
0

20

40

60

80

100

120

Size (n)

T
im

e
 (

s)

MOR
DLVHEX

Figure 6.9.: LUBM Update Results

6.4. Scenario 4 - Limitations and Extensions

6.4.1. Well-Founded / Stable-Model Semantics

Even the Datalog program “win(X) :- wnw_move(X,Y), not win(Y).” can be rewritten to
SQL as:

WITH RECURSIVE win(att1) AS (
SELECT att1 FROM wnw_move AS mp
UNION
SELECT m.att1 FROM win AS r, wnw_move as m

WHERE NOT (m.att2 IN (SELECT att1 FROM win))
) SELECT * FROM win LIMIT 1000 ;

Executing this statement on PostgreSQL will lead to the following error:

“ERROR: recursive reference to query "win" must not appear within a subquery”.

This shows, that more expressive program classes than stratified programs are rewritable
to SQL:1999, but can not be evaluated on an RDBMS like PostgreSQL.

83 Experimental Results

6.4.2. Combining DLVDB with Owlgres

We compare DLVDB results with the already existing results of MOR in Benchmark 6.3.1.
We choose 1,000,000 instances for the experiment and proceeded the following way:

1. DB views for accessing the DL KB were created. This was achieved within 3 seconds
by MOR.

2. At this point it was possible to run DLVDB, where the previous created DB views
were imported to DLVDB. Evaluating the program resulted in an average runtime
of about 12 seconds (see Table 6.2).

Round Start End Result (s)
1 17:43:10 17:43:22 00:00:12
2 17:43:22 17:43:33 00:00:11
3 17:43:33 17:43:45 00:00:12
4 17:43:45 17:43:56 00:00:11
5 17:43:56 17:44:08 00:00:12

Table 6.2.: Log for DLVDB with the LUBM Simple Benchmark

The same evaluation in MOR was in average about 4 times faster (3 seconds in MOR to
12 seconds in DLVDB). Yet this result let us conclude, that is feasible and encouraging
to combine DL-Lite reasoning with DLVDB.

6.4.3. Summary of Results

The results for MOR indicate, that in most benchmarks almost linear runtime behavior
was observed. One exception was Benchmark 6.1.3, where runtime behavior seems to
be unpredictable. We suggest, that this is related to the depth and occurrence of cycles
in the randomly generated test data. We also observed that the LIMIT parameter has
a strong impact on the performance of recursive query evaluation in PostgreSQL 8.4.
Besides influencing the performance, using the LIMIT parameter can lead to incomplete
results, if its size is chosen lower than the expected result set. We conclude that the
native implementation of linear recursive queries in PostgreSQL 8.4 as a breadth-first
search is not favourable (see Section 4.3.4).

The results for the benchmarks in Scenario 1 show, that MOR and DLVDB have similar
runtime behavior. DLVDB is materializing the IDB temporarily, which leads to the fact,
that MOR is constantly about 45% faster than DLVDB. Furthermore we showed in
Benchmark 6.4.2, that is encouraging to combine DL-LiteR reasoning with DLVDB.

As seen in Section 6.2.1, we encountered an error with the DL plug-in and RacerPro
1.9.1 for large instances, because of the limitation of the heap size in RacerPro. But we
observed with the working benchmarks, that MOR is usually about 30 times faster than
dlvhex.

In Benchmark 6.3.3 we showed, that with MOR it is possible to update the DL-LiteR
KB with results, which were calculated in the Datalog program as the transitive closure
of a DL query. The calculation of the transitive closure is interesting, because the unsup-
ported transitive properties in DL-LiteR KB can be simulated. With Benchmark 6.4.1
we observed that stratified programs are not rewritable with MOR.

7. Conclusion

In this thesis, we presented a novel approach to efficiently evaluate dl-programs on an
RDBMS. Due to the expressive power of SQL, we restricted the dl-programs to stratified
semantics and linear recursion. To show the feasibility of such an approach, we developed
the prototype implementation MOR, which interfaces the DL-Lite reasoner Owlgres and
uses the RDBMS PostgreSQL 8.4. We followed with MOR the approach of rewriting the
dl-programs fully into a cascade of DB views, not materializing any intermediate results.
Still the query evaluation engine of PostgreSQL could process these complex, recursive
SQL statements. The prototype was then benchmarked in four different scenarios to the
DLV family of reasoners. For the combined scenarios, we designed our own benchmarks
based on a DBpedia and LUBM KB.

7.1. Evaluation Results

With the experimental setup, MOR outperformed all the involved systems, namely DLV,
DLVDB and dlvhex. The reason for this encouraging results can mainly be accounted
to the power of SQL optimizers of modern RDBMSs like PostgreSQL. These RDBMSs
are designed to process vast amount of data, hence MOR and the incorporated DL-Lite
reasoner Owlgres are focused to rewrite dl-programs to complex SQL statements and
receive the evaluated results from the RDBMS.

In the purely Datalog scenario, MOR and DLVDB showed similar runtime behavior, where
MOR is constantly about 45% faster. DLV using ODBC, which never was designed for
large scale data processing, is considerably slower than the other two systems. Evaluating
recursive queries with PostgreSQL needed particularly attention, because cycles in the
EDB lead to non-termination. We introduced the LIMIT parameter of SQL:1999 to avoid
non-termination, however the runtime behavior of MOR is sensitive to this parameter.

In the combined scenarios, MOR performed remarkably better than dlvhex. In all of
the benchmarks, MOR showed almost linear runtime behavior. This behavior was even
apparent in the most interesting benchmark, where the transitive closure of a role query
is calculated in the Datalog program, injected back to the DL KB. Then the DL KB is
queried again to obtain the final result.

Finally, we showed the feasibility of using DLVDB with DL-Lite reasoning. This was
achieved by prepossessing the DL-Lite queries and saving the created SQL statements in
DB views. After that, the DB view were imported by DLVDB. The overall performance
of this approach was by a factor four slower than MOR.

85

7.2. Future Work and Further Studies

We recognize the overlapping fields of theory, implementation, benchmarks, and practice,
where research for the evaluation of dl-programs on an RDBMS could be pushed further.

On the theoretical side, it would be appealing to extend the introduced stratified se-
mantics to well-founded or even answer-set semantics. Clearly, the evaluation of these
semantics should be natively on the RDBMS, so we could follow our approach of utilizing
the power of query optimizers in RDBMSs.

Regarding the implementation of MOR, we need to overcome the limitation mentioned
in Chapter 4. For example, a more advanced handling of cycles regarding recursive
queries could be developed, a generic SQL plug-in is missing, and the restriction to linear
recursion could be overcome. Furthermore, MOR could be adapted, so that it would be
usable as a Java component by other systems. For example, MOR could be coupled with
the Jena framework, figuring as another rule-based inference engine. Concerning the early
release state of Owlgres, further plug-ins to other DL-Lite reasoners (e.g. Quonto) could
be written. Moreover, a similar implementation to MOR could be applied to DLVDB.

The benchmarks could be extended with different tests regarding size and scenarios. A
very interesting extension could contain large data sets with 200 million assertions as
it is used in the Berlin SPARQL Benchmark1. Besides, MOR could be compared with
other systems (e.g. Prolog based reasoners) besides the DLV family.

Getting back to the introductory example of a “smart” route planner, the use of MOR
in a “real-world” project would give further insight into practical issues regarding the
combination of rules and ontologies. As Johann Wolfgang von Goethe captures it in
Faust [Goethe and Prudhoe, 1974]:

“Dear friend, all theory is gray, And green the golden tree of life.”

1
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

A. Installation and Use:

Briefly, we outline how MOR can be installed on a Linux system. Since MOR was
developed in Java 1.6, it should be easy deployable on other operating systems. The
source code and the compiled binary files are available on:

http://code.google.com/p/dbmor/

A.1. Prerequisites

Basically, every RDBMS supporting SQL:1999 could be used, but we recommend to use
PostgreSQL 8.4. There are several OWL2 QL reasoners available, but only Owlgres 0.1
is supported. It is mandatory to use our branch of Owlgres, due to some adaptions done
in the main branch of Owlgres. Furthermore the JGraphT library is needed. We deliver
the binary files for Owlgres and JGraphT with the source code.

A.2. Installation

After the binary files are deployed, the following steps have to be processed to setup the
installation:

1. Create a PostgreSQL database with createdb, for example: createdb -U myuser
mydb.

2. Check compatibility of the Owlgres TBox by sh/expchk --tbox data/tbox_sample.rdf.
Note, that Owlgres only supports data serialized in RDF/XML.

3. Create the Owlgres database by loading the TBox: sh/create --db mydb --user
myuser --passwd mypw --tbox data/tbox_sample.rdf.

4. Load the Owlgres ABox into the database: sh/load --db mydb --user myuser
--passwd mypw --abox data/abox_sample.rdf.

5. Create custom tables and import the data from other databases. This step is
needed, if the dl-program imports the EDB from external data sources.

87

A.3. Calling MOR from the Command Line

We provide the shell script mor.sh to call MOR. The following parameters are valid
inputs:

--pgm URI of the dl-program.
--host Database host, where the default is localhost.

--db Database name.
--user Database user.

--passwd Database password.
--silent Status messages are suppressed.

--keepviews Keeps the created database views, otherwise all intermediate views are
dropped after execution.

Bibliography

ISO/IEC 9075–1:1999, Information Technology – Database languages – SQL – part 1:
Framework. Technical report, 1999.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995. ISBN 0-201-53771-0.

Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming., pages
89–148. Morgan Kaufmann, 1988. ISBN 0-934613-40-0.

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In Handbook on
Ontologies, pages 3–28. 2004.

Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Efficient reasoning in l+.
In Proceedings of the 2006 International Workshop on Description Logics (DL2006),
Windermere, Lake District, UK, May 30 - June 1, 2006, 2006.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific Amer-
ican, 284(5):34–43, 2001. ISSN 0036-8733. URL http://www.scientificamerican.
com/article.cfm?id=the-semantic-web.

Erol Bozsak, Marc Ehrig, Siegfried Handschuh, Andreas Hotho, Alexander Maedche,
Boris Motik, Daniel Oberle, Christoph Schmitz, Steffen Staab, Ljiljana Stojanovic,
Nenad Stojanovic, Rudi Studer, Gerd Stumme, York Sure, Julien Tane, Raphael Volz,
and Valentin Zacharias. Kaon - towards a large scale semantic web. In E-Commerce and
Web Technologies, Third International Conference, EC-Web 2002, Aix-en-Provence,
France, September 2-6, 2002, Proceedings, pages 304–313, 2002.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Dl-lite: Tractable description logics for ontologies. In Proceedings, The
Twentieth National Conference on Artificial Intelligence and the Seventeenth Inno-
vative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 602–607, 2005.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The dl-lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer, 1990. ISBN 3-540-51728-6.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13
(6):377–387, 1970.

89

http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://www.scientificamerican.com/article.cfm?id=the-semantic-web

Bibliography 90

Alain Colmerauer. Prolog in 10 figures. Commun. ACM, 28(12):1296–1310, 1985.

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
expressive power of logic programming. In IEEE Conference on Computational Com-
plexity, pages 82–101, 1997.

Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On representational
issues about combinations of classical theories with nonmonotonic rules. In Knowledge
Science, Engineering and Management, First International Conference, KSEM 2006,
Guilin, China, August 5-8, 2006, Proceedings, pages 1–22, 2006.

Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw
Truszczynski. The second answer set programming competition. In Logic Program-
ming and Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009,
Potsdam, Germany, September 14-18, 2009. Proceedings, pages 637–654, 2009.

Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Combining
answer set programming with description logics for the semantic web. In Principles
of Knowledge Representation and Reasoning: Proceedings of the Ninth International
Conference (KR2004), Whistler, Canada, June 2-5, 2004, pages 141–151, 2004.

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. dlvhex:
A prover for semantic-web reasoning under the answer-set semantics. In 2006 IEEE /
WIC / ACM International Conference on Web Intelligence (WI 2006), 18-22 December
2006, Hong Kong, China, pages 1073–1074, 2006.

Thomas Eiter, Wolfgang Faber, Michael Fink, and Stefan Woltran. Complexity results
for answer set programming with bounded predicate arities and implications. Ann.
Math. Artif. Intell., 51(2-4):123–165, 2007.

Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Simkus. Query answering in
the description logic horn-. In Logics in Artificial Intelligence, 11th European Confer-
ence, JELIA 2008, Dresden, Germany, September 28 - October 1, 2008. Proceedings,
pages 166–179, 2008a.

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and
Hans Tompits. Combining answer set programming with description logics for the
semantic web. Artif. Intell., 172(12-13):1495–1539, 2008b.

Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer set program-
ming: A primer. In Reasoning Web. Semantic Technologies for Information Systems,
5th International Summer School 2009, Brixen-Bressanone, Italy, August 30 - Septem-
ber 4, 2009, Tutorial Lectures, pages 40–110, 2009a.

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, and Roman Schindlauer.
Well-founded semantics for description logic programs in the semantic web. Tech-
nical Report INFSYS RR-1843-09-01, March 2009b. To appear in ACM Transactions
on Computational Logic (revised).

Hervé Gallaire, Jack Minker, and Jean-Marie Nicolas. An overview and introduction to
logic and data bases. In Logic and Data Bases, pages 3–30, 1977.

91 Bibliography

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.
ISBN 978-0-201-63361-0.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. lasp : A
conflict-driven answer set solver. In Logic Programming and Nonmonotonic Reasoning,
9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007,
Proceedings, pages 260–265, 2007a.

Martin Gebser, Lengning Liu, Gayathri Namasivayam, André Neumann, Torsten Schaub,
and Miroslaw Truszczynski. The first answer set programming system competition.
In Logic Programming and Nonmonotonic Reasoning, 9th International Conference,
LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, pages 3–17, 2007b.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. J. ACM, 38(3):620–650, 1991.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Logic Programming: Proceedings of the 5th International Conference and
Symposium, pages 1070–1080, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Comput., 9(3/4):365–386, 1991.

Johann Wolfgang von Goethe and John Edgar Prudhoe. Faust, the tragedy. Part 1;
translated for the English speaking stage by John Prudhoe. Manchester University
Press; Barnes & Noble, Manchester, New York, 1974. ISBN 0719005701.

Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: combining logic programs with description logic. In Proceedings of the World
Wide Web Conference (WWW2003), pages 48–57, 2003.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A benchmark for owl knowledge
base systems. J. Web Sem., 3(2-3):158–182, 2005.

Carl Hewitt. Middle history of logic programming. CoRR, abs/0904.3036, 2009.

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir. Open answer set program-
ming for the semantic web. J. Applied Logic, 5(1):144–169, 2007.

Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: A semantic web rule language combining owl and ruleml. W3C
submission, W3C, October 2004. URL URLhttp://www.w3.org/Submission/SWRL/.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Data complexity of reasoning in very
expressive description logics. In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August
5, 2005, pages 466–471, 2005.

Michael Kifer. Rule interchange format: The framework. In Web Reasoning and Rule
Systems, Second International Conference, RR 2008, Karlsruhe, Germany, October
31-November 1, 2008. Proceedings, pages 1–11, 2008.

Bibliography 92

Markus Krötzsch, Peter F. Patel-Schneider, Sebastian Rudolph, Pascal Hitzler, and Bijan
Parsia. OWL 2 web ontology language primer. Technical report, W3C, October 2009.
URL http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2001. ISBN 0130925691.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The dlv system for knowledge representation and
reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

Alon Y. Levy and Marie-Christine Rousset. Combining horn rules and description logics
in carin. Artif. Intell., 104(1-2):165–209, 1998.

Senlin Liang, Paul Fodor, Hui Wan, and Michael Kifer. Openrulebench: an analysis of
the performance of rule engines. In Proceedings of the 18th International Conference
on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, 2009, pages 601–610,
2009.

John W. Lloyd. Foundations of Logic Programming, 1st Edition. Springer, 1984. ISBN
3-540-13299-6.

Li Ma, Yang Yang, Zhaoming Qiu, Guo Tong Xie, Yue Pan, and Shengping Liu. Towards
a complete owl ontology benchmark. In The Semantic Web: Research and Applications,
3rd European Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-
14, 2006, Proceedings, pages 125–139, 2006.

John McCarthy. Recursive functions of symbolic expressions and their computation by
machine, part i. Commun. ACM, 3(4):184–195, 1960.

Jing Mei, Harold Boley, Jie Li, Virendrakumar C. Bhavsar, and Zuoquan Lin. Datalogdl:
Datalog rules parameterized by description logics. In Canadian Semantic Web,
CSWWS 2006, first Canadian Semantic Web Working Symposium, June 2006, Quebec,
Canada, pages 171–187, 2006.

Boris Motik, Ian Horrocks, Riccardo Rosati, and Ulrike Sattler. Can owl and logic
programming live together happily ever after? In The Semantic Web - ISWC 2006,
5th International Semantic Web Conference, ISWC 2006, Athens, GA, USA, November
5-9, 2006, Proceedings, pages 501–514, 2006.

Boris Motik, Achille Fokoue, Ian Horrocks, Zhe Wu, Carsten Lutz, and Bernardo Cuenca
Grau. OWL 2 web ontology language profiles. W3C recommendation, W3C, October
2009. URL http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

Ilkka Niemelä and Patrik Simons. Smodels - an implementation of the stable model
and well-founded semantics for normal lp. In Logic Programming and Nonmonotonic
Reasoning, 4th International Conference, LPNMR’97, Dagstuhl Castle, Germany, July
28-31, 1997, Proceedings, pages 421–430, 1997.

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

93 Bibliography

Christos H. Papadimitriou. Computational Complexity. Addison Wesley, December 1993.
ISBN 0201530821.

Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. A comparison of query rewriting
techniques for dl-lite. In Proceedings of the DL Home 22nd International Workshop on
Description Logics (DL 2009), Oxford, UK, July 27-30, 2009, 2009.

Racer Systems GmbH & Co. KG. Release Notes for RacerPro 1.9.2 beta.,
March 2009. URL http://www.racer-systems.com/products/racerpro/
release-notes-1-9-2-beta.pdf.

Raymond Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76,
1977.

John Alan Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, 1965.

Riccardo Rosati. Dl+log: Tight integration of description logics and disjunctive datalog.
In Proceedings, Tenth International Conference on Principles of Knowledge Represen-
tation and Reasoning, Lake District of the United Kingdom, June 2-5, 2006, pages
68–78, 2006.

Riccardo Rosati and Alessandro Almatelli. Improving query answering over dl-lite on-
tologies. In Principles of Knowledge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010, Toronto, Ontario, Canada, May 9-13,
2010, 2010.

Guus Schreiber and Mike Dean. OWL web ontology language reference. W3C
recommendation, W3C, February 2004. URL http://www.w3.org/TR/2004/
REC-owl-ref-20040210/.

Markus Stocker and Michael Smith. Owlgres: A scalable owl reasoner. In Proceedings
of the Fifth OWLED Workshop on OWL: Experiences and Directions, collocated with
the 7th International Semantic Web Conference (ISWC-2008), Karlsruhe, Germany,
October 26-27, 2008, 2008.

Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Inf., 6:
171–185, 1976.

Alfred Tarski. On the calculus of relations. J. Symb. Log., 6(3):73–89, 1941.

Giorgio Terracina, Nicola Leone, Vincenzino Lio, and Claudio Panetta. Experimenting
with recursive queries in database and logic programming systems. TPLP, 8(2):129–
165, 2008.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Com-
puter Science Press, 1988. ISBN 0-7167-8158-1.

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

	Introduction
	Logic Programming
	Datalog
	Answer-Set Programming
	Tools

	Semantic Web Technologies
	OWL
	OWL 2 EL
	OWL 2 QL
	OWL 2 RL
	Tools

	Combining Rules and Ontologies
	Loose Coupling
	Tight Semantic Integration
	Full Integration

	Structure of the Thesis

	Preliminaries
	Relational Algebra
	Stratified Programs
	Syntax and Semantics of Positive Programs
	Dependency Graphs of Logic Programs
	Fixpoint Theory
	Syntax of Stratified Programs
	Semantics of Stratified Programs
	Complexity of Stratified Programs

	DL-Lite and the Notion of FOL-Reducibility
	The DL-Lite Family
	Reasoning in DL-LiteR
	FOL-Reducibility
	KB Satisfiability is FOL-Reducible in DL-LiteR
	Query Answering over DL-LiteR Ontologies
	Complexity Results for DL-LiteR

	Description Logic Programs
	Syntax of Description Logic Programs
	Well-Founded Semantics for Description Logic Programs

	Combining Datalog with DL-Lite
	Rewriting Datalog to Relational Algebra extended with Fixpoint Evaluation
	Nonrecursive Datalog
	Positive Recursive Datalog
	Datalog with Negation
	Stratified Datalog

	An Algorithm for Improving Query Answering over DL-LiteR Ontologies
	First-Order Rewritable Case of Description Logic Programs
	Stratified Evaluation of Description Logic Programs

	Implementation
	Overview
	Design
	Architecture
	Data- and Control-Flow

	Details of Rewriting Datalog to SQL
	Datatypes
	Rewriting the EDB
	Rewriting Nonrecursive Rules
	Rewriting Recursive Rules

	Interfacing Owlgres with the DL Plug-in
	DL-Atoms
	Owlgres Overview
	Owlgres KB Management
	Rewriting the Standard DL-Atom
	Rewriting the Update DL-Atom
	Adaptions in Owlgres 0.1

	Limitations

	Experiments
	Methodology
	Scenario 1 - Datalog
	Large Join Benchmark
	Default Negation Benchmark
	Stratified Negation Benchmark

	Scenario 2 - Derived DBpedia
	Simple Benchmark
	Advanced Benchmark
	Update Benchmark
	DBpedia queries

	Scenario 3 - Derived LUBM
	Simple Benchmark
	Advanced Benchmark
	Update Benchmark
	LUBM queries

	Scenario 4 - Limitations and Extensions
	Well-Founded Semantics
	Combining DLVDB with generated Owlgres queries

	Experimental Results
	Scenario 1 - Datalog
	Large Join Benchmark
	Default Negation Benchmark
	Stratified Negation Benchmark

	Scenario 2 - Derived DBpedia
	Simple Benchmark
	Advanced Benchmark
	Update Benchmark

	Scenario 3 - Derived LUBM
	Simple Benchmark
	Advanced Benchmark
	Update Benchmark

	Scenario 4 - Limitations and Extensions
	Well-Founded / Stable-Model Semantics
	Combining DLVDB with Owlgres
	Summary of Results

	Conclusion
	Evaluation Results
	Future Work and Further Studies

	Installation and Use:
	Prerequisites
	Installation
	Calling MOR from the Command Line

	Bibliography

