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Abstract. We propose a proof-theoretic approach for gaining evidence
that certain parameterized problems are not fixed-parameter tractable.
We consider proofs that witness that a given propositional formula can-
not be satisfied by a truth assignment that sets at most k& variables to
true, considering k as the parameter (we call such a formula a parame-
terized contradiction). One could separate the parameterized complexity
classes FPT and W[SAT] by showing that there is no fpt-bounded param-
eterized proof system for parameterized contradictions, i.e., that there is
no proof system that admits proofs of size f (k;)no(l) where f is a com-
putable function and n represents the size of the propositional formula.

By way of a first step, we introduce the system of parameterized tree-like
resolution and show that this system is not fpt-bounded. Indeed, we
give a general result on the size of shortest tree-like resolution proofs of
parameterized contradictions that uniformly encode first-order princi-
ples over a universe of size n. We establish a dichotomy theorem that
splits the exponential case of Riis’s complexity gap theorem into two
subcases, one that admits proofs of size f(k)n®(") and one that does not.
We also discuss how the set of parameterized contradictions may be
embedded into the set of (ordinary) contradictions by the addition of
new axioms. When embedded into general (DAG-like) resolution, we
demonstrate that the pigeonhole principle has a proof of size 2Fn2.
This contrasts with the case of tree-like resolution where the embedded
pigeonhole principle falls into the “non-FPT” category of our dichotomy.
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1. Introduction

In recent years, parameterized complexity and fixed-parameter
algorithms have become an important branch of algorithm design
and analysis; hundreds of research papers have been published in
the area (see, e.g., the references given in Cesati (2006), Downey
& Fellows (1999), Flum & Grohe (2006), Niedermeier (2006)). In
parameterized complexity, one considers computational problems
in a two-dimensional setting: the first dimension is the usual input
size n and the second dimension is a positive integer k, the param-
eter. A problem is fixed-parameter tractable if it can be solved
in time f (k)no(l) where f denotes a computable, possibly expo-
nential, function. Several NP-hard problems have natural param-
eterizations that admit fixed-parameter tractability. For example,
given a graph with n vertices, one can check in time O(1.273% +nk)
(and polynomial space) whether the graph has a vertex cover of size
at most k (Chen et al. 2006). On the other hand, several param-
eterized problems such as CLIQUE (has a given graph a clique of
size at least k7) are believed to be not fixed-parameter tracta-
ble. BOUNDED SAT is a further problem that is believed to be
not fixed-parameter tractable (and which plays an important role
in the sequel): given a propositional formula, is there a satisfying
truth assignment that sets at most k variables to true?

Parameterized complexity offers also a completeness theory.
Numerous parameterized problems that appear to be not fixed-
parameter tractable have been classified as being complete under
fpot reductions for complexity classes of the so-called weft hierar-
chy W[1] € W[2] C --- C W[SAT]. For example, CLIQUE is com-
plete for W[1] and BOUNDED SAT is complete for the class W[SAT].
The restriction of BOUNDED SAT to formulas in conjunctive normal
form (CNF) is complete for W[2]. We will outline the basic notions
of parameterized complexity in Section 2.1; for an in-depth treat-
ment of parameterized complexity classes and fpt reduction, we
refer the reader to Flum and Grohe’s monograph (Flum & Grohe
2006).

It is widely believed that problems that are hard for the weft
hierarchy are not fixed-parameter tractable. Up to now, there are
mainly three types of evidence:
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1.  Accumulative evidence: numerous problems are known, which
are hard or complete for classes of the weft hierarchy, and for
which no fixed-parameter algorithm has been found in spite of
considerable efforts (Cesati 2006).

2. k-step halting problems for non-deterministic Turing machines
are complete for the classes W[1] (single-tape) and W[2] (multi-
tape) (see, e.g., Flum & Grohe 2006). A Turing machine is such
an opaque and generic object that it does not appear reason-
able that we should be able to decide whether a given Turing
machine on a given input has some accepting path without
looking at the paths.

3. If a problem that is hard for a class of the weft hierarchy turns
out to be fixed-parameter tractable, then the Fxponential Time
Hypothesis (ETH) fails, i.e., there is a 2°™ time algorithm for
the n-variable 3-SAT problem (Impagliazzo et al. 2001). ETH
is closely related to the parameterized complexity class M[1],
which lies between FPT and W[1] (see Flum & Grohe 2006).

We propose a new approach for gaining further evidence that cer-
tain parameterized problems are not fixed-parameter tractable. We
generalize concepts of proof complexity to the two-dimensional set-
ting of parameterized complexity. This allows us to formulate a
parameterized version of the program of Cook & Reckhow (1979).
Their program attempts to gain evidence for NP # co-NP, and in
turn for P # NP, by showing that propositional proof systems are
not polynomially bounded. We introduce the concept of parame-
terized proof systems; in our program, lower bounds for the length
of proofs in these new systems yield evidence that certain param-
eterized problems are not fixed-parameter tractable.

In propositional proof complexity, one usually constructs a
sequence of tautologies (or contradictions) and shows that the
sequence requires proofs (or refutations) of super-polynomial size in
the proof system under consideration. In the scenario of contradic-
tions and refutations, such sequences of propositional formulas fre-
quently encode a first-order (FO) sentence (such as the pigeonhole
principle) where the n-th formula of the sequence states that the
FO sentence has no model of size n. Riis (2001) established a
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meta-theorem that exactly pinpoints under which circumstances a
given FO sentence gives rise to a sequence of propositional formu-
las that have polynomial-sized refutations in the system of tree-
like resolution. Namely, if the sequence has not tree-like resolution
refutations of polynomial size, then shortest tree-like resolution ref-
utations have size at least 2" for a positive constant ¢ that only
depends on the FO sentence. Hence, there is a gap between two
possible proof complexities. The case of exponential size prevails
exactly when the FO sentence has no finite but some infinite model.

In this paper, we show a meta-theorem regarding the complex-
ity of parameterized tree-like resolution. To this aim, we consider
parameterized contradictions, which are pairs (F,k) where F is
a propositional formula and £ is an integer, such that F cannot
be satisfied by a truth assignment that sets at most k& variables
to true. Parameterized contradictions form a co-W[SAT]-complete
language. Hence, FPT = co-W[SAT] = W[SAT] implies that there
is a proof system that admits proofs of size at most f(k)n®® for
parameterized contradictions (F, k) where n represents the size of
F. We call such a (hypothetical) proof system fpt-bounded.

In this paper, we consider the system of resolution, in fact pre-
dominantly its weaker, tree-like version. A parameterized tree-like
resolution refutation for a parameterized contradiction (F,k) has
built-in access to all clauses with more than k negated variables as
additional axioms. We show a meta-theorem that classifies exactly
the complexity of parameterized tree-like resolution refutations for
parameterized contradictions. Our theorem allows a refined view
of the exponential case of Riis’s Theorem: Consider the sequence
(Cyn)nen of propositional formulas generated from an FO sentence
1 that has no finite but some infinite model. For a positive integer
k, we get a sequence of parameterized contradictions ((Cy ., k))nen.
We show that exactly one of the following two cases holds.

2a. (Cyn, k) has a parameterized tree-like resolution refutation of
size *n® for some constants « and 3 which depend on ) only.

2b. There exists a constant 7,0 < v < 1, such that for every
n > k, every parameterized tree-like resolution refutation of
(Cypony k) is of size at least n*".
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The latter case prevails exactly when v has a ‘sparse’” model, that
is without a finite dominating set. We establish the upper bound
B¥n® via certain boolean decision trees. For the lower bound n*”,
we use a game-theoretic argument.

We provide examples of FO sentences for each of the above cat-
egories. In particular, the examples for the n*" case (Example 3.11
and Example 3.12) show that parameterized tree-like resolution is
not fpt-bounded.

As discussed, a parameterized tree-like resolution refutation for
the parameterized contradiction (F,k) has access to all clauses
with more than k negated variables as additional axioms. How-
ever, these axioms are not considered to be a part of the input
parameterized contradiction; rather they are thought of as belong-
ing to the resolution system itself (whence the “parameterized”
in “parameterized tree-like resolution”). In the final section of
the paper, we consider how such axioms could be introduced to
a parameterized contradiction, thus creating an ordinary contra-
diction ripe for an ordinary proof system. In this manner, we
can embed the set of parameterized contradictions into the set of
(ordinary) contradictions. Given a proof system, and considering
the parameter to be preserved, this embedding itself gives rise to
a parameterized proof system. The embedding we consider is well
behaved, in that it preserves the complexity gap of parameterized
tree-like resolution. In particular, the pigeonhole principle remains
“hard”—in category (2b)—when embedded in tree-like resolution.
However, when considered with general (DAG-like) resolution, the
embedded pigeonhole principle has refutations of size 2Fn?.

2. Preliminaries

2.1. Fixed-parameter Tractability. In the following, let X
denote an arbitrary but fixed finite alphabet. A parameterized
language is a set L C ¥* x N where N denotes the set of posi-
tive integers. If (I, k) is in a parameterized language L, then we
call I the main part and k the parameter. We identify a param-
eterized language with the decision problem “(I,k) € L?” and
will therefore synonymously use the terms parameterized problem
and parameterized language. A parameterized problem L is called
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fized-parameter tractable if membership of (I, k) in L can be deter-
ministically decided in time

(2.1) FR)11OW

where f denotes a computable function. FPT denotes the class
of all fixed-parameter tractable decision problems; algorithms that
achieve the time complexity (2.1) are called fized-parameter algo-
rithms. The key point of this definition is that the exponential
growth is confined to the parameter only, in contrast to running
times of the form

(2.2) |[|O(f(k))'

There is theoretical evidence that parameterized problems like
CLIQUE are not fixed-parameter tractable. This evidence is pro-
vided via a completeness theory, which is similar to the theory of
NP-completeness. This completeness theory is based on the fol-
lowing notion of reductions: Let L; € ¥7 x N and Ly, € ¥5 x N
be parameterized problems. An fpt reduction from L to Ly is a
mapping 12 : X7 x N — X5 x N such that

1. (I,k) € Ly if and only if R(I, k) € L.

2. R is computable by a fixed-parameter algorithm, i.e., there is
a computable function f such that R(I, k) can be computed in
time f(k)|1|°0).

3. There is a computable function g such that whenever R(1, k) =
(I' K, K < g(k).

A parameterized complexity class C is a class of parameterized
problems closed under fpt reductions. It may easily be verified that
FPT is a parameterized complexity class. Parameterized problems
appear to have several degrees of intractability, as manifested by
the weft hierarchy. The classes of this hierarchy form a chain

FPT C W[1] € W[2] C --- € W[SAT] C XP,

where all inclusions are assumed to be proper. Here, XP denotes
the class of problems solvable in time O(||/(®); it is known that
FPT # XP (Downey & Fellows 1999). Each class W][t] (here and
henceforth, ¢ may be a positive integer or SAT) is defined as the
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class of problems fpt-reducible to a certain canonical weighted sat-
isfiability problem for decision circuits. For W[SAT], the canonical
problem is equivalent to the following satisfiability problem:

WEIGHTED SAT

Instance: A propositional formula F and a positive
integer k.

Parameter: k.

Question: Can F be satisfied by a truth assignment 7
that sets exactly k variables to true? (k is the weight
of 7.)

Let BOUNDED SAT denote the problem obtained from WEIGHTED
SAT by allowing truth assignments of weight at most k. Since
WEIGHTED SAT remains W[SAT]-complete for antimonotone for-
mulas (see, e.g., Flum & Grohe 2006), we may deduce the following.

LEMMA 2.3. BOUNDED SAT is W[SAT]-complete under fpt reduc-
tions.

As in classical complexity theory, we can define for a param-
eterized complexity class C the complementary complexity class
co-C ={L:L¢cC} where L = (¥* x N)\L for a parameterized
problem L C ¥* x N. Clearly, FPT = co-FPT. It is easy to see
that if C is closed under fpt reductions, then so is co-C. Thus,
in particular, each class W[t] of the weft hierarchy gives rise to a
parameterized complexity class co-W]t].

2.2. Parameterized Proof Systems.

DEFINITION 2.4. Let L C ¥* X N be a parameterized language.
A parameterized proof system for L is an onto mapping I' : (X1 X
N) — L for some alphabet ¥; where I' can be computed by a
fixed-parameter algorithm.

We say that I' is fpt-bounded if there exist computable func-
tions f and g such that for every (I, k) € L thereis (I') k") € X1 xN
with T(I', k') = (I, k), |I'| < f(k)|I|°Y, and k' < g(k).

Note that the problems of the classes W]t] of the weft hier-
archy have fpt-bounded proof systems since the yes instances of



58  Dantchev, Martin and Szeider cc 20 (2011)

these problems have small witnesses. Consider, for example, the
W[SAT]-complete problem L = BOUNDED SAT. Let Sr,; denote
a string over some alphabet ¥; that encodes a formula F together
with a satisfying truth assignment 7 of weight < k for F. A proof
system I' for L can now be defined by setting I'(w, k) = (F, k)
if w = Sg.p, and otherwise I'(w, k) = (Fo, ko) for some fixed
(Fo, ko) € L. Evidently, I' is fpt-bounded.

However, the situation is different for the classes co-WT[t]; spe-
cifically, in this case, for co-W|[SAT]. We can witness that a formula
with n variables has no satisfying assignment of weight < k by list-
ing all O(k-n¥) assignments of weight < k, then checking that none
is satisfying. However, this listing requires too much space, and
apparently we cannot use it for the construction of an fpt-bounded
proof system.

LEMMA 2.5. Let C be a parameterized complexity class and let
L be a co-C-complete parameterized problem. If there is no fpt-
bounded parameterized proof system for L, then C # FPT.

Proor. Let L C ¥*xN be a co-C-complete parameterized prob-
lem. We show the contra-positive of the statement. Assume C =
FPT. Since FPT = co-FPT, co-C = FPT follows. Consequently,
there is a fixed-parameter algorithm that decides membership in
L; let M be a Turing machine that implements this algorithm. For
(I,k) € L,let M) be astring over some alphabet ¥, that encodes
the computation steps of M with input (/, k). By the fixed-param-
eter tractability of L, there is a computable function f such that
|Mz | < f(k)I|°Y. We may assume that (I, k) can be read off
from Mz ), say, by choosing an encoding where (I, k) is encoded
as a prefix of M(; ;) where % is presented in unary. We define a
mapping I : 37 xN — L as follows. Consider (', k") € X7 xN. If I’
encodes a computation of M for the input (1, k), i.e. if I’ = M1,
then we let I'(I', k') = (I, k). Otherwise, if (I, k") does not encode
a computation of M for some input (I, k), we put I'(I’, &") = (1o, ko)
for some arbitrary fixed (Iy, ko) € L. Clearly, I" is a proof system
for L as I'(I’, k") can be computed in linear time. Furthermore, I'
is fpt-bounded, since | My x| < f(k)|I|°Y holds for (I,k) € L. O
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In view of this lemma, we suggest a program a la Cook-Reckhow
for gaining evidence that complexity classes from the weft hierar-
chy are distinct from FPT. This program consists of showing that
particular parameterized proof systems are not fpt-bounded. For
such an approach, we would start with a weak system such as a
parameterized version of tree-like resolution.

2.3. Parameterized Tree-like Resolution. A literal is either
a propositional variable or the negation of a propositional variable.
A clause is a disjunction of literals (and a propositional variable can
appear only once in a clause). A set of clauses is a conjunction, i.e.,
it is satisfiable if there exists a truth assignment satisfying simul-
taneously all the clauses. Resolution is a proof system designed to
refute a given set of clauses, i.e., to prove that it is unsatisfiable.
This is done by means of a single derivation rule

CVvVv —-wvVvD
CvVvD ’

which we use to obtain a new clause from two already existing
ones. The goal is to derive the empty clause—resolution is known
to be sound and complete, i.e., we can derive the empty clause
from the initial clauses if and only if the initial set of clauses was
unsatisfiable.

We consider propositional formulas F only over the connec-
tives A,V and —. In order to consider resolution refutations of
these, it is necessary to describe a canonical translation to CNF
(i.e., a set of clauses). We may consider a formula F to be repre-
sented as an unranked in-tree circuit with literals for leaves. We
may imagine strict alternation from the root between A- and V-
gates, and for technical reasons, also that every path from the
root to a leaf is of length at least 2 and culminates in a V-gate
above that leaf. We describe an inductive translation of F to a
formula in CNF. If F is already in CNF, we leave it unchanged. If
the root gate in F’s representation is A, then we inductively con-
vert each of the top conjuncts to CNF and take the union of their
clauses. If the root node in F’s representation is V, with r inputs,
then we introduce new propositional variables Sz ,..., Sz, and
set F = F A (Sg1 V...V Sg,), where F' is obtained from F
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by changing the root gate V to A and adding to each disjunct at
distance 2 from the root, on a branch from the root’s ¢th input,
the literal =Sx,;. Let CNF(F) be the formula generated from F
through this translation. It is not hard to see that 1.) CNF(F) is
in CNF and is computed in polynomial time, 2.) F is satisfiable iff
CNF(F) is satisfiable, and 3.) F is satisfiable with weight < k iff
CNF(F) is satisfiable with weight < k on the variables it shares in
common with F. We refer to the variables that occur in CNF(F)
but not F as S-vartables. Since we will principally be concerned
with propositional formulas that uniformly encode FO sentences,
we defer an example of the translation F +— CNF(F) until later.

In this paper, we shall work with a restricted version of reso-
lution, namely tree-like resolution. In tree-like resolution, we are
not allowed to reuse any clause that has already been derived, i.e.,
we need to derive a clause as many times as we use it. In other
words, a tree-like resolution refutation can be viewed as a binary
tree whose nodes are labeled with clauses. Every leaf is labeled
with one of the original clauses, every clause at an internal node is
obtained by a resolution step from the clauses at its two children
nodes, and the root of the tree is labeled with the empty clause. We
measure the size of a tree-like resolution refutation by the number
of nodes.

It is not hard to see that a tree-like resolution refutation of a
given set of clauses is equivalent to a boolean decision tree solving
the search problem for that set of clauses. The search problem
for an unsatisfiable set of clauses is defined as follows (see, e.g.,
Krajicek 1995): given a truth assignment, find a clause that is
falsified under the assignment. A boolean decision tree solves the
search problem by querying values of propositional variables and
then branching on the answer. Without loss of generality, we may
assume that no propositional variable is questioned twice on the
same branch and that a branch of the tree is closed as soon as
a falsified clause is found, under the partial assignment—conjunc-
tion of facts—obtained so far along that branch. When a branch
is thus closed, we say that an elementary contradiction has been
obtained. Note that we consider a node of the decision tree to
be labeled by the conjunction of facts thus far obtained together
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with the propositional variable there questioned. This is analo-
gous to a node in a tree-like resolution refutation being labeled
with its clause together with the variable just resolved. Given the
equivalence between tree-like resolution refutations and boolean
decision trees, we shall concentrate on the latter. Whenever we
need to show that there is a certain tree-like resolution refutation
of some unsatisfiable set of clauses, we shall construct a boolean
decision tree for the corresponding search problem. On the other
hand, whenever we claim a tree-like resolution lower bound, we
shall prove it by an adversary argument against any boolean deci-
sion tree which solves the search problem.

We give working definitions of parameterized contradiction and
parameterized tree-like resolution.

DEFINITION 2.6. A parameterized contradiction is a pair (F,k)
where F is a propositional formula and k is a positive integer such
that F has no satisfying assignment of weight at most k.

EXAMPLE 2.7. Let us consider an undirected graph G = (V| F)
that does not have a vertex cover of size < k. We introduce a
propositional variable p, for every vertex v € V. Then, the pair

( A (pquv),k)
{uv}eFE

is a parameterized contradiction. O

Let PAR CONT be the language of parameterized contradictions.
Note that PAR CONT is the complement of BOUNDED SAT and, as
such, is co-W[SAT]-complete under fpt reductions.

We can now define a parameterized version of tree-like resolu-
tion. As we have already explained, we shall give the definition in
terms of boolean decision trees.

DEFINITION 2.8. Given a parameterized contradiction (F,k), a
parameterized boolean decision tree is a decision tree that queries
values of the propositional variables of CNF(F) and branches on
the answers; a branch of the tree is closed as soon as (1) or (2)
happens:
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(1) an elementary contradiction of a clause of CNF (F) is reached,
i.e., the partial assignment obtained along the branch falsifies

CNF(F);

(2) the partial assignment obtained along the branch has more
than k propositional variables of F set to true, i.e., has weight
> k.

The fact that we can close branches by criterion (2) is equivalent to
our having, built in as axioms, all clauses of more than k negated
variables of F. This represents the difference between parameter-
ized boolean decision trees and (ordinary) boolean decision trees,
hence also the difference between parameterized tree-like resolution
and (ordinary) tree-like resolution.

2.4. From First Order to Propositional Logic. Next, we
describe a translation of an FO sentence to a propositional for-
mula. We use the language of FO logic with equality but with
neither function nor constant symbols. We omit functions and
constants only for the sake of a clearer exposition; note that we
may simulate constants in a single FO sentence with added out-
ermost existential quantification on new variables replacing those
constants. Let [n] = {1,2,...,n}. It will be convenient to assume
that the FO sentence is given as a conjunction of prenex sentences,
whereupon we may just explain the translation of a prenex sen-
tence. A sentence v of the form

(29) vmlzlyl .- mGayk :'t<x17 s Ty Y1y e - 7yk)7

becomes the formula Cy ,,

ANV - ANV Fley, oy, U),

z1€[n] y1€[n] z€[n] yx€[n]

where each instance R(z;,,...,%;,) of a p-ary predicate symbol in
F becomes a propositional variable, and any instances (z = 2’)
in F are evaluated to either true or false. By construction, for
an FO sentence v, Cy,, is satisfiable iff 1 has a model of size n.
Thus, satisfiability questions on the sequence (Cy ,)nen relate to
questions on the existence of non-empty finite models for ). Note
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that the sequence (CNF(Cy.,))nen is identical, up to a relabeling
of the new S-variables, with the sequence of CNF's obtained from
¥ by the process of Skolemization. A sentence of the form (2.9)
may be transformed into the following purely universal sentence

k

Vi, . Tk, Y1, - - Yk \/ _'Si($1>y1 . --Iz’>yi)\/-7:(I1, e TRy Y1, - ‘yk>7
i=1

together with the Skolem system
Vo, g 23y Sic (T, v, - @, u), for i € [k,

where we refer to the new S-relations as Skolem. For the first
sentence, as F is in CNF, we may propagate the k-disjunction of
negated Skolem relations into the clauses of F to obtain a sys-
tem of clauses for all instantiations of xy,...xg,y1,...y,. Each
of the following sentences, for each instantiation of zy,y; ..., 2,
gives rise to an n-disjunct—a Skolem clause—asserting the exis-
tence of a witness for the variable y;. These clauses correspond
to the clauses of positive S-variables that we introduced in the
translation of Section 2.3 when changing the V-gate to a A. In
the case of CNFs born of translation from an FO sentence v,
we will always generate CNF(Cy,,) directly by Skolemization, as
this is closer to the translation method of Riis (2001), and names
the S-variables much more naturally. We henceforth refer to the
S-variables of CNF(Cy.,,) as Skolem variables.

REMARK 2.10. Note that, for ¢ fixed, the sizes of both Cy,,, and
CNF(Cy.), with respect to some reasonable encoding, are polyno-
mial in n.

EXAMPLE 2.11. We consider (the negation of) the pigeonhole
principle. Let "1 be the conjunction of the following.

Vaxdy R(z,y)
FyVr -R(z,y)
VaVuVy = R(z,y) V ~R(w,y) V& = w.
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We translate this to the conjunction of the universal clauses
VaVy —=Ss(z,y) V R(7,y)
Vyvr =S51(y) V ~R(z,y)
VaVyVw = R(x,y) V ~R(w,y) Vo = w
together with the Skolem system

Va3y Sy(z,y)
Jy Si(y).

For z,y € [n|, we now consider R(z,y),S2(z,y) and S;(y) to be
propositional variables. CNF(Cyrur,,) is therefore the system of
clauses

_'52(‘7"7 y) \% R(ZL‘, y)a _'Sl(y) \ _'R(:Ea y) and
—R(x,y) V= R(w,y), for z,y,w € [n],w # x,
together with the Skolem clauses

So(x,1), forax € [n], and \_7 S1(i).

1 =1

-

(2

O

3. Complexity Gap for Parameterized Tree-like
Resolution

We first recall the complexity gap theorem for tree-like resolution
proved by Riis (2001).

THEOREM 3.1. Given an F'O sentence ¢ which fails in all finite
models, consider its translation into a sequence of propositional
contradictions (CNF(Cy »,))nen. Then, either 1 or 2 holds:

1. CNF(Cy.) has polynomial size in n tree-like resolution refuta-
tions.

2. There exists a positive constant € such that for every n, every
tree-like resolution refutation of CNF(Cy ) is of size at least
2,

Furthermore, 2 holds if and only if 1 has an infinite model.
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In the parameterized setting, one can hope that the second case
above, the hard one, splits into two subcases. This is indeed true
as we shall prove the following complexity gap theorem for para-
meterized tree-like resolution:

THEOREM 3.2. Given an FO sentence 1, which fails in all finite
models but holds in some infinite model, consider the sequence of

parameterized contradictions ((Cyn, k))nen. Then, either 2a or 2b
holds:

2a. (Cyn, k) has a parameterized tree-like resolution refutation of
size 3*n® for some constants o and (3 which depend on 1) only.

2b. There exists a constant v,0 < v < 1, such that for every
n > k, every parameterized tree-like resolution refutation of
(Cyon, k) is of size at least n*".

Furthermore, 2b holds if and only if 1) has an infinite model whose
induced hypergraph has no finite dominating set.

By proving that case 2b can be attained (see Example 3.11 and
Example 3.12), and bearing in mind Remark 2.10, we derive the
following as a corollary.

COROLLARY 3.3. Parameterized tree-like resolution is not fpt-
bounded.

If we could prove that no parameterized proof system for PAR
CONT is fpt-bounded, then we would have derived W[SAT] #
FPT.

Before we prove Theorem 3.2, we need to give some defini-
tions. For a model M, let |M| denote the universe of M. Given a
model M of an FO sentence v, either finite or infinite, the hyper-
graph induced by the model M has the elements of |M| as ver-
tices and as hyperedges those sets {y1, ...y} such that (y1,...,y)
appears as a tuple in some relation. A set of vertices is inde-
pendent if it contains no hyperedge as a subset. Given a set
X of vertices, and a vertex y ¢ X, we say that y is indepen-
dent from X if and only if there is no hyperedge E such that
y € E C X U{y}. If X is not independent from y, then
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we say that X dominates y. Finally, a dominating set is a set
X of vertices that dominates every other vertex of the hyper-
graph.

REMARK 3.4. Our criterion for domination may appear somewhat
esoteric. Note, for example, that a vertex y with a self-loop is
dominated by any set X.

3.1. Case 2a of Theorem 3.2. We now prove Case 2a of The-
orem 3.2. We shall start by reproving Case 1 of Theorem 3.1.
Note that our proof is different from Riis’s proof (Riis 2001) as our
translation, though equivalent, is slightly different.

PrROOF. (of Case 1, Theorem 3.1) The idea is to take a (finite)
resolution refutation of the FO formula ¢ (such a refutation exists
as the formula has no model) and to transform it into a polynomial
size in n tree-like resolution refutation of Cy .

As we have explained, we can consider a boolean decision tree
instead of a tree-like resolution refutation. In the FO case, con-
structing a boolean decision tree is very similar to producing a
tableau refutation. (Our method therefore differs slightly from
simply inverting the classical FO resolution, as we consider only
instantiations of terms as opposed to terms themselves.) The deci-
sion tree tries to build up a model of 1, starting by witnessing some
unary Skolem relation ¢/ with the constant 1 and deriving further
constants as Skolem witnesses of already derived constants as and
when necessary. (Note that we tend to discount the empty model.
It is, therefore, possible to have ¢ with no finite models and no
outermost existential quantifier. In this case, we may instantiate a
single constant at the outset to get us going.)

Note that, while we do not allow constants in our signatures,
we refer to those elements that have been mentioned in decision
tree questions as constants.

Let C be the set of constants thus far witnessed, and let ¢ be
some tuple over C. At each point, two kinds of queries are allowed:
(I) querying the boolean value of some R;(¢) and (II) querying
the witness y of some S;(¢,y). In the latter case, there are two
possibilities for y: it could be a constant that is already known
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or it could be a new one, thus extending the set of constants. For
Case I, the branching factor is 2: corresponding to R;(¢) being true
(T) or false (L). For Case II, the branching factor is |C| 4 1: we
label these branches with the elements of C' or a new constant ¢
according to the conceded witness for S;(¢,y).

The order in which the boolean decision tree performs these
queries is as follows. We start with the single constant 1, witnessing
a unary Skolem relation of 1, i.e., set C' := {1}, and first query
all possible R; relations on all possible tuples over C| closing any
branch as soon as a contradiction is reached. We then pick up a
Skolem relation S;(¢, y) and a j-tuple ¢ of constants of C' and query
the witness y. There are |C'|+ 1 possible outcomes—y is either one
of the already known constants from C' or a different constant,
which we denote by ¢. If y € C, we pick another S; (¢, y) and do
the same (we assume a reasonable order over the Skolem relations
S; and tuples in C'). In the case where y is a new constant which
is not in C', we extend the set of constants, i.e., set C := C U {c}
and repeat the same procedure, i.e., query all possible R; relations
over all possible tuples in the expanded C and so on.

It is easy to see that the decision tree constructed in this way is
finite. Indeed, suppose it were infinite. Then, by Konig’s Lemma,
there must be an infinite branch which constitutes an infinite model
of 1Y—a contradiction. Let the depth of this tree be h and the
maximum size of C' along any of its branches be m. Let us now
turn this finite refutation of ¢ into a polynomial size in n refutation
of CNF(Cy.,,). We note that a node, which queries an R; relation
in the FO case, remains the same in the propositional case, and,
in particular, has a branching factor 2. A node, which witnesses a
Skolem relation S;(¢,y), is of constant branching factor in the FO
case (bounded by m). In the propositional case, such a node can
be translated into a sequence of n nodes, the [-th node querying
the S;(¢,{) only if all the nodes S;(c, 1), 5;(c,2),...,5;(¢ 1 — 1)
got negative answers. If the answers to all queries were negative,
we arrive at a contradiction with the Skolem clause \/Z:1 S;(C,y),
while a positive answer gives us the desired witness. Thus, a node
querying a Skolem relation in the FO case can be thought as a
single node of branching factor n in the propositional case. As the
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# (i) ##(i.)

Figure 3.1: Decision tree for Example 3.5.

FO tree is of constant height h that depends on the formula v only,
the boolean decision tree in the propositional case is of size at most
(max{m,n})" which is O(n"), i.e., polynomial in n as claimed. [J

ExaMPLE 3.5. We give an example of a decision tree constructed
as in Case 1, Theorem 3.1. We consider the following sentence v
which has no models:

Vrdy R(x,y) A 3JaVy -~R(x,y).

As per our translation to propositional clauses, this is equivalent
to the conjunction of the universal clauses

(.) VaVy =Sa(x,y) V R(z,y) and
(13.) VaVy =S1(x) V = R(z,y),

together with the Skolem system

Vr3y Se(z,y) and
dz Sy (z).

Figure 3.1 shows an FO decision tree for this system of clauses. The
number following each # specifies the clause that has been contra-
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dicted. For example, the bottom right # comes from the knowl-
edge S5(1,2) and —R(1,2)—which contradicts the first universal
clause. O

We can now modify the proof above in order to prove Case 2a of
Theorem 3.2.

ProOF OF CASE 2A, THEOREM 3.2. We shall construct a
boolean decision tree for the parameterized FO case in a similar
manner, but with the following modification: whenever we witness
a new constant and extend the set of constants by adding it, we
add another new constant that is independent from all the others.
That is, we actually introduce new constants to C' in pairs, ¢’ and
c’, where ¢ is a Skolem witness for some constant in C' and ¢’ is
assumed to be independent from C'U{c'} (we make no assumption
of the independence of ¢ from C'). Thereafter, we may also close
branches whenever we directly contradict the independence of ¢’
from C'U{c'}. Now, suppose for the sake of contradiction that the
decision tree constructed in this way is infinite. Again, by Konig’s
Lemma, there must be an infinite branch which constitutes an infi-
nite model of ¢ with the additional property that it has no finite
dominating set. Indeed, by the construction, for every finite set of
constants, we always add a new constant that is independent from
the set. This gives us the desired contradiction, thus showing that
the decision tree we have constructed is finite. Let the depth of
this tree be h and the maximum size of C' along any of its branches
be m.

What remains is to estimate the branching factor of the queries
in the (parameterized) propositional case. The R and S queries
have branching factors 2 and n as before. The only problem is
in finding a new constant that is independent from all existing
constants. The parameterized boolean decision tree in the propo-
sitional case can “search” for such a constant in the following way.
Denote the set of elements of the finite universe [n] that have not
been queried at all so far by Z = {z1, 29,...2,} and the set of
already known constants by C'. The parameterized boolean deci-
sion tree first queries all possible R relations with arguments over
C'U{z} that could possibly make z; dominated by C'. If all answers
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Jz U(x) U-existence
Vo =U(x) V - R(z, x) U-antireflexivity

VavyVz =U(x) V =U(y)V
-U(z) V=R(z,y) V-R(y,2) V R(z, 2) U-transitivity

Vavy =U(z) vV =U(y) V R(z,y) V R(y, ) U-totality
Vy3z U(y) — (U(z) A R(z,y)) U-non-minimality
vy Uly) vV R(r Y) —U-dominator

Figure 3.2: Sentence 9 of Example 3.6.

are negative, then z; is independent from C', so it is success—z; is
added to C' and we proceed further according to the decision tree
in the FO case in the parameterized setting. Otherwise, on the
first positive answer (i.e., having found out that z; is dominated
by C), we abandon z; and proceed the same way with 2z, and so
on. For every z; which we query the branching factor is bounded
by m® where a is the maximum arity of any R relation of ¢ and
b is the number of R relations of ¥. On the other hand, we do
not need to test more than k elements of Z as the parameterized
boolean decision tree cannot take more than k positive answers
and we need to move onto a new element of Z on a positive answer
only. This gives us a subtree of height k& and branching factor m®,
which is equivalent to a single node of branching factor m®*. To
conclude, let us recall that the FO tree in the parameterized case
was of constant height h that depends on the formula v only, and
thus, the parameterized boolean decision tree in the propositional
case is of size at most (max{m?* n})" which is not greater than
(ma®h)knh as claimed. O

EXAMPLE 3.6. We give an example of a decision tree constructed
as in Case 2a, Theorem 3.2. We consider the sentence ¢/ which is
the conjunction depicted in Figure 3.2. The sentence 1 asserts the
existence of a bipartition, in which the U-part is a non-empty strict
total R-order without minimal element, and such that there is a
single element with an R-edge to all the elements of the —~U-part.
Depending on which part this single element is in, a model of
will have a dominating set of size 1 or 2. As per our translation,
this is equivalent to the universal clauses of Figure 3.3 together
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(i.) Vo =S (x) vV U(x)

(i1.) Vo =U(z) V -R(z,x)

(t74.) YaVyVz =U(z) vV -U(y) V-U(z) V =R(z,y) V - R(y,z) V R(x, z)
(iv.) Va¥y —U(z) V =U(y) V R(z,y) V R(y, )

(v.) YyVa =Sy (x,y) vV -U(y) vV U(z)

(v") Yy =Sy(x,y) V 2U(y) V Rz, y)

(vi.) Vavy =S3(x) VU(y) V R(z,y),

Figure 3.3: Clauses for Example 3.6.
753($)

il
|

R(1,2)?

RN
#[1, 2] U(2)?
#/[1, 2] #(vi.)

Figure 3.4: Decision tree for Example 3.6.

with the Skolem system

Jzx Si(x)
Vy3z Sa(z,y)
Jx Ss(x).

Note that the Skolem relation S; is somewhat redundant and is
included for the sake of formality (it would preserve meaning if we
were to remove clause (i.) and substitute 3z U(z) for the Skolem
clause dx Si(z)). Figure 3.4 shows an FO decision tree for this
system in the parameterized case. (Note that we have questioned
constants and relations in an intelligent, rather than natural, order.
This is so that we might keep the size of the tree to a minimum;
the tree would still close if we chose a natural order.) The bullet
points (e) indicate where, having just witnessed a new constant, we
introduce another new, independent constant. In the decision tree,
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we know that 2 must be independent from 1. The contradictions
labeled with square brackets arise from violating the independence
condition. Le., at #[1, 2] we have just learned that 2 is dominated
by 1.

The height of our tree is h = 5, and we never involve more than
m = 2 constants; the maximum arity is @ = 2, and there are b = 2
involved non-Skolem relations. As in the previous proof, using the
bound (m®")*n" we can state that (Cy,, k) has a parameterized
tree-like resolution refutation of size bounded by 22%%n5.

Owing to the rules that allow us to introduce independent con-
stants, the character of the FO decision tree in the parameterized
case is different from the ordinary FO decision tree. Notice that
we have closed our tree without witnessing the Skolem relation
Si(x). It would not be possible to close an ordinary FO decision
tree without this since, without the U-existence clause (i.),1 has
finite models. O

We conclude this section with a somewhat simpler example
of Case 2a of Theorem 3.2, on which the previous example was
based. This specimen provides a trivial instance, having, as it does,
parameterized tree-like resolution refutations not just polynomial
in n, but actually independent of n.

EXAMPLE 3.7. We consider the (negation of the) least number
principle for total orders. Let ™F* be the conjunction of the
following.

Vo =R(z,x) (antireflexivity)

VaVyVz = R(z,y) V —~R(y,2) V R(x,z)  (transitivity)
VaVyR(z,y) V R(y,z) (totality)

Vy3dz R(x,y) (no least element)

All models of ™F* have a dominating set of size 1; moreover,
every element of the model constitutes such a dominating set. It is
straightforward to verify that ((Cyuxe, ,,, k))nen has parameterized
tree-like resolution refutations of size 2k. O

3.2. Case 2b of Theorem 3.2. We now turn our attention to
proving Case 2b of Theorem 3.2. Our argument will be facilitated
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by a game based on those described by Pudldk (2000) and Riis
(2001) in which Prover (female) plays against Adversary (male). In
this game, a strategy for Prover on a propositional formula F gives
rise to a parameterized boolean decision tree on a set of clauses.
Prover questions the variables of CNF(F) that label the nodes of
the tree, and Adversary attempts to answer these so as neither to
violate any specific clause nor to have conceded that more than &
variables of F are true (T), for in either of these situations Prover
is deemed the winner. Of course, assuming F was not satisfiable
with weight < k, Adversary is destined to lose: the question is
how large he can make the tree in the process of losing. Note that
each branch of the tree corresponds to a play of this game; hence,
each parameterized decision tree corresponds to a Prover strategy.
We will be concerned with Adversary strategies that perform well
over all Prover strategies and hence induce a lower bound on all
parameterized decision trees and, consequently, all parameterized
tree-like resolution refutations.

When considering a certain Prover strategy—a parameterized
decision tree—we will actually consider only a certain subtree in
which the missing branches correspond to places where Adversary
has simply given up, already conceding the imminent violation of
a clause. In this way, there are two types of non-leaf nodes in this
subtree, those of out-degree 1 in which Adversary’s decision was
forced (because he conceded defeat on the alternative valuation)
and those of out-degree 2 in which he is happy to continue on
either outcome. In the latter case, we may consider that he has
given Prover a free choice as to the value of the relevant variable.
The free choice nodes play a vital role in ensuring the large size of
this subtree, which in turn places a lower bound on the size of the
parameterized decision tree of which it is a subset.

Let Cy,, be the propositional translation of some FO sentence
1) which has no finite models, but holds in some infinite model.
We formally define the game G(Cy ., k) as follows. At each turn,
Prover selects a propositional variable of CNF(Cy,,,) that she has
not questioned before, and Adversary responds either by answering
that the variable is true (T) or that it is false (L), or by allowing
Prover a free choice over those two. The Prover wins if at any
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point she holds information that contradicts a clause of CNF(Cy ,,)
or she holds more than k variables of Cy, ,, evaluated to true. In this
formalism, given a Prover strategy on her moves, and considering
both possibilities on the free choice nodes, we generate a game
tree, the subtree of the parameterized decision tree alluded to in
the previous paragraph.

Henceforth, we consider only the case in which some model
M, of 1 has no finite dominating set. We will give a strategy for
Adversary in the game G(Cy ,,, k) that guarantees a large game tree
for all opposing Prover strategies.

Adversary’s Strategy At any point in the game—mnode in the
game tree—Adversary will have conceded certain information to
Prover. He always has in mind two disjoint sets of already men-
tioned constants P and () on which he has conceded certain infor-
mation: initially, these sets are both empty. The set ) is to be
an independent set whose members are also independent from P.
In some sense, P is the only set of constants for which Adversary
has actually conceded an interpretation; all he concedes of @ is
that it is a floating set with certain independence properties. If X
is a set of constants, let Mx be the class of models—isomorphic
to some expansion Mik of M, by Skolem relations—that are con-
sistent with the information Adversary has conceded on X. Note
that, while we do not consider Skolem relations in our definitions
of independence or domination, we do consider them in the models
of M. At each point, Prover will ask Adversary a question of the
form R;(¢) or S;(¢). The Adversary answers as follows:

I. If all constants of ¢ are in P, then Adversary should choose
some model in Mp and answer according to that.

I1. If all constants of ¢ are in P U @), and there is at least one
from @, then Adversary should answer false ().

[TI. If some constant in ¢ is not in P U @), then

— if no model in M p satisfies the question, then Adversary
should answer false (L), otherwise

— he should give Prover a free choice on the question.



cc 20 (2011) Parameterized Proof Complexity 75

In all cases, the sets P and () remain the same, except in Case
IIT Part 2. If the Prover chooses true (T), then Adversary places
all the constants of ¢ in P, possibly removing some from () in the
process. If the Prover chooses false (L), then Adversary places
any constants in ¢ that are not already in P U (@) into ). It turns
out that, in Cases II and III, the situation never arises in which
Adversary is forced to answer a question R;(¢) true. In particular,
in Case III, it will never be the case that all models in M p satisfy
a question R;(¢). This is vital to the success of Adversary’s strat-
egy, and we will return to it later. We must now prove that this
strategy leads to a large parameterized decision tree; we will need
the following lemmas.

LEMMA 3.8. Let ¢ be a sentence of FO, M be a model of 1) with-
out a finite dominating set, and P be a finite subset of |M|. For
any positive integer ¢, there exists an independent set () of size q
such that all elements of () are independent from P.

PrROOF. Suppose for contradiction some M fails to have this
property. Consider any finite P, of size p, in |M|. If there is a
q such that all sets Q C | M|\ P are either not independent or some
element in @ is not independent from P, then there is a maxi-
mal qg, the cardinality of a set )y, that is independent and whose
elements are independent from P. But, P U )y is now a finite
dominating set of M by the maximality of qq. O

LEMMA 3.9. Consider any path in the game tree of G(Cy ,, k) from
the root to a leaf. If there are k or fewer propositional variables
evaluated to true by the leaf, then every one of the n constants
must have appeared in a free choice node along that path.

PROOF.  Our proof is broadly based on the ideas of Riis (2001).
It is important to see that Adversary plays faithfully according to
some (infinite) models of v, because this means that an elementary
contradiction can only be reached by the violation of a Skolem
clause. If Prover asks a question S;(¢), this is clearly the case.
In order to see why this is the case when Prover asks some R;(¢),
it becomes necessary to explain why in Case II of his strategy
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Adversary never loses all of his putative models Mp, and why in
Case III he is never forced to answer true (T).

In Case II, Adversary never loses all models M in M p because
(@ can always be chosen to be independent, and independent from
P, by Lemma 3.8. Indeed, if such an interpretation is put on @) in
M, then Adversary’s answer is forced to be false (L).

Suppose, in Case III, that Adversary were forced to answer
true (T), i.e., all models M in Mp satisfy the question R;(¢). By
the floating nature of all elements that are not in P, this would
generate a finite dominating set of P U @ on M. Let us dwell on
this point further. Let @ be the subtuple of ¢ consisting of those
constants of the latter that are not in PUQ. Some of the constants
of @ could have been mentioned in questions before, but only in
ones for which Adversary’s response had been forced false. Suppose
that P U ) were not a dominating set for M, then there exists an
element x € M, independent from P U (). But this element is
such that it can fill the tuple @ and falsify R;(¢) in M (and falsify
any questions that previously involved it, which had already been
answered false). This contradicts the question having been forced
true in the first place.

Recalling that we can only reach an elementary contradiction
by the violation of a Skolem clause, we can now complete the proof.
Let ¢’ be a constant that never appears in a free choice node in our
game tree. In order to violate a Skolem clause, Adversary must
have denied some S(¢, ), for each of the n constants substituted for
x. But that his denial of S(¢, ¢’) was forced implies a contradiction.
Since ¢ is uninterpreted in any of the models in M p, it follows that
S(e, ") is false for all ¢ in any model in Mp. This tells us that
Mp is empty and, consequently, that ) had no infinite model MSkD

We are now in a position to argue the key lemma in this section.

LEMMA 3.10. Let a be the maximum arity of any relation in ¢ and
suppose that there are no more than b distinct relations in 1. Fol-
lowing the strategy that we have detailed for the game G(Cy . k),
and with p and q the cardinality of the sets P and (), respectively,
Adversary cannot lose while both p < k'/% and p + ¢ < n.



cc 20 (2011) Parameterized Proof Complexity 77

PrOOF. Consider the game tree of G(Cy ,, k). Note that Adver-
sary only answers true in the case that all involved constants are
then added to his set P, or, of course, were already there. Thus, at
a certain node in the game tree, the number of true answers given
on variables of Cy ,, is trivially bounded by the size of the set of
all possible questions of variables of Cy, on P, which is certainly
bound by p®. Hence, while p® < k, there must be fewer than k
propositional variables of Cy , evaluated to true. Furthermore, if
p + g < n at this node, then not all of the n constants can have
appeared in a free choice (since constants that have appeared in a
free choice are necessarily added to either P or Q). It follows from
the previous lemma that Adversary has not yet lost. (]

We are now in a position to settle Case 2b.

PrROOF OF CASE 2B THEOREM 3.2. We aim to provide a lower
bound on the size of any game tree for G(Cy,, k). Since a lower
bound on the size of a game tree induces a lower bound on the size
of a parameterized boolean decision tree, the result follows.

Consider a game tree for G(Cy,, k). Let a be the maximum
arity of any relation of ¥ and let b be the number of distinct rela-
tions in 1. Recall that, at any node in this tree, Adversary has
in mind two sets P and @, of size p and ¢, respectively, and, by
the previous lemma, while p < kY% and p + ¢ < n, he has not
lost. Consider, therefore, any node in this game tree and the sets
P and @ that Adversary there has in mind. Let T'(p,q) be some
monotonic decreasing function that provides a lower bound on the
size of the subtree of the game tree rooted at the chosen node;
whence 7'(0,0) is a lower bound on the size of the game tree itself.
We claim the following.

o T(p,q) >2T(p+a,q) +T(p,q+a)+1, with

© T<p7Q)207Whenp2k1/ab Orp+q2n

The second item follows from Lemma 3.10. For the first item, we
consider only the free choice branching points in the game tree—
that is we consider the binary tree that is a minor of the game
tree in the natural way. At these points, on answering true, some
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constants—at most a—may be added to P. Some may have been
taken from @, but since the function 7" is monotonic decreasing the
bound still holds. If the answer is false, then at most a constants
may be added to () and the bound holds for similar reasons.

By induction on the (complete binary tree minor of the) game
tree for G(Cy.n, k), we can prove that the given recurrence satisfies

T(p.q) = (LLEJJ) —1

We may now solve this to deduce that, if n,k,a and b are pos-
itive integers such that (i.) a>2; (ii.) n > k; (iii.) n>7a + 1;
(iv.) k' > (16a?)?, then

T(0,0) >n* where v := 1/(16a°b).

The Case 2b clearly follows. O

EXAMPLE 3.11. We consider the (negation of the) least num-
ber principle for partial orders. Let ©"NP= be the conjunction
of the FO clauses given in Example 3.7 without the third clause
(totality). ¥™Fe~ has models without a finite dominating set. For
example, if Z is the set of integers, then N x Z under the strict
partial ordering

(n,2) < (n',2') if and only if n =n' and z < 2/
provides such a model. O
EXAMPLE 3.12. We return to the sentence """ defined in
Example 2.11. This has models without a finite dominating set:

for example the positive integers N, with R(z,y) & y = = + 1,
provides such a model. O

4. Embedding into Ordinary Proof Systems

Given a parameterized contradiction (F,k), we may attempt to
derive an (ordinary) contradiction F’ by directly axiomatizing the
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fact that no more than k variables of F may be set to true. We
may then use an ordinary proof system to refute F'. Considering
the parameter preserved, we obtain from this embedding a new
parameterized proof system. Formally, let CONT be the class of
(ordinary) contradictions in CNF. Let e : PAR CONT — CONT be
some injection such that the range of e and e~! on that range are
polynomial-time computable. let 3; be some proof alphabet and
let I' : 37 — CONT be a proof system for CONT. It follows that
['": %7 x N — PArR CONT given by

I (w, ) = (F,k) if T(w) in range of e and (F,k)=e 1 (['(w));
WETA(F L k) otherwise.

is a parameterized proof system (where F, is some fixed contra-
diction, say v A —w).

Naive embeddings. Suppose the variables of F are vy, ..., v,; it
follows that the size of F is at least n. We might try to incorporate
the set N (respectively, N}) of all clauses involving more than k
(respectively, exactly k + 1) negated variables of F. Both of these
fail—though the latter less spectacularly—since the function given
by (F, k) — CNF(F)UN, (respectively, (F, k) — CNF(F)UN))
is not fpt-bounded. This is because both N} and N are of size
> nk*1. Consequently, all proofs in this proof system fall into the
“hard” category with size at least n*+1.

Embedding using auxiliary variables. Another possibility
involves the use of new auxiliary variables g,, ; for i € [n] and j €
[k]. We now add pigeonhole clauses —v;V\/\_, g, ; and =g, VG,
for i,i" € [n](i # ¢') and j € [k]. Denote this set of clauses by N/,
and consider the mapping given by (F, k) — CNF(F)UN;’. The
clauses NV} essentially specify a weak pigeonhole principle from n
to k and it is fairly straightforward to see that they can only be
satisfied if no more than k of the variables v; is true.

This method of auxiliary variables results in a parameterized
proof system whose behavior with respect to tree-like resolution
is similar to that of parameterized tree-like resolution. Since the
clauses N/ can be derived from these axioms in a subtree of size
2K the “casy” case (2a) is preserved, up to a possible factor of 2*.
Also the “hard” case (2b) remains via the same proof.
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We have not defined a system of parameterized resolution, but
such a definition would be a straightforward generalization. It is
not clear what the complexity of the pigeonhole principle would
be in this system, but we can settle the complexity of the pigeon-
hole principle when embedded into resolution via the method of
auxiliary variables. Recalling that the pigeonhole principle falls
in the “hard” case (2b) for parameterized tree-like resolution (and
also when embedded into tree-like resolution via the method of
auxiliary variables), it is perhaps surprising that the pigeonhole
principle falls into the “easy” case (2a) when embedded into reso-
lution.

PROPOSITION 4.1. Using the method of auxiliary variables, there
is a resolution refutation of the (negation of the) pigeonhole prin-
ciple of size 2Fn?.

Proor. Note that the case kK > n is straightforward; assume
that £ < n. We recall from Example 2.11 that the axioms are

CNF (CwPHP ,n)

_'52<i7j> \ R(Z7]>7 _'Sl(]> \% _'R(Zuj) and
—R(i1,7) VR, j), fori,i',je€n]i#i,

n

V Sa(i,j), forie[n], and V Si(i).

j=1 =1

Let V' be the set of variables in Cyene ,,. We now add the auxiliary
clauses N}/ :=

k
-V l\/l Goy and —ga;V Gy j
for a,0’ € V,a # o/, and j € [k]. It is worth noting that, since
k < n, the clauses —S1(j) V —=R(4,7) and \/}_, S1(¢) are not needed
for a resolution refutation.
In order to generate a resolution refutation of CNF(Cyrue ,) U
./, we will consider the behavior of some further new variables.

For i € [n] and j € [k], define:

n
rii = V Qre).
=1
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It is not hard to see that the variables r;; themselves specify a
weak pigeonhole principle from n to k and it is this property that
we will exploit. Consider the set of clauses F := (—r;; V —ryr;) and
\/;?:1 rij, for i,4" € [n],i # 4, and j € [k]. It is known that there
exists a resolution refutation of F of size 2 such that no clause
(other than the axioms) contains more than one negated variable
(Buss & Pitassi 1998). We will convert this refutation into one for
CNF (Cyrur ) UN of size at most 2°n?.

First, we will show how to derive any axiom of F from
CNF (Cyrur ,,) UN,. The axioms —r;; V =ry; are already present as
n? different axioms of N}":

n

n
_‘rij V _‘Ti’j = l/\ _'qR(i,l),j V l/_\l _|qR(,L'/7l/)7j
= (ZGrG.0.5 V "GRG ).)

1

T>>]
>3

=11

The axioms \/f:1 rij = \/f:1 V=1 qr(i1),; may be generated only a
little more circuitously. The axiom \/7_, R(i,j) may be derived
by resolving \/7_, Ss(4, j) with n instances of =S(4, j) V R(i, j),
ie., 1 < 7 < n. Now this can be resolved with n instances of
—R(i,7) V /'y qr@ijy, e, 1< 5 < n.

We now demonstrate how one may simulate a resolution step
on the F clauses in the CNF(Cyrur ,,) UN' clauses. For this part,
it is crucial that the resolution on F contains no clauses with more
than two negated literals. We will first consider the simplest case
in which one of the clauses to be resolved is strictly positive and
the other contains a single negated variable, that is they are of the
form:

(Tirgy V Tiggy VooV Tiy,)
n n

= z\—/1 qRGir )G V z\—/1 QRGind)ge V -V V QR0 e
and

(_Vl“iljl V ’I“Z'éjé V...V Ti;,j;,)
n

n n
= z/\1 R 1)1 V z\/1 ARGy V-V zV1 qR(i, 0).5,
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It is clear that the second of these is equivalent to (and may be
simulated by) the system of n clauses

n n
=1 =1

n n
“GR(i1 )1 V zv1 ARGy, V-V zv1 R, .7,
It should be clear that even the extreme case, of two negated literals
in each clause, may be simulated by a system of n? clauses.
Each clause in the resolution refutation of F may now
be replaced by at most n? clauses to obtain a refutation of
CNF (Cypur ,,) UN, and the result follows. O

5. Final Remarks

We define parameterized tree-like resolution as a refutation system
for parameterized contradictions not necessarily in CNF, yet it is
customary to define tree-like resolution only for contradictions in
CNF. Indeed, we give Riis’s gap theorem with tree-like resolution
only on CNFs. We note here that (tree-like) resolution may readily
be defined over arbitrary formulas, using our canonical translation
to CNF; this would clearly preserve Riis’s gap theorem. However,
it is actually important in the parameterized case to separate those
variables that should be considered with respect to the weight para-
meter from those introduced purely for the translation to CNF. In
particular, for our gap theorem to have a model-theoretic interpre-
tation, the Skolem variables should not count toward the weight.
The gap theorem aside, we could have defined parameterized
tree-like resolution only for CNF's and thus given a refutation sys-
tem for the language PAR CNF CONT of parameterized contradic-
tions in CNF. Being the complement of BOUNDED CNF SAT (itself
a generalization of HITTING SET), PAR CNF CONT is co-W/[2]-
complete. We could then have had a program to gain evidence
that W[2] # FPT by proving that this flavor of parameterized
tree-like resolution is not fpt-bounded. In fact, we can derive this
from the “hard” case of our gap theorem, via Example 3.12. We
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may consider the more usual propositional encoding of the (nega-
tion of the) pigeonhole principle—without Skolem variables—to
be =R(z,1),-R(z,y) V -R(w,y) and \/\_, R(x,1), for w,z,y €
[n],w # x. The same Adversary strategy as in Section 3.2 may
readily be seen to guarantee large parameterized tree-like resolu-
tions here, in the absence of variables that do not count toward
assignment weight.

It is not obvious that we can reduce our program further—e.g.,
to gaining evidence that W[1] # FPT. This is because, while the
language WEIGHTED 3-CNF SAT is W[l]-complete, the language
BOUNDED 3-CNF SAT (and therefore PAR 3-CNF CONT) is in FPT.
BOUNDED 3-CNF SAT may be solved by the following inductive
algorithm. If all remaining clauses have at least one negative lit-
eral, then we may satisfy them all with the all-false assignment.
Otherwise, pick a clause with three positive literals and branch on
three possible evaluations to true. This process may be repeated
at most k times, giving a time complexity O(3% - n).

It seems odd that the method of auxiliary variables that we
met in Section 4 makes the pigeonhole principle “easy” for resolu-
tion. It raises the question as to where we may look for parameter-
ized contradictions that are “hard” when embedded in resolution.
Of course, not all contradictions come from FO principles. But,
in light of the previous paragraph, it is futile to search for them
among random 3-CNFs. It may be observed that the parameter-
ized contradictions that we use in this paper are somewhat unusual
in that they are actually real contradictions. Perhaps the solu-
tion is to use parameterized contradictions in which the parameter
is critical, i.e., those which are satisfiable but have no satisfying
assignment of weight < k.

Our proposed program of parameterized proof complexity
derives its legitimacy from Lemma 2.5, which essentially proves
that if W[SAT] = FPT, then there is an fpt-bounded parame-
terized proof system for PAR CONT. We could have proved an
alternative (ostensibly stronger) form of this lemma: if W[SAT] =
co-W[SAT], then there is an fpt-bounded parameterized proof sys-
tem for PAR CONT. The proof of this would be based on the
assumed fpt reduction from PAR CONT to BOUNDED SAT: a proof
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for the former would be a witnessing assignment of the latter. In
this form, the lemma looks more like the equivalence of Cook and
Reckow, that NP = co-NP iff there is a polynomially bounded
proof system for, say, CONT (not parameterized). However, we are
unable to prove the converse, i.e., if there is an fpt-bounded para-
meterized proof system for PAR CONT, then W[SAT]| = co-W[SAT].
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