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Preface

This volume consists of the contributions presented at the 19th International Conference on Applications of Declarative
Programming and Knowledge Management (INAP 2011) and the 25th Workshop on Logic Programming (WLP 2011),
which were held at Hotel Castle Wilheminenberg, Vienna, Austria, from September 28 to 30, 2011.

INAP is a communicative and dense conference for intensive discussion of applications of important technologies
around logic programming, constraint problem solving, andclosely related computing paradigms. It comprehensively
covers the impact of programmable logic solvers in the internet society, its underlying technologies, and leading edge
applications in industry, commerce, government, and societal services.

The series of workshops on (constraint) logic programming brings together researchers interested in logic pro-
gramming, constraint programming, and related areas like databases and artificial intelligence. Previous workshops
have been held in Germany, Austria, Switzerland, and Egypt,serving as the annual meeting of the Society of Logic
Programming (GLP, Gesellschaft für Logische Programmierung e.V.).

Following the success of previous occasions, INAP and WLP were this year again jointly organised in order to
promote the cross-fertilisation of ideas and experiences among researches and students from the different communities
interested in the foundations, applications, and combinations of high-level, declarative programming languages and
related areas.

Both events received a total of 35 submissions from authors of 16 countries (Austria, Belgium, Canada, Czech
Republic, Egypt, Finland, France, Germany, India, Italy, Japan, Lebanon, Portugal, Slovakia, Tunisia, and the United
States). Each submission was assigned to three members of the PC for reviewing and 27 submissions were accepted for
presentation. Besides technical contributions, the program includes also system descriptions and application papers.
More specifically, for INAP, the program comprises nine technical contributions, two application papers, and four
system descriptions, whilst the contributions for WLP constitute six research papers and five system descriptions.
Additionally, the program includes also two invited talks,given by Stefan Szeider and Michael Fink (both from the
Vienna University of Technology, Austria).

In concluding, I would like to thank all authors for their submissions and all members of the program committee,
as well as all additional referees, for the time and effort spent on the careful reviewing of the papers. Furthermore,
special thanks go to the members of the organising committee, Johannes Oetsch, Jörg P̈uhrer, and Eva Nedoma, who
were indispensable towards the realisation of the event. Last but not least, I am grateful to the Kurt-Gödel-Society for
financially supporting the event. Excelsior!

Vienna, September 2011

Hans Tompits, Conference Chair
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Carolina Ruiz (Worcester Polytechnic Institute)
Torsten Schaub (University of Potsdam)
Dietmar Seipel (University of Ẅurzburg)
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The Parameterized Complexity of
Constraint Satisfaction and Reasoning?

Stefan Szeider1

Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria
stefan@szeider.net

Abstract. Parameterized Complexity is a new and increasingly popular theoretical framework for the
analysis and algorithmic solution of NP-hard problems. The framework allows to take structural prop-
erties of problem instances into account and supports a more fine-grained analysis than the traditional
complexity framework. We outline some of the basic concepts of Parameterized Complexity and indi-
cate some recent results on problems arising in Constraint Satisfaction and Reasoning.

1 Introduction

Computer science has been quite successful in devising fast algorithms for important computational tasks,
for instance, to sort a list of items or to match workers to machines. By means of a theoretical analysis
one can guarantee that the algorithm will always find a solution quickly. Such a worst-case performance
guarantee is the ultimate aim of algorithm design. The traditional theory of algorithms and complexity
as developed in the 1960s and 1970s aims at performance guarantees in terms of one dimension only, the
input size of the problem. However, for many important computational problems that arise from real-world
applications the traditional theory cannot give reasonable (i.e., polynomial) performance guarantees. The
traditional theory considers such problems as intractable. Nevertheless, heuristics-based algorithms and
solvers work surprisingly well on real-world instances of such problems. Take for example the satisfiability
problem (SAT) of propositional reasoning. No algorithm is known that can solve a SAT instance on n
variables in 2o(n) steps (the widely believed Exponential Time Hypothesis states that such an algorithm is
impossible [23]). On the other hand, state-of-the-art SAT solvers solve routinely instances with hundreds
of thousands of variables in a reasonable amount of time (see e.g., [17]). Hence there is an enormous gap
between theoretical performance guarantees and the empirically observed performance of solvers. This
gap separates theory-oriented and applications-oriented research communities.

Parameterized Complexity is a new theoretical framework for the analysis and algorithmic solution
of NP-hard problems. It offers a great potential for reducing the theory-practice gap. The key idea is to
consider—in addition to the input size—a secondary dimension, the parameter, and to design and analyse
algorithms in this two-dimensional setting. Virtually in every conceivable context we know more about the
input data than just its size in bytes. The second dimension (the parameter) can represent this additional in-
formation. This two-dimensional setting gives raise to a foundational theory of algorithms and complexity
that can be closer to the problems as they appear in the real world.

Parameterized Complexity has been introduced and pioneered by R. Downey and M. R. Fellows [6]
and is receiving growing interest as reflected by the recent publication of two further monographs [10, 30]
and hundreds of research papers (see the references in [6, 10, 30]). In more and more research areas such
as Computational Biology or Computational Geometry the merits of Parameterized Complexity become
apparent (see, e.g., [16, 20]).

? Invited talk at INAP 2011/WLP 2011 (The 19th International Conference on Applications of Declarative Program-
ming and Knowledge Management, and The 25th Workshop on Logic Programming). Research supported by the
European Research Council, grant reference 239962 (COMPLEX REASON).
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2 Parameterized Complexity: Basic Concepts and Definitions

In the following we outline the central concepts of Parameterized Complexity.
An instance of a parameterized problem is a pair (I, k) where I is the main part and k is the parameter;

the latter is usually a non-negative integer. The central notion of the field is fixed-parameter tractability
(FPT) which refers to solvability in time f(k)nc, where f is some (possibly exponential) function of
the parameter k, c is a constant, and n denotes the size of the instance with respect to some reasonable
encoding. A fixed-parameter tractable problem can therefore be solved in polynomial time for any fixed
value of the parameter, and, importantly, the order of the polynomial does not depend on the parameter. This
is significantly different from problems that can be solved in, say, time nk, which also gives polynomial-
time solvability for each fixed value of k, but since the order of the polynomial depends on k it does not
scale well in k and quickly becomes inefficient for small values of k.

Take for example the VERTEX COVER problem: Given a graph and an integer k, the question is whether
there is a set of k vertices such that each edge of the graph has at least one of its ends in this set. The problem
is NP-complete, but fixed-parameter tractable for parameter k. Currently the best known fixed-parameter
algorithm for this problem runs in time of order 1.2738k + kn [4]. This algorithm is practical for huge
instances as long as the parameter k is below 100. The situation is dramatically different for the INDEPEN-
DENT SET problem, where for a given graph and an integer k it is asked whether there is a set of k vertices
such that no edge joints two vertices in the set. Also this problem is NP-complete, and indeed for traditional
complexity the problems VERTEX COVER and INDEPENDENT SET are essentially the same, as there is a
trivial polynomial-time transformation from one problem to the other (the complement set of a vertex cover
is an independent set and vice versa). However, no fixed-parameter algorithm for INDEPENDENT SET is
known and the Parameterized Complexity of this problem appears to be very different from the complexity
of VERTEX COVER. Theoretical evidence suggests that INDEPENDENT SET cannot be solved significantly
faster than by trying all subsets of size k, which gives a running time of order nk.

The subject of Parameterized Complexity splits into two complementary questions, each with its own
mathematical toolkit and methods:

1. How to design and improve fixed-parameter algorithms for parameterized problems. For this ques-
tion there exists a rich toolkit of algorithmic techniques (see, e.g., [41]).

2. How to gather evidence that a parameterized problem is not fixed-parameter tractable. For this
question a completeness theory has been developed which is similar to the theory of NP-completeness (see,
e.g., [5]) and allows the accumulation of strong theoretical evidence that a parameterized problem is not
fixed-parameter tractable.

3 How to Parameterize?

Most research in Parameterized Complexity considers optimization problems, where the parameter is a
bound on the objective function, also called solution size. For instance, the standard parameter for VERTEX
COVER is the size of the vertex cover we are looking for. However, many problems that arise in Constraint
Satisfaction and Reasoning are not optimization problems, and it seems more natural to consider parameters
that indicate the presence of a “hidden structure” in the problem instance. It is a widely accepted view that
the hidden structure of real-world problem instances is of high significance for empirical problem-hardness.

3.1 Backdoors

If a computational problem is intractable in general, it is a natural question to ask for subproblems for which
the problem is solvable in polynomial-time, and indeed much research has been devoted to this question.
Such tractable subproblems are sometimes called “islands of tractability” or “tractable fragments.” It seems
unlikely that a problem instance originating from a real-world application belongs to one of the known
tractable fragments, but it might be “close” to one. The concept of backdoor sets offers a generic way
to gradually enlarge and extend a tractable subproblem and thus to solve problem instances efficiently if
they are close to a tractable fragment. The size of a smallest backdoor set indicates the distance between
an instance and a tractable fragment. Backdoor sets were introduced in the context of propositional and
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constraint-based reasoning [45] but similar notions can be defined for other reasoning problems. Roughly
speaking, after eliminating the variables of a backdoor set one is left with an instance that belongs to the
tractable subproblem under consideration. The “backdoor approach” to reasoning problems involves two
tasks. The first task is to detect a small backdoor set by a fixed-parameter algorithm, parameterized by the
size of the backdoor set. The second task is to solve the reasoning problem efficiently using the information
provided by the backdoor set.

There are several Parameterized Complexity results on backdoor sets for the SAT problem, including
[31, 42, 36], but also for problems beyond NP such as Model Counting and QBF-Satisfiability [32, 37].
Very recently a backdoor approach has been developed for Answer Set Programming and Abstract Argu-
mentation [9, 34].

3.2 Decompositions

A key technique for coping with hard computational problems is to decompose the problem instance into
small tractable parts, and to reassemble the solutions of the parts to a solution of the entire instance. One
aims at decompositions for which the overall complexity depends on how much the parts overlap, the
“width” of the decomposition. The most popular and widest studied decomposition method is tree de-
composition with the associated parameter treewidth. A recent survey by Hlinený et al. covers several
decomposition methods with particular focus on fixed-parameter tractability [22].

Recent results on the Parameterized Complexity of reasoning problems with respect to decomposi-
tion width include results on Disjunctive Logic Programming and Answer-Set Programming with weight
constraints [18, 35], Abductive Reasoning [19], Satisfiability and Propositional Model Counting [39, 33],
Constraint Satisfaction and Global Constraints [40, 38], and Abstract and Value-Based Argumentation [7,
24].

3.3 Locality

Practical algorithms for hard reasoning problems are often based on local search techniques. The basic idea
is to start with an arbitrary candidate solution and to try to improve it step by step, at each step moving from
one candidate solution to a better “neighbor” candidate solution. It would provide an enormous speed-up if
one could perform k elementary steps of local search efficiently in one “giant” k-step. Such a giant k-step
also decreases the probability of getting stuck at a poor local optimum. However, the obvious strategy for
performing one giant k-step requires time of order Nk (assuming a candidate solution has N neighbour
solutions), which is impractical already for very small values of k since typically N is related to the input
size. A challenging objective is the design of fixed-parameter algorithms (with respect to parameter k) that
compute a giant k-step. Recent work on parameterized local search includes the problem of minimizing
the Hamming weight of satisfying assignments for Boolean CSP [25], and for the MAX SAT problem [44].

Local consistency is a further form of locality that plays an important role in constraint satisfaction and
is one of the oldest and most fundamental concepts of in this area. It can be traced back to Montanari’s fa-
mous 1974 paper [29]. If a constraint network is locally consistent, then consistent instantiations to a small
number of variables can be consistently extended to any further variable. Hence local consistency avoids
certain dead-ends in the search tree, in some cases it even guarantees backtrack-free search [1, 13]. The
simplest and most widely used form of local consistency is arc-consistency, introduced by Mackworth [26],
and later generalized to k-consistency by Freuder [12]. A constraint network is k-consistent if each consis-
tent assignment to k − 1 variables can be consistently extended to any further k-th variable. It is a natural
question to ask for the Parameterized Complexity of checking whether a constraint network is k-consistent,
taking k as the parameter. This question has been subject to a recent study [15].

3.4 Above or Below Guaranteed Bounds

For some optimization problems that arise in constraint satisfaction and reasoning, the standard parameter
(solution size) is not a very useful one. Take for instance the problem MAX SAT. The standard parameter
is the number of satisfied clauses. However, it is well-known that one can always satisfy at least half of the
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clauses. Hence, if we are given m clauses, and if we want to satisfy at least k of them, then the answer is
clearly yes if k ≤ m/2. On the other hand, if k > m/2 then m < 2k, hence the size of the given formula
is bounded in terms of the parameter k, and thus can be trivially solved by brute force in time that only
depends on k. Less trivial is the question of whether we can satisfy at least m/2 + k clauses, where k
is the parameter. Such a problem is called parameterized above a guaranteed value [27, 28]. Over the
last few years, several variants of MAX SAT but also optimization problems regarding ordering constraints
have been studied, parameterized above a guaranteed value. A recent survey by Gutin and Yeo covers these
results [21].

4 Kernelization: Preprocessing with Guarantee

Preprocessing and data reduction are powerful ingredients of virtually every practical solver. Before per-
forming a computationally expensive case distinction, it seems always better to seek for a “safe step” that
simplifies the instance, and to preprocess. Indeed, the success of practical solvers relies often on powerful
preprocessing techniques. However, preprocessing has been neglected by traditional complexity theory:
if we measure the complexity of a problem just in terms of the input size n, then reducing the size from
n to n − 1 in polynomial time yields a polynomial-time algorithm for the problem as we can iterate the
reduction [8]. Hence it does not make much sense to study preprocessing for NP-hard problems in the
traditional one-dimensional framework. However, the notion of “kernelization”, a key concept of Parame-
terized Complexity provides the means for studying preprocessing, since the impact of preprocessing can
measured in terms of the parameter, not the size of the input. When a problem is fixed-parameter tractable
then each instance (I, k) can be reduced in polynomial time to an equivalent instance (I ′, k′), the problem
kernel, where k′ ≤ k and the size of I ′ is bounded by a function of k. The smaller the kernel, the more
efficient the fixed-parameter algorithm. For a parameterized problem it is therefore interesting to know
whether it admits a polynomial kernel or not.

Several optimization problems, such as VERTEX COVER and FEEDBACK VERTEX SET admit polyno-
mial kernels with respect to the standard parameter [4, 3]. However, it turns out that many fixed-parameter
tractable problems in the areas of Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic
and Bayesian Reasoning do not have polynomial kernels unless the Polynomial Hierarchy collapses to its
third level [43]. Such super-polynomial kernel lower bounds can be obtained by means of recent tools [2,
11]. A positive exception is the consistency problem for certain global constraint, parameterized by the
number of gaps in the domains of variables, which admits a polynomial kernel [14].

5 Conclusion

Over the last decade, Parameterized Complexity has become an important field of research in Algorithms
and Complexity. It allows a more fine-grained complexity analysis than the traditional theory as it allows
to take structural aspects of problem instances into account. In this extended abstract we have outlined
the basic concepts of Parameterized Complexity and indicated some recent results on the Parameterized
Complexity of problems arising in Constraint Satisfaction an Reasoning.
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Multi-Context Systems (MCS) evolved from seminal work by John McCarthy on contextual reasoning [22],
who proposed to consider contexts as abstract objects and formulas to be asserted wrt. such a context.
Taking a slightly different point of view, called ‘compose-and-conquer’, Fausto Giunchiglia and colleagues
started to formalize contextual reasoning considering ‘context’ as a local theory of the world within a
network of relations with other local theories [19]. The resulting MCS framework [18] allows to model the
information exchange between individual knowledge bases, termed contexts, via so-called bridge rules,
i.e., rules that represent specific relations between local theories.

The initial MCS formalism, however, required local theories to be represented homogeneously in a
monotonic logic, which soon deemed a too restrictive setting. Further developments [20, 24, 6] surpassed
these limitations allowing, for instance, for heterogenous but monotonic MCS [20], or for nonmonotonic
MCS over knowledge bases represented in Default Logic [6]. In its most recent form, nonmonotonic MCS
by Brewka and Eiter [7] generalize in both aspects, interlinking heterogeneous, possibly nonmonotonic
knowledge bases through (nonmonotonic) bridge rules. As they provide a principled means to integrate
bodies of knowledge formalized by different groups of people without sharing a ‘universal’ knowledge
representation language, nonmonotonic MCS have become a versatile framework in addressing challenges
of modern knowledge representation and reasoning [9].

This talk will give a brief overview of Nonomonotonic Multi-Context Systems, before more recent
developments are addressed. Syntactically, an MCS is of a collection of contexts, each consisting of a
‘logic’, a knowledge base, and a set of bridge rules. The notion of logic used here is an abstract way to
specify a context formalism in terms of a set of well-formed knowledge bases, a set of possible belief sets,
and a so-called acceptability function which assigns to every knowledge base a set of acceptable belief sets.
Semantics is given to an MCS by means of belief states, i.e., a sequence of belief sets, one for each context.
Intuitively, such a belief state is considered a ‘model’ of the system if it is in equilibrium. For this, each
belief set must be acceptable for the respective context, given its knowledge base and the bridge rules that
‘fire’ wrt. the belief state under consideration.

An important aspect for the realization of MCS is the availability of a solver to compute equilibria. In
contrast to most traditional KR systems, for many practically relevant scenarios, the evaluation of an MCS
has to deal with distributed sources of knowledge. We will sketch the principles of a distributed evaluation
algorithm [11, 3], computing so-called partial equilibria, which has been developed and implemented [4]
at TU Wien. A further enhancement of the formalism and its evaluation algorithm are relational MCS [16],
i.e., an extension towards variables and aggregates in bridge rules.

An MCS which does not have an equilibrium is inconsistent—an undesirable state of affairs for most
application scenarios. The goal of inconsistency management techniques for MCS [15, 5] is to provide
means, like for instance, diagnoses and explanations, in order to analyze and eventually resolve such sit-
uations. Investigations on making MCS more robust towards inconsistency recently lead to an innovative,
more general advancement of the formalism: while originally bridge rules can only add information to a
context, managed MCS [10] allow arbitrary operations to be defined (e.g., deletion or revision operators).

The aim of this research, and other ongoing and future work that will be pointed to during this talk, is to
underpin and enhance the MCS formalism as to provide the basis of an efficient platform for (distributed)
nonmonotonic problem solving on top of heterogeneous distributed knowledge sources.
? This research is partially supported by Austrian Science Fund (FWF) grant P20841, Vienna Science and Technology

Fund (WWTF) grant ICT08-020, and the FP7 ICT Project Ontorule (FP7 231875).
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Systems. In: Janhunen and Niemelä (eds.) JELIA. LNCS, vol. 6341, pp. 356–359. Springer (2010)

6. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: Proc. IJCAI-07, pp. 268–273. (2007)
7. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: Proc. AAAI-2007,

pp. 385–390. AAAI Press (2007)
8. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group argumentation. In: Erdem,

E., Lin, F., Schaub, T. (eds.) LPNMR. LNCS, vol. 5753, pp. 44–57. Springer (2009)
9. Brewka, G., Eiter, T., Fink, M.: Nonmonotonic Multi-Context Systems: A Flexible Approach for Integrating Het-

erogeneous Knowledge Sources. In: Balduccini, M., Son, T. (eds.) LPNMR. LNCS, vol. 6565, pp. 233–258.
Springer (2011)

10. Brewka, G., Eiter, T., Fink, M., Weinzierl, A.: Managed multi-context systems. In: Walsh, T. (ed.) IJCAI. pp.
786–791. IJCAI/AAAI (2011)

11. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed Nonmonotonic Multi-Context Systems. In: Lin,
F., Sattler, U. (eds.) KR, pp. 60–70. AAAI Press (2010)

12. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Dynamic Distributed Nonmonotonic Multi-Context Systems.
In: Brewka, G., Marek, V., Truszczynski, M. (eds.) Nonmonotonic Reasoning, Essays Celebrating its 30th An-
niversary, Studies in Logic, vol. 31. College Publications, London, UK (2011)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic pro-
gramming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

14. Eiter, T., Brewka, G., Dao-Tran, M., Fink, M., Ianni, G., Krennwallner, T.: Combining nonmonotonic knowledge
bases with external sources. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS. LNCS, vol. 5749, pp. 18–42. Springer
(2009)

15. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-context systems. In:
Lin, F., Sattler, U. (eds.) KR, pp. 329–339. AAAI Press (2010)

16. Fink, M., Ghionna, L., Weinzierl, A.: Relational Information Exchange and Aggregation in Multi-Context Sys-
tems. In: Delgrande, J.P., Faber, W. (eds.) LPNMR. LNCS, vol. 6645, pp. 120–133. Springer (2011)

17. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases. New Generation Com-
puting 9, 365–385 (1991)

18. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artif.
Intell. 127(2), 221–259 (2001)

19. Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
20. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without modal logics. Artificial

Intelligence 65(1), 29–70 (1994)
21. Hirayama, K., Yokoo, M.: The distributed breakout algorithms. Artif. Intell. 161(1–2), 89–115 (Jan 2005)
22. McCarthy, J.: Generality in artificial intelligence. Communications of the ACM 30(12), 1030–1035 (1987)
23. Reiter, R.: A Logic for Default Reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
24. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI-05. (2005)
25. Roelofsen, F., Serafini, L., Cimatti, A.: Many Hands Make Light Work: Localized Satisfiability for Multi-Context
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Abstract. In order to give appropriate semantics to qualitative conditionals of the form if A then nor-
mally B, ordinal conditional functions (OCFs) ranking the possible worlds according to their degree of
plausibility can be used. An OCF accepting all conditionals of a knowledge base R can be characterized
as the solution of a constraint satisfaction problem. We present a high-level, declarative approach using
constraint logic programming techniques for solving this constraint satisfaction problem. In particular,
the approach developed here supports the generation of all minimal solutions; these minimal solutions
are of special interest as they provide a basis for model-based inference from R.

1 Introduction

In knowledge representation, rules play a prominent role. Default rules of the form If A then normally B are
being investigated in nonmonotonic reasoning, and various semantical approaches have been proposed for
such rules. Since it is not possible to assign a simple Boolean truth value to such default rules, a semantical
approach is to define when a rational agent accepts such a rule. We could say that an agent accepts the
rule Birds normally fly if she considers a world with a flying bird to be less surprising than a world with a
nonflying bird. At the same time, the agent can also accept the rule Penguin birds normally do not fly; this
is the case if she considers a world with a nonflying penguin bird to be less surprising than a world with a
flying penguin bird.

The informal notions just used can be made precise by formalizing the underlying concepts like default
rules, epistemic state of an agent, and the acceptance relation between epistemic states and default rules. In
the following, we deal with qualitative default rules and a corresponding semantics modelling the epistemic
state of an agent. While a full epistemic state could compare possible worlds according to their possibility,
their probability, their degree of plausibility, etc. (cf. [18, 9, 10]), we will use ordinal conditional functions
(OCFs), which are also called ranking functions [18]. To each possible world ω, an OCF κ assigns a natural
number κ(ω) indicating its degree of surprise: The higher κ(ω), the greater is the surprise for observing ω.

In [12, 13] a criterion when a ranking function respects the conditional structure of a setR of condition-
als is defined, leading to the notion of c-representation forR, and it is argued that ranking functions defined
by c-representations are of particular interest for model-based inference. In [3] a system that computes a
c-representation for any such R that is consistent is described, but this c-representation may not be mini-
mal. An algorithm for computing a minimal ranking function is given in [5], but this algorithm fails to find
all minimal ranking functions if there is more than one minimal one. In [15] an extension of that algorithm
being able to compute all minimal c-representations for R is presented. The algorithm developed in [15]
uses a non-declarative approach and is implemented in an imperative programming language. While the
problem of specifying all c-representations forR is formalized as an abstract, problem-oriented constraint
satisfaction problem CR(R) in [2], no solving method is given there.

In this paper, we present a high-level, declarative approach using constraint logic programming tech-
niques for solving the constraint satisfaction problem CR(R) for any consistent R. In particular, the ap-
proach developed here supports the generation of all minimal solutions; these minimal solutions are of
special interest as they provide a preferred basis for model-based inference fromR.

The rest of this paper is organized as follows: After recalling the formal background of conditional
logics as it is given in [1] and as far as it is needed here (Section 2), we elaborate the birds-penguins scenario

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft – DFG (grants BE
1700/7-2 and KE 1413/2-2).
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sketched above as an illustration for a conditional knowledge base and its semantics in Section 3. The
definition of the constraint satisfaction problem CR(R) and its solution set denoting all c-representations
forR is given in Sec. 4. In Section 5, a declarative, high-level CLP program solving CR(R) is developed,
observing the objective of being as close as possible to CR(R), and its realization in Prolog is described
in detail; in Section 6, it is evaluated with respect to a series of some first example applications. Section 7
concludes the paper and points out further work.

2 Background

We start with a propositional language L, generated by a finite set Σ of atoms a, b, c, . . .. The formulas of
L will be denoted by uppercase Roman letters A,B,C, . . .. For conciseness of notation, we will omit the
logical and-connective, writing AB instead of A ∧ B, and overlining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken here simply as the set of all
propositional interpretations over L and can be identified with the set of all complete conjunctions over Σ.
For ω ∈ Ω, ω |= A means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L} of condi-
tionals over L. (B|A) formalizes “if A then (normally) B” and establishes a plausible, probable, possible
etc connection between the antecedent A and the consequence B. Here, conditionals are supposed not to
be nested, that is, antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the set of worldsΩ in three parts:
those worlds satisfying AB, thus verifying the conditional, those worlds satisfying AB, thus falsifying the
conditional, and those worlds not fulfilling the premise A and so which the conditional may not be applied
to at all. This allows us to represent (B|A) as a generalized indicator function going back to [7] (where u
stands for unknown or indeterminate):

(B|A)(ω) =


1 if ω |= AB
0 if ω |= AB
u if ω |= A

(1)

To give appropriate semantics to conditionals, they are usually considered within richer structures such
as epistemic states. Besides certain (logical) knowledge, epistemic states also allow the representation of
preferences, beliefs, assumptions of an intelligent agent. Basically, an epistemic state allows one to compare
formulas or worlds with respect to plausibility, possibility, necessity, probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are Spohn’s ordinal condi-
tional functions, OCFs, (also called ranking functions) [18], and possibility distributions [4], assigning
degrees of plausibility, or of possibility, respectively, to formulas and possible worlds. In such qualitative
frameworks, a conditional (B|A) is valid (or accepted), if its confirmation,AB, is more plausible, possible,
etc. than its refutation, AB; a suitable degree of acceptance is calculated from the degrees associated with
AB and AB.

In this paper, we consider Spohn’s OCFs [18]. An OCF is a function

κ : Ω → N

expressing degrees of plausibility of propositional formulas where a higher degree denotes “less plausible”
or “more suprising”. At least one world must be regarded as being normal; therefore, κ(ω) = 0 for at
least one ω ∈ Ω. Each such ranking function can be taken as the representation of a full epistemic state of
an agent. Each such κ uniquely extends to a function (also denoted by κ) mapping sentences and rules to
N ∪ {∞} and being defined by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

(2)

for sentences A ∈ L and by

κ((B|A)) =

{
κ(AB)− κ(A) if κ(A) 6=∞
∞ otherwise

(3)
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for conditionals (B|A) ∈ (L | L). Note that κ((B|A)) > 0 since any ω satisfying AB also satisfies A and
therefore κ(AB) > κ(A).

The belief of an agent being in epistemic state κ with respect to a default rule (B|A) is determined by
the satisfaction relation |=O defined by:

κ |=O (B|A) iff κ(AB) < κ(AB) (4)

Thus, (B|A) is believed in κ iff the rank of AB (verifying the conditional) is strictly smaller than the rank
of AB (falsifying the conditional). We say that κ accepts the conditional (B|A) iff κ |=O (B|A).

3 Example

In order to illustrate the concepts presented in the previous section we will use a scenario involving a set of
some default rules representing common-sense knowledge.

Example 1. Suppose we have the propositional atoms f - flying, b - birds, p - penguins,w - winged animals,
k - kiwis.

Let the setR consist of the following conditionals:
R r1 : (f |b) birds fly

r2 : (b|p) penguins are birds
r3 : (f |p) penguins do not fly
r4 : (w|b) birds have wings
r5 : (b|k) kiwis are birds

Figure 1 shows a ranking function κ that accepts all conditionals given in R. Thus, for any i ∈
{1, 2, 3, 4, 5} it holds that κ |=O Ri.

ω κ(ω) ω κ(ω) ω κ(ω) ω κ(ω)

pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1
pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0
pbfwk 3 pbfwk 5 pbfwk 1 pbfwk 1
pbfwk 3 pbfwk 4 pbfwk 1 pbfwk 0

pbfwk 1 pbfwk 3 pbfwk 1 pbfwk 1
pbfwk 1 pbfwk 2 pbfwk 1 pbfwk 0
pbfwk 2 pbfwk 3 pbfwk 2 pbfwk 1
pbfwk 2 pbfwk 2 pbfwk 2 pbfwk 0

Fig. 1. Ranking function κ accepting the rule setR given in Example 1

For the conditional (f |p) (“Do penguins fly?”) that is not contained in R, we get κ(pf) = 2 and
κ(pf) = 1 and therefore

κ /|=O (f |p)
so that the conditional (f |p) is not accepted by κ. This is in accordance with the behaviour of a rational
agent believing R since the knowledge base R used for building up κ explicitly contains the opposite rule
(f |p).

On the other hand, for the conditional (w|k) (“Do kiwis have wings?”) that is also not contained inR,
we get κ(kw) = 0 and κ(kw) = 1 and therefore

κ |=O (w|k)

i.e., the conditional (w|k) is accepted by κ. Thus, from their superclass birds, kiwis inherit the property of
having wings.
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4 Specification of Ranking Functions as Solutions of a Constraint Satisfaction
Problem

Given a set R = {R1, . . . , Rn} of conditionals, a ranking function κ that accepts every Ri repesents an
epistemic state of an agent accepting R. If there is no κ that accepts every Ri then R is inconsistent. For
the rest of this paper, we assume thatR is consistent.

For any consistent R there may be many different κ accepting R, each representing a complete set
of beliefs with respect to every possible formula A and every conditional (B|A). Thus, every such κ
inductively completes the knowledge given by R, and it is a vital question whether some κ′ is to be pre-
ferred to some other κ′′, or whether there is a unique “best” κ. Different ways of determining a ranking
function are given by system Z [9, 10] or its more sophisticated extension system Z∗ [9], see also [6];
for an approach using rational world rankings see [19]. For quantitative knowledge bases of the form
Rx = {(B1|A1)[x1], . . . , (Bn|An)[xn]} with probability values xi and with models being probability dis-
tributions P satisfying a probabilistic conditional (Bi|Ai)[xi] iff P (Bi|Ai) = xi, a unique model can be
choosen by employing the principle of maximum entropy [16, 17, 11]; the maximum entropy model is a
best model in the sense that it is the most unbiased one among all models satisfyingRx.

Using the maximum entropy idea, in [13] a generalization of system Z∗ is suggested. Based on an
algebraic treatment of conditionals, the notion of conditional indifference of κ with respect toR is defined
and the following criterion for conditional indifference is given: An OCF κ is indifferent with respect to
R = {(B1|A1), . . . , (Bn|An)} iff κ(Ai) < ∞ for all i ∈ {1, . . . , n} and there are rational numbers
κ0, κ

+
i , κ

−
i ∈ Q, 1 6 i 6 n, such that for all ω ∈ Ω,

κ(ω) = κ0 +
∑

16i6n
ω|=AiBi

κ+
i +

∑
16i6n

ω|=AiBi

κ−i . (5)

When starting with an epistemic state of complete ignorance (i.e., each world ω has rank 0), for each rule
(Bi|Ai) the values κ+

i , κ
−
i determine how the rank of each satisfying world and of each falsifying world,

respectively, should be changed:

– If the world ω verifies the conditional (Bi|Ai), – i.e., ω |= AiBi –, then κ+
i is used in the summation

to obtain the value κ(ω).
– Likewise, if ω falsifies the conditional (Bi|Ai), – i.e., ω |= AiBi –, then κ−i is used in the summation

instead.
– If the conditional (Bi|Ai) is not applicable in ω, – i.e., ω |= Ai –, then this conditional does not

influence the value κ(ω).

κ0 is a normalization constant ensuring that there is a smallest world rank 0. Employing the postulate
that the ranks of a satisfying world should not be changed and requiring that changing the rank of a falsify-
ing world may not result in an increase of the world’s plausibility leads to the concept of a c-representation
[13, 12]:

Definition 1. Let R = {(B1|A1), . . . , (Bn|An)}. Any ranking function κ satisfying the conditional indif-
ference condition (5) and κ+

i = 0, κ−i > 0 (and thus also κ0 = 0 since R is assumed to be consistent) as
well as

κ(AiBi) < κ(AiBi) (6)

for all i ∈ {1, . . . , n} is called a (special) c-representation ofR.

Note that for i ∈ {1, . . . , n}, condition (6) expresses that κ accepts the conditional Ri = (Bi|Ai) ∈ R (cf.
the definition of the satisfaction relation in (4)) and that this also implies κ(Ai) <∞.

Thus, finding a c-representation for R amounts to choosing appropriate values κ−1 , . . . , κ−n . In [2]
this situation is formulated as a constraint satisfaction problem CR(R) whose solutions are vectors of the
form (κ−1 , . . . , κ

−
n ) determining c-representations of R. The development of CR(R) exploits (2) and (5)

to reformulate (6) and requires that the κ−i are natural numbers (and not just rational numbers). In the
following, we set min(∅) =∞.
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Definition 2. [CR(R)] Let R = {(B1|A1), . . . , (Bn|An)}. The constraint satisfaction problem for c-
representations ofR, denoted by CR(R), is given by the conjunction of the constraints

κ−i > 0 (7)

κ−i > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (8)

for all i ∈ {1, . . . , n}.
A solution of CR(R) is an n-tupel (κ−1 , . . . , κ

−
n ) of natural numbers, and with SolCR(R) we denote the

set of all solutions of CR(R).

Proposition 1. For R = {(B1|A1), . . . , (Bn|An)} let (κ−1 , . . . , κ
−
n ) ∈ SolCR(R). Then the function κ

defined by
κ(ω) =

∑
16i6n

ω|=AiBi

κ−i (9)

acceptsR.

All c-representations built from (7), (8), and (9) provide an excellent basis for model-based inference
[13, 12]. However, from the point of view of minimal specificity (see e.g. [4]), those c-representations with
minimal κ−i yielding minimal degrees of implausibility are most interesting.

While different orderings on SolCR(R) can be defined, leading to different minimality notions, in the
following we will focus on the ordering on SolCR(R) induced by taking the sum of the κ−i , i.e.

(κ−1 , . . . , κ
−
n ) 6 (κ′−1 , . . . , κ

′−
n ) iff

∑
16i6n

κ−i 6
∑

16i6n

κ′
−
i . (10)

As we are interested in minimal κ−i -vectors, an important question is whether there is always a unique
minimal solution. This is not the case; the following example that is also discussed in [15] illustrates that
SolCR(R) may have more than one minimal element.

Example 2. LetRbirds = {R1, R2, R3} be the following set of conditionals:

R1 : (f |b) birds fly
R2 : (a|b) birds are animals
R3 : (a|fb) flying birds are animals

From (8) we get
κ−1 > 0
κ−2 > 0−min{κ−1 , κ

−
3 }

κ−3 > 0− κ−2
and since κ−i > 0 according to (7), the two vectors

sol1 = (κ−1 , κ
−
2 , κ

−
3 ) = (1, 1, 0)

sol2 = (κ−1 , κ
−
2 , κ

−
3 ) = (1, 0, 1)

are two different solutions of CR(Rbirds) with
∑

16i6n κ
−
i = 2 that are both minimal in SolCR(Rbirds)

with respect to 6.

5 A Declarative CLP Program for CR(R)

In this section, we will develop a CLP program GenOCF solving CR(R). Our main objective to obtain
a declarative program that is as close as possible to the abstract formulation of CR(R) while exploiting
the concepts of constraint logic programming. We will employ finite domain constraints, and from (7) we
immediately get a lower bound for κ−i . Considering that we are interested mainly in minimal solutions, due
to (8) we can safely restrict ourselves to n as an upper bound for κ−i , yielding

0 6 κ−i 6 n (11)

for all i ∈ {1, . . . , n} with n being the number of conditionals inR.
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5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not consider reading and parsing a knowledge
base R = {(B1|A1), . . . , (Bn|An)}. Instead, we assume that R is already given as a Prolog code file
providing the following predicates variables/1, conditional/3 and indices/1:

variables([a1,...,am]) % list of atoms in Σ
conditional(i,〈Ai〉,〈Bi〉) % representation of ith conditional (Bi|Ai)
indices([1,...,n]) % list of indices {1, . . . , n}

If Σ = {a1, . . . , am} is the set of atoms, we assume a fixed ordering a1 < a2 < . . . < am on Σ given by
the predicate variables([a1,...,am]).

In the representation of a conditional, a propositional formula A, constituting the antecedent or the
consequence of the conditional, is represented by 〈A〉 where 〈A〉 is a Prolog list [〈D1〉,...,〈Dl〉]. Each
〈Di〉 represents a conjunction of literals such that D1 ∨ . . . ∨Dl is a disjunctive normal form of A.

Each 〈D〉, representing a conjunction of literals, is a Prolog list [b1,...,bm] of fixed length m
where m is the number of atoms in Σ and with bk ∈ {0, 1, }. Such a list [b1,...,bm] represents
the conjunctions of atoms obtained from ȧ1 ∧ ȧ2 ∧ . . . ∧ ȧm by eliminating all occurrences of >, where

ȧk =


ak if bk = 1
ak if bk = 0
> if bk =

Example 3. The internal representation of the knowledge base presented in Example 1 is shown in Figure 2.

variables([p,b,f,w,k]).

% p b f w k p b f w k
conditional(1,[[_,1,_,_,_]],[[_,_,1,_,_]]). % (f | b) birds fly
conditional(2,[[1,_,_,_,_]],[[_,1,_,_,_]]). % (b | p) penguins are birds
conditional(3,[[1,_,_,_,_]],[[_,_,0,_,_]]). % (-f | p) penguins do not fly
conditional(4,[[_,1,_,_,_]],[[_,_,_,1,_]]). % (w | b) birds habe wings
conditional(5,[[_,_,_,_,1]],[[_,1,_,_,_]]). % (b | k) kiwis are birds

indices([1,2,3,4,5]).

Fig. 2. Internal representation of the knowledge base from Example 1

As further preliminaries, using conditional/3 and indices/1, we have implemented the pred-
icates verifying worlds/2, falsifying worlds/2, and falsify/2, realising the evaluation
of the indicator function (1) given in Sec. 2:

verifying worlds(i,Ws) % Ws list of worlds verifying ith conditional
falsifying worlds(i,Ws) % Ws list of worlds falsifying ith conditional
falsify(i,W) % world W falsifies ith conditional

where worlds are represented as complete conjunctions of literals over Σ, using the representation de-
scribed above.

Using these predicates, in the following subsections we will present the complete source code of the
constraint logic program GenOCF solving CR(R).
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5.2 Generation of Constraints

The particular program code given here uses the SICStus Prolog system1 and its clp(fd) library implement-
ing constraint logic programming over finite domains [14].

The main predicate kappa/2 expecting a knowledge base KB of conditionals and yielding a vector K
of κ−i values as specified by (8) is presented in Fig. 3.

kappa(KB, K) :- % K is kappa vector of c-representation for KB
consult(KB),
indices(Is), % get list of indices [1,2,...,N]
length(Is, N), % N number of conditionals in KB
length(K, N), % generate K = [Kappa_1,...,Kappa_N] of free var.
domain(K, 0, N), % 0 <= kappa_I <= N for all I according to (11)
constrain_K(Is, K), % generate constraints according to (8)
labeling([], K). % generate solution

Fig. 3. Main predicate kappa/2

After reading in the knowledge base and getting the list of indices, a list K of free constraint vari-
ables, one for each conditional, is generated. In the two subsequent subgoals, the constraints corre-
sponding to the formulas (11) and (8) are generated, constraining the elements of K accordingly. Finally,
labeling([], K) yields a list of κ−i values. Upon backtracking, this will enumerate all possible so-
lutions with an upper bound of n as in (11) for each κ−i . Later on, we will demonstrate how to modify
kappa/2 in order to take minimality into account (Sec. 5.3).

How the subgoal constrain K(Is, K) in kappa/2 generates a constraint for each index i ∈
{1, . . . , n} according to (8) is defined in Fig. 4.

constrain_K([],_). % generate constraints for
constrain_K([I|Is],K) :- % all kappa_I as in (8)

constrain_Ki(I,K), constrain_K(Is,K).

constrain_Ki(I,K) :- % generate constraint for kappa_I as in (8)
verifying_worlds(I, VWorlds), % all worlds verifying I-th conditional
falsifying_worlds(I, FWorlds), % all worlds falsifying I-th conditional
list_of_sums(I, K, VWorlds, VS), % VS list of sums for verifying worlds
list_of_sums(I, K, FWorlds, FS), % FS list of sums for falsifying worlds
minimum(Vmin, VS), % Vmin minium for verifying worlds
minimum(Fmin, FS), % Fmin minium for falsifying worlds
element(I, K, Ki), % Ki constraint variable for kappa_I
Ki #> Vmin - Fmin. % constraint for kappa_I as in (8)

Fig. 4. Constraining the vector K representing κ−1 , . . . , κ
−
n as in (8)

Given an index I, constrain Ki(I,K) determines all worlds verifying and falsifying the I-th
conditional; over these two sets of worlds the two min expressions in (8) are defined. Two lists VS and FS
of sums corresponding exactly to the first and the second sum, repectively, in (8) are generated (how this
is done is defined in Fig. 5 and will be explained below). With the constraint variables Vmin and Fmin
denoting the minimum of these two lists, the constraint

Ki #> Vmin - Fmin

1 http://www.sics.se/isl/sicstuswww/site/index.html
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given in the last line of Fig. 4 reflects precisely the restriction on κ−i given by (8).
For an index I, a kappa vector K, and a list of worlds Ws, the goal list of sums(I, K, Ws, Ss)

(cf. Fig. 5) yields a list Ss of sums such that for each world W in Ws, there is a sum S in Ss that is
generated by sum kappa j(Js, I, K, W, S) where Js is the list of indices {1, . . . , n}. In the goal
sum kappa j(Js, I, K, W, S), S corresponds exactly to the respective sum expression in (8), i.e.,
it is the sum of all Kj such that J 6= I and W falsifies the j-th conditional.

% list_of_sums(I, K, Ws, Ss) generates list of sums as in (8):
% I index from 1,...,N
% K kappa vector
% Ws list of worlds
% Ss list of sums:
% for each world W in Ws there is S in Ss s.t.
% S is sum of all kappa_J with
% J \= I and W falsifies J-th conditional

list_of_sums(_, _, [], []).
list_of_sums(I, K, [W|Ws], [S|Ss]) :-

indices(Js),
sum_kappa_j(Js, I, K, W, S),
list_of_sums(I, K, Ws, Ss).

% sum_kappa_j(Js, I, K, W, S) generates a sum as in (8):
% Js list of indices [1,...,N]
% I index from 1,...,N
% K kappa vector
% W world
% S sum of all kappa_J s.t.
% J \= I and W falsifies J-th conditional

sum_kappa_j([], _, _, _, 0).
sum_kappa_j([J|Js], I, K, W, S) :-

sum_kappa_j(Js, I, K, W, S1),
element(J, K, Kj),
((J \= I, falsify(J, W)) -> S #= S1 + Kj; S #= S1).

Fig. 5. Generating list of sums of κ−i as in (8)

Example 4. Suppose that kb birds.pl is a file containing the conditionals of the knowledge baseRbirds

given in Ex. 2. Then the first five solutions generated by the program given in Figures 3 – 5 are:

| ?- kappa(’kb_birds.pl’, K).
K = [1,0,1] ? ;
K = [1,0,2] ? ;
K = [1,0,3] ? ;
K = [1,1,0] ? ;
K = [1,1,1] ?

Note that the first and the fourth solution are the minimal solutions.

Example 5. If kb penguins.pl is a file containing the conditionals of the knowledge base R given in
Ex. 1, the first six solutions generated by kappa/2 are:
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| ?- kappa(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
K = [1,2,2,1,2] ? ;
K = [1,2,2,1,3] ? ;
K = [1,2,2,1,4] ? ;
K = [1,2,2,1,5] ? ;
K = [1,2,2,2,1] ?

5.3 Generation of Minimal Solutions

The enumeration predicate labeling/2 of SICStus Prolog allows for an option that minimizes the value
of a cost variable. Since we are aiming at minimizing the sum of all κ−i , the constraint sum(K, #=, S)
introduces such a cost variable S. Thus, exploiting the SICStus Prolog minimization feature, we can
easily modify kappa/2 to generate a minimal solution: We just have to replace the last subgoal
labeling([], K) in Fig. 3 by the two subgoals:

sum(K, #=, S), % introduce constraint variable S
% for sum of kappa_I

minimize(labeling([],K), S). % generate single minimal solution

With this modification, we obtain a predicate kappa min/2 that returns a single minimal solution (and
fails on backtracking). Hence calling ?- kappa min(’kb birds.pl’, K). similar as in Ex. 4
yields the minimal solution K = [1,0,1].

However, as pointed out in Sec. 4, there are good reasons for considering not just a single minimal
solution, but all minimal solutions. We can achieve the computation of all minimal solutions by another
slight modification of kappa/2. This time, the enumeration subgoal labeling([], K) in Fig. 3 is
preceded by two new subgoals as in kappa min all/2 in Fig. 6.

kappa_min_all(KB, K) :- % K is minimal vector for KB, all solutions
consult(KB),
indices(Is), % get list of indices [1,2,...,N]
length(Is, N), % N number of conditionals in KB
length(K, N), % generate K = [Kappa_1,...,Kappa_N] of free var.
domain(K, 0, N), % 0 <= kappa_I <= N for all I according to (11)
constrain_K(Is, K), % generate constraints according to (8)
sum(K, #=, S), % constraint variable S for sum of kappa_I
min_sum_kappas(K, S), % determine minimal value for S
labeling([], K). % generate all minimal solutions

min_sum_kappas(K, Min) :- % Min is sum of a minimal solution for K
once((labeling([up],[Min]),

\+ \+ labeling([],K))).

Fig. 6. Predicate kappa min all/2 generating exactly all minimal solutions

The first new subgoal sum(K, #=, S) introduces a constraint variable S just as in kappa min/2.
In the subgoal min sum kappas(K, S), this variable S is constrained to the sum of a minimal solution
as determined by min sum kappas(K, Min). These two new subgoals ensure that in the generation
caused by the final subgoal labeling([], K), exactly all minimal solutions are enumerated.

Example 6. Continuing Example 4, calling

| ?- kappa_min_all(’kb_birds.pl’, K).
K = [1,0,1] ? ;
K = [1,1,0] ? ;
no
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yields the two minimal solutions forRbirds .

Example 7. For the situation in Ex. 5, kappa min all/2 reveals that there is a unique minimal solution:

| ?- kappa_min_all(’kb_penguins.pl’, K).
K = [1,2,2,1,1] ? ;
no

Determining the OCF κ induced by the vector (κ−1 , κ
−
2 , κ

−
3 , κ

−
4 , κ

−
5 ) = (1, 2, 2, 1, 1) according to (9)

yields the ranking function given in Fig. 1.

6 Example Applications and First Evaluation

Although the objective in developing GenOCF was on being as close as possible to the abstract formulation
of the constraint satisfaction problem CR(R), we will present the results of some first example applications
we have carried out.

For n > 1, we generated synthetic knowledge bases kb synth<n> c<2n−1>.pl according to the
following schema: Using the variables {f} ∪ {a1, . . . , an}, kb synth<n> c<2n−1>.pl contains the
2 ∗ n− 1 conditionals given by::

(f |ai) if i is odd, i ∈ {1, . . . , n}
(f |ai) if i is even, i ∈ {1, . . . , n}
(ai|ai+1) if i ∈ {1, . . . , n− 1}

For instance, kb synth4 c7.pl uses the five variables {f, a1, a2, a3, a4} and contains the seven condi-
tionals:

(f |a1)
(f |a2)
(f |a3)
(f |a4)
(a1|a2)
(a2|a3)
(a3|a4)

The basic idea underlying the construction of these synthetic knowledge bases
kb synth<n> c<2n−1>.pl is to establish a kind of subclass relationship between ai+1 and ai
for each i ∈ {1, . . . , n − 1} on the one hand, and to state that every ai+1 is exceptional to ai with respect
to its behaviour regarding f , again for each i ∈ {1, . . . , n − 1}. This sequence of pairwise exceptional
elements will force any minimal solution of CR(kb synth<n> c<2n−1>.pl) to have at least one κ−i
value of size greater or equal to n.

From kb synth<n> c<m>.pl, the knowledge bases kb synth<n> c<m−j>.pl are generated
for j ∈ {1, . . . ,m− 1} by removing the last j conditionals. For instance, kb synth4 c5.pl is obtained
from kb synth4 c7.pl by removing the two conditionals {(a2|a3), (a3|a4)}.

Figure 7 shows the time needed by GenOCF for computing all minimal solutions for various know-
ledge bases. The execution time is given in seconds where the value 0 stands for any value less than 0.5
seconds. Measurements were taken for the following environment: SICStus 4.0.8 (x86-linux-glibc2.3),
Intel Core 2 Duo E6850 3.00GHz. While the number of variables determines the set of possible worlds,
the number of conditionals induces the number of contraints. The values in the table in Fig. 7 give some
indication on the influence of both values, the number of variables and the number of conditionals in a
knowledge base. For instance, comparing the knowledge base kb synth7 c10.pl, having 8 variables
and 10 conditionals, to the knowledge base kb synth8 c10.pl, having 9 variables and also 10 condi-
tionals, we see an increase of the computation time by a factor 2.3. Increasing the number of conditionals,
leads to no time increase from kb synth7 c10.pl to kb synth7 c11.pl, and to a time increase
factor of about 1.6 when moving from kb synth8 c10.pl to kb synth8 c11.pl, while for moving
from kb synth8 c10.pl to kb synth9 c10.pl and kb synth10 c10.pl, we get time increase
factors of 3.3 and 11.0, respectively.
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Of course, these knowledge bases are by no means representative, and further evaluation is needed.
In particular, investigating the complexity depending on the number of variables and conditionals and
determining an upper bound for worst-case complexity has still to be done. Furthermore, while the code for
GenOCF given above uses SICStus Prolog, we also have a variant of GenOCF for the SWI Prolog system2

[20]. In our further investigations, we want to evaluate GenOCF also using SWI Prolog, to elaborate the
changes required and the options provided when moving between SICStus and SWI Prolog, and to study
whether there are any significant differences in execution that might depend on the two different Prolog
systems and their options.

7 Conclusions and Further Work

While for a set of probabilistic conditionals (Bi|Ai)[xi] the principle of maximum entropy yields a unique
model, for a set R of qualitative default rules (Bi|Ai) there may be several minimal ranking functions. In
this paper, we developed a CLP approach for solving CR(R), realized in the Prolog program GenOCF. The
solutions of the constraint satisfaction problem CR(R) are vectors of natural numbers #»κ = (κ−1 , . . . , κ

−
n )

that uniquely determine an OCF κ #»κ accepting all conditionals in R. The program GenOCF is also able to
generate exactly all minimal solutions of CR(R); the minimal solutions of CR(R) are of special interest
for model-based inference.

Among the extentions of the approach described here we are currently working on, is the investiga-
tion and evaluation of alternative minimality criteria. Instead of ordering the vectors #»κ by the sum of
their components, we could define a componentwise order on SolCR(R) by defining (κ−1 , . . . , κ

−
n ) �

(κ′−1 , . . . , κ
′−
n ) iff κ−i 6 κ′

−
i for i ∈ {1, . . . , n}, yielding a partial order � on SolCR(R).

Still another alternative is to compare the full OCFs κ #»κ induced by #»κ = (κ−1 , . . . , κ
−
n ) according to

(9), yielding the ordering 4 on SolCR(R) defined by κ #»κ 4 κ #»κ ′ iff κ #»κ (ω) 6 κ #»κ ′(ω) for all ω ∈ Ω.
In general, it is an open problem how to strengthen the requirements defining a c-representation so that

a unique solution is guaranteed to exist. The declarative nature of constraint logic programming supports
easy constraint modification, enabling the experimentation and practical evaluation of different notions
of minimality for SolCR(R) and of additional requirements that might be imposed on a ranking function.
Furthermore, in [8] the framework of default rules concidered here is extended by allowing not only default
rules in the knowledge base R, but also strict knowledge, rendering some worlds completely impossibe.
This can yield a reduction of the problem’s complexity, and it will be interesting to see which effects the
incorporation of strict knowledge will have on the CLP approach presented here.
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Abstract. KiCS2 is a new system to compile functional logic programs of the source language Curry
into purely functional Haskell programs. The implementation is based on the idea to represent the
search space as a data structure and logic variables as operations that generate their values. This has the
advantage that one can apply various, and in particular, complete search strategies to compute solutions.
However, the generation of all values for logic variables might be inefficient for applications that exploit
constraints on partially known values. To overcome this drawback, we propose new techniques to
implement equational constraints in this framework. In particular, we show how unification modulo
function evaluation and functional patterns can be added without sacrificing the efficiency of the kernel
implementation.

1 Introduction

Functional logic languages combine the most important features of functional and logic programming in
a single language (see [5,17] for recent surveys). In particular, they provide higher-order functions and
demand-driven evaluation from functional programming together with logic programming features like
non-deterministic search and computing with partial information (logic variables). This combination has
led to new design patterns [2,6] and better abstractions for application programming, but it also gave rise
to new implementation challenges.

Previous implementations of functional logic languages can be classified into three categories:

1. designing new abstract machines appropriately supporting these operational features and implementing
them in some (typically, imperative) language, like C [24] or Java [7,20],

2. compilation into logic languages like Prolog and reusing the existing backtracking implementation for
non-deterministic search as well as logic variables and unification for computing with partial informa-
tion [1,23], or

3. compilation into non-strict functional languages like Haskell and reusing the implementation of lazy
evaluation and higher-order functions [13,14].

The latter approach requires the implementation of non-deterministic computations in a deterministic lan-
guage but has the advantage that the explicit handling of non-determinism allows for various search strate-
gies like depth-first, breadth-first, parallel, or iterative deepening instead of committing to a fixed (incom-
plete) strategy like backtracking [13].

In this paper we consider KiCS2 [12], a new system that compiles functional logic programs of the
source language Curry [21] into purely functional Haskell programs. We have shown in [12] that this im-
plementation can compete with or outperform other existing implementations of Curry. KiCS2 is based on
the idea to represent the search space, i.e., all non-deterministic results of a computation, as a data structure
that can be traversed by operations implementing various strategies. Furthermore, logic variables are re-
placed by generators, i.e., operations that non-deterministically evaluate to all possible ground values of the
type of the logic variable. It has been shown [4] that computing with logic variables by narrowing [27,30]
and computing with generators by rewriting are equivalent, i.e., compute the same values. Although this
implementation technique is correct [9], the generation of all values for logic variables might be inefficient
for applications that exploit constraints on partial values. For instance, in Prolog the equality constraint
“X=c(a)” is solved by instantiating the variable X to c(a), but the equality constraint “X=Y” is solved by
binding X to Y without enumerating any values for X or Y. Therefore, we propose in this paper new tech-
niques to implement equational constraints in the framework of KiCS2 (note that, in contrast to Prolog,



Implementing Equational Constraints in a Functional Language 23

unification is performed modulo function evaluation). Furthermore, we also show how functional patterns
[3], i.e., patterns containing evaluable operations for more powerful pattern matching than in logic or func-
tional languages, can be implemented in this framework. We show that both extensions lead to efficiency
improvements without sacrificing the efficiency of the kernel implementation.

In the next section, we review the source language Curry and the features considered in this paper. Sec-
tion 3 sketches the implementation scheme of KiCS2. Sections 4 and 5 discuss the extensions to implement
unification modulo functional evaluation and functional patterns, respectively. Benchmarks demonstrating
the usefulness of this scheme are presented in Sect. 6 before we conclude in Sect. 7.

2 Curry Programs

The syntax of the functional logic language Curry [21] is close to Haskell [26], i.e., type variables and
names of defined operations usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”). In addition to
Haskell, Curry allows free (logic) variables in conditions and right-hand sides of defining rules. Hence, an
operation is defined by conditional rewrite rules of the form:

f t1 . . . tn | c = e where vs free (1)

where the condition c is optional and vs is the list of variables occurring in c or e but not in the left-hand
side f t1 . . . tn.

In contrast to functional programming and similarly to logic programming, operations can be defined
by overlapping rules so that they might yield more than one result on the same input. Such operations
are also called non-deterministic. For instance, Curry offers a choice operation that is predefined by the
following rules:
x ? _ = x
_ ? y = y

Thus, we can define a non-deterministic operation aBool by
aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a semantical ambiguity might

occur. Consider the operations
not True = False
not False = True

xor True x = not x
xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting system, we could
have the reduction
xorSelf aBool → xor aBool aBool → xor True aBool

→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we use a strict strategy
where arguments are evaluated prior to the function calls. In order to avoid dependencies on the evaluation
strategies and exclude such unintended results, González-Moreno et al. [16] proposed the rewriting logic
CRWL as a logical (execution- and strategy-independent) foundation for declarative programming with
non-strict and non-deterministic operations. This logic specifies the call-time choice semantics [22] , where
values of the arguments of an operation are determined before the operation is evaluated. This can be
enforced in a lazy strategy by sharing actual arguments. For instance, the expression above can be lazily
evaluated provided that all occurrences of aBool are shared so that all of them reduce either to True or to
False consistently.
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The condition c in rule (1) typically is a conjunction of equational constraints of the form e1 =:= e2.
Such a constraint is satisfiable if both sides e1 and e2 are reducible to unifiable data terms. For instance,
if the symbol “++” denotes the usual list concatenation operation, we can define an operation last that
computes the last element e of a non-empty list xs as follows:
last xs | ys++[e] =:= xs = e where ys, e free

Like in Haskell, most rules defining functions are constructor-based [25], i.e., in (1) t1, . . . , tn consist of
variables and/or data constructor symbols only. However, Curry also allows functional patterns [3], i.e., ti
might additionally contain calls to defined operations. For instance, we can also define the last element of
a list by:
last’ (xs++[e]) = e

Here, the functional pattern (xs++[e]) states that (last’ t) is reducible to e provided that the argument
t can be matched against some value of (xs++[e]) where xs and e are free variables. By instantiating xs
to arbitrary lists, the value of (xs++[e]) is any list having e as its last element. Functional patterns are a
powerful feature to express arbitrary selections in term structures. For instance, they support a straightfor-
ward processing of XML data with incompletely specified or evolving formats [18].

3 The Compilation Scheme of KiCS2

To understand the extensions described in the subsequent sections, we sketch the translation of Curry
programs into Haskell programs as performed by KiCS2. More details about this translation scheme can
be found in [10,12].

As mentioned in the introduction, the KiCS2 implementation is based on the explicit representation of
non-deterministic results in a data structure. This is achieved by extending each data type of the source
program by constructors to represent a choice between two values and a failure, respectively. For instance,
the data type for Boolean values defined in a Curry program by
data Bool = False | True

is translated into the Haskell data type1

data Bool = False | True | Choice ID Bool Bool | Fail

The first argument of type ID of each Choice constructor is used to implement the call-time choice se-
mantics discussed in Sect. 2. Since the evaluation of xorSelf aBool duplicates the argument operation
aBool, we have to ensure that both duplicates, which later evaluate to a non-deterministic choice between
two values, yield either True or False. This is obtained by assigning a unique identifier (of type ID) to
each Choice. The difficulty is to get a unique identifier on demand, i.e., when some operation evaluates to
a Choice. Since we want to compile into purely functional programs (in order to enable powerful program
optimizations), we cannot use unsafe features with side effects to generate such identifiers. Hence, we pass
a (conceptually infinite) set of identifiers, also called identifier supply, to each operation so that a Choice
can pick its unique identifier from this set. For this purpose, we assume a type IDSupply, representing an
infinite set of identifiers, with operations
initSupply :: IO IDSupply
thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

The operation initSupply creates such a set (at the beginning of an execution), the operation thisID

takes some identifier from this set, and leftSupply and rightSupply split this set into two disjoint sub-
sets without the identifier obtained by thisID. There are different implementations available [8] (see below
for a simple implementation) and our system is parametric over concrete implementations of IDSupply.

When translating Curry to Haskell, KiCS2 adds to each operation an additional argument of type
IDSupply. For instance, the operation aBool defined in Sect. 2 is translated into:

1 Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell entities and introduces
type classes to resolve overloaded symbols like Choice and Fail.
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aBool :: IDSupply → Bool
aBool s = Choice (thisID s) True False

Similarly, the operation
main :: Bool
main = xorSelf aBool

is translated into
main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the evaluation of aBool and
a set (rightSupply s) containing identifiers for the evaluation of the operation xorSelf.

Since all data types are extended by additional constructors, we must also extend the definition of
operations performing pattern matching.2 For instance, consider the definition of polymorphic lists
data List a = Nil | Cons a (List a)

and an operation to extract the first element of a non-empty list:
head :: List a → a
head (Cons x xs) = x

The type definition is then extended as follows:
data List a = Nil | Cons a (List a) | Choice ID (List a) (List a) | Fail

The operation head is extended by an identifier supply and further matching rules:
head :: List a → IDSupply → a
head (Cons x xs) s = x
head (Choice i x1 x2) s = Choice i (head x1 s) (head x2 s)
head _ s = Fail

The second rule transforms a non-deterministic argument into a non-deterministic result and the final rule
returns Fail in all other cases, i.e., if head is applied to the empty list as well as if the matching argument
is already a failed computation (failure propagation).

To show a concrete example, we use the following implementation of IDSupply based on unbounded
integers:
type IDSupply = Integer
initSupply = return 1
thisID n = n
leftSupply n = 2 * n
rightSupply n = 2 * n + 1

If we apply the same transformation to the rules defining xor and evaluate the main expression (main 1),
we obtain the result
Choice 2 (Choice 2 False True) (Choice 2 True False)

Thus, the result is non-deterministic and contains three choices, whereby all of them have the same iden-
tifier. To extract all values from such a Choice structure, we have to traverse it and compute all possible
choices but consider the choice identifiers to make consistent (left/right) decisions. Thus, if we select the
left branch as the value of the outermost Choice, we also have to select the left branch in the selected
argument (Choice 2 False True) so that False is the only value possible for this branch. Similarly,
if we select the right branch as the value of the outermost Choice, we also have to select the right branch
in its selected argument (Choice 2 True False), which again yields False as the only possible value.
In consequence, the unintended value True is not produced.

The requirement to make consistent decisions can be implemented by storing the decisions already
made for some choices during the traversal. For this purpose, we introduce the type
data Decision = NoDecision | ChooseLeft | ChooseRight

2 To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform programs [12] where
pattern matching is restricted to a single argument. This is always possible by introducing auxiliary operations.



26 Bernd Braßel, Michael Hanus, Björn Peemöller, and Fabian Reck

where NoDecision represents the fact that the value of a choice has not been decided yet. Furthermore,
we assume operations to lookup the current decision for a given identifier or change it (depending on the
implementation of IDSupply, KiCS2 supports several implementations based on memory cells or finite
maps):
lookupDecision :: ID → IO Decision
setDecision :: ID → Decision → IO ()

Now we can print all values contained in a choice structure in a depth-first manner by the following I/O
operation:3

printValsDFS :: a → IO ()

printValsDFS Fail = return ()

printValsDFS (Choice i x1 x2) = lookupDecision i >>= follow
where
follow ChooseLeft = printValsDFS x1
follow ChooseRight = printValsDFS x2
follow NoDecision = do newDecision ChooseLeft x1

newDecision ChooseRight x2

newDecision d x = do setDecision i d
printValsDFS x
setDecision i NoDecision

printValsDFS v = print v

This operation ignores failures and prints values that are not rooted by a Choice constructor. For a Choice
constructor, it checks whether a decision for this identifier has already been made (note that the initial value
for all identifiers is NoDecision). If a decision has been made for this choice, it follows this decision.
Otherwise, the left alternative is used and this decision is stored. After printing all values w.r.t. this decision,
the decision is undone (like in backtracking) and the right alternative is used and stored.

In general, this operation is applied to the normal form of the main expression (where initSupply

is used to compute an initial identifier supply passed to this expression). The normal form computation is
necessary for structured data like lists, so that a failure or choice in some part of the data is moved to the
root.

Other search strategies, like breadth-first search, iterative deepening, or parallel search, can be obtained
by different implementations of this main operation to print all values. Furthermore, one can also collect
all values in a tree-like data structure so that the programmer can implement his own search strategies
(this corresponds to encapsulating search [11]). Finally, instead of printing all values, one can easily define
operations to print either the first solution only or one by one upon user request. Due to the lazy evaluation
strategy of Haskell, such operations can also be applied to infinite choice structures.

To avoid an unnecessary growth of the search space represented by Choice constructors, our compiler
performs an optimization for deterministic operations. If an operation is defined by non-overlapping rules
and does not call, neither directly nor indirectly through other operations, a function defined by overlapping
rules, the evaluation of such an operation (like xor or not) cannot introduce non-deterministic values.
Thus, it is not necessary to pass an identifier supply to the operation. In consequence, only the matching
rules are extended by additional cases for handling Choice and Fail so that the generated code is nearly
identical to a corresponding functional program. Actually, the benchmarks presented in [12] show that for
deterministic operations this implementation outperforms all other Curry implementations, and, for non-
deterministic operations, outperforms Prolog-based implementations of Curry and can compete with MCC
[24], a Curry implementation that compiles to C.

As mentioned in the introduction, occurrences of logic variables are translated into generators. For in-
stance, the expression “not x”, where x is a logic variable, is translated into “not (aBool s)”, where s
is an IDSupply provided by the context of the expression. The latter expression is evaluated by reducing
the argument aBool s to a choice between True or False followed by applying not to this choice. This is
similar to a narrowing step on “not x” that instantiates the variable x to True or False. Since such gener-

3 Note that this code has been simplified for readability since the type system of Haskell does not allow this direct
definition.
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ators are standard non-deterministic operations, they are translated like any other operation and, therefore,
do not require any additional run-time support. However, in the presence of equational constraints, there
are methods which are more efficient than generating all values. These methods and their implementation
are discussed in the next section.

4 Equational Constraints and Unification

As known from logic programming, predicates or constraints are important to restrict the set of intended
values in a non-deterministic computation. Apart from user-defined predicates, equational constraints of
the form e1 =:= e2 are the most important kind of constraints. We have already seen a typical application
of an equational constraint in the operation last in Sect. 2.

Due to the presence of non-terminating operations and infinite data structures, “=:=” is interpreted
as the strict equality on terms [15], i.e., the equation e1 =:= e2 is satisfied iff e1 and e2 are reducible to
unifiable constructor terms. In particular, expressions that do not have a value are not equal w.r.t. “=:=”,
e.g., the equational constraint “head [] =:= head []” is not satisfiable.4

Due to this constructive definition, “=:=” can be considered as a binary function defined by the fol-
lowing rules (we only present the rules for the Boolean and list types, where Success denotes the only
constructor of the type Success of constraints):
True =:= True = Success
False =:= False = Success

[] =:= [] = Success
(x:xs) =:= (y:ys) = x =:= y & xs =:= ys

Success & c = c

If we translate these operations into Haskell by the scheme presented in Sect. 3, the following rules are
added to these rules in order to propagate choices and failures:
Fail =:= _ = Fail
_ =:= Fail = Fail
Choice i l r =:= y = Choice i (l =:= y) (r =:= y)
x =:= Choice i l r = Choice i (x =:= l) (x =:= r)
_ =:= _ = Fail

Fail & _ = Fail
Choice i l r & c = Choice i (l & c) (r & c)
_ & _ = Fail

Although this is a correct implementation of equational constraints, it might lead to an unnecessarily large
search space when it is applied to generators representing logic variables. For instance, consider the fol-
lowing generator for Boolean lists:
aBoolList = [] ? (aBool : aBoolList)

This is translated into Haskell as follows:
aBoolList :: IDSupply → [Bool]
aBoolList s = Choice (thisID s) [] (aBool (leftSupply s)

: aBoolList (rightSupply s))

Now consider the equational constraint “x =:= [True]”. If the logic variable x is replaced by
aBoolList, the translated expression “aBoolList s =:= [True]” creates a search space when evalu-
ating its first argument, although there is no search required since there is only one binding for x satisfying
the constraint. Furthermore and even worse, unifying two logic variables introduces an infinite search
space. For instance, the expression “xs =:= ys & xs++ys =:= [True]” results in an infinite search
space when the logic variables xs and ys are replaced by generators.

4 From now on, we use the standard notation for lists, i.e., [] denotes the empty list and (x:xs) denotes a list with
head element x and tail xs.
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To avoid these problems, we have to implement the idea of the well-known unification principle [28].
Instead of enumerating all values for logic variables occurring in an equational constraint, we bind the
variables to another variable or term. Since we compile into a purely functional language, the binding
cannot be performed by some side effect. Instead, we add binding constraints to the computed results to be
processed by a search strategy that extracts values from choice structures.

To implement unification, we have to distinguish free variables from “standard choices” (introduced by
overlapping rules) in the target code. For this purpose, we refine the definition of the type ID as follows:5

data ID = ChoiceID Integer | FreeID Integer

The new constructor FreeID identifies a choice corresponding to a free variable, e.g., the generator for
Boolean variables is redefined as
aBool s = Choice (FreeID (thisID s)) True False

If an operation is applied to a free variable and requires its value, the free variable is transformed into a
standard choice. For this purpose, we define a simple operation to perform this transformation:
narrow :: ID → ID
narrow (FreeID i) = ChoiceID i
narrow x = x

Furthermore, we use this operation in narrowing steps, i.e., in all rules operating on Choice constructors.
For instance, in the implementation of the operation not we replace the rule
not (Choice i x1 x2) s = Choice i (not x1 s) (not x2 s)

by the rule
not (Choice i x1 x2) s = Choice (narrow i) (not x1 s) (not x2 s)

As mentioned above, the consideration of free variables is relevant in equational constraints where binding
constraints are generated. For this purpose, we introduce a type to represent a binding constraint as a pair
of a choice identifier and a decision for this identifier:
data Constraint = ID :=: Decision

Furthermore, we extend each data type by the possibility to add constraints:
data Bool = . . . | Guard [Constraint] Bool
data List a = . . . | Guard [Constraint] (List a)

A single Constraint provides the decision for one constructor. In order to support constraints for struc-
tured data, a list of Constraints provides the decision for the outermost constructor and the decisions for
all its arguments. Thus, (Guard cs v) represents a constrained value, i.e., the value v is only valid if the
constraints cs are consistent with the decisions previously made during search. These binding constraints
are created by the equational constraint operation “=:=”: if a free variable should be bound to a construc-
tor, we make the same decisions as it would be done in the successful branch of the generator. In case of
Boolean values, this can be implemented by the following additional rules for “=:=”:
Choice (FreeID i) _ _ =:= True = Guard [i :=: ChooseLeft ] Success
Choice (FreeID i) _ _ =:= False = Guard [i :=: ChooseRight] Success

Hence, the binding of a variable to some known value is implemented as a binding constraint for the choice
identifier for this variable. However, if we want to bind a variable to another variable, we cannot store a
concrete decision. Instead, we store the information that the decisions for both variables, when they are
made to extract values, must be identical. For this purpose, we extend the Decision type to cover this
information:
data Decision = . . . | BindTo ID

Furthermore, we add the rule that an equational constraint between two variables yields a binding for these
variables:
Choice (FreeID i) _ _ =:= Choice (FreeID j) _ _
= Guard [i :=: BindTo j] Success

5 For the sake of simplicity, in the following, we consider the implementation of IDSupply to be unbounded integers.
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The consistency of constraints is checked when values are extracted from a choice structure, e.g., by the
operation printValsDFS. For this purpose, we extend the definition of the corresponding search opera-
tions by calling a constraint solver for the constraints. For instance, the definition of printValsDFS is
extended by a rule handling constrained values:

. . .
printValsDFS (Guard cs x) = do consistent <- add cs

if consistent then do printValsDFS x
remove cs

else return ()
. . .

The operation add checks the consistency of the constraints cs with the decisions made so far and, in case
of consistency, stores the decisions made by the constraints. In this case, the constrained value is evaluated
before the constraints are removed to allow backtracking. Furthermore, the operations lookupDecision
and setDecision are extended to deal with bindings between two variables, i.e., they follow variable
chains in case of BindTo constructors.

Finally, with the ability to distinguish free variables (choices with an identifier of the form
(FreeID . . .)) from other values during search, values containing logic variables can also be printed
in a specific form rather than enumerating all values, similarly to logic programming systems. For instance,
KiCS2 evaluates the application of head to an unknown list as follows:
Prelude> head xs where xs free
{xs = (_x2:_x3)} _x2

Here, free variables are marked by the prefix _x.

5 Functional Patterns

A well-known disadvantage of equational constraints is the fact that “=:=” is interpreted as strict equality.
Thus, if one uses equational constraints to express requirements on arguments, the resulting operations
might be too strict. For instance, the equational constraint in the condition defining last (see Sect. 2) re-
quires that ys++[e] as well as xs must be reducible to unifiable terms so that in consequence the input list
xs is completely evaluated. Hence, if failed denotes an operation whose evaluation fails, the evaluation
of last [failed,True] has no result. On the other hand, the evaluation of last’ [failed,True]

yields the value True, i.e., the definition of last’ is less strict thanks to the use of functional patterns.
As another example for the advantage of the reduced strictness implied by functional patterns, consider

an operation that returns the first duplicate element in a list. Using equational constraints, we can define it
as follows:
fstDup xs | xs =:= ys++[e]++zs & elem e ys =:= True & nub ys =:= ys

= e where ys, zs, e free

The first equational constraint is used to split the input list xs into three sublists. The last equational
constraint ensures that the first sublist ys does not contain duplicated elements (the library operation nub

removes all duplicates from a list) and the second equational constraint ensures that the first element after
ys occurs in ys. Although this implementation is concise, it cannot be applied to infinite lists due to the
strict interpretation of “=:=”. This is not the case if we define this operation by a functional pattern:
fstDup’ (ys++[e]++zs) | elem e ys =:= True & nub ys =:= ys

= e

Because of the reduced strictness, the logic variable zs (matching the tail list after the first duplicate) is
never evaluated. This is due to the fact that a functional pattern like (xs++[e]) abbreviates all values
to which it can be evaluated (by narrowing), like [e], [x1,e], [x1,x2,e] etc. Conceptually, the rule
defining last’ abbreviates the following (infinite) set of rules:
last’ [e] = e
last’ [x1,e] = e
last’ [x1,x2,e] = e
. . .
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Obviously, one cannot implement functional patterns by a transformation into an infinite set of rules. In-
stead, they are implemented by a specific lazy unification procedure “=:<=” [3]. For instance, the definition
of last’ is transformed into
last’ ys | (xs++[e]) =:<= ys = e where xs, e free

The behavior of “=:<=” is similar to “=:=”, except for the case that a variable in the left argument should
be bound to some expression: instead of evaluating the expression to some value and binding the variable
to the value, the variable is bound to the unevaluated expression (see [3] for more details). Due to this
slight change, failures or infinite structures in actual arguments do not cause problems in the matching of
functional patterns.

The general structure of the implementation of functional patterns in KiCS2 is quite similar to that of
equational constraints, with the exception that variables could be also bound to unevaluated expressions.
Only if such variables are later accessed, the expressions they are bound to are evaluated. This can be
achieved by adding a further alternative to the type of decisions:
data Decision = . . . | LazyBind [Constraint]

The implementation of the lazy unification operation “=:<=” is almost identical to the strict unification
operation “=:=” as shown in Sect. 4. The only difference is in the rules where a free variable occurs in the
left argument. All these rules are replaced by the single rule
Choice (FreeID i) _ _ =:<= x
= Guard [i :=: LazyBind (lazyBind i x)] Success

where the auxiliary operation lazyBind implements the demand-driven evaluation of the right argument
x:
lazyBind :: ID → a → [Constraint]
lazyBind i True = [i :=: ChooseLeft]
lazyBind i False = [i :=: ChooseRight]

The use of the additional LazyBind constructor allows the argument x to be stored in a binding constraint
without evaluation (due to the lazy evaluation strategy of the target language Haskell). However, it is
evaluated by lazyBind when its binding is required by another part of the computation. Similarly to
equational constraints, lazy bindings are processed by a solver when values are extracted. In particular, if
a variable has more than one lazy binding constraint (which is possible if a functional pattern evaluates to
a non-linear term), the corresponding expressions are evaluated and unified according to the semantics of
functional patterns [3].

In order to demonstrate the operational behavior of our implementation, we sketch the evaluation
of the lazy unification constraint xs++[e] =:<= [failed,True] that occurs when the expression
last’ [failed,True] is evaluated (we omit failed branches and some other details; note that logic vari-
ables are replaced by generators, i.e., we assume that xs is replaced by aBoolList 2 and e is replaced by
aBool 3):

aBoolList 2 ++ [aBool 3] =:<= [failed, True]
; [aBool 4, aBool 3] =:<= [failed, True]
; aBool 4 =:<= failed & aBool 3 =:<= True & [] =:<= []
; Guard [ 4 :=: LazyBind (lazyBind 4 failed)

, 3 :=: LazyBind (lazyBind 3 True)] Success

If the value of the expression last’ [failed,True] is later required, the value of the variable e (with
the identifier 3) is in turn required. Thus, (lazyBind 3 True) is evaluated to [3 :=: ChooseLeft]

which corresponds to the value True of the generator (aBool 3). Note that the variable with identifier
4 does not occur anywhere else, so that the binding (lazyBind 4 failed) will never be evaluated, as
intended.

6 Benchmarks

In this section we evaluate our implementation of equational constraints and functional patterns by some
benchmarks. The benchmarks were executed on a Linux machine running Debian 5.0.7 with an Intel Core
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Expression == =:= =:<=
last (map (inc 0) [1..10000]) 2.91 0.05 0.01
simplify 10.30 6.77 7.07
varInExp 2.34 0.24 0.21
fromPeano (half (toPeano 10000)) 26.67 5.95 11.19
palindrome 30.86 14.05 20.26
horseman 3.24 3.31 n/a
grep 1.06 0.10 n/a

Fig. 1. Benchmarks: comparing different representations for equations

Expression KiCS2 PAKCS MCC
last (map (inc 0) [1..10000]) 0.05 0.40 0.01
simplify 6.77 0.15 0.00
varInExp 0.24 0.89 0.07
fromPeano (half (toPeano 10000)) 5.95 108.88 3.22
palindrome 14.05 32.56 1.07
horseman 3.31 8.70 0.42
grep 0.10 2.88 0.14

Fig. 2. Benchmarks: strict unification in different Curry implementations

2 Duo (3.0GHz) processor. KiCS2 has been used with the Glasgow Haskell Compiler (GHC 7.0.4, option
-O2) as its backend and an efficient IDSupply implementation that makes use of IORefs. For a compar-
ison with other mature implementations of Curry, we considered PAKCS [19] (version 1.9.2, based on a
SICStus-Prolog 4.1.2) and MCC [24] (version 0.9.10). The timings were performed with the time command
measuring the execution time (in seconds) of a compiled executable for each benchmark as a mean of three
runs. The programs used for the benchmarks, partially taken from [3], are last (compute the last element
of a list),6 simplify (simplify a symbolic arithmetic expression), varInExp (non-deterministically return
a variable occuring in a symbolic arithmetic expression), half (compute the half of a Peano number using
logic variables), palindrome (check whether a list is a palindrome), horseman (solving an equation re-
lating heads and feet of horses and men based on Peano numbers), and grep (string matching based on a
non-deterministic specification of regular expressions [5]).

In Sect. 4 we mentioned that equational constraints could also be solved by generators without variable
bindings, but this technique might increase the search space due to the possibly superfluous generation
of all values. To show the beneficial effects of our implementation of equational constraints with variable
bindings, in Fig. 1 we compare the results of using equational constraints (=:=) to the results where the
Boolean equality operator (==) is used (which does not perform bindings but enumerate all values). As
expected, in most cases the creation and traversal of a large search space introduced by == is much slower
than our presented approach with variable bindings. In addition, the example last shows that the lazy
unification operator (“=:<=”) improves the performance when unifying an expression which has to be
evaluted only partially. Using strict unification, all elements of the list are (unnecessarily) evaluated.

In contrast to the Curry implementations PAKCS and MCC, our implementation of strict unification is
based on an explicit representation of the search space instead of backtracking and manipulating a global
state containing bindings for logic variables. Nevertheless, the benchmarks in Fig. 2, using equational con-
straints only, show that it can compete with or even outperform the other implementations. The results
show that the implementation of unification of MCC performs best. However, in most cases our imple-
mentation outperforms the Prolog-based PAKCS implementation, except for some examples. In particular,
simplify does not perform well due to expensive bindings of free variables to large arithmetic expres-
sions in unsuccessful branches of the search. Further investigation and optimization will hopefully lead to
a better performance in such cases.

6 “inc x n” is a naive addition that n times increases its argument x by 1.
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Expression KiCS2 PAKCS
last (map (inc 0) [1..10000]) 0.01 0.33
simplify 7.07 0.27
varInExp 0.21 1.87
fromPeano (half (toPeano 10000)) 11.19 ∞
palindrome 20.26 ∞

Fig. 3. Benchmarks: functional patterns in different Curry implementations

As MCC does not support functional patterns, the performance of lazy unification is compared with
PAKCS only (Fig. 3). Again, our compiler performs well against PAKCS and outperforms it in most cases
(“∞” denotes a run time of more than 30 minutes).

7 Conclusions and Related Work

We have presented an implementation of equational constraints and functional patterns in KiCS2, a purely
functional implementation of Curry. Our implementation is based on adding binding constraints to com-
puted values and processing them when values are extracted at the top level of a computation. Since we
only have added new constructors and pattern matching rules for them in our implementation, no over-
head is introduced for programs without equational constraints, i.e., our implementation does not sacrifice
the high efficiency of the kernel implementation shown in [12]. However, if these features are used, they
usually lead to a comparably efficient execution, as demonstrated by our benchmarks.

Other implementations of equational constraints in functional logic languages use side effects for their
implementation. For instance, PAKCS [19] exploits the implementation of logic variables in Prolog, which
are implemented on the primitive level by side effects. MCC [24] compiles into C where a specific abstract
machine implements the handling of logic variables. We have shown that our implementation is competitive
to those. In contrast to those systems, our implementation supports a variety of search strategies, like
breadth-first or parallel search, where the avoidance of side effects is important.

For future work it might be interesting to add further constraint structures to our implementation, like
real arithmetic or finite domain constraints. This might be possible by extending the kinds of constraints of
our implementation and solving them by functional approaches like [29].
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Abstract. There are various interesting semantics’ (extensions) designed for argumentation frame-
works. They enable to assign a meaning, e.g., to odd-length cycles. Our main motivation is to transfer
semantics’ proposed by Baroni, Giacomin and Guida for argumentation frameworks with odd-length
cycles to logic programs with odd-length cycles through default negation. The developed construction
is even stronger. For a given logic program an argumentation framework is defined. The construction
enables to transfer each semantics of the resulting argumentation framework to a semantics of the
given logic program. Weak points of the construction are discussed and some future continuations of
this approach are outlined.
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1 Introduction

Relations between (extensions of) abstract argumentation frameworks and (semantics of) logic programs
were studied since the fundamental paper by Dung [3] and since the times of other seminal paper [10]. We
can mention also, e.g., [7, 18, 2, 8, 9, 11–17].

Among typical research problems are, e..g.,

– a characterization of extensions of abstract argumentation framework in terms of answer sets or other
semantics’ of logic programs,

– a construction of new semantics of logic programs, based or inspired by extensions of argumentation
frameworks,

– encoding extensions in answer set programming.

Our main motivation is to transfer semantics’ proposed in [5] for argumentation frameworks with odd-
length cycles to logic programs with odd-length cycles through default negation. According to our knowl-
edge, only CF2 extensions of [5], were studied from different logic programming points of view, see, e.g.,
[11, 17]. In [11] an ASP-encoding of (modified) CF2 is presented and in [17] a characterization of CF2 in
terms of answer set models is proposed.

Our goal is to propose some new semantics’ of logic programs (we are primarily interested in a semantic
handling of odd cycles through default negation) via transferring semantics’ of argumentation frameworks
(AD1, AD2, CF1, CF2). We propose a uniform method, which for a given logic program transfers arbitrary
argumentation semantics to a semantics of the logic program. The method enables to define for a given
logic program a corresponding argumentation framework. As next step, each semantics of the resulting
argumentation framework is transferred to a semantics of the given logic program.

This paper is structured as follows. Basics of SCC-recursive semantics of [5] is sketched after technical
preliminaries. Then, in Section 4, the core of the paper, a transfer of argumentation framework semantics’
to logic program is described. A special attention is devoted to the problem of odd cycles in the Section 5. A
representation of an argumentation frameworkA by a logic program P is described in Section 6. It is shown
that for an arbitrary argumentation semantics holds that extensions of the original argumentation framework
A coincide with extensions of the argumentation framework constructed for P using the method of Section
4. Weak points of the construction are discussed in the paper. Some future continuations of this research
are outlined in Section 7. Finally, related work is overviewed and main contributions, open problems and
future goals are summarized in Conclusions.
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2 Preliminaries

Some basic notions of argumentation frameworks and logic programs are introduced in this section.

Argumentation frameworks An argumentation framework [3] is a pair AF = (AR, atatcks), where AR
is a set (of arguments) and attacks ⊆ AR×AR is a binary relation. Let be a, b ∈ AR; if (a, b) ∈ atatcks,
it is said that a attacks b. We assume below an argumentation framework AF = (AR, attacks).

Let be S ⊆ AR. It is said that S is conflict-free if for no a, b ∈ S holds (a, b) ∈ attacks.
A set of arguments S ⊆ AR attacks a ∈ AR iff there is b ∈ S s.t. (b, a) ∈ attacks.
A conflict-free set of arguments S is admissible in AF iff for each a ∈ S holds: if there is b ∈ AR

s.t. (b, a) ∈ attacks, then S attacks b, i.e. an admissible set of arguments counterattacks each attack on its
members.

Dung defined some semantic characterizations (extensions) of argumentation frameworks as sets of
conflict-free and admissible arguments, which satisfy also some other conditions.

A preferred extension of AF is a maximal admissible set in AF . A conflict-free S ⊆ AR is a stable
extension of AF iff S attacks each a ∈ AR \ S.

The characteristic function FAF of an argumentation framework AF assigns sets of arguments to sets
of arguments, where FAF (S) = {a ∈ AR | ∀b ∈ AR (b attacks a⇒ S attacks b}.

The grounded extension of an argumentation framework AF is the least fixed point of FAF (FAF is
monotonic).

A complete extension is an admissible set S of arguments s.t. each argument, which is acceptable with
respect to S, belongs to S.

We will use a precise notion of a semantics of an argumentation framework. A semantics of AF is a
mapping σ∗, which assigns a set of extensions to AF . Different indices in the place of * specify different
semantics’, e.g. preferred semantics, stable semantics etc. A set of extensions assigned by a semantics S to
an argumentation framework AF is denoted by ES(AF ).

Logic programs Only propositional normal logic programs are considered in this paper. Let L be a set of
atoms. The set of default literals is not L = {not A | A ∈ L}. A literal is an atom or a default literal. A
rule (let us denote it by r) is an expression of the form

A← A1, . . . , Ak,not B1, . . . ,not Bm; where k ≥ 0,m ≥ 0 (1)

A is called the head of the rule and denoted by head(r).
The set of literals {A1, . . . , Ak,not B1, . . . ,not Bm} is called the body of r and denoted by body(r).
{A1, . . . , Ak}, called the positive part of the body, is denoted by body+(r) and {B1, . . . , Bm} is denoted
by body−(r). Notice that body−(r) differs from the negative part {not B1, . . . ,not Bm} of the body.

A (normal) program is a finite set of rules. We will often use only the term program.
We will specify a transfer of an argumentation semantics to a logic program semantics in terms of sets

of atoms derivable in the corresponding logic program. We follow the approach of Dimopoulos and Torres
[6] in order to specify a notion of derivation in a normal logic program. The derivation should be dependent
on a set of default literals. In the next paragraphs we will adapt some basic definitions from [6].

An assumption is a default literal. A set of assumptions∆ is called a hypothesis.∆;P

is a set of atoms,
dependent on (derivable from) ∆ w.r.t. a program (set of rules) P ; here is a precise definition:

Let ∆, a hypothesis be given. P∆ is the set of all rules from P , where elements from ∆ are deleted
from the bodies of the rules and P+

∆ is obtained from P∆ by deleting all rules r with bodies containing
assumptions. Then ∆;P

= {A ∈ L | P+
∆ |= A}).

It is said that an atom A is derived from ∆ using rules of P iff A ∈ ∆;P

.
Stable model semantics of logic programs play a background role in our paper, so, we introduce a

definition of stable model. An interpretation S = ∆∪∆;P

is a stable model of P iff S is total interpretation
[6], where an interpretation is understood as a consistent set of literals.
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3 SCC-recursive semantics

An analysis of asymmetries in handling of even and odd cycles in argumentation semantics’ is presented
in [5]. We present only a sketchy view of their approach, for details see [5].

An argumentation framework may be conceived as an oriented graph with arguments as vertices and
the attack relation as the set of edges.

Example 1 ConsiderAF = ({a, b, c}, {(a, b), (b, c), (c, a)}). The graph representation of AF contains an
odd-length cycle.

This example is often presented as a case o three witnesses and the attack relation is interpreted as
follows: a questions reliability of b, b questions reliability of c, c questions reliability of a.

Stable semantics does not assign an extension to such argumentation framework. However, there are
two stable extensions for the case of four witnesses.

This asymmetry in semantic treatment of odd and even cycles motivated the research and solutions of
[5]. The same problem is present in a form also in other “classical” argumentation semantics proposed in
[3]. 2

A general recursive schema for argumentation semantics is proposed in [5]. Recursive semantics’ are
defined in a constructive way – an incremental process of adding arguments into an extension is specified.

A symmetric handling of odd and even cycles is based on distinguishing components of graphs.

Definition 1 Let an argumentation framework AF = 〈AR, attacks〉 be given. A binary relation of path
equivalence, denoted by PEAF ⊆ (AR×AR), is defined as follows.

– ∀a ∈ AR, (a, a) ∈ PEAF ,
– ∀a 6= b ∈ AR, (a, b) ∈ PEAF iff there is a path from a to b and a path from b to a.

The strongly connected components of AF are the equivalence classes of arguments (vertices) un-
der the relation of path-equivalence. The set of the strongly connected components of AF is denoted by
SCCSAF .

We now can consider the set of strongly connected components as the set of vertices of a new graph.
Consider components C1 and C2. Let an argument a be a member of C1 and b be a member of C2. If a
attacks b (in AF), then (C1, C2) is an edge of the graph of strongly connected components (SCC-graphs).
It is clear that this graph is an acyclic one.

Notions of parents and ancestors for SCC-graphs are defined in an obvious way. Initial components
(components without parents) provide a basis for a construction of an extension. We start at the initial
component and proceed via oriented edges to next components. If we construct an extension E and a
component C is currently processed, the process consists in a choice of a subset of C, i.e. a choice of
E ∩C (according to the given semantics – the semantics specifies how choices depend on choices made in
ancestors of C). A base function is assumed, which is applied to argumentation frameworks with exactly
one component and it characterizes a particular argumentation semantics.

A notion of SCC-recursive argumentation semantics formalizes the intuitions presented above. SCC-
recursive characterization of traditional semantics’ is provided. Finally, some new semantics’, AD1, AD2,
CF1 and CF2, are defined in [5].

AD1 and AD2 extensions preserve the property of admissibility. However, the requirement of maxi-
mality is relaxed, so this solution is different as compared to the preferred semantics. An alternative is not
to require admissibility of sets of arguments and and insist only on conflict-freeness. Maximal conflict-free
sets of arguments are selected as extensions in semantics CF1 and CF2. For details and differences see [5].
ASP-encodings of AD1, AD2, CF1 and CF2 are presented in [1].

4 Transfer of argumentation framework semantics’ to logic program

We will build an argumentation framework over the rules of a logic program. Rules will play the role of
arguments. An attack relation over such arguments will be introduced. After that some arguments (rules)
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are accepted/rejected on the basis of a given argumentation semantics. A corresponding semantics for logic
program is introduced as a set of literals derivable from accepted rules (considered as arguments). Note
that this method enables a transfer of an arbitrary argumentation semantics to the given logic program.

Definition 2 Let a programP be given. Then an argumentation framework overP isAFP = 〈AR, attacks〉,
where

AR = {r ∈ P} and attacks = {(r1, r2) | A = head(r1), body+(r1) = ∅, A ∈ body−(r2)}. 2

Example 2 Let be P = {r1 : a←; r2 : b← not a.}. Then attacks = {(r1, r2)} in AFP .
If P = {r1 : a← not b. r2 : b← not a.}, then attacks = {(r1, r2), (r2, r1)}. 2

Let us discuss the condition that the attacking rules do not contain positive literals in its body. A deriva-
tion of the head of a rule r with non-empty body+(r) from a hypothesis ∆ is conditional: it depends on
a derivation of positive literals in body+(r). We constrain the attacking argument in the attack relation
to the rules with non-empty body+(r) – it is recognizable on syntactic level and it is appropriate for the
representation of argumentation frameworks in logic programs presented in Section 6.

But this design decision leads to some counterintuitive consequences in a general case. We will return
to the problem below, after formal definitions.

We have defined an argumentation framework over the rules of a program P . Let’s proceed towards
derivations in P , based on an argumentation semantics.

Let a program P be given, AFP be an argumentation framework over P . Consider a set of rules R ⊆
P , where R is a conflict-free set of arguments of AFP . It is obvious that R could serve as a basis of a
reasonable derivation in the corresponding logic program. Only literals which do not occur as negated in
the bodies of rules are in the heads of rules.

Notice that extensions of an argumentation framework over a program P are sets of rules. That is
expressed by a notion of rules enabled in a program P by an argumentation semantics according to the
following definition.

Definition 3 A set of rules R ⊆ P is enabled in a program P by an argumentation semantics S iff R ∈
ES(AFP ). If R satisfies this condition, it is denoted by Rule inPS (or by a shorthand Rule in, if a given
semantics and a given program are clear from the context). 2

A set of rules R (Rule inPS ) is enabled by S according to Definition 3, if R is an S-extension of AFP .
The following definition of a set of atoms consistent with a set of rules is important. It partially prevents
some negative consequences of the decision that attacking rules have empty positive part of the body.
Inconsistent sets of rules cannot be derived because of checking consistency, see Definition 6.

Definition 4 Let M be an arbitrary set of atoms and R ⊆ P be an arbitrary subset of a programP .
It is said that M is consistent with R iff ∀A ∈M ¬∃r ∈ R A ∈ body−(r). 2

Now, a fundamental task is to point out a way from Rule inPS , rules enabled by an argumentation
semantics to a corresponding set of atoms, i.e., to a semantics of the given logic program P . The set is
denoted by In ASS , see the following definition.

Definition 5 Let AFP be an argumentation framework over a program P , S be an argumentation seman-
tics of AFP and Rule inS is a set of rules of P enabled by the semantics S.

Then In ASS is the least set of atoms A satisfying the following condition:
∃r ∈ Rule inS , head(r) = A,∀b ∈ body+(r) : b ∈ In ASS . 2

Definition 5 specifies how to compute In AS. First, for each r ∈ Rule inS s.t. body+(r) = ∅ and
head(r) = A, A is included into In AS. After that is In AS iteratively recomputed for all r ∈ Rule inS
with non-empty body+(r). Notice that this is a process of TRule inS

-iteration.
Finally, it is necessary to use consistent In ASS in order to define a sound semantic characterization

of the given logic program P . This characterization is called the set of atoms derived in P according to
semantics S according to the following definition.
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Definition 6 If In ASS is consistent withRule inS , then it is said that In ASS is the set of atoms derived
in P according to semantics S. 2

Example 3 Let a program P = {r1 : a←, r2 : b← not a, r3 : c← not b, r4 : d← not c} be given.
We get AFP = ( r1, r2, r3, r4}, {(r1, r2), (r2, r3), (r3, r4)}). Consider only the preferred semantics.

The only preferred extension of AFP is the set of rules {r1, r3}.1 We get {{r1, r3}} = ES(AFP ), where
S is the preferred semantics. It means, {r1, r3} is the only set of rules, enabled by the preferred semantics
according to Definition 3.

In AS = {a, c} according to Definition 5. The set of atoms {a, c} is consistent with the set of rules
{r1, r3} according to the Definition 4. Finally, according to Definition 6 is {a, c} derived in P according
to the preferred semantics.

Notice that this set is the stable model of P . 2

Example 4 Consider now a less straightforward example.
Let P be {r1 : a ← not b, r2 : b ← c,not d.}, r3 : c ← .}, then attacks = ∅. If S is the preferred

semantics, then {{r1, r2, r3}} = ES(AFP ), P = Rule inS is enabled by the preferred semantics.
Further, it holds that In ASS = {a, b, c} according to Definition 5. But In ASS is not consistent with

P = Rule inS , hence no atom is derived in P according to the preferred semantics.
Consistency checks are intended as a guard against hidden attacks, as our example demonstrates. This

is why the set In ASS is not derivable in P according to the preferred semantics. Hence, our construction
prevent to accept inconsistent sets of atoms as semantic characterizations of logic programs.

On the other hand, {r2, r3} (may be, also {r1, r3}) could be an intuitive preferred extension of an argu-
mentation framework assigned to P . It means that our construction do not generate all intuitive semantic
characterizations of a logic program corresponding to an argumentation semantics. 2

Remark 1 May be, a way out of this bug could be built over subsets of Rule inS and/or of In AS.
Definition 6 can be modified accordingly as follows: Let M be a maximal subset of In ASS and R be a
maximal subset of Rule inS s.t. M is consistent with R. Then it is said that M is the set of atoms derived
in P according to semantics S.

If we consider Example 4, we get sets {a, c} and {b, c} as derived atoms corresponding to the preferred
extension. However, this is not appropriate for stable semantics. A nice uniform transfer of an argumen-
tation semantics to a logic program semantics would be lost, if a special handling of inconsistency for
different argumentation semantics’ is specified.

More comments about some possible ways how to fix this bug are included into Section 7. 2

We repeat that the given construction of an argumentation framework over a logic program is useful
for goals of Section 6. Possibilities of more general constructions aiming at a transfer of an argumentation
semantics to a logic program semantics are presented in Section 7.

Derivation of atoms according to Definition 6 coincides with the derivation of derivation in Section 2.

Proposition 1 Let an argumentation semantics S be given. Let be R = Rule inS . A set of atoms derived
in P according to the semantics S is ∆;R for some ∆.

Proof:
Let be R = Rule inS and In AS be the corresponding derived set of atoms.

Suppose that ∆ = {not A | ∃r ∈ R A ∈ body−(r)}. It holds that A ∈ ∆;R

iff R+
∆ |= A. Obviously,

R+
∆ |= A holds iff A ∈ In AS. 2

An open problem is, how semantics’ transferred from argumentation frameworks are related to known
semantics of logic programs (stable model semantics, partial stable model semantics, well founded seman-
tics etc.)

Note that stable extensions of AFP are not in general stable models of P .

1 It is also a stable, grounded and complete extension.



Transfer of Semantics from Argumentation Frameworks to Logic Programming – a Preliminary Report 39

Example 5 Consider the program P = {r1 : a← p,not b, r2 : b← q,not a, r3 : p←}.
The stable model of P is {p, a}, but the stable extension of AFP does not exist, rules r1, r2, r3 are

mutually conflict-free, but In AS = {a, b, p} is not consistent with Rule in = {r1, r2, r3}, 2

This observation is a consequence of the given design decision concerning the attack relation – attacking
rules are only rules with empty positive part of the body.

5 Odd cycles

In this section some examples are presented in order to show that a transfer of an argumentation semantics
to a logic program (without a suitable “classic” semantic characterization) enables a reasonable semantic
characterization of the program.

Some logic programs without stable models have a clear intuitive meaning. A transfer of argumentation
semantics from the corresponding argumentation framework enables to catch a meaning of such programs.
Of course, a more detailed analysis is needed, in order to understand the relations of those semantics to
partial stable models semantics and well founded semantics (or other semantics’ of logic programs).2

Example 6 Remind Example 3. Let P ′ be P ∪ {r5 : e← not e}. P ′ has no stable model.
The graph of the argumentation framework AFP ′ contains an isolated vertex r5 which attacks itself.

If we transfer preferred and grounded semantics from AFP ′ to logic program P ′, we obtain a semantic
characterization by an intuitive set of rules {r1, r3} and, consequently, of atoms {a, c} as in Example 3. 2

However, a special interest deserves the problem of odd cycles. In this case a transfer from argumenta-
tion semantics’ to logic program semantics’ provides a new perspective on logic programs.3

Example 7 Consider program P1 = {r1 : a← not b, r2 : b← not a} with an even (negative) cycle and
P2 = {r1 : a ← not b, r2 : b ← not c, r3 : c ← not a} with an odd (negative) cycle. There is no stable
model of P2.

Preferred, stable and complete argumentation semantics’ assign two extensions to AFP1 . On the other
hand, they assign one (empty) or no extension to AFP2 .

Recursive semantics’ proposed in [5] overcome this asymmetry. Note that AFP consists of the only
component, the odd cycle (r1, r2), (r2, r3), (r3, r1). CF1 assigns three extensions {{a}, {b}, {c}} to this
framework. Our construction enables to transfer this semantics to the logic program P2. 2

Consider also other example.

Example 8 Let be P = {r1 : a ← not a, r2 : b ← not a}. The argumentation framework AFP has
according to the semantics CF2 extension r2, consequently {b} is transferred to P . 2

6 Representation of argumentation framework by logic program

In this section we apply a changed view. An argumentation frameworkAF is assumed and its representation
by a simple logic program PAF is constructed. Then we can construct an argumentation frameworkA over
the rules of that program using the method of Section 4. Suppose that an argumentation semantics S is
applied to the argumentation framework A over the rules of the program PAF . We will show that an
application of transferred argumentation semantics to the logic program PAF produces the same result as
the application of the semantics to the original argumentation framework AF .

Definition 7 Let an argumentation frameworkAF = 〈AR, attacks〉 be given. We representAF by a logic
program PAF as follows

– for each a ∈ AR there is exactly one rule r ∈ PAF s.t. head(r) = {a}
2 Some results are presented in the literature, see Section 8.
3 We realize that this is a complex problem and diverse intuitions should be analyzed.
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– body−(r) = {b | b ∈ AR, (b, a) ∈ attacks}, body+(r) = ∅.

2

A remark: if body of a rule is empty, then the corresponding argument is not attacked in AF .

Example 9 Let be AF = (AR, attacks), where AR = {a, b, c, d, e}
and attacks = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. PAF , the logic program representing AF is as
follows:

r1 : b← not a,not c
r2 : a←
r3 : c← not d
r4 : d← not c
r5 : e← not e,not d

2

Programs representing an argumentation framework look like lists: to each argument in the head of a
rule is assigned a list of arguments attacking the argument in the head of the rule.

Notice that there are logic programs, which cannot represent an argumentation framework. On the
other hand, if a logic program represents an argumentation framework, it is done in a unique way – there is
exactly one argumentation framework represented by the program.

Example 10 P1 = {a ← not b, b ← not a} is a logic program, which represents the argumentation
framework AF = 〈{a, b}, {(a, b), (b, a)}〉.

P2 = {a← not b} cannot be a representation of any argumentation framework. There is no rule in P2

with b in its head (and each argument must be in the head of a rule).

Theorem 2 Let AF be an argumentation framework, AF = (AR, attacks), PAF be the logic program
representing AF . Let In AS be a set of atoms, derivable in PAF according to a semantics S.

Then In AS is an extension of AF according to the semantics S.

Proof:
For each argument a ∈ AR, there is exactly one rule r ∈ PAF s.t. head(r) = a. A function Ψ : R→ AR,
where R ⊆ P , assigns to each rule r ∈ R the argument a ∈ AR, which occurs in the head of r. Ψ−1 :
AR→ R is an inverse function which assigns to an argument the rule with the argument in the head.

In AS = {a | ∃r ∈ Rule in, head(r) = a} follows from the fact that body+(r) = ∅ for each rule r.
Hence, In AS = Ψ(Rule in).

It follows from the definition that for each (a, b) ∈ attacks there is a pair (r1, r2) ∈ attacksP , where
AFP = 〈ARP , attacksP 〉. Notice that a ∈ head(r1) and in head(r2) is b. (AFP is a framework over the
rules of the program P ). If (a, b) ∈ attacks then not a occurs in the body of a rule with b in the head.
Similarly, for all (r1, r2) ∈ attacksP there is (x, y) ∈ AF s.t. head(r1) = x, y ∈ body−(r2). Therefore,
the only difference between the frameworks AF and AFP is that the vertices of both frameworks are
renamed according to the function Ψ .

Therefore, In AS = Ψ(Rule in) = ES(AF ).

7 Future goals

In this section three possible alternative transfers of argumentation semantics’ to logic program semantics’
are sketched. Only very preliminary remarks are presented.
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Canonical program. The first possibility, which we will investigate is as follows. Suppose, that an argu-
mentation framework is given. We can represent the argumentation framework by a logic program PAF
defined in Section 6 or by its more limpid, straightforward copy PAF defined below.

Definition 8 LetAF = (AR, attacks) be an argumentation framework. The logic program PAF assigned
to AF is the least set of rules satisfying the conditions:

– AR is the set of atoms of PAF ,
– if (a, b) ∈ attacks, then (a← not b) ∈ PAF ,
– if a ∈ AR and neither (a, b) ∈ attacks, nor (b, a) ∈ atacks for some b, then (a←) ∈ PAF .

2

It can be said, that PAF is the canonical logic program w.r.t. AF . An argumentation semantics of AF
can be transferred to a semantics of the canonical program in a rather straightforward way (in terms of
dependencies on hypotheses). The planned next step is a transfer of those dependencies to arbitrary logic
programs (for some argumentation semantics’ a similar work is done by [10]).

Hypotheses as arguments. Dung in his seminal paper [3] proposed a representation of a logic program
in an argumentation framework. Pairs of the form (∆,A), where ∆ is a hypothesis and A ∈ ∆;P are
arguments in [3].4

While Dung was focused on expressing a logic program as an argumentation framework, our goal is
to transfer argumentation semantics “back” to the logic program. An interesting contribution could be a
transfer of AD1, AD2, CF1, CF2 and other new semantics specified for AFP back to P . We will use some
notions of [6] in order to present a similar idea how to consider hypotheses as arguments.

Definition 9 ([6]) A hypothesis ∆ attacks another hypothesis ∆′ in a program P if there is A ∈ ∆;P s.t.
not A ∈ ∆′.

A hypothesis ∆ is self-consistent in P , if it does not attack itself 2

Definition 10 Let a program P be given. LetH be the set of all hypothesis over the language of P .
Then an associated argumentation framework AFP = (AR, attacks) is defined as follows. AR is the

set of all self-consistent hypotheses ofH and attacks is defined as in Definition 9.
If E ∈ ES(AFP ) for a semantics S, then for each ∆ ∈ E the set of atoms ∆;P provides a semantic

characterization of P according to S 2

Notice that this construction is computationally more demanding – AFP cannot be constructed by an
inspection of the syntactic form of P .

Moreover, it is possible that to an extension E of ES(AFP ) is assigned a set of sets of atoms of P .
It seems that only maximal (w.r.t set-theoretic inclusion) hypotheses of E should be considered if e.g.
preferred semantics is transferred.

If we consider Example 4, which illustrates a counterintuitive properties ofAFP , constructed in Section
4, we get an intuitive solution.

Example 11 Let P be as in Example 4. Then AR of AFP , the set of self-consistent hypotheses in P is
{∅, {not a}, {not b}, {not d}, {not a,not d}}
and attacks = {({not d}, {not b}), (not a,not d}, {not b}).

We get that E = {∅, {not a}, {not d}, {not a,not d}} is a preferred extension. If only maximal
hypotheses are considered, the set of atoms {b, c} is the transferred semantic characterization of P . Oth-
erwise, both {c} and {b, c} correspond to E. 2

We have to study the details and consequences of the presented proposal.

4 But in [4] arguments are hypotheses, too.
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Derivation of arguments A bug caused by assumption body+(r) = ∅ in Definition 2 can be fixed using
the approach of [19]. Basic argumentation structures and basic attacks are assumed. Basic argumentation
structures contain also conditional arguments. A kind of unfolding of conditional arguments is possible
thanks to derivation rules, which enable to derive (non-basic) argumentation structures. Similarly, other
derivation rules enable derivation of attacks between general argumentation structures. This machinery
enables to leave out the condition body+(r) = ∅ of Definition 2.

8 Related work

This section contains only some sketchy remarks, a more detailed analysis and comparison is planned.
We are familiar with the following types of results: a correspondence of an argumentation semantics

and a logic program semantics is described, particularly, a characterization of extensions of abstract argu-
mentation framework in terms of answer sets or other semantics’ of logic programs. Encoding extensions
of argumentation frameworks in answer set programming is another type of research. Some researchers
construct a new semantics of logic programs, inspired by extensions of argumentation frameworks. This
goal is close to ours. However, every result about relations between an argumentation semantics and logic
program semantics is helpful for our future research.

Some remarks concerning Dung’s approach were presented in previous section.
Relations between the “classic” argumentation semantics’ and corresponding semantic views on logic

programs is studied in [10]. Of course, the problem of odd cycles is not tackled in the paper. Our future
goal is a detailed comparison of constructions of [10] and ours.

Argumentation framework is constructed and studied in terms of logic programs in [18]. Arguments
are expressed in a logic programming language, conflicts between arguments are decided with the help of
priorities on rules.

A theory of argumentation that can deal with contradiction within an argumentation framework was
presented in [7]. The results was applied to logic programming semantics. A new semantics of logic pro-
grams was proposed. The goal is similar as ours, we will devote an attention to this result.

The correspondence between complete extensions in abstract argumentation and 3-valued stable models
in logic programming was studied in [2].

The project ”New Methods for Analyzing, Comparing, and Solving Argumentation Problems”, see,
e.g., [9, 8, 11], is focused on implementations of argumentation frameworks in Answer-Set Programming,
but also other fundamental theoretical questions are solved. CF2 semantics is studied, too. An Answer Set
Programming Argumentation Reasoning Tool (ASPARTIX) is evolved.

The Mexican group [12–17] contributes to research on relations of logic programing and argumentation
frameworks, too. Their attention is devoted to characterizations of argumentation semantics’ in terms of
logic programming semantics’. Also a characterization of CF2 is provided in terms of answer set models
or stratified argumentation semantics, which is based on stratified minimal models of logic programs.

Our main goal, in the context of presented remarks, is to “import” semantics’ from argumentation
frameworks to logic programs. However, results about relations of both areas are relevant for us.

9 Conclusions

A method for transferring an arbitrary argumentation semantics to a logic program semantics was devel-
oped. The method consists in defining an argumentation framework over the rules of a program. Extensions
of the argumentation framework are sets of rules. A set of consequences of those rules is an interpretation,
which provides the corresponding semantic characterization of the program.

This method allows a semantic characterization of programs with odd-length (negative) cycles. If a
simple program is assigned to an argumentation framework, extensions of the original framework and the
framework over the rules of that program coincide.

The presented method prevents generation of inconsistent sets of atoms. On the other hand, it does not
create sometimes a semantic characterization of the original program, even if there is an intuitive possibility
to specify the semantics. Some ways of solving this bug are sketched in the paper.

Open problems, future goals and connections to related work are discussed in previous sections.
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sis, Comenius University, 2011

2. Wu, Y., Caminada, M., Gabbay, D.: Complete Extensions in Argumentation Coincide with Three-Valued Stable
Models in Logic Programming. Studia Logica 93(2-3):383-403 (2009)

3. Phan Minh Dung On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games Artificial Intelligence 77, pages 321-357, 1995.

4. Dung, P.M.: An argumentation semantics for logic programming with explicit negation. ICLP’93 Proceedings of
the tenth international conference on logic programming. MIT Press Cambridge, MA, USA 1993

5. Baroni, P., Giacomin, M., Guida, G.: SCC- recursiveness: a general schema for argumentation semantics. Artificial
Intelligence, 168 (1-2), 2005, 162-210

6. Yannis Dimopoulos, Alberto Torres: Graph theoretical structures in logic programs and default theories, Theoret-
ical Computer Science 170, pages 209-244, 1996.

7. Jakobovits, H., Vermeir, D.: Contradiction in Argumentation Frameworks. Proceedings of the IPMU conference,
1996, 821–826.

8. Uwe Egly, Sarah Alice Gaggl, Stefan Woltran Answer Set Programming Encodings for Argumentation Frame-
works DBAI Technical Report, DBAI-TR-2008-62, 2008.

9. Eggly, U., Gaggl, A., Woltran, S.: ASPARTIX: Implementing Argumentation Frameworks Using Answer-Set Pro-
gramming. Proceedings of the 24th International Conference on Logic Programming (ICLP 2008), pages 734-738.
Springer LNCS 5366, 2008.

10. A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni An abstract, argumentation-theoretic approach to default
reasoning. Artif. Intell. 93: 63-101 (1997)

11. Sarah Alice Gaggl, Stefan Woltran cf2 Semantics Revisited Frontiers in Artificial Intelligence and Applications,
pages 243-254. IOS Press, 2010.

12. J. L. Carballido, J. C. Nieves, and M. Osorio.: Inferring Preferred Extensions by Pstable Semantics. Iberoamer-
ican Journal of Artificial Intelligence (Inteligencia Artificial) ISSN: 1137-3601, 13(41):3853, 2009 (doi:
10.4114/ia.v13i41.1029).

13. J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and Practice of Logic
Programming, 8(4):527543, July 2008.

14. J. C. Nieves, M. Osorio, and C. Zepeda. Expressing Extension-Based Semantics based on Stratified Minimal
Models. In H. Ono, M. Kanazawa, and R. de Queiroz, editors, Proceedings of WoLLIC 2009, Tokyo, Japan,
volume 5514 of FoLLI-LNAI subseries, pages 305319. Springer Verlag, 2009.

15. M. Osorio, A. Marin-George, and J. C. Nieves. Computing the Stratified Minimal Models Semantic. In
LANMR’09, pages 157-171, 2009.

16. Juan Carlos Nieves and Ignasi Gomez-Sebastia: Extension-Based Argumentation Semantics via Logic Program-
ming Semantics with Negation as Failure. Proceedings of the Latin-American Workshop on Non-Monotonic Rea-
soning, CEUR Workshop Proceedings vol 533, ISSN 1613-0073, pages 31-45, Apizaco, Mexico, November 5-6,
2009.

17. Osorio, M., Nieves, J.C., Gmez-Sebastia, I.: CF2-extensions as Answer-set Models. Proceedings of the
COMMA2010 Conference. Pages 391-402.

18. H. Prakken, G. Sartor: Argument-based logic programming with defeasible priorities. Journal of Applied Non-
classical Logics 7: 25-75 (1997), special issue on ‘Handling inconsistency in knowledge systems’.

19. Ján Šefránek and Alexander Šimko: Warranted derivation of preferred answer sets,
http://kedrigern.dcs.fmph.uniba.sk/reports/, TR-2011-027, Comenius University, Faculty of Mathematics,
Physics, ans Informatics, 2011. Accepted for WLP 2011.



Translating Nondeterministic Functional Language based on
Attribute Grammars into Java

Masanobu Umeda1, Ryoto Naruse2, Hiroaki Sone2, and Keiichi Katamine1

1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan
umerin@ci.kyutech.ac.jp

2 NaU Data Institute Inc., 680-41 Kawazu, Iizuka 820-8502, Japan

Abstract. Knowledge-based systems are suitable for realizing advanced functions that require domain-
specific expert knowledge, while knowledge representationlanguages and their supporting environ-
ments are essential for realizing such systems. Although Prolog is useful and effective in realizing
such a supporting environment, the language interoperability with other implementation languages,
such as Java, is often an important issue in practical application development. This paper describes
the techniques for translating a knowledge representationlanguage that is a nondeterministic func-
tional language based on attribute grammars into Java. The translation is based on binarization and
the techniques proposed for Prolog to Java translation although the semantics are different from those
of Prolog. A continuation unit is introduced to handle continuation efficiently, while the variable and
register management on backtracking is simplified by using the single and unidirectional assignment
features of variables. An experimental translator writtenin the language itself successfully generates
Java code, while experimental results show that the generated code is over 25 times faster than that
of Prolog Cafe for nondeterministic programs, and over 2 times faster for deterministic programs. The
generated code is also over 2 times faster than B-Prolog for nondeterministic programs.

1 Introduction

There is high demand for advanced information services in various application domains such as medical
services and supply-chain management, as information and communication technology penetrates deeply
into our society. Clinical decision support [1, 2] to prevent medical errors and order placement support for
optimal inventory management [3] are typical examples. It is, however, not prudent to implement such func-
tions as a normal part of the traditional information systemusing conventional programming languages.
This is because expert knowledge is often large scale and complicated, and each application domain typi-
cally has its own specific structures and semantics. Therefore, not only the analysis, but also the description,
audit, and maintenance of such knowledge are often difficultwithout expertise in the application domain. It
is thus, essential to realize such advanced functions to allow domain experts themselves to describe, audit,
and maintain their knowledge. A knowledge-based system approach is suitable for such purposes because
a suitable framework for representing and managing expert knowledge is supplied.

Previously, Nagasawa et al. proposed the knowledge representation language DSP [4, 5] and its sup-
porting environment. DSP is a nondeterministic functionallanguage based on attribute grammars [6, 7] and
is suitable for representing complex search problems without relying on any side effects. The supporting
environment has been developed on top of an integrated development environment called Inside Prolog
[8]. Inside Prolog provides standard Prolog functionality, conforming to ISO/IEC 13211-1 [9], and also
a large variety of Application Programming Interfaces (APIs) that are essential for practical application
development and multi-thread capability for enterprise use [10].

These features allow the consistent development of knowledge-based systems from prototypes to prac-
tical systems for both stand-alone and enterprise use [11].Such systems have been applied to several
practical applications, and the effectiveness thereof hasbeen clarified. However, several issues have also
been perceived from these experiences. One is the complexity of combining a Prolog-based system with
a system written in a normal procedural language, such as Java. The other is the adaptability to a new
computer environment such as mobile devices.

This paper describes the implementation techniques required to translate a nondeterministic functional
language based on attribute grammars into a procedural language such as Java. The proposed techniques
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are based on the techniques for Prolog to Java translation. Section 2 gives an overview of the knowledge
representation language DSP, and clarifies how it differs from Prolog. In Section 3, the translation tech-
niques for logic programming languages are briefly reviewed, and basic ideas useful for the translation of
DSP identified. Section 4 discusses the program representations of DSP in Java, while Section 5 evaluates
the performance using an experimental translator.

2 Overview of Knowledge Representation Language DSP

2.1 Background

It is essential to formally analyze, systematize, and describe the knowledge of an application domain in
the development of a knowledge-based system. The description of knowledge is conceptually possible in
any conventional programming language. Nevertheless, it is difficult to describe, audit, and maintain a
knowledge base using a procedural language such as Java. This is because the knowledge of an application
domain is often large scale and complicated, and each application domain has its own specific structures
and semantics. In particular, the audit and maintenance of written knowledge is a major issue in an infor-
mation system involving expert knowledge, because such a system is very often stiffened and the transfer
of expert knowledge to succeeding generations is difficult [12]. Therefore, it is very important to provide a
framework to enable domain experts themselves to describe,audit, and maintain their knowledge included
in an information system [13]. It is perceived that a description language that is specific to an application
domain and is designed so as to be described by domain expertsis superior in terms of the minimality, con-
structibility, comprehensibility, extensibility, and formality of the language [14]. For this reason, Prolog
cannot be considered as a candidate for a knowledge representation language.

DSP is a knowledge representation language based on nondeterministic attribute grammars. It is a
functional language with a search capability using the generate and test method. Because the language
is capable of representing trial and error without any side-effects or loop constructs, and the knowledge
descriptions can be declaratively read and understood, it is suitable for representing domain-specific expert
knowledge involving search problems.

2.2 Syntax and Semantics of DSP

A program unit to represent knowledge in DSP is called a “module”, and it represents a nondeterministic
function involving no side-effects. Inherited attributes, synthesized attributes, and tentative variables for
the convenience of program description, all of which are called variables, follow the single assignment rule
and the assignment is unidirectional. Therefore, the computation process of a module can be represented
as non-cyclic dependencies between variables.

Table 1. Typical statements in the DSP language

Type Statement Function
generatorfor(B,E,S) Assume a numeric value from B to E with step S
generatorselect(L) Assume one of the elements of a list L
generatorcall(M,I,O) Call a module M nondeterministically with inputs I and outputs

O
calculatordcall(M,I,O) Call a module M deterministically with inputs I and outputs O
calculatorfind(M,I,OL) Get a list OL of all outputs of a module M with inputs I
tester when(C) Specify the domain C of a method
tester test(C) Specify the constraint C of a method
tester verify(C) Specify the verification condition C

Table 1 shows some typical statements in the language. In this table, the types, generator, calcula-
tor, and tester, are functional classifications in the generate and test method. Generatorsfor(B,E,S)
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andselect(L) are provided as primitives for the convenience of knowledgerepresentation although
they can be defined as modules using the nondeterministic features of the language. Bothcall(M,I,O)
anddcall(M,I,O) are used for module decomposition, with the latter restricting the first solution of
a module call likeonce/1 in Prolog3, while the former calls a module nondeterministically. Calcula-
tor find(M,I,OL) collects all outputs of a module and returns a list thereof. Testerswhen(C) and
test(C) are used to represent decomposition conditions. Both behaves in the same way in normal exe-
cution mode4, although the former is intended to describe a guard of a method, while the latter describes
a constraint. Testerverify(C) does not affect the execution of a module although it is classified as the
tester. Solutions in which a verification condition is not satisfied are indicated as such, and these verification
statuses are used to evaluate the inference results.

pointInQuarterCircle({R : real}, --(a)
{X : real, Y : real}) --(b)

method
X : real = for(0.0, R, 1.0); --(c)
Y : real = for(0.0, R, 1.0); --(d)
D : real = sqrt(Xˆ2 + Yˆ2); --(e)
test(D =< R); --(f)

end method;
end module;

Fig. 1. ModulepointInQuarterCircle , which enumerates all points in a quarter circle

Fig. 2. Data flow diagram of modulepointInQuarterCircle

3 dcall stands for deterministic call.
4 Failures ofwhen(C) and test(C) are treated differently in debugging mode because of their semantic differ-

ences.
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Figure 1 gives the code for modulepointInQuarterCircle , which enumerates all points in a
quarter circle with radiusR. Statements (a) and (b) in Fig. 1 define the input and output variables of mod-
ule pointInQuarterCircle , respectively. Statements (c) and (d) assume the values of the variables
X andY from 1 to R with an incremental step1. Statement (e) calculates the distanceD between point
(0,0) and point(X,Y) . Statement (f) checks if point(X,Y) is within the circle of radiusR. Mod-
ule pointInQuarterCircle runs nondeterministically for a givenR, and returns one of all possible
{X,Y } values5. Therefore, this module also behaves as a generator. Statements (c) to (f) can be listed in
any order, and they are executed according to the dependencies between variables. Therefore, the compu-
tation process can be described as a non-cyclic data flow. Figure 2 shows the data flow diagram for module
pointInQuarterCircle . Because no module includes any side-effects, the set of points returned by
the module for the same input is always the same.

Figure 3 shows an example of modulefor , which implements the generator primitivefor . If multiple
methods are defined in a module with some overlap in their domains specified bywhen, the module works
nondeterministically, and thus a module can also be a generator. In this example, there is overlap between
the domains specified by statements(a) and(c) .

for({B : real, E : real, S : real},{N : real})
method --The fist method

when(B =< E); --(a)
N : real = B; --(b)

end method;
method --The second method

when(B+S =< E); --(c)
B1 : real = B+S; --(d)
call(for, {B1, E, S}, {N}); --(e)

end method;
end;

Fig. 3. Module for , which implements the generator primitivefor

2.3 Execution Model for DSP

Since the variables follow the single assignment rule and the assignment is unidirectional, the statements
are partially ordered according to the dependencies between variables. In the execution, the statements must
be totally reordered and evaluated in this order. Although the method used to order the partially ordered
statements totally does not affect the set of solutions, theorder of the generators affects the order of the
solutions returned from a nondeterministic module.

The execution model for DSP can be represented in Prolog. Figure 4 illustrates an example of a sim-
plified DSP interpreter in Prolog. In this interpreter, statements are represented as terms concatenated by
“;” and it is assumed that the statements are totally ordered. Variables are represented using logical vari-
ables in Prolog. Actually, the development environment forDSP provides a compiler that translates into
Prolog code, with the generated Prolog code translated intobytecode by the Prolog compiler in the runtime
environment.

3 Translation Techniques for Logic Programming Languages

Prolog is a logic programming language that offers both declarative features and practical applicability to
various application domains. Many implementation techniques for Prolog and its family have been pro-
posed, while abstract machines represented by the WAM (Warren’s Abstract Machine) [15] have proven

5 {X,Y } represents a vector of two elementsX andY.
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solve((A ; B)) :-
solve(A),
solve(B).

solve(call(M, In, Out)) :-
reduce(call(M, In, Out), Body),
solve(Body).

solve(dcall(M, In, Out)) :-
reduce(call(M, In, Out), Body),
solve(Body),!.

solve(find(M, In, OutList)) :-
findall(Out, solve(M, In, Out), OutList).

solve(when(Exp)) :-
call(Exp),!.

solve(test(Exp)) :-
call(Exp),!.

solve(V := for(B, E, S)) :- !,
for(B, E, S, V).

solve(V := select(L)) :- !,
member(V, L).

solve(V := Exp) :-
V is Exp.

Fig. 4. Simplified DSP interpreter in Prolog

effective practical implementation techniques. On the other hand, few Prolog implementations provide
practical functionality applicable to both stand-alone systems and enterprise-mission-critical information
systems without using other languages. Practically, Prolog is often combined with a conventional procedu-
ral language, such as Java, C, and C#, for use in practical applications. In such cases, language interoper-
ability is an important issue.

Language translation is one possible solution for improving the interoperability between Prolog and
other combined languages. jProlog [16] and Prolog Cafe [17]are Prolog to Java translators based on bina-
rization [18], while P# [19] is a Prolog to C# translator based on Prolog Cafe with concurrent extensions.
The binarization with continuation passing is a useful ideafor handling nondeterminism simply in proce-
dural languages. For example, the following clauses

p(X) :- q(X, Y), r(Y).
q(X, X).
r(X).

can be represented by semantically equivalent clauses thattake a continuation goalCont as the last pa-
rameter:

p(X, Cont) :- q(X, Y, r(Y, Cont)).
q(X, X, Cont) :- call(Cont).
r(X, Cont) :- call(Cont).

Once clauses have been transformed into this form, clauses composing a predicate can be translated into
Java classes. Figure 5 gives an example of code generated by Prolog Cafe. Predicatep/2 after binarization
is represented as a Java class calledPREDp 1, which is a subclass of classPredicate . The parameters
of a predicate call are passed as the arguments of the constructor of a class, while the right hand side of a
clause is expanded as methodexec .

If a predicate consists of multiple clauses as in the following predicatep/1 , it may have choice points.

p(X) :- q(X, Y), r(Y).
p(X) :- r(X).
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public class PRED_p_1 extends Predicate {
public Term arg1;

public PRED_p_1(Term a1, Predicate cont) {
arg1 = a1;
this.cont = cont; / * this.cont is inherited. * /

}
...
public Predicate exec(Prolog engine) {

engine.setB0();
Term a1, a2;
Predicate p1;
a1 = arg1;
a2 = new VariableTerm(engine);
p1 = new PRED_r_1(a2, cont);
return new PRED_q_2(a1, a2, p1);

}
}

Fig. 5. Java code generated by Prolog Cafe

In such a case, the generated code becomes more complex than before because the choice points ofp/1
must be handled for backtracking. Figure 6 gives an example of the generated code for predicatep/1 in the
previous example. Each clause of a predicate is mapped to a subclass of a class representing the predicate.
In this example, classesPREDp 1 1 andPREDp 1 2 correspond to the two clauses of predicatep/1 .
Methodsjtry andtrust of the Prolog engine correspond to WAM instructions that manipulate stacks
and choice points for backtracking. The key ideas in Prolog Cafe are that continuation is represented as an
instance of a Java class representing a predicate, and the execution control including backtracking follows
the WAM. The translation is straightforward through the WAM, while the interoperability with Java-based
systems is somewhat improved. On the other hand, the disadvantage is the performance of the generated
code.

4 Program Representation in Java and Inference Engine

This section describes the translation techniques for the nondeterministic functional language DSP into
Java based on the translation techniques for Prolog. Current implementations of the compiler and inference
engine for DSP have been developed on top of Inside Prolog with the compiler generating Prolog code.
Therefore, it is possible to translate this generated Prolog code into Java using Prolog Cafe. However, there
are several differences between DSP and Prolog in terms of the semantics of variables and the determinism
of statements. These differences allow several optimizations in performance, and the generated code can
run faster than the code generated by Prolog Cafe for compatible Prolog programs. Fundamental ideas
of our translation techniques utilize the single and unidirectional assignment features of variables and the
deterministic features of some statements.

The overall structure of the Java code translated from DSP provides for one module being mapped to a
single Java class, and each method in a module mapped to a single inner class of the class. Figure 7 shows
an example of Java code for modulepointInQuarterCircle given in Fig. 1. Inner classes are used to
represent an execution context of a predicate as an internalstate of a class instance. Therefore, the instances
of an inner class are not declared as static unlike classes inFig. 6.

An overview of the translation process follows. First, the data flow of a module is analyzed for each
method based on the dependencies between variables, and thestatements are reordered according to the
analysis results. Next, the statements are grouped into translation units called continuation units, and Java
code is generated for each method according to the continuation units.
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public class PRED_p_1 extends Predicate {
static Predicate _p_1_sub_1 = new PRED_p_1_sub_1();
static Predicate _p_1_1 = new PRED_p_1_1();
static Predicate _p_1_2 = new PRED_p_1_2();
public Term arg1;

...
public Predicate exec(Prolog engine) {

engine.aregs[1] = arg1;
engine.cont = cont;
engine.setB0();
return engine.jtry(_p_1_1, _p_1_sub_1);

}
}

class PRED_p_1_sub_1 extends PRED_p_1 {
public Predicate exec(Prolog engine) {

return engine.trust(_p_1_2);
}

}

class PRED_p_1_1 extends PRED_p_1 {
public Predicate exec(Prolog engine) {

Term a1, a2;
Predicate p1;
Predicate cont;
a1 = engine.aregs[1];
cont = engine.cont;
a2 = new VariableTerm(engine);
p1 = new PRED_r_1(a2, cont);
return new PRED_q_2(a1, a2, p1);

}
}

class PRED_p_1_2 extends PRED_p_1 {
public Predicate exec(Prolog engine) {

Term a1;
Predicate cont;
a1 = engine.aregs[1];
cont = engine.cont;
return new PRED_r_1(a1, cont);

}
}

Fig. 6. Java code with choice points generated by Prolog Cafe
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4.1 Data Flow Analysis

As described in Sect. 2, it is necessary to reorder and evaluate statements so as to fulfill variable dependen-
cies since statements can be listed in any order. Therefore,partially ordered statements must first be totally
reordered. In the reordering process, the order of the generators should be kept as long as the variable de-
pendencies are satisfied, because the order of generators affects the order of the solutions as described in
Sec. 2. On the other hand, calculators or testers can be movedforward for the least commitment as long as
partial orders are kept.

4.2 Continuation Unit

If statements of a method are totally ordered, they can be divided into several groups of statements. Each
group is called a continuation unit and consists of a series of deterministic statements, such as calculators
and testers, followed by a single generator. It should be noted that a continuation unit may not contain
a generator if it is the last one in a method. In the translation, a continuation unit is treated as a unit to
translate, and is mapped to a Java class representing a continuation.

In the example in Fig. 7, modulepointInQuarterCircle has one method, and there are three
continuation units in the method. Inner classMethod 1 corresponds to this method of the module, and
classMethod 1 cu1 corresponds to the continuation unit for statement (c), classMethod 1 cu2 to one
for statement (d), and classMethod 1 cu3 to one for statements (e) and (f), respectively.

4.3 Variable and Parameter Passing

Although variables follow the single assignment rule like Prolog, the binding of a variable is unidirectional
unlike Prolog. Therefore, it is not necessary to introduce logical variables and unification, unlike in Prolog
Cafe. This also implies that the trail stack and variable unbinding using the stack are unnecessary on
backtracking. Therefore, a class representing the variables is only necessary as a place holder for the output
values of a module. ClassVariable is introduced to represent such variables.

Prolog Cafe uses the registers of the Prolog VM to manage the arguments of a goal. This approach
is consistent with the WAM, but is sometimes inefficient since it requires arguments to be copied from/to
registers to/from the stack on calls and backtracking. On the other hand, because the direction of variable
binding is clearly defined in DSP, it is unnecessary to restore variable bindings on backtracking as described
before. Instead, variables can always be overwritten when agoal is re-executed after backtracking. There-
fore, input and output parameters can be passed as argumentsof a class constructor. This simplifies the
management of variables and arguments. In addition, as shown in Fig. 7, basic Java types, such asint and
double , can be passed directly as inputs in some cases. This contributes to the performance improvement.

4.4 Inference Engine

An inference engine for the translated code is very simple because management of variables and registers
on backtracking is unnecessary. Figure 8 shows an example ofthe inference engine calledVM, which uses
a stack represented as an array of interfaceExecutable to store choice points. Methodcall() is an
entry point to call the module to find an initial solution, while methodredo() is used to find the next
solution. A typical call procedure of a client program in Java is given below.

VM vm = new VM();
Double r = new Double(10.0);
Variable x = new Variable();
Variable y = new Variable();
Executable m = new PointInQuarterCircle(r, x, y,

Executable.success);
for (boolean s = vm.call(m); s == true; s = vm.redo()) {

System.out.println("X=" + x.doubleValue() +
", Y=" + y.doubleValue());

}
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public class PointInQuarterCircle implements Executable {
private Double r;
private Variable x;
private Variable y;
private Executable cont;
public PointInQuarterCircle(Double r,

Variable x, Variable y, Executable cont)
{

this.r = r;
this.x = x;
this.y = y;
this.cont = cont;

}

public Executable exec(VM vm) {
return (new Method_1()).exec(vm);

}

public class Method_1 implements Executable {
private Variable d = new Variable();
private Executable method_1_cu1 = new Method_1_cu1();
private Executable method_1_cu2 = new Method_1_cu2();
private Executable method_1_cu3 = new Method_1_cu3();

public Executable exec(VM vm) {
return method_1_cu1.exec(vm);

}

class Method_1_cu1 implements Executable {
public Executable exec(VM vm) {

return new ForDouble(0.0, r.doubleValue(), 1.0, x, method _1_cu2);
}

}

class Method_1_cu2 implements Executable {
public Executable exec(VM vm) {

return new ForDouble(0.0, r.doubleValue(), 1.0, y, method _1_cu3);
}

}

class Method_1_cu3 implements Executable {
public Executable exec(VM vm) {

d.setValue(Math.sqrt(x.doubleValue() * x.doubleValue() +
y.doubleValue() * y.doubleValue()));

if(!(d.doubleValue() <= r.doubleValue())){
return Executable.failure;

}
return cont;

}
}

}
}

Fig. 7. Java code generated for modulepointInQuarterCircle
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This client program creates an inference engine, prepares output variables to receive the values of a solution,
creates an instance of classPointInQuarterCircle with inputs and outputs, and callscall() to
find an initial solution. It then callsredo() to find the next one until there are no more solutions.

Because the implementation of the inference engine is simple and multi-thread safe, and the generated
classes of a module are also multi-thread safe, it is easy to deploy instances of the engine in a multi-thread
environment.

public class VM {
private Executable[] choicepoint;
private int ccp = -1; // Current choice point.
...

public VM(int initSize) {
choicepoint = new Executable[initSize];

}
...
public boolean call(Executable goal) {

while (goal != null) {
goal = goal.exec(this);
if (goal == Executable.success) {

return true;
} else if (goal == Executable.failure) {

goal = getChoicePoint();
}

}
return false;

}

public boolean redo() {
return call(getChoicePoint());

}
}

Fig. 8. Inference engine for DSP

5 Implementation and Performance Evaluation

We have implemented the translator for DSP into Java based onthe techniques proposed in Sec. 4. The
translator is written in DSP itself and generates Java code.

Table 2 shows the performance results of 6 sample programs executed under Windows Vista on an
Intel Core2Duo 2.53 GHz processor with 3.0 GB memory. Java 1.6, Prolog Cafe 1.2.5, and B-Prolog 7.4
[20] were used in the experiments. Because the Java garbage collector affects the performance, 512 MB
memory was statically allocated for the heap in all cases except for one6.

Programplan is a simple architecture design program for a parking structure. It can enumerate all
possible column layouts for the given design conditions, such as free land space and the number of stories.
Programsnqueens , ack , andtarai are well-known benchmarks, withack and tarai using green
cuts for guards in Prolog, whileack w/o cuts andtarai w/o cuts do not use cuts for guards. In
the case of DSP,ack andtarai usedcall for self-recursive calls not to leave choice points, whileack
w/o cuts andtarai w/o cuts usecall . The programs written in DSP are compiled into Prolog
and then compiled into bytecode. The programs are forced to backtrack in each iteration to enumerate all
solutions, and the execution times in milliseconds are averages over 10 trials.

6 About 1000 MB was allocated for the generated code fortarai w/o cuts .
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These results show that the proposed translator generates over 25 times faster code than Prolog Cafe,
over 2 times faster code than B-Prolog, and over 5 times faster code than DSP on top of Inside Prolog for
plan andnqueens . On the other hand, forack andtarai the translator generates about 2 to 3 times
faster code than Prolog Cafe, but about 5 to 15 times slower code than B-Prolog. The translator also gener-
ates about 8 to 13 times faster code than Prolog Cafe, but about 4 to 10 times slower code than B-Prolog for
ack w/o cuts andtarai w/o cuts . Here,plan andnqueens are nondeterministic, whileack
andtarai are deterministic.ack w/o cuts andtarai w/o cuts are also deterministic, but they
involve backtracking because of the lack of green cuts.

These experiments indicate that the proposed translation techniques can generate faster code than Pro-
log Cafe and DSP on top of Inside Prolog for all 6 programs, andfaster code than B-Prolog for non-
deterministic programs. In the case of deterministic programs, the advantage of the proposed translation
techniques is obvious against Prolog Cafe if green cuts are not used in Prolog. The reason why these dis-
tinctive differences are observed seems to be that the simplification of the variable and register management
for backtracking contributes to the performance improvement of nondeterministic programs, but it is not
effective for deterministic programs with green cuts.

In the case of B-Prolog, the execution time oftarai is almost the same as that oftarai w/o
cuts . This is because B-Prolog compiler reduces choice points using matching trees for bothtarai and
tarai w/o cuts [21]. Although the DSP language has no explicit cut operatorof Prolog, improving
the performance by inserting cut instructions automatically in the case of exclusivewhen conditions is a
future issue.

The number of instances created during an execution has a negative impact on performance because of
the garbage collection. Obviously, the number of instancescreated by the generated code for the proposed
translation techniques is greater than that for Prolog Cafe. In the case oftarai w/o cuts , the generated
code requires more memory than others to prevent the garbagecollection. In the example in Fig. 7, it is
clear that the number of instances can be reduced by merging classMethod 1 cu1 with classMethod 1.
Improving the performance by the reduction of instance creation is an important future issue.

Table 2. Experimental results (in milliseconds)

Program DSP on PrologB-PrologProlog CafeTranslator
plan 685.0 295.1 2519.4 90.5
nqueens 594.9 296.2 3279.2 120.3
ack 1568.2 52.9 990.7 265.0
tarai 1302.7 49.4 1680.1 740.8
ack w/o cuts 2035.1 104.7 3421.3 403.9
tarai w/o cuts 1307.8 49.2 6282.2 489.5

6 Conclusions

This paper described the techniques for translating the nondeterministic functional language DSP based on
attribute grammars into Java. The DSP is designed for knowledge representation of large scale and com-
plicated expert knowledge in application domains. It is capable of representing trial and error without any
side-effects or loop constructs using nondeterministic features. Current development and runtime environ-
ments are built on top of Inside Prolog, while the runtime environment can be embedded in a Java-based
application server. However, issues regarding language interoperability and adaptability to new computer
environments are envisaged when applied to practical application development. The language translation
is intended to improve the interoperability and adaptability of DSP.

The proposed translation techniques are based on binarization and the techniques proposed for the
translation of Prolog. The performance, however, is improved by introducing the continuation unit and
simplifying the management of variables and registers using the semantic differences of variables and
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explicit determinism of some statements. An experimental translator written in DSP itself generates Java
code from DSP descriptions, and the experimental results indicate that the generated code is over 25 times
faster than that of Prolog Cafe for nondeterministic programs, and over 2 times faster for deterministic
programs. The generated code is also over 2 times faster thanB-Prolog for nondeterministic programs.
However, the generated code is about 3 to 15 times slower thanB-Prolog for deterministic programs.
Improving the performance of deterministic programs is an important future issue.
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Abstract. We present sensitivity analysis for results of query executions in a relational model of data
extended by ordinal ranks. The underlying model of data results from the ordinary Codd’s model of
data in which we consider ordinal ranks of tuples in data tables expressing degrees to which tuples
match queries. In this setting, we show that ranks assigned to tuples are insensitive to small changes,
i.e., small changes in the input data do not yield large changes in the results of queries.

Keywords: declarative query languages, ordinal ranks, relational databases, residuated lattices

1 Introduction

Since its inception, the relational model of data introduced by E. Codd [10] has been extensively studied
by both computer scientists and database systems developers. The model has become the standard theo-
retical model of relational data and the formal foundation for relational database management systems.
Various reasons for the success and strong position of Codd’s model are analyzed in [14], where the au-
thor emphasizes that the main virtues of the model like logical and physical data independence, declarative
style of data retrieval (database querying), access flexibility and data integrity are consequences of a close
connection between the model and the first-order predicate logic.

This paper is a continuation of our previous work [4, 5] where we have introduced an extension of
Codd’s model in which tuples are assigned ordinal ranks. The motivation for the model is that in many
situations, it is natural to consider not only the exact matches of queries in which a tuple of values either
does or does not match a queryQ but also approximate matches where tuples match queries to degrees. The
degrees of approximate matches can usually be described verbally using linguistic modifiers like “not at all
(matches)” “almost (matches)”, “more or less (matches)”, “fully (matches)”, etc. From the user’s point of
view, each data table in our extended relational model consists of (i) an ordinary data table whose meaning
is the same as in the Codd’s model and (ii) ranks assigned to all tuples in the original data table. This way,
we come up with a notion of a ranked data table (shortly, an RDT). The ranks in RDTs are interpreted as
“goodness of match” and the interpretation of RDTs is the same as in the Codd’s model—they represent
answers to queries which are, in addition, equipped with priorities expressed by the ranks. A user who
looks at an answer to a query in our model is typically looking for the best match possible represented by
a tuple or tuples in the resulting RDT with the highest ranks (i.e., highest priorities).

In order to have a suitable formalization of ranks and to perform operations with ranked data tables, we
have to choose a suitable structure for ranks. Since ranks are meant to be compared by users, the set L of
all considered ranks should be equipped with a partial order ≤, i.e. 〈L,≤〉 should be a poset. Moreover, it
is convenient to postulate that 〈L,≤〉 is a complete lattice [7], i.e., for each subset A ⊆ L, its least upper
bound (a supremum) and greatest lower bound (an infimum) exist. This way, for any A ⊆ L, one can take
the least rank in L which represents a higher priority (a better match) than all ranks from A. Such a rank is
then the supremum of A (dually for the infimum). Since 〈L,≤〉 is a complete lattice, it contains the least
element denoted 0 (no match at all) and the greatest element denoted 1 (full match).

The set L of all ranks should also be equipped with additional operations for aggregation of ranks.
Indeed, if tuple t with rank a is obtained as one of the results of subquery Q1 and the same t with another
? Supported by grant no. P103/11/1456 of the Czech Science Foundation.
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rank b is obtained from answers to subquery Q2 then we might want to express the rank to which t matches
a compound conjunctive query “Q1 and Q2”. A natural way to do so is to take a suitable binary operation
⊗ : L×L→ L which acts as a conjunctor and take a⊗b for the resulting rank. Obviously, not every binary
operation on L represents a (reasonable) conjunctor, i.e. we may restrict the choices only to particular
binary operations that make “good conjunctors”. There are various ways to impose such restrictions. In
our model, we follow the approach of using residuated conjunctions that has proved to be useful in logics
based on residuated lattices [2, 18, 19]. Namely, we assume that 〈L,⊗, 1〉 is a commutative monoid (i.e.,⊗
is associative, commutative, and neutral with respect to 1) and there is a binary operation→ on L such that
for all a, b, c ∈ L:

a⊗ b ≤ c if and only if a ≤ b→ c. (1)

Operations ⊗ (a multiplication) and → (a residuum) satisfying (1) are called adjoint operations. Alto-
gether, the structure for ranks we use is a complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, i.e., a
complete lattice in which ⊗ and → are adjoint operations, and ∧ and ∨ denote the operations of infimum
and supremum, respectively. Considering L as a basic structure of ranks brings several benefits. First, in
multiple-valued logics and in particular fuzzy logics [18, 19], residuated lattices are interpreted as struc-
tures of truth degrees and the relationship (1) between⊗ (a fuzzy conjunction) and→ (a fuzzy implication)
is derived from requirements on graded counterpart of the modus ponens deduction rule (currently, there
are many strong-complete logics based on residuated lattices).

Remark 1. The graded counterpart of modus ponens [19, 26] can be seen as a generalized deduction rule
saying “from ϕ valid (at least) to degree a ∈ L and ϕ⇒ ψ valid (at least) to degre b ∈ L, infer ψ valid (at
least) to degree a⊗ b”. If if-part of (1) ensures that the rule is sound while the only-if part ensures that it is
as powerful as possible, i.e., a⊗ b is the highest degree to which we infer ψ valid provided that ϕ valid at
least to degree a and ϕ ⇒ ψ valid at least to degre b ∈ L. This relationship between → (a truth function
for logical connective imlication ⇒) and ⊗ has been discovered in [17] and later used, e.g., in [16, 26].
Interestingly, (1) together with the lattice ordering ensure enough properties of → and ⊗. For instance, →
is antitone in the first argument and is monotone in the second one, condition a ≤ b iff a → b = 1 holds
for all a, b ∈ L, a→ (b→ c) equals (a⊗ b) → c for all a, b, c ∈ L, etc. Since complete residuated lattices
are in general weaker structures than Boolean algebras, not all laws satisfied by truth functions of the
classic conjunction and implication are preserved by all complete residuated lattices. For instance, neither
a⊗a = a (idempotency of⊗) nor (a→ 0) → 0 = a (the law of double negation) nor a∨(a→ 0) = 1 (the
law of the excluded middle) hold in general. Nevertheless, complete residuated lattices are strong enough
to provide a formal framework for relational analysis and similarity-based reasoning as it has been shown
by previous results.

Second, our extension of the Codd’s model results from the model by replacing the two-element
Boolean algebra, which is the classic structure of truth values, by a more general structure of truth val-
ues represented by a residuated lattice, i.e. we make the following shift in (the semantics of) the underlying
logic:

two-element Boolean algebra Z=⇒ a complete residuated lattice.

Third, the original Codd’s model is a special case of our model for L being the two-element Boolean
algebra (only two borderline ranks 1 and 0 are available). As a practical consequence, data tables in the
Codd’s model can be seen as RDTs where all ranks are either equal to 1 (full match) or 0 (no match; tuples
with 0 rank are considered as not present in the result of a query). Using residuated lattices as structures
of truth degrees, we obtain a generalization of Codd’s model which is based on solid logical foundations
and has desirable properties. In addition, its relationship to residuated first-order logics is the same as the
relationship of the original Codd’s model to the classic first-order logic. The formalization we offer can
further be used to provide insight into several isolated approaches that have been provided in the past, see
e.g. [8], [15], [23], [27], [28], [30], and a comparison paper [6].

A typical choice of L is a structure with L = [0, 1] (ranks are taken from the real unit interval), ∧ and ∨
being minimum and maximum, ⊗ being a left-continuous (or a continuous) t-norm with the corresponding
→, see [2, 18, 19]. For example, an RDT with ranks coming from such L is in Table 1. It can be seen as a
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Table 1. Houses for sale at $200,000 with square footage 1200

agent id sqft age location price
0.93 Brown 138 1185 48 Vestal $228,500
0.89 Clark 140 1120 30 Endicott $235,800
0.86 Brown 142 950 50 Binghamton $189,000
0.85 Brown 156 1300 85 Binghamton $248,600
0.81 Clark 158 1200 25 Vestal $293,500
0.81 Davis 189 1250 25 Binghamton $287,300
0.75 Davis 166 1040 50 Vestal $286,200
0.37 Davis 112 1890 30 Endicott $345,000

result of similarity-based query “show all houses which are sold for (approximately) $200,000 and have
(approximately) 1200 square feet”. The left-most column contains ranks. The remaining part of the table
is a data table in the usual sense containing tuples of values. At this point, we do not explain in detail how
the particular ranks in Table 1 have been obtained (this will be outlined in further sections). One way is by
executing a similarity-based query that uses additional information about similarity (proximity) of domain
values which is also described using degrees from L. Note that the concept of a similarity-based query
appears when human perception is involved in rating or comparing close values from domains where not
only the exact equalities (matches) are interesting. For instance, a person searching in a database of houses
is usually not interested in houses sold for a particular exact price. Instead, the person wishes to look at
houses sold approximately at that price, including those which are sold for other prices that are sufficiently
close. While the ranks constitute a “visible” part of any RDT, the similarities are not a direct part of RDT
and have to be specified for each domain independently. They can be seen as an additional (background)
information about domains which is supplied by users of the database system.

Let us stress the meaning of ranks as priorities. As it is usual in fuzzy logics in narrow sense, their
meaning is primarily comparative, cf. [19, p. 2] and the comments on comparative meaning of truth degrees
therein. In our example, it means that tuple 〈Clark,140,1120,30,Endicott,$235,800〉 with rank
0.89 is a better match than tuple 〈Brown,142,950,50,Binghamton,$189,000〉 whose rank 0.86
is strictly smaller. Thus, for end-users, the numerical values of ranks (if L is a unit interval) are not so
important, the important thing is the relative ordering of tuples given by the ranks.

Note that our model which provides theoretical foundations for similarity-based databases [4, 5] should
not be confused with models for probabilistic databases [29] which have recently been studied, e.g. in [9,
12, 13, 20, 22, 25], see also [11] for a survey. In particular, numerical ranks used in our model (if L = [0, 1])
cannot be interpreted as probabilities, confidence degrees of belief degrees as in case of probabilistic
databases where ranks play such roles. In probabilistic databases, the tuples (i.e., the data itself) are un-
certain and the ranks express probabilities that tuples appear in data tables. Consequently, a probabilistic
database is formalized by a discrete probability space over the possible contents of the database [11].
Nevertheless, the underlying logic of the models is the classical two-valued first-order logic—only yes/no
matches are allowed (with uncertain outcome). In our case, the situation is quite different. The data (repre-
sented by tuples) is absolutely certain but the tuples are allowed to match queries to degrees. This, translated
in terms of logic, means that formulas (encoding queries) are allowed to be evaluated to truth degrees other
than 0 and 1. Therefore, the underlying logic in our model is not the classic two-element Boolean logic as
we have argued hereinbefore.

In [1], a report written by leading authorities in database systems, the authors say that the current
database management systems have no facilities for either approximate data or imprecise queries. Accord-
ing to this report, the management of uncertainty and imprecision is one of the six currently most important
research directions in database systems. Nowadays, probabilistic databases (dealing with approximate data)
are extensively studied. On the contrary, it seems that similarity-based databases (dealing with imprecise
queries) have not yet been paid full attention. This paper is a contribution to theoretical foundations of
similarity-based databases.
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2 Problem Setting

The issue we address in this paper is the following. In our model, we can get two or more RDTs (as results
of queries) which are not exactly the same but which are perceived (by users) as being similar. For instance,
one can obtain two RDTs containing the same tuples with numerical values of ranks that are almost the
same. A question is whether such similar RDTs, when used in subsequent queries, yield similar results. In
this paper, we present a preliminary study of the phenomenon of similarity of RDTs and its relationship to
the similarity of query results obtained by applying queries to similar input data tables. We present basic
notions and results providing formulas for computing estimations of similarity degrees. The observations
we present provide a formal justification for the phenomenon discussed in the previous section—slight
changes in ranks do not have a large impact on the results of (complex) queries. The results are obtained
for any complete residuated lattice taken as the structure of ranks (truth degrees). Note that the basic query
systems in our model are (extensions of) domain relational calculus [5, 24] and relational algebra [4, 24].
We formulate the results in terms of operations of the relational algebra but due to its equivalence with the
domain relational calculus [5], the results pertain to both the query systems. Thus, based on the domain
relational calculus, one may design a declarative query language preserving similarity in which execution
of queries is based on transformations to expressions of relational algebra in a similar way as in the classic
case [24].

The rest of the paper is organized as follows. Section 3 presents a short survey of notions. Section 4 con-
tains results on sensitivity analysis, an illustrative example, and a short outline of future research. Because
of the limited scope of the paper, proofs are sketched or omitted.

3 Preliminaries

In this section, we recall basic notions of RDTs and relational operations we need to provide insight into
the sensitivity issues of RDTs in Section 4. Details can be found in [2, 4, 6]. In the rest of the paper, L
always refers to a complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, see Section 1.

3.1 Basic Structures

Given L, we make use of the following notions: An L-set A in universe U is a map A : U → L, A(u)
being interpreted as “the degree to which u belongs to A”. If L is the two-element Boolean algebra, then
A : U → L is an indicator function of a classic subset of U , A(u) = 1 (A(u) = 0) meaning that u belongs
(does not belong) to that subset. In our approach, we tacitly identify sets with their indicator functions. In
a similar way, a binary L-relation B on U is a map B : U × U → L, B(u1, u2) interpreted as “the degree
to which u1 and u2 are related according to B”. Hence, B is an L-set in universe U × U .

3.2 Ranked Data Tables over Domains with Similarities

We denote by Y a set of attributes, any subset R ⊆ Y is called a relation scheme. For each attribute y ∈ Y
we consider its domain Dy . In addition, each Dy is equipped with a binary L-relation ≈y on Dy satisfying
reflexivity (u ≈y u = 1) and symmetry u ≈y v = v ≈y u (for all u, v ∈ Dy). Each binary L-relation ≈y

on Dy satisfying (i) and (ii) shall be called a similarity. Pair 〈Dy,≈y〉 is called a domain with similarity.
Tuples contained in data tables will be considered as usual, i.e., as elements of Cartesian products of

domains. Recall that a Cartesian product
∏

i∈I Di of an I-indexed system {Di | i ∈ I} of sets Di (i ∈ I)
is a set of all maps t : I →

⋃
i∈I Di such that t(i) ∈ Di holds for each i ∈ I . Under this notation, a tuple

over R ⊆ Y is any element from
∏

y∈RDy . For brevity,
∏

y∈RDy is denoted by Tupl(R). Following the
example in Table 1, tuple 〈Brown,142,950,50,Binghamton,$189,000〉 is a map r ∈ Tupl(R) for
R = {agent,id, . . . ,price} such that r(agent) = Brown, r(id) = 142, etc.

A ranked data table on R ⊆ Y over {〈Dy,≈y〉 | y ∈ R} (shortly, an RDT) is any (finite) L-set D
in Tupl(R). The degree D(r) to which r belongs to D is called a rank of tuple r in D. According to its
definition, if D is an RDT on R over {〈Dy,≈y〉 | y ∈ R} then D is a map D : Tupl(R) → L. Note that D
is an n-ary L-relation between domainsDy (y ∈ Y ) sinceD is a map from

∏
y∈RDy to L. In our example,

D(r) = 0.86 for r being the tuple with r(id) = 142.
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3.3 Relational Operations with RDTs

Relational operations we consider in this paper are the following: For RDTs D1 and D2 on T , we put
(D1 ∪ D2)(t) = D1(t) ∨ D2(t) and (D1 ∩ D2)(t) = D1(t) ∧ D2(t) for each t ∈ Tupl(T ); D1 ∪ D2

and D1 ∩D2 are called the union and the ∧-intersection of D1 and D2, respectively. Analogously, one can
define an⊗-intersection D1⊗D2. Hence, ∪, ∩, and⊗ are defined componentwise based on the operations
of the complete residuated lattice L.

Moreover, our model admits new operations that are trivial in the classic model. For instance, for a ∈ L,
we introduce an a-shift a→D of D by (a→D)(t) = a→ D(t) for all t ∈ Tupl(T ).

Remark 2. Note that if L is the two-element Boolean algebra then a-shift is a trivial operation since 1 →
D = D and 0 → D produces a possibly infinite table containing all tuples from Tupl(T ). In our model,
an a-shift has the following meaning: If D is a result of query Q then (a→D)(t) is a “degree to which
t matches query Q at least to degree a”. This follows from properties of residuum, see [2, 19]. Hence,
a-shifts allow us to emphasize results that match queries at least to a prescribed degree a.

The remaining relational operations we consider represent counterparts of projection, selection, and
join in our model. If D is an RDT on T , the projection πR(D) of D onto R ⊆ T is defined by

(πR(D))(r) =
∨

s∈Tupl(T\R)D(rs),

for each r ∈ Tupl(R). In our example, the result of π{location}(D) is a ranked data table with single
column such that π{location}(D)(〈Binghamton〉) = 0.86, π{location}(D)(〈Vestal〉) = 0.93, and
π{location}(D)(〈Endicott〉) = 0.89.

A similarity-based selection is a counterpart to ordinary selection which selects from a data table all
tuples which approximately match a given condition: Let D be an RDT on T and let y ∈ T and d ∈ Dy .
Then, a similarity-based selection σy≈d(D) of tuples in D matching y ≈ d is defined by(

σy≈d(D)
)
(t) = D(t)⊗ t(y)≈y d.

Considering D as a result of query Q, the rank of t in σy≈d(D) can be interpreted as a degree to which
“t matches the query Q and the y-value of t is similar to d”. In particular, an interesting case is σp≈q(D)
where p and q are both attributes with a common domain with similarity.

Similarity-based joins are considered as derived operations based on Cartrsian products and similarity-
based selections. For r ∈ Tupl(R) and s ∈ Tupl(S) such that R ∩ S = ∅, we define a concatenation rs ∈
Tupl(R ∪ S) of tuples r and s so that (rs)(y) = r(y) for y ∈ R and (rs)(y) = s(y) for y ∈ S. For RDTs
D1 and D2 on disjoint relation schemes S and T we define a RDT D1 ×D2 on S ∪ T , called a Cartesian
product ofD1 andD2, by (D1×D2)(st) = D1(s)⊗D2(t). Using Cartesian products and similarity-based
selections, we can introduce similarity-based θ-joins such as D1 ./p≈q D2 = σp≈q(D1 × D2). Various
other types of similarity-based joins can be introduced in our model, see [5].

4 Estimations of Sensitivity of Query Results

4.1 Rank-Based Similarity of Query Results

We now introduce the notion of similarity of RDTs which is based on the idea that RDTsD1 andD2 (on the
same relation scheme) are similar iff for each tuple t, ranks D1(t) and D2(t) are similar (degrees from L).
Similarity of ranks can be expressed by biresiduum ↔ (a fuzzy equivalence [2, 18, 19]) which is a derived
operation of L such that a ↔ b = (a → b) ∧ (b → a). Since we are interested in similarity of D1(t) and
D2(t) for all possible tuples t, it is straightforward to define the similarity E(D1,D2) of D1 and D2 by an
infimum which goes over all tuples:

E(D1,D2) =
∧

t∈Tupl(T )

(
D1(t) ↔ D2(t)

)
. (2)

An alternative (but equivalent) way is the following: we first formalize a degree S(D1,D2) to which D1

is included in D2. We can say that D1 is fully included in D2 iff, for each tuple t, the rank D2(t) is at
least as high as the rank D1(t). Notice that in the classic (two-values) case, this is exactly how one defines
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the ordinary subsethood relation “⊆”. Considering general degrees of inclusion (subsethood), a degree
S(D1,D2) to which D1 is included in D2 can be defined as follows:

S(D1,D2) =
∧

t∈Tupl(T )

(
D1(t) → D2(t)

)
. (3)

It is easy to prove [2] that (2) and (3) satisfy:

E(D1,D2) = S(D1,D2) ∧ S(D2,D1). (4)

Note that E and S defined by (2) and (3) are known as degrees of similarity and subsethood from general
fuzzy relational systems [2] (in this case, the fuzzy relations are RDTs).

The following assertion shows that ∪, ∩, ⊗, and a-shifts preserve subsethood degrees given by (3). In
words, the degree to which D1 ∪D2 is included in D′1 ∪D′2 is at least as high as the degree to which D1 is
included inD′1 andD2 is included inD′2. A similar verbal description can be made for the other operations.

Theorem 1. For any D1, D′1, D2, and D′2 on relation scheme T ,

S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∪ D2,D′1 ∪ D′2), (5)
S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∩ D2,D′1 ∩ D′2), (6)
S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ⊗D2,D′1 ⊗D′2), (7)

S(D1,D2) ≤ S(a→ D1, a→ D2). (8)

Proof (sketch). (5): Using adjointness, it suffices to check that
(
S(D1,D′1)∧S(D2,D′2)

)
⊗(D1∪D2)(t) ≤

(D′1 ∪ D′2)(t) holds true for any t ∈ Tupl(T ). Using (3), the monotony of ⊗ and ∧ yields
(
S(D1,D′1) ∧

S(D2,D′2)
)
⊗ (D1 ∪ D2)(t) ≤

(
(D1(t) → D′1(t)) ∧ (D2(t) → D′2(t))

)
⊗ (D1(t) ∨ D2(t)). Applying

a⊗ (b ∨ c) = (a⊗ b) ∨ (a⊗ c) to the latter expression, we get
(
(D1(t) → D′1(t)) ∧ (D2(t) → D′2(t))

)
⊗

(D1(t) ∨ D2(t)) ≤
(
(D1(t) → D′1(t))⊗D1(t)

)
∨

(
(D2(t) → D′2(t))⊗D2(t)

)
. Using a⊗ (a → b) ≤ b

twice, it follows that
(
(D1(t) → D′1(t))⊗D1(t)

)
∨

(
(D2(t) → D′2(t))⊗D2(t)

)
≤ D′1(t)∨D′2(t). Putting

previous inequalities together,
(
S(D1,D′1) ∧ S(D2,D′2)

)
⊗ (D1 ∪ D2)(t) ≤ (D′1 ∪ D′2)(t) which proves

(5). (6) can be proved analogously as (5); (7) can be proved analogously as (6) using monotony of ⊗; (8)
follows from the fact that a→ b ≤ (c→ a) → (c→ b). ut

Using (4), we have the following consequence of Theorem 1:

Corollary 1. For ♦ being ∩ and ∪, we have:

E(D1,D′1) ∧ E(D2,D′2) ≤ E(D1 ♦D2,D′1 ♦D′2). (9)
E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ⊗D2,D′1 ⊗D′2). (10)

E(D1,D2) ≤ E(a→ D1, a→ D2). (11)

Proof (sketch). For ♦ being ∩, (6) applied twice yields: S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∩D2,D′1 ∩D′2)
and S(D′1,D1) ∧ S(D′2,D2) ≤ S(D′1 ∩ D′2,D1 ∩ D2). Hence, (9) for ∩ follows using (2). The rest is
analogous. ut

Using the idea in the proof of Corollary 1, in order to prove that operation O preserves similarity,
it suffices to check that O preserves (graded) subsethood. Thus, from now on, we shall only investigate
whether operations preserve subsethood. In case of Cartesian products, we have:

Theorem 2. LetD1 andD′1 be RDTs on relation scheme S and letD2 andD′2 be RDTs on relation scheme
T such that S ∩ T = ∅. Then,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ×D2,D′1 ×D′2), (12)

Proof (sketch). The proof is analogous to that of (7). ut

The following assertion shows that projection and similarity-based selection preserve subsethood de-
grees (and therefore similarities) of RDTs:
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Table 2. Alternative ranks for houses for sale from Table 1

agent id sqft age location price
0.93 Brown 138 1185 48 Vestal $228,500
0.91 Clark 140 1120 30 Endicott $235,800
0.87 Brown 156 1300 85 Binghamton $248,600
0.85 Brown 142 950 50 Binghamton $189,000
0.82 Davis 189 1250 25 Binghamton $287,300
0.79 Clark 158 1200 25 Vestal $293,500
0.75 Davis 166 1040 50 Vestal $286,200
0.37 Davis 112 1890 30 Endicott $345,000

Theorem 3. Let D and D′ be RDTs on relation scheme T and let y ∈ T , d ∈ Dy , and R ⊆ T . Then,

S(D,D′) ≤ S(πR(D), πR(D′)), (13)
S(D,D′) ≤ S(σy≈d(D), σy≈d(D′)). (14)

Proof (sketch). In oder to prove (13), we check S(D,D′) ⊗ (πR(D))(r) ≤ (πR(D′))(r) for any r ∈
Tupl(R). It means showing that

S(D,D′)⊗
∨

s∈Tupl(T\R)D(rs) ≤ (πR(D′))(r).

Thus, is suffices to prove S(D,D′)⊗D(rs) ≤ (πR(D′))(r) for all s ∈ Tupl(T \R). Using monotony of
⊗, we get S(D,D′)⊗D(rs) ≤ (D(rs) → D′(rs))⊗D(rs) ≤ D′(rs), because rs ∈ Tupl(T ). Therefore,
S(D,D′)⊗D(rs) ≤ D′(rs) ≤

∨
s∈Tupl(T\R)D′(rs) = (πR(D′))(r), which proves the first claim of (13).

In case of (14), we proceed analogously. ut

Theorem 2 and Theorem 3 used together yield

Corollary 2. LetD1 andD′1 be RDTs on relation scheme S and letD2 andD′2 be RDTs on relation scheme
T such that S ∩ T = ∅. Then,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./p≈q D2,D′1 ./p≈q D′2). (15)

for any p ∈ S and q ∈ T having the same domain with similarity. ut

As a result, we have shown that important relational operations in our model (including similarity-based
joins) preserve similarity defined by (2). Thus, we have provided a formal justification for the (intuitively
expected but nontrivial) fact that similar input data yield similar results of queries.

Remark 3. In this paper, we have restricted ourselves only to a fragment of relational operations in our
model. In [5], we have shown that in order to have a relational algebra whose expressive power is the same
as the expressive power of the domain relational calculus, we have to consider additional operations of
residuum (defined componentwise using →) and division. Nevertheless, these two additional operations
preserve E as well—it can be shown using similar arguments as in the proof of Theorem 1. As a conse-
quence, the similarity is preserved by all queries that can be formulated in DRC [5].

4.2 Illustrative Example

Consider again the RDT from Table 1. The RDT can be seen as a result of querying a database of houses
for sale where one wants to find a house which is sold for (approximately) $200,000 and has (approxi-
mately) 1200 square feet. The attributes in the RDT are: real estate agent name (agent), house ID (id),
square footage (sqft), house age (age), house location (location), and house price (price). In this
example, the complete residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉 serving as the structure of ranks will be
the so-called Łukasiewicz algebra [2, 18, 19]. That is, L = [0, 1], ∧ and ∨ are minimum and maximum,
respectively, and the multiplication and residuum are defined as follows: a ⊗ b = max(a + b − 1, 0) and
a→ b = min(1− a+ b, 1) for all a, b ∈ L.

Intuitively, it is natural to consider similarity of values in domains of sqft, age, location, and
price. For instance, similarity of prices can be defined by p1≈price p2 = s(|p2 − p1|) using an antitone
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scaling function s : [0,∞) → [0, 1] with s(0) = 1 (i.e., identical prices are fully similar). Analogously, a
similarity of locations can be defined based on their geographical distance and/or based on their evaluation
(safety, school districts, . . . ) by an expert. In contrast, there is no need to have similarities for id and
agents because end-users do not look for houses based on (similarity of) their (internal) IDs which are
kept as keys merely because of performance reasons. Obviously, there may be various reasonable similarity
relations defined for the above-mentioned domains and their careful choice is an important task. In this
paper, we neither explain nor recommend particular ways to do so because (i) we try to keep a general view
of the problem and (ii) similarities on domains are purpose and user dependent.

Consider now the RDT in Table 2 defined over the same relation scheme as the RDT in Table 1.
These two RDTs can be seen as two (slightly different) answers to the same query (when e.g., the domain
similarities have been slightly changed) or answers to a modified query (e.g., “show all houses which are
sold for (approximately) $210,000 and . . . ”). The similarity of both the RDTs given by (2) is 0.98 (very
high). The results in the previous section say that if we perform any (arbitrarily complex) query (using the
relational operations we consider in this paper) with Table 2 instead of Table 1, the results will be similar
at least to degree 0.98.

Table 3. Join of Table 1 and the table of customers

agent id price name budget
0.91 Brown 138 $228,500 Grant $240,000
0.89 Brown 138 $228,500 Evans $250,000
0.89 Brown 138 $228,500 Finch $210,000
0.88 Clark 140 $235,800 Grant $240,000
0.86 Clark 140 $235,800 Evans $250,000
0.84 Brown 156 $248,600 Evans $250,000

...
...

...
...

...
...

0.16 Davis 112 $345,000 Grant $240,000
0.10 Davis 112 $345,000 Finch $210,000

For illustration, consider an additional RDT of customers over relation scheme containing two at-
tributes: name (customer name) and budget (price the customer is willing to pay for a house). In particu-
lar, let 〈Evans,$250,000〉, 〈Finch,$210,000〉, and 〈Grant,$240,000〉 be the only tuples in the
RDT (all with ranks 1). The answer to the following query

π{agent,id,price,name,budget}(D1 ./price≈budgetDc),

whereD1 stands for Table 1 andDc stands for the RDT of customers is in Table 3 (for brevity, some records
are omitted). The RDT thus represents an answer to query “show deals for houses sold for (approximately)
$200,000 with (approximately) 1200 square feet and customers so that their budget is similar to the
house price”. Furthermore, we can obtain an RDT of best agent-customer matching is we project the join
onto agent and name:

π{agent,name}(D1 ./price≈budgetDc).

The result of matching is in Table 4 (left). Due to our results, if we perform the same query with Table 2
instead of Table 1, the new result is guaranteed to be similar with the obtained result at least to degree 0.98.
The result for Table 2 is shown in Table 4 (right).

4.3 Tuple-Based Similarity and Further Topics

While the rank-based similarity from Section 4.1 can be sufficient in many cases, there are situations
where one wants to consider a similarity of RDTs based on ranks and (pairwise) similarity of tuples. For
instance, if we take the RDT from Table 1 and make a new one by taking all tuples (keeping their ranks)
and increasing the prices by one dollar, we will come up with an RDT which is, according to rank-based
similarity, very different from the original one. Intuitively, one would expect to have a high degree of
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Table 4. Results of agent-customer matching for Table 1 and Table 2

agent name
0.91 Brown Grant
0.89 Brown Evans
0.89 Brown Finch
0.88 Clark Grant
0.86 Clark Evans
0.84 Clark Finch
0.74 Davis Evans
0.72 Davis Grant
0.66 Davis Finch

agent name
0.91 Brown Grant
0.90 Clark Grant
0.89 Brown Evans
0.89 Brown Finch
0.88 Clark Evans
0.86 Clark Finch
0.75 Davis Evans
0.73 Davis Grant
0.67 Davis Finch

similarity of the RDTs because they differ only by a slight change in price. This issue can be solved by
considering the following tuple-based degree of inclusion:

S≈(D1,D2) =
∧

t∈Tupl(T )

(
D1(t) →

∨
t′∈Tupl(T )

(
D2(t′)⊗ t ≈ t′

))
, (16)

where t ≈ t′ =
∧

y∈T t(y) ≈y t
′(y) is a similarity of tuples t and t′ over T , cf. [6]. In a similar way as

in (4), we may define E≈ using S≈ instead of S.

Remark 4. By an easy inspection, S(D1,D2) ≤ S≈(D1,D2), i.e. (16) yields an estimate which is at least
as high as (3) and analogously for E and E≈. Note that (16) has a natural meaning. Indeed, S≈(D1,D2)
can be understood as a degree to which the following statement is true: “If t belongs to D1, then there is
t′ which is similar to t and which belongs to D2”. Hence, E≈(D1,D2) is a degree to which for each tuple
from D1 there is a similar tuple in D2 and vice versa. If L is a two-element Boolean algebra and each ≈y

is an identity, then E≈(D1,D2) = 1 iff D1 and D2 are identical (in the usual sense).

For tuple-based inclusion (similarity) and for certain relational operations, we can prove analogous
preservation formulas as in Section 4.1. For instance,

S≈(D1,D′1) ∧ S(D2,D′2) ≤ S≈(D1 ∪ D2,D′1 ∪ D′2), (17)
S≈(D1,D′1)⊗ S(D2,D′2) ≤ S≈(D1 ×D2,D′1 ×D′2), (18)

S≈(D,D′) ≤ S≈(πR(D), πR(D′)). (19)

On the other hand, similarity-based selection σy≈d (and, as a consequence, similarity-based join ./p≈q)
does not preserve S≈ in general which can be seen as a technical complication. This issue can be overcome
by introducing a new type of selection σ≈y≈d which is compatible with S≈. Namely, we can define(

σ≈y≈d(D)
)
(t) =

∨
t′∈Tupl(T )

(
D(t′)⊗ t′ ≈ t⊗ t(y)≈y d

)
. (20)

For this notion, we can prove that S≈(D,D′) ≤ S≈(σ≈y≈d(D), σ≈y≈d(D′)). Similar extension can be done
for any relational operation which does not preserve S≈ directly. Detailed description of the extension is
postponed to a full version of the paper because of the limited scope.

4.4 Unifying Approach to Similarity of RDTs

In this section, we outline a general approach to similarity of RDTs that includes both the approaches from
the previous sections. Interestingly, both (3) and (16) have a common generalization using truth-stressing
hedges [19, 21]. Truth-stressing hedges represent unary operations on complete residuated lattices (denoted
by ∗ ) that serve as interpretations of logical connectives like “very true”, see [19]. Two boundary cases
of hedges are (i) identity, i.e. a∗ = a (a ∈ L); (ii) globalization: 1∗ = 1, and a∗ = 0 if a < 1. The
globalization [31] is a hedge which can be interpreted as “fully true”.

Let ∗ be truth-stressing hedge on L. For RDTs D1,D2 on T , we define the degree S≈∗ (D1,D2) of
inclusion of D1 in D2 (with respect to ∗) by

S≈∗ (Di,Dj) =
∧

t∈Tupl(T )

(
Di(t) →

∨
t′∈Tupl(T )

(
Dj(t′)⊗ (t ≈ t′)∗

))
. (21)
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Now, it is easily seen that for ∗ being the identity, (21) coincides with (16); if ≈ is separating (i.e., t1 ≈
t2 = 1 iff t1 is identical to t2) and ∗ is the globalization, (21) coincides with (3). Thus, both (3) and (16)
are particular instances of (21) resulting by a choice of the hedge. Note that identity and globalization are
two borderline cases of hedges. In general, complete residuated lattices admit other nontrivial hedges that
can be used in (21). Therefore, the hedge in (21) serves as a parameter that has an influence on how much
emphasis we put on the fact that two tuples are similar. In case of globalization, we put full emphasis, i.e.,
the tuples are required to be equal to degree 1 (exactly the same if ≈ is separating).

If we consider properties needed to prove analogous estimation formulas for general S≈∗ as we did in
case of S and S≈, we come up with the following important property:

(r ≈ s)∗ ⊗ (s ≈ t)∗ ≤ (r ≈ t)∗, (22)

for every r, s, t ∈ Tupl(T ) which can be seen as transitivity of ≈ with respect to ⊗ and ∗. Consider the
following two cases in which (22) is satisfied:

Case 1: ∗ is globalization and ≈ is separating. If the left hand side of (22) is nonzero, then r ≈ s = 1 and
s ≈ t = 1. Separability implies r = s = t, i.e. (r ≈ t)∗ = 1∗ = 1, verifying (22).

Case 2: ≈ is transitive. In this case, since a∗ ⊗ b∗ ≤ (a ⊗ b)∗ (follows from properties of hedges by
standard arguments), transitivity of ≈ and monotony of ∗ yield (r ≈ s)∗ ⊗ (s ≈ t)∗ ≤ ((r ≈
s)⊗ (s ≈ t))∗ ≤ (r ≈ t)∗.

The following lemma shows that S≈∗ and consequently E≈∗ have properties that are considered natural
for (degrees of) inclusion and similarity:

Lemma 1. If ≈ satisfies (22) with respect to ∗ then

(i) S≈∗ is a reflexive and transitive L-relation, i.e. an L-quasiorder.
(ii) E≈∗ defined by E≈∗ (D1,D2) = S≈∗ (D1,D2) ∧ S≈∗ (D2,D1) is a reflexive, symmetric, and transitive

L-relation, i.e. an L-equivalence.

Proof. The assertion follows from results in [2, Section 4.2] by taking into account that ≈∗ is reflexive,
symmetric, and transitive with respect to ⊗. ut

5 Conclusion and Future Research

We have shown that an important fragment of relational operation in similarity-based databases preserves
various types of similarity. As a result, similarity of query results based on these relational operations can
be estimated based on similarity of input data tables before the queries are executed. Furthermore, the
results of this paper have shown a desirable important property of the underlying similarity-based model of
data: slight changes in input data do not produce huge changes in query results. Future research will focus
on the role of particular relational operations called similarity-based closures that play an important role in
tuple-based similarities of RDTs. An outline of results in this direction is presented in [3].
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Abstract. Within the research area of deductive databases three different database tasks have been
deeply investigated: query evaluation, update propagation and view updating. Over the last thirty years
various inference mechanisms have been proposed for realizing these main functionalities of a rule-
based system. However, these inference mechanisms have been rarely used in commercial DB systems
until now. One important reason for this is the lack of a uniform approach well-suited for implemen-
tation in an SQL-based system. In this paper, we present such a uniform approach in form of a new
version of the soft consequence operator. Additionally, we present improved transformation-based ap-
proaches to query optimization and update propagation and view updating which are all using this
operator as underlying evaluation mechanism.

1 Introduction

The notion deductive database refers to systems capable of inferring new knowledge using rules. Within this
research area, three main database tasks have been intensively studied: (recursive) query evaluation, update
propagation and view updating. Despite of many proposals for efficiently performing these tasks, however,
the corresponding methods have been implemented in commercial products (such as, e.g., Oracle or DB2)
in a very limited way, so far. One important reason is that many proposals employ inference methods
which are not directly suited for being transferred into the SQL world. For example, proof-based methods
or instance-oriented model generation techniques (e.g. based on SLDNF) have been proposed as inference
methods for view updating which are hardly compatible with the set-oriented bottom-up evaluation strategy
of SQL.

In this paper, we present transformation-based methods to query optimization, update propagation and
view updating which are well-suited for being transferred to SQL. Transformation-based approaches like
Magic Sets [1] automatically transform a given database schema into a new one such that the evaluation
of rules over the rewritten schema performs a certain database task more efficiently than with respect to
the original schema. These approaches are well-suited for extending database systems, as new algorith-
mic ideas are solely incorporated into the transformation process, leaving the actual database engine with
its own optimization techniques unchanged. In fact, rewriting techniques allow for implementing vari-
ous database functionalities on the basis of one common inference engine. However, the application of
transformation-based approaches with respect to stratifiable views [17] may lead to unstratifiable recur-
sion within the rewritten schemata. Consequently, an elaborate and very expensive inference mechanism is
generally required for their evaluation such as the alternating fixpoint computation or the residual program
approach proposed by van Gelder [20] resp. Bry [10]. This is also the case for the kind of recursive views
proposed by the SQL:1999 standard, as they cover the class of stratifiable views.

As an alternative, the soft consequence operator together with the soft stratification concept has been
proposed by the author in [2] which allows for the efficient evaluation of Magic Sets transformed rules. This
efficient inference method is applicable to query-driven as well as update-driven derivations. Query-driven
inference is typically a top-down process whereas update-driven approaches are usually designed bottom-
up. During the last 6 years, the idea of combining the advantages of top-down and bottom-up oriented
inference has been consequently employed to enhance existing methods to query optimization [3] as well
as update propagation [6] and to develop a new approach to view updating. In order to handle alternative
derivations that may occur in view updating methods, an extended version of the original soft consequence
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operator has to be developed. In this paper, this new version is presented, which is well-suited for efficiently
determining the semantics of definite and indefinite databases but remains compatible with the set-oriented,
bottom-up evaluation of SQL.

2 Basic concepts

A Datalog rule is a function-free clause of the form H1 ← L1∧· · ·∧Lm with m ≥ 1 where H1 is an atom
denoting the rule’s head, and L1, . . . , Lm are literals, i.e. positive or negative atoms, representing its body.
We assume all deductive rules to be safe, i.e., all variables occurring in the head or in any negated literal of
a rule must be also present in a positive literal in its body. If A ≡ p(t1, . . . , tn) with n ≥ 0 is a literal, we
use vars(A) to denote the set of variables occurring in A and pred(A) to refer to the predicate symbol p
of A. If A is the head of a given rule R, we use pred(R) to refer to the predicate symbol of A. For a set of
rulesR, pred(R) is defined as ∪r∈R{pred(r)}. A fact is a ground atom in which every ti is a constant.

A deductive database D is a triple 〈F ,R, I〉 where F is a finite set of facts (called base facts), I
is a finite set of integrity constraints (i.e.,positive ground atoms) and R a finite set of rules such that
pred(F) ∩ pred(R) = Ø and pred(I) ⊆ pred(F ∪ R). Within a deductive database D, a predicate
symbol p is called derived (view predicate), if p ∈ pred(R). The predicate p is called extensional (or base
predicate), if p ∈ pred(F). LetHD be the Herbrand base ofD = 〈F ,R, I〉. The set of all derivable literals
from D is defined as the well-founded model [21] for (F ∪R):MD := I+ ∪¬ · I− where I+, I− ⊆ HD
are sets of ground atoms and ¬ · I− includes all negations of atoms in I−. The set I+ represents the
positive portion of the well-founded model while ¬ · I− comprises all negative conclusions. The semantics
of a database D = 〈F ,R, I〉 is defined as the well-founded modelMD := I+ ∪ ¬ · I− for F ∪ R if all
integrity constraints are satisfied inMD, i.e., I ⊆ I+. Otherwise, the semantics of D is undefined. For the
sake of simplicity of exposition, and without loss of generality, we assume that a predicate is either base or
derived, but not both, which can be easily achieved by rewriting a given database.

Disjunctive Datalog extends Datalog by disjunctions of literals in facts as well as rule heads. A disjunc-
tive Datalog rule is a function-free clause of the formA1∨ . . .∨Am ← B1∧· · ·∧Bn withm,n ≥ 1 where
the rule’s head A1 ∨ . . . ∨ Am is a disjunction of positive atoms, and the rule’s body B1, . . . , Bn consists
of literals, i.e. positive or negative atoms. A disjunctive fact f ≡ f1 ∨ . . . ∨ fk is a disjunction of ground
atoms fi with i ≥ 1. f is called definite if i = 1. We solely consider stratifiable disjunctive rules only,
that is, recursion through negative predicate occurrences is not permitted [17]. A stratification partitions
a given rule set such that all positive derivations of relations can be determined before a negative literal
with respect to one of those relations is evaluated. The semantics of a stratifiable disjunctive databases D
is defined as the perfect model state PMD of D iff D is consistent [4, 11].

3 Transformation-Based Approaches

The need for a uniform inference mechanism in deductive databases is motivated by the fact that transfor-
mation-based approaches to query optimization, update propagation and view updating are still based on
very different model generators. In this section, we briefly recall the state-of-the-art with respect to these
transformation-based techniques by means of Magic Sets, Magic Updates and Magic View Updates. The
last two approaches have been already proposed by the author in [6] and [7]. Note that we solely con-
sider stratifiable rules for the given (external) schema. The transformed internal schema, however, may not
always be stratifiable such that more general inference engines are required.

3.1 Query Optimization

Various methods for efficient bottom-up evaluation of queries against the intensional part of a database
have been proposed, e.g. Magic Sets [1], Counting [9], Alexander method [19]). All these approaches are
rewriting techniques for deductive rules with respect to a given query such that bottom-up materialization is
performed in a goal-directed manner cutting down the number of irrelevant facts generated. In the following
we will focus on Magic Sets as this approach has been accepted as a kind of standard in the field.
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Magic Sets rewriting is a two-step transformation in which the first phase consists of constructing an
adorned rule set, while the second phase consists of the actual Magic Sets rewriting. Within an adorned rule
set, the predicate symbol of a literal is associated with an adornment which is a string consisting of letters
b and f. While b represents a bound argument at the time when the literal is to be evaluated, f denotes a
free argument. The adorned version of the deductive rules is constructed with respect to an adorned query
and a selected sip strategy [18] which basically determines for each rule the order in which the body literals
are to be evaluated and which bindings are passed on to the next literal. During the second phase of Magic
Sets the adorned rules are rewritten such that bottom-up materialization of the resulting database simulates
a top-down evaluation of the original query on the original database. For this purpose, each adorned rule
is extended with a magic literal restricting the evaluation of the rule to the given binding in the adornment
of the rule’s head. The magic predicates themselves are defined by rules which define the set of relevant
selection constants. The initial values corresponding to the query are given by the so-called magic seed. As
an example, consider the following stratifiable rulesR

o(X, Y)←¬p(Y, X) ∧ p(X, Y)
p(X, Y)← e(X, Y)
p(X, Y)← e(X, Z) ∧ p(Z, Y)

and the query ?-o(1,2) asking whether a path from node 1 to 2 exists but not vice versa. Assuming a
full left-to-right sip strategy, Magic Sets yields the following deductive rulesRms

obb(X, Y)← m obb(X, Y) ∧ ¬pbb(Y, X) ∧ pbb(X, Y) pbb(X, Y)← m pbb(X, Y) ∧ e(X, Y)
pbb(X, Y)← m pbb(X, Y) ∧ e(X, Z) ∧ pbb(Z, Y) m pbb(Y, X)← m obb(X, Y)
m pbb(X, Y)← m obb(X, Y) ∧ ¬pbb(Y, X) m obb(X, Y)← m s obb(X, Y)
m pbb(Z, Y)← m pbb(X, Y) ∧ e(X, Z)

as well as the magic seed fact m s obb(1, 2). The Magic Sets transformation is sound for stratifiable
databases. However, the resulting rule set may be no more stratifiable (as is the case in the above ex-
ample) and more general approaches than iterated fixpoint computation are needed. For determining the
well-founded model of general logic programs, the alternating fixpoint computation by Van Gelder [20]
or the conditional fixpoint by Bry [10] could be used. The application of these methods, however, is not
really efficient because the specific reason for the unstratifiability of the transformed rule sets is not taken
into account. As an efficient alternative, the soft stratification concept together with the soft consequence
operator [2] could be used for determining the positive part of the well-founded model (cf. Section 4).

3.2 Update Propagation

Determining the consequences of base relation changes is essential for maintaining materialized views as
well as for efficiently checking integrity. Update propagation (UP) methods have been proposed aiming
at the efficient computation of implicit changes of derived relations resulting from explicitly performed
updates of extensional facts [13, 14, 16, 17]. We present a specific method for update propagation which
fits well with the semantics of deductive databases and is based on the soft consequence operator again.
We will use the notion update to denote the ’true’ changes caused by a transaction only; that is, we solely
consider sets of updates where compensation effects (i.e., given by an insertion and deletion of the same
fact or the insertion of facts which already existed, for example) have already been taken into account.

The task of update propagation is to systematically compute the set of all induced modifications starting
from the physical changes of base data. Technically, this is a set of delta facts for any affected relation
which may be stored in corresponding delta relations. For each predicate symbol p ∈ pred(D), we will
use a pair of delta relations 〈∆+

p , ∆
−
p 〉 representing the insertions and deletions induced on p by an update

on D. The initial set of delta facts directly results from the given update and represents the so-called UP
seeds. They form the starting point from which induced updates, represented by derived delta relations, are
computed. In our transformation-based approach, so-called propagation rules are employed for computing
delta relations. A propagation rule refers to at least one delta relation in its body in order to provide a focus
on the underlying changes when computing induced updates. For showing the effectiveness of an induced
update, however, references to the state of a relation before and after the base update has been performed
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are necessary. As an example of this propagation approach, consider again the rules for relation p from
Subsection 3.1. The UP rulesR∆ with respect to insertions into e are as follows :

∆+
p (X, Y)←∆+

e (X, Y)∧¬pold(X, Y)
∆+

p (X, Y)←∆+
e (X, Z) ∧ pnew(Z, Y)∧¬pold(X, Y)

∆+
p (X, Y)←∆+

p (Z, Y) ∧ enew(X, Z)∧¬pold(X, Y)

For each relation p we use pold to refer to its old state before the changes given in the delta relations have
been applied whereas pnew is used to refer to the new state of p. These state relations are never completely
computed but are queried with bindings from the delta relation in the propagation rule body and thus
act as a test of effectiveness. In the following, we assume the old database state to be present such that
the adornment old can be omitted. For simulating the new database state from a given update so called
transition rules [16] are used. The transition rules R∆τ for simulating the required new states of e and p
are:

enew(X, Y)← e(X, Y)∧¬∆−e (X, Y) pnew(X, Y)← enew(X, Y)
enew(X, Y)←∆+

e (X, Y) pnew(X, Y)← enew(X, Z) ∧ pnew(Z, Y)

Note that the new state definition of intensional predicates only indirectly refers to the given update in
contrast to extensional predicates. If R is stratifiable, the rule set R∪· R∆ ∪· R∆τ will be stratifiable, too
(cf. [6]). As R∪· R∆ ∪· R∆τ remains to be stratifiable, iterated fixpoint computation could be employed
for determining the semantics of these rules and the induced updates defined by them. However, all state
relations are completely determined which leads to a very inefficient propagation process. The reason is that
the supposed evaluation over the two consecutive database states is performed using deductive rules which
are not specialized with respect to the particular updates that are propagated. This weakness of propagation
rules in view of a bottom-up materialization will be cured by incorporating Magic Sets.

Magic Updates

The aim is to develop an UP approach which is automatically limited to the affected delta relations. The
evaluation of side literals and effectiveness tests is restricted to the updates currently propagated. We use
the Magic Sets approach for incorporating a top-down evaluation strategy by considering the currently
propagated updates in the dynamic body literals as abstract queries on the remainder of the respective
propagation rule bodies. Evaluating these propagation queries has the advantage that the respective state
relations will only be partially materialized. As an example, let us consider the specific deductive database
D = 〈F ,R, I〉 withR consisting of the well-known rules for the transitive closure p of relation e:

R: p(X, Y)← e(X, Y)
p(X, Y)← e(X, Z), p(Z, Y)

F : edge(1,2), edge(1,4), edge(3,4)
edge(10,11), edge(11,12), ..., edge(98,99), edge(99,100)

Note that the derived relation p consists of 4098 tuples. Suppose a given update contains the new tuple
e(2, 3) to be inserted into D and we are interested in finding the resulting consequences for p. Com-
puting the induced update by evaluating the stratifiable propagation and transition rules would lead to
the generation of 94 new state facts for relation e, 4098 old state facts for p and 4098 + 3 new state
facts for p. The entire number of generated facts is 8296 for computing the three induced insertions
∆+

p (1, 3), ∆+
p (2, 3), ∆+

p (2, 4)} with respect to p.
However, the application of the Magic Updates rewriting with respect to the propagation queries

{∆+
p (Z, Y), ∆+

e (X, Y), ∆+
e (X, Z)} provides a much better focus on the changes to e. Within its application,

the following subquery rules

m pnewbf (Z)←∆+
e (X, Z) m pbb(X, Y)←∆+

e (X, Y)
m enewfb (Z)←∆+

p (Z, Y) m pbb(X, Y)←∆+
e (X, Z) ∧ pnewbf (Z, Y)

m pbb(X, Y)←∆+
p (Z, Y) ∧ enewfb (X, Z)



A Uniform Fixpoint Approach to the Implementation of Inference Methods for Deductive Databases 71

are generated. The respective queries Q = {m enewfb ,m pnewbf , . . .} allow to specialize the employed tran-
sition rules, e.g.

enewfb (X, Y)← m enewfb (Y) ∧ e(X, Y)∧¬∆−e (X, Y)
enewfb (X, Y)← m enewfb (Y)∧∆+

e (X, Y)

such that only relevant state tuples are generated. We denote the Magic Updates transformed rulesR∪· R∆
∪· R∆τ by R∆mu. Despite of the large number of rules in R∆mu, the number of derived results remains
relatively small. Quite similar to the Magic sets approach, the Magic Updates rewriting may result in an
unstratifiable rule set. This is also the case for our example where the following negative cycle occurs in
the respective dependency graph:

∆+
p

pos−→ m pbb
pos−→ pbb

neg−→ ∆+
p

In [6] it has been shown, however, that the resulting rules must be at least softly stratifiable such that the
soft consequence operator could be used for efficiently computing their well-founded model. Computing
the induced update by evaluating the Magic Updates transformed rules leads to the generation of two new
state facts for e, one old state fact and one new state fact for p. The entire number of generated facts is 19
in contrast to 8296 for computing the three induced insertions with respect to p.

3.3 View Updates

Bearing in mind the numerous benefits of the afore mentioned methods to query optimization and update
propagation, it seemed worthwhile to develop a similar, i.e., incremental and transformation-based, ap-
proach to the dual problem of view updating. In contrast to update propagation, view updating aims at
determining one or more base relation updates such that all given update requests with respect to derived
relations are satisfied after the base updates have been successfully applied. In the following, we recall
a transformation-based approach to incrementally compute such base updates for stratifiable databases
proposed by the author in [7]. The approach extends and integrates standard techniques for efficient query
answering, integrity checking and update propagation. The analysis of view updating requests usually leads
to alternative view update realizations which are represented in disjunctive form.

Magic View Updates

In our transformation-based approach, true view updates (VU) are considered only, i.e., ground atoms
which are presently not derivable for atoms to be inserted, or are derivable for atoms to be deleted, respec-
tively. A method for view updating determines sets of alternative updates (called VU realization) satisfying
a given request. There may be infinitely many realizations and even realizations of infinite size which
satisfy a given VU request. In our approach, a breadth-first search is employed for determining a set of
minimal realizations. A realization is minimal in the sense that none of its updates can be removed without
losing the property of being a realization. As each level of the search tree is completely explored, the result
usually consists of more than one realization. If only VU realizations of infinite size exist, our method will
not terminate.

Given a VU request, view updating methods usually determine subsequent VU requests in order to find
relevant base updates. Similar to delta relations for UP we will use the notion VU relation to access individ-
ual view updates with respect to the relations of our system. For each relation p ∈ pred(R∪F) we use the
VU relation∇+

p (~x) for tuples to be inserted into D and∇−p (~x) for tuples to be deleted from D. The initial
set of delta facts resulting from a given VU request is again represented by so-called VU seeds. Starting
from the seeds, so-called VU rules are employed for finding subsequent VU requests systematically. These
rules perform a top-down analysis in a similar way as the bottom-up analysis implemented by the UP rules.
As an example, consider the following database D = 〈F ,R, I〉 with F = {r2(2), s(2)}, I = {ic(2)} and
the rulesR:

p(X)← q1(X) q1(X)← r1(X) ∧ s(X)
p(X)← q2(X) q2(X)← r2(X)∧¬s(X)
ic(2)←¬au(2) au(X)← q2(X)∧¬q1(X)
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The corresponding set of VU rulesR∇ with respect to∇+
p (2) is given by:

∇+
q1

(X)∨∇+
q1

(X)←∇+
p (X)

∇+
r1

(X)←∇+
q1

(X)∧¬r1(X) ∇+
r2

(X)←∇+
q2

(X)∧¬r2(X)
∇+

s (X)←∇+
q1

(X)∧¬s(X) ∇−s (X)←∇+
q2

(X) ∧ s(X)

In contrast to the UP rules from Section 3.2, no explicit references to the new database state are included in
the above VU rules. The reason is that these rules are applied iteratively over several intermediate database
states before the minimal set of realizations has been found. Hence, the apparent references to the old state
really refer to the current state which is continuously modified while computing VU realizations. These
predicates solely act as tests again queried with respect to bindings from VU relations and thus will never
be completely evaluated.

Evaluating these rules using model generation with disjunctive facts leads to two alternative updates,
insertion {r1(2)} and deletion {s(2)}, induced by the derived disjunction ∇+

r1
(2) ∨ ∇−s (2). Obviously,

the second update represented by ∇−s (2) would lead to an undesired side effect by means of an integrity
violation. In order to provide a complete method, however, such erroneous/incomplete paths must be also
explored and side effects repaired if possible. Determining whether a computed update will lead to a con-
sistent database state or not can be done by applying a bottom-up UP process at the end of the top-down
phase leading to an irreparable constraint violation with respect to∇−s (2):

∇−s (2)⇒ ∆+
q2

(2)⇒ ∆+
p (2), ∆+

au(2)⇒ ∆−ic(2) false

In order to see whether the violated constraint can be repaired, the subsequent view update request∇+
ic(2)

with respect to D ought to be answered. The application ofR∇ yields

⇒ ∇−q2(2),∇+
q2

(2) false

∇+
ic(2)⇒ ∇−aux(2) m

⇒ ∇+
q1

(2)⇒ ∇+
s (2),∇−s (2) false

showing that this request cannot be satisfied as inconsistent subsequent view update requests are generated
on this path. Such erroneous derivation paths will be indicated by the keyword false. The reduced set of
updates - each of them leading to a consistent database state only - represents the set of realizations∆+

r1
(2).

An induced deletion of an integrity constraint predicate can be seen as a side effect of an ’erro-
neous’ VU. Similar side effects, however, can be also found when induced changes to the database caused
by a VU request may include derived facts which had been actually used for deriving this view up-
date. This effect is shown in the following example for a deductive database D = 〈R,F , I〉 with R =
{h(X)← p(X) ∧ q(X) ∧ i, i← p(X)∧¬q(X)}, F = {p(1)}, and I = Ø. Given the VU request ∇+

h (1), the
overall evaluation scheme for determining the only realization {∆+

q (1), ∆+
p (cnew1)} would be as follows:

⇒ ∇+
p (cnew1)

∇+
h (1)⇒ ∇+

q (1)⇒ ∆+
q (1)⇒ ∆−i ⇒ ∇+

i m
⇒ ∇−q (1),∇+

q (1) false

The example shows the necessity of compensating side effects, i.e., the compensation of the ’deletion’
∆−i (that prevents the ’insertion’ ∆+

h (1)) caused by the tuple ∇+
q (1). In general the compensation of

side effects, however, may in turn cause additional side effects which have to be ’repaired’. Thus, the
view updating method must alternate between top-down and bottom-up phases until all possibilities for
compensating side effects (including integrity constraint violations) have been considered, or a solution
has been found. To this end, so-called VU transition rules R∇τ are used for restarting the VU analysis. For
example, the compensation of violated integrity constraints can be realized by using the following kind
of transition rule ∆−ic(~c) → ∇

+
ic(~c) for each ground literal ic(~c) ∈ I. VU transition rules make sure that

erroneous solutions are evaluated to false and side effects are repaired.
Having the rules for the direct and indirect consequences of a given VU request, a general applica-

tion scheme for systematically determining VU realizations can be defined (see[7] for details). Instead
of using simple propagation rules R∪· R∆ ∪· R∆τ , however, it is much more efficient to employ the cor-
responding Magic Update rules. The top-down analysis rules R∪· R∇ and the bottom-up consequence
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analysis rules R∆mu ∪· R∇τ are alternating applied. Note that the disjunctive rules R∪· R∇ are stratifiable
while R∆mu ∪· R∇τ is softly stratifiable such that a perfect model state [4, 11] and a well-founded model
generation must alternately be applied. The iteration stops as soon as a realization for the given VU request
has been found. The correctness of this approach has been already shown in [7].

4 Consequence Operators and Fixpoint Computations

In the following, we summarize the most important fixpoint-based approaches for definite as well as indef-
inite rules. All these methods employ so-called consequence operators which formalize the application of
deductive rules for deriving new data. Based on their properties, a new uniform consequence operator is
developed subsequently.

4.1 Definite Rules

First, we recall the iterated fixpoint method for constructing the well-founded model of a stratifiable
database which coincides with its perfect model [17].

Definition 1. Let D = 〈F ,R〉 be a deductive database, λ a stratification on D, R1 ∪· . . . ∪· Rn the parti-
tion of R induced by λ, I ⊆ HD a set of ground atoms, and [[R]]I the set of all ground instances of rules
inR with respect to the set I . Then we define

1. the immediate consequence operator TR(I) as

TR(I) := {H | H ∈ I ∨ ∃r ∈ [[R]]I : r ≡ H ← L1 ∧ . . . ∧ Ln
such that Li ∈ I for all positive literals Li
and L /∈ I for all negative literals Lj ≡ ¬L},

2. the iterated fixpoint Mn as the last Herbrand model of the sequence

M1 := lfp (TR1 ,F), M2 := lfp (TR2 ,M1), . . . , Mn := lfp (TRn ,Mn−1),

where lfp (TR,F) denotes the least fixpoint of operator TR containing F .

3. and the iterated fixpoint modelMi
D as

Mi
D := Mn ∪· ¬ ·Mn.

This constructive definition of the iterated fixpoint model is based on the immediate consequence operator
introduced by van Emden and Kowalski. In [17] it has been shown that the perfect model of a stratifiable
database D is identical with the iterated fixpoint modelMi

D of D.
Stratifiable rules represent the most important class of deductive rules as they cover the expressiveness

of recursion in SQL:1999. Our transformation-based approaches, however, may internally lead to unstrati-
fiable rules for which a more general inference method is necessary. In case that unstratifiability is caused
by the application of Magic Sets, the so-called soft stratification approach proposed by the author in [2]
could be used.

Definition 2. Let D = 〈F ,R〉 be a deductive database, λs a soft stratification on D, P = P1 ∪· . . . ∪· Pn
the partition ofR induced by λs, and I ⊆ HD a set of ground atoms. Then we define

1. the soft consequence operator T sP(I) as

T sP(I) :=
{
I if TPj

(I) = I forall j ∈ {1, . . . , n}
TPi

(I) with i = min{j | TPj
(I) ) I}, otherwise.

where TPi
denotes the immediate consequence operator.

2. and the soft fixpoint modelMs
D as

Ms
D := lfp (T sP ,F)∪· ¬ · (lfp (T sP ,F)).
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Note that the soft consequence operator is based upon the immediate consequence operator and can even
be used to determine the iterated fixpoint model of a stratifiable database [6]. As an even more general
alternative, the alternating fixpoint model for arbitrary unstratifiable rules has been proposed in [12] on the
basis of the eventual consequence operator.

Definition 3. Let D = 〈F ,R〉 be a deductive database, I+, I− ⊆ HD sets of ground atoms, and [[R]]I+
the set of all ground instances of rules inR with respect to the set I+. Then we define

1. the eventual consequence operator T̂R〈I−〉 as

T̂R〈I−〉(I+) := {H | H ∈ I+ ∨ ∃r ∈ [[R]]I+ : r ≡ H ← L1 ∧ . . . ∧ Ln
such that Li ∈ I+ for all positive literals Li
and L /∈ I− for all negative literals Lj ≡ ¬L},

2. the eventual consequence transformation ŜD as

ŜD(I−) := lfp(T̂R〈I−〉,F),

3. and the alternating fixpoint modelMa
D as

Ma
D := lfp (Ŝ2

D,Ø)∪· ¬ · Ŝ2
D(lfp (Ŝ2

D,Ø)) ,

where Ŝ2
D denotes the nested application of the eventual consequence transformation, i.e., Ŝ2

D(I−) =
ŜD(ŜD(I−)).

In [12] it has been shown that the alternating fixpoint modelMa
D coincides with the well-founded model

of a given database D. The induced fixpoint computation may indeed serve as a universal model generator
for arbitrary classes of deductive rules. However, the eventual consequence operator is computationally
expensive due to the intermediate determination of supersets of sets of true atoms. With respect to the
discussed transformation-based approaches, the iterated fixpoint model could be used for determining the
semantics of the stratifiable subset of rules in Rms for query optimization, R∆mu for update propagation,
and R∆mu ∪· R∇τ for view updating. If these rule sets contain unstratifiable rules, the soft or alternating
fixpoint model generator ought be used while the first has proven to be more efficient than the latter [2].
None of the above mentioned consequence operators, however, can deal with indefinite rules necessary for
evaluating the view updating rulesR∪· R∇.

4.2 Indefinite Rules

In [4], the author proposed a consequence operator for the efficient bottom-up state generation of stratifiable
disjunctive deductive databases. To this end, a new version of the immediate consequence operator based
on hyperresolution has been introduced which extends Minker’s operator for positive disjunctive Datalog
rules [15]. In contrast to already existing model generation methods our approach for efficiently computing
perfect models is based on state generation. Within this disjunctive consequence operator, the mapping
red on indefinite facts is employed which returns non-redundant and subsumption-free representations of
disjunctive facts. Additionally, the mapping min models(F ) is used for determining the set of minimal
Herbrand models from a given set of disjunctive facts F . We identify a disjunctive fact with a set of
atoms such that the occurrence of a ground atom A within a fact f can also be written as A ∈ f . The set
difference operator can then be used to remove certain atoms from a disjunction while the empty set as
result is interpreted as false.

Definition 4. LetD = 〈F ,R〉 be a stratifiable disjunctive database rules,λ a stratification onD,R1 ∪· . . .
∪· Rn the partition of R induced by λ, I an arbitrary subset of indefinite facts from the disjunctive Her-
brand base [11] of D, and [[R]]I the set of all ground instances of rules inR with respect to the set I Then
we define.

1. the disjunctive consequence operator T stateR as
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T stateR (I) := red({H | H ∈ I ∨ ∃r ∈ [[R]]I : r ≡ A1 ∨ . . . ∨Al ← L1 ∧ . . . ∧ Ln
with H = (A1 ∨ · · · ∨Al ∨ f1 \ L1 ∨ · · · ∨ fn \ Ln ∨ C)
such that fi ∈ I ∧ Li ∈ fi for all positive literals Li
and Lj /∈ I for all negative literals Lj ≡ ¬L
and (Lj ∈ C ⇔ ∃M ∈ min models(I) :

Lj ∈M for at least one negative literal Lj
and Lk ∈M for all positive literals Lk
and Al /∈M for all head literals of r)})

2. the iterated fixpoint state Sn as the last minimal model state of the sequence

S1 := lfp (T stateR1
,F), S2 := lfp (T stateR2

, S1), . . . , Sn := lfp (T stateRn
, Sn−1),

3. and the iterated fixpoint state modelMSD as

MSD := Sn ∪· ¬ · Sn.

In [4] it has been shown that the iterated fixpoint state modelMSD of a disjunctive database D coincides
with the perfect model state of D. It induces a constructive method for determining the semantics of strat-
ifiable disjunctive databases. The only remaining question is how integrity constraints are handled in the
context of disjunctive databases. We consider again definite facts as integrity constraints, only, which must
be derivable in every model of the disjunctive database. Thus, only those models from the iterated fixpoint
state are selected in which the respective definite facts are derivable. To this end, the already introduced
keyword false can be used for indicating and removing inconsistent model states. The database is called
consistent iff at least one consistent model state exists.

This proposed inference method is well-suited for determining the semantics of stratifiable disjunctive
databases with integrity constraints. And thus, it seems to be suited as the basic inference mechanism for
evaluating view updating rules. The problem is, however, that the respective rules contain unstratifiable
definite rules which cannot be evaluated using the inference method proposed above. Hence, the evaluation
techniques for definite (Section 4.1) and indefinite rules (Section 4.2) do not really fit together and a new
uniform approach is needed.

5 A Uniform Fixpoint Approach

In this section, a new version of the soft consequence operator is proposed which is suited as efficient
state generator for softly stratifiable definite as well as stratifiable indefinite databases. The original version
of the soft consequence operator T sP is based on the immediate consequence operator by van Emden and
Kowalski and can be applied to an arbitrary partition P of a given set of definite rules. Consequently, its
application does not always lead to correct derivations. In fact, this operator has been designed for the
application to softly stratified rules resulting from the application of Magic Sets. However, this operator is
also suited for determining the perfect model of a stratifiable database.

Lemma 1. Let D = 〈F ,R〉 be a stratifiable database and λ a stratification ofR inducing the partition P
ofR. The perfect modelMD of 〈F ,R〉 is identical with the soft fixpoint model of D, i.e.,

MD = lfp(T sP ,F)∪· ¬ · lfp(T sP ,F).

Proof. This property follows from the fact that for every partition P = P1 ∪· . . . Pn induced by a stratifica-
tion, the condition pred(Pi)∩pred(Pj) = Ø with i 6= j must necessarily hold. As soon as the application
of the immediate consequence operator TPi

with respect to a certain layer Pi generates no new facts any-
more, the rules in Pi can never fire again. The application of the incorporated min function then induces
the same sequence of Herbrand models as in the case of the iterated fixpoint computation. �

Another property we need for extending the original soft consequence operator is about the application of
T state to definite rules and facts.
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Lemma 2. Let r be an arbitrary definite rule and f be a set of arbitrary definite facts. The single applica-
tion of r to f using the immediate consequence operator or the disjunctive consequence operator, always
yields the same result, i.e.,

Tr(f) = T stater (f).

Proof. The proof follows from the fact that all non-minimal conclusions of T state are immediately elimi-
nated by the subsumption operator red. �

The above proposition establishes the relationship between the definite and indefinite case showing that the
disjunctive consequence operator represents a generalization of the immediate one. Thus, its application to
definite rules and facts can be used to realize the same derivation process as the one performed by using
the immediate consequence operator. Based on the two properties from above, we can now consistently
extend the definition of the soft consequence operator which allows its application to indefinite rules and
facts, too.

Definition 5. Let D = 〈F ,R〉 be an arbitrary disjunctive database, I an arbitrary subset of indefinite
facts from the disjunctive Herbrand base of D, and P = P1 ∪· . . . ∪· Pn a partition of R. The general soft
consequence operator T gP(I) is defined as

T gP(I) :=
{
I if TPj

(I) = I forall j ∈ {1, . . . , n}
T statePi

(I) with i = min{j | T statePj
(I) ) I}, otherwise.

where T statePi
denotes the disjunctive consequence operator.

In contrast to the original definition, the general soft consequence operator is based on the disjunctive
operator T statePi

instead of the immediate consequence operator. The least fixpoint of T gP can be used to
determine the perfect model of definite as well as indefinite stratifiable databases and the well-founded
model of softly stratifiable definite databases.

Theorem 1 Let D = 〈F ,R〉 be a stratifiable disjunctive database and λ a stratification ofR inducing the
partition P of R. The perfect model state PSD of 〈F ,R〉 is identical with the least fixpoint model of T gP ,
i.e.,

PSD = lfp(T gP ,F)∪· ¬ · lfp(T gP ,F).

Proof. The proof directly follows from the correctness of the fixpoint computations for each stratum as
shown in [4] and the same structural argument already used in Lemma 1. �

The definition of lfp(T gP ,F) induces a constructive method for determining the perfect model state as well
as the well-founded model of a given database. Thus, it forms a suitable basis for the evaluation of the rules
Rms for query optimization, R∆mu for update propagation, and R∆mu ∪· R∇τ as well as R∪· R∇ for view
updating. This general approach to defining the semantics of different classes of deductive rules is surpris-
ingly simple and induces a rather efficient inference mechanism in contrast to general well-founded model
generators. The soft stratification concept, however, is not yet applicable to indefinite databases because
ordinary Magic Sets can not be used for indefinite clauses. Nevertheless, the resulting extended version of
the soft consequence operator can be used as a uniform basis for the evaluation of all transformation-based
techniques mentioned in this paper.

6 Conclusion

In this paper, we have presented an extended version of the soft consequence operator for the efficient top-
down and bottom-up reasoning in deductive databases. This operator allows for the efficient evaluation of
softly stratifiable incremental expressions and stratifiable disjunctive rules. It solely represents a theoretical
approach but provides insights into design decisions for extending the inference component of commercial
database systems. The relevance and quality of the transformation-based approaches, however, has been
already shown in various practical research projects (e.g. [5, 8]) at the University of Bonn.
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8. BEHREND, A., SCHÜLLER, G., MANTHEY, R.: AIMS: An Sql-Based System for Airspace Monitoring. IWGS

2010, pages 31–38, ACM.
9. BEERI, C., RAMAKRISHNAN, R.: On the Power of Magic. JLP 10(1/2/3&4): 255-299 (1991).

10. BRY, F.: Logic Programming as Constructivism: A Formalization and its Application to Databases. PODS 1989:
34-50.

11. FERNANDEZ, J. A., MINKER, J.: Semantics of Disjunctive Deductive Databases. ICDT 1992, volume 646 of
LNCS, pages 21–50, Springer.

12. KEMP, D., SRIVASTAVA, D., STUCKEY, P.: Bottom-Up Evaluation and Query Optimization of Well-Founded
Models. TCS 146(1 & 2): 145-184 (1995).
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dynPARTIX - A Dynamic Programming Reasoner for Abstract
Argumentation?

Wolfgang Dvořák, Michael Morak, Clemens Nopp, and Stefan Woltran
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Vienna University of Technology, Austria

Abstract. The aim of this paper is to announce the release of a novel system for abstract argumentation
which is based on decomposition and dynamic programming. We provide first experimental evaluations
to show the feasibility of this approach.

1 Introduction

Argumentation has evolved as an important field in AI, with abstract argumentation frameworks (AFs, for
short) as introduced by Dung [4] being its most popular formalization. Several semantics for AFs have
been proposed (see e.g. [2] for an overview), but here we shall focus on the so-called preferred semantics.
Reasoning under this semantics is known to be intractable [5]. An interesting approach to dealing with
intractable problems comes from parameterized complexity theory which suggests to focus on parameters
that allow for fast evaluations as long as these parameters are kept small. One important parameter for
graphs (and thus for argumentation frameworks) is tree-width, which measures the “tree-likeness” of a
graph. To be more specific, tree-width is defined via a certain decomposition of graphs, the so-called tree
decomposition. Recent work [6] describes novel algorithms for reasoning in the preferred semantics, such
that the performance mainly depends on the tree-width of the given AF, but the running times remain
linear in the size of the AF. To put this approach to practice, we shall use the SHARP framework1, a C++
environment which includes heuristic methods to obtain tree decompositions [3], provides an interface to
run algorithms on these decompositions, and offers further useful features, for instance for parsing the
input. For a description of the SHARP framework, see [8].

The main purpose of our work here is to support the theoretical results from [6] with experimental ones.
Therefore we use different classes of AFs and analyze the performance of our approach compared to an
implementation based on answer-set programming (see [7]). Our prototype system together with the used
benchmark instances is available as a ready-to-use tool from http://www.dbai.tuwien.ac.at/
research/project/argumentation/dynpartix/.

2 Background

Argumentation Frameworks. An argumentation framework (AF) is a pair F = (A, R) where A is a set of
arguments and R ⊆ A × A is the attack relation. If (a, b) ∈ R we say a attacks b. An a ∈ A is defended
by a set S ⊆ A iff for each (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R. An AF can naturally be
represented as a digraph.

Example 1. Consider the AF F = (A, R), with A = {a, b, c, d, e, f, g} and R = {(a, b), (c, b), (c, d),
(d, c), (d, e), (e, g), (f, e),(g, f)}. The graph representation of F is given as follows:

a b c d e f g

? Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028, by the Austrian Science
Fund (FWF) under grant P20704-N18, and by the Vienna University of Technology program “Innovative Ideas”.

1 http://www.dbai.tuwien.ac.at/research/project/sharp
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Fig. 1. Architecture of the SHARP framework.

We require the following semantical concepts: Let F = (A, R) be an AF. A set S ⊆ A is (i) conflict-
free in F , if there are no a, b ∈ S, such that (a, b) ∈ R; (ii) admissible in F , if S is conflict-free in F and
each a ∈ S is defended by S; (iii) a preferred extension of F , if S is a ⊆-maximal admissible set in F .
For the AF in Example 1, we get the admissible sets {}, {a}, {c}, {d}, {d, g}, {a, c}, {a, d}, and {a, d, g}.
Consequently, the preferred extensions of this framework are {a, c}, {a, d, g}.

The typical reasoning problems associated with AFs are the following: (1) Credulous acceptance asks
whether a given argument is contained in at least one preferred extension of a given AF; (2) skeptical
acceptance asks whether a given argument is contained in all preferred extensions of a given AF. Credulous
acceptance is NP-complete, while skeptical acceptance is even harder, namely ΠP

2 -complete [5].

Tree Decompositions and Tree-width. As already outlined, tree decompositions will underlie our imple-
mented algorithms. We briefly recall this concept (which is easily adapted to AFs). A tree decomposition
of an undirected graph G = (V,E) is a pair (T ,X ) where T = (VT , ET ) is a tree and X = (Xt)t∈VT is
a set of so-called bags, which has to satisfy the following conditions: (a)

⋃
t∈VT

Xt = V , i.e. X is a cover
of V ; (b) for each v ∈ V , T |{t|v∈Xt} is connected; (c) for each {vi, vj} ∈ E, {vi, vj} ⊆ Xt for some
t ∈ VT . The width of a tree decomposition is given by max{|Xt| | t ∈ VT }− 1. The tree-width of G is the
minimum width over all tree decompositions of G.

It can be shown that our example AF has tree-width 2 and next we illustrate a tree decomposition of
width 2:

c, d

b, c

a, b

d, e

e, f, g

Dynamic programming algorithms traverse such tree decompositions (for our purposes we shall use
so-called normalized decompositions, however) and compute local solutions for each node in the decom-
position. Thus the combinatorial explosion is now limited to the size of the bags, that is, to the width of the
given tree decomposition. For the formal definition of the algorithms, we refer to [6].

3 Implementation and SHARP Framework

dynPARTIX implements these algorithms using the SHARP framework [8], which is a purpose-built frame-
work for implementing algorithms that are based on tree decompositions. Figure 1 shows the typical ar-
chitecture, that systems working with the SHARP framework follow. In fact, SHARP provides interfaces
and helper methods for the Preprocessing and Dynamic Algorithm steps as well as ready-to-use imple-
mentations of various tree decomposition heuristics, i.e. Minimum-Fill, Maximum-Cardinality-Search and
Minimum-Degree heuristics (cf. [3]).

dynPARTIX builds on normalized tree decompositions provided by SHARP, which contain four types
of nodes: Leaf-, Branch-, Introduction- and Removal-nodes. To implement our algorithms we just have to
provide the methods and data structures for each of these node types (see [6] for the formal details). In
short, the tree decomposition is traversed in a bottom-up manner, where at each node a table of all possible
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partial solutions is computed. Depending on the node type, it is then modified accordingly and passed on
to the respective parent node. Finally one can obtain the complete solutions from the root node’s table.

SHARP handles data-flow management and provides data structures where the calculated (partial) so-
lutions to the problem under consideration can be stored. The amount of dedicated code for dynPARTIX
comes to around 2700 lines in C++. Together with the SHARP framework (and the used libraries for the
tree-decomposition heuristics), our system roughly comprises of 13 000 lines of C++ code.

4 System Specifics

Currently the implementation is able to calculate the admissible and preferred extensions of the given
argumentation framework and to check if credulous or skeptical acceptance holds for a specified argument.
The basic usage of dynPARTIX is as follows:

> ./dynpartix [-f <file>] [-s <semantics>]
[--enum | --count | --cred <arg> | --skept <arg>]

The argument -f <file> specifies the input file, the argument -s <semantics> selects the semantics
to reason with, i.e. either admissible or preferred, and the remaining arguments choose one of the reasoning
modes.

Input file conventions: We borrow the input format from the ASPARTIX system [7]. dynPARTIX thus han-
dles text files where an argument a is encoded as arg(a) and an attack (a, b) is encoded as att(a,b).
For instance, consider the following encoding of our running example and let us assume that it is stored in
a file inputAF.

arg(a). arg(b). arg(c). arg(d). arg(e). arg(f). arg(g).
att(a,b). att(c,b). att(c,d). att(d,c).
att(d,e). att(e,g). att(f,e). att(g,f).

Enumerating extensions: First of all, dynPARTIX can be used to compute extensions, i.e. admissible sets
and preferred extensions. For instance to compute the admissible sets of our running example one can use
the following command:

> ./dynpartix -f inputAF -s admissible

Credulous Reasoning: dynPARTIX decides credulous acceptance using proof procedures for admissible
sets (even if one reasons with preferred semantics) to avoid unnecessary computational costs. The following
statement decides if the argument d is credulously accepted in our running example.

> ./dynpartix -f inputAF -s preferred --cred d

Indeed the answer would be YES as {a, d, g} is a preferred extension.

Skeptical Reasoning: To decide skeptical acceptance, dynPARTIX uses proof procedures for preferred ex-
tensions which usually results in higher computational costs (but is unavoidable due to complexity results).
To decide if the argument d is skeptically accepted, the following command is used:

> ./dynpartix -f inputAF -s preferred --skept d

Here the answer would be NO as {a, c} is a preferred extension not containing d.

Counting Extensions: Recently the problem of counting extensions has gained some interest [1]. We note
that our algorithms allow counting without an explicit enumeration of all extensions (thanks to the particular
nature of dynamic programming; see also [9]). Counting preferred extensions with dynPARTIX is done by

> ./dynpartix -f inputAF -s preferred --count
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(a) Credulous Acceptance (b) Credulous Acceptance

(c) Skeptical Acceptance (d) Skeptical Acceptance

Fig. 2. Runtime behaviour of dynPARTIX for graphs of different tree-width compared with the ASPARTIX system.

5 Benchmark Tests

In this section we compare dynPARTIX with ASPARTIX [7], one of the most efficient reasoning tools for
abstract argumentation (for an overview of existing argumentation systems see [7]). For our benchmarks
we used randomly generated AFs of low tree-width. To ensure that AFs are of a certain tree-width we
considered random grid-structured AFs. In such a grid-structured AF each argument is arranged in an
n×m grid and attacks are only allowed between neighbours in the grid (we used a 8-neighborhood here to
allow odd-length cycles). When generating the instances we varied the following parameters: the number
of arguments; the tree-width; and the probability that an possible attack is actually in the AF.

The benchmark tests were executed on an Intel R©CoreTM2 CPU 6300@1.86GHz machine running
SUSE Linux version 2.6.27.48. We generated a total of 4800 argumentation frameworks with varying
parameters as mentioned above. The corresponding runtimes are illustrated in Figure 2. The two graphs
on the left-hand side compare the running times of dynPARTIX and ASPARTIX (using dlv) on instances
of small treewidth (viz. 3 and 5). For the graphs on the right-hand side, we have used instances of higher
width. Results for credulous acceptance are given in the upper graphs and those for skeptical acceptance
in the lower graphs. The y-axis gives the runtimes in logarithmic scale; the x-axis shows the number of
arguments. Note that the upper-left picture has different ranges on the axes compared to the three other
graphs. We remark that the test script stopped a calculation if it was not finished after 300 seconds. For
these cases we stored the value of 300 seconds in the database.

Interpretation of the Benchmark Results: We observe that, independent of the reasoning mode, the runtime
of ASPARTIX is only minorly affected by the tree-width while dynPARTIX strongly benefits from a low
tree-width, as expected by theoretical results [6].

For the credulous acceptance problem we have that our current implementation is competitive only up
to tree-width 5. This is basically because ASPARTIX is quite good at this task. Considering Figures 2(a)
and 2(b), there is to note that for credulous acceptance ASPARTIX decided every instance in less than 300
seconds, while dynPARTIX exceeded this value in 4% of the cases.
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Now let us consider the skeptical acceptance problem. As mentioned before, skeptical acceptance is
much harder computationally than credulous acceptance, which is reflected by the bad runtime behaviour
of ASPARTIX. Indeed we have that for tree-width ≤ 5, dynPARTIX has a significantly better runtime
behaviour, and that it is competitive on the whole set of test instances. As an additional comment to Figures
2(c) and 2(d), we note that for skeptical acceptance, dynPARTIX was able to decide about 71% of the test
cases within the time limit, while ASPARTIX only finished 41%.

Finally let us briefly mention the problem of Counting preferred extensions. On the one side we have
that ASPARTIX has no option for explicit counting extensions, so the best thing one can do is enumerating
extensions and then counting them. It can easily be seen that this can be quite inefficient, which is reflected
by the fact that ASPARTIX only finished 21% of the test instances in time. On the other hand we have that
the dynamic algorithms for counting preferred extensions and deciding skeptical acceptance are essentially
the same and thus have the same runtime behaviour.

6 Future work

We identify several directions for future work. First, a more comprehensive empirical evaluation would
be of high value. For instance, it would be interesting to explore how our algorithms perform on real
world instances. To this end, we need more knowledge about the tree-width typical argumentation instances
comprise, i.e. whether it is the case that such instances have low tree-width. Due to the unavailability of
benchmark libraries for argumentation, so far we had to omit such considerations.

Second, we see the following directions for further development of dynPARTIX : Enriching the frame-
work with additional argumentation semantics mentioned in [2]; implementing further reasoning modes,
which can be efficiently computed on tree decompositions, e.g. ideal reasoning; and optimizing the algo-
rithms to benefit from recent developments in the SHARP framework.
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Abstract. Answer-Set Programming (ASP) is an established declarative programming paradigm. How-
ever, classical ASP lacks subprogram calls as in procedural programming, and access to external
computations (like remote procedure calls) in general. The feature is desired for increasing modularity
and—assuming proper access in place—(meta-)reasoning over subprogram results. While HEX-programs
extend classical ASP with external source access, they do not support calls of (sub-)programs upfront.
We present nested HEX-programs, which extend HEX-programs to serve the desired feature, in a user-
friendly manner. Notably, the answer sets of called sub-programs can be individually accessed. This
is particularly useful for applications that need to reason over answer sets like belief set merging,
user-defined aggregate functions, or preferences of answer sets.

1 Introduction

Answer-Set Programming, based on [8], has been established as an important declarative programming
formalism [3]. However, a shortcoming of classical ASP is the lack of means for modular programming, i.e.,
dividing programs into several interacting components. Even though reasoners such as DLV, CLASP, and
DLVHEX allow to partition programs into several files, they are still viewed as a single monolithic sets of
rules. On top of that, passing input to selected (sub-)programs is not possible upfront.

In procedural programming, the idea of calling subprograms and processing their output is in permanent
use. Also in functional programming such modularity is popular. This helps reducing development time
(e.g., by using third-party libraries), the length of source code, and, last but not least, makes code human-
readable. Reading, understanding, and debugging a typical size application written in a monolithic program
is cumbersome. Modular extensions of ASP have been considered [9, 5] with the aim of building an overall
answer set from program modules; however, multiple results of subprograms (as typical for ASP) are
respected, and no reasoning about such results is supported. XASP [11] is an SMODELS interface for
XSB-Prolog. This system is related to our work, but in this scenario the meta-reasoner is Prolog and thus
different from the semantics of its subprograms, which are under stable model semantics. The subprograms
are monolithic programs and cannot make further calls. This is insufficient for some applications, e.g., for
the MELD belief set merging system, which require hierarchical nesting of arbitrary depth. Adding such
nesting to available approaches is not easily possible and requires to adapt systems similar to our approach.

HEX-programs [6] extend ASP with higher-order atoms, which allow the use of predicate variables, and
external atoms, through which external sources of computation can be accessed. But HEX-programs do not
support modularity and meta-reasoning directly. In this context, modularity means the encapsulation of
subprograms which interact through well-defined interfaces only, and meta-reasoning requires reasoning
over sets of answer sets. Moreover, in HEX-programs external sources are realized as procedural C++
functions. Therefore, as soon as external sources are queried, we leave the declarative formalism. However,
the generic notion of external atom, which facilitates a bidirectional data flow between the logic program
and an external source (viewed as abstract Boolean function), can be utilized to provide these features.

To this end, we present nested HEX-programs, which support (possibly parameterized) subprogram
calls. It is the nature of nested hex-programs to have multiple HEX-programs which reason over the answer
sets of each individual subprogram. This can be done in a user-friendly way and enables the user to write
purely declarative applications consisting of multiple interacting modules. Notably, call results and answer

? This research has been supported by the Austrian Science Fund (FWF) project P20840 and P20841, and by the
Vienna Science and Technology Fund (WWTF) project ICT 08-020.
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sets are objects that can be accessed by identifiers and processed in the calling program. Thus, different
from [9, 5] and related formalisms, this enables (meta)-reasoning about the set of answer sets of a program.
In contrast to [11], both the calling and the called program are in the same formalism. In particular, the
calling program has also a multi-model semantics. As an important difference to [1], nested HEX-programs
do not require extending the syntax and semantics of the underlying formalism, which is the HEX-semantics.
The integration is, instead, by defining some external atoms (which is already possible in ordinary HEX-
programs), making the approach simple and user-friendly for many applications. Furthermore, as nested
HEX-programs are based on HEX-programs, they additionally provide access to external sources other than
logic programs. This makes nested HEX-programs a powerful formalism, which has been implemented using
the DLVHEX reasoner for HEX-programs; applications like belief set merging [10] show its potential and
usefulness.

2 HEX-Programs

We briefly recall HEX-programs, which have been introduced in [6] as a generalization of (disjunctive)
extended logic programs under the answer set semantics [8]; for more details and background, we refer
to [6]. A HEX-program consists of rules of the form

a1 ∨ · · · ∨ an ← b1, . . . , bm,not bm+1, . . . ,not bn ,

where each ai is a classical literal, i.e., an atom p(t1, . . . , tl) or a negated atom ¬p(t1, . . . , tl), and each bj
is either a classical literal or an external atom, and not is negation by failure (under stable semantics). An
external atom is of the form

&g [q1, . . . , qk](t1, . . . , tl) ,

where g is an external predicate name, the qi are predicate names or constants, and the tj are terms. Informally,
the semantics of an external g is given by a k + l + 1-ary Boolean oracle function f&g. The external atom
is true relative to an interpretation I and a grounding substitution θ iff f&g(I, q1, . . . , qk, t1θ, . . . , tlθ) = 1.
Via such atoms, arbitrary (computable) functions can be included. E.g., built-in functions can be realized via
external atoms, or library functions such as string manipulations, sorting routines, etc. As external sources
need not be on the same machine, knowledge access across the Web is possible, e.g., belief set import.
Strictly, [6] omits classical negation ¬ but the extension is routine; furthermore, [6] also allows terms for
the qi and variables for predicate names, which we do not consider.

Example 1. Suppose an external knowledge base consists of an RDF file located on the web at http://.../
data.rdf. Using an external atom &rdf [<url >](X,Y, Z), we may access all RDF triples (s, p, o) at the
URL specified with <url>. To form belief sets of pairs that drop the third argument from RDF triples, we
may use the rule

bel(X,Y )← &rdf [http://.../data.rdf](X,Y, Z) .

The semantics of HEX-program is given via answer sets, which are sets of ground literals closed under
the rules that satisfy a stability condition as in [8]; we refer to [6] for technical details. The above program
has a single answer set which consists of all literal bel(c1, c2) such some RDF triple (c1, c2, c3) occurs at
the respective URL.

We use the DLVHEX system from http://www.kr.tuwien.ac.at/research/systems/dlvhex/ as a backend. DLVHEX
implements (a fragment of) HEX-programs. It provides a plugin mechanism for external atoms. Besides
library atoms, the user can defined her own atoms, where for evaluation a C++ routine must be provided.

3 Nested HEX-Programs

Limitations of ASP. As a simple example demonstrating the limits of ordinary ASP, assume a program
computing the shortest paths between two (fixed) nodes in a connected graph. The answer sets of this
program then correspond to the shortest paths. Suppose we are just interested in the number of such paths.
In a procedural setting, this is easily computed: if a function returns all these paths in an array, linked list, or
similar data structure, then counting its elements is trivial.



Nested HEX-Programs 85
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Fig. 1: System Architecture of Nestex HEX (data flow 99K, control flow→)

In ASP, the solution is non-trivial if the given program must not be modified (e.g., if it is provided by a
third party); above, we must count the answer sets. Thus, we need to reason on sets of answer sets, which is
infeasible inside the program. Means to call the program at hand and reason about the results of this “callee”
(subprogram) in the “calling program” (host program) would be useful. Aiming at a logical counterpart to
procedural function calls, we define a framework which allows to input facts to the subprogram prior to its
execution. Host and subprograms are decoupled and interact merely by relational input and output values.
To realize this mechanism, we exploit external atoms, leading to nested HEX-programs.
Architecture. Nested HEX-programs are realized as a plugin for the reasoner DLVHEX,1 which consists of
a set of external atoms and an answer cache for the results of subprograms (see Fig. 1). Technically, the
implementation is part of the belief set merging system MELD, which is an application on top of a nested
HEX-programs core. This core can be used independently from the rest of the system.

When a subprogram call (corresponding to the evaluation of a special external atom) is encountered in
the host program, the plugin creates another instance of the reasoner to evaluate the subprogram. Its result is
then stored in the answer cache and identified with a unique handle, which can later be used to reference the
result and access its components (e.g., predicate names, literals, arguments) via other special external atoms.

There are two possible sources for the called subprogram: (1) either it is directly embedded in the host
program, or (2) it is stored in a separate file. In (1), the rules of the subprogram must be represented within
the host program. To this end, they are encoded as string constants. An embedded program must not be
confused with a subset of the rules of the host program. Even though it is syntactically part of it, it is
logically separated to allow independent evaluation. In (2) merely the path to the location of the external
program in the file system is given. Compared to embedded subprograms, code can be reused without
the need to copy, which is clearly advantageous when the subprogram changes. We now present concrete
external atoms &callhexn , &callhexfilen , &answersets , &predicates , and &arguments .
External Atoms for Subprogram Handling. We start with two families of external atoms

&callhexn [P, p1, . . . , pn](H) and &callhexfilen [FN, p1, . . . , pn](H)

that allow to execute a subprogram given by a string P respectively in a file FN; here n is an integer specifying
the number of predicate names pi, 1 ≤ i ≤ n, used to define the input facts. When evaluating such an
external atom relative to an interpretation I , the system adds all facts pi(a1, . . . , ami

)← over pi (with arity
mi) that are true in I to the specified program, creates another instance of the reasoner to evaluate it, and
returns a symbolic handle H as result. For convenience, we do not write n in &callhexn and &callhexfilen

as it is understood from the usage.

Example 2. In the following program, we use two predicates p1 and p2 to define the input to the subpro-
gram sub.hex (n = 2), i.e., all atoms over these predicates are added to the subprogram prior to evaluation.
The call derives a handle H as result.

p1(x, y)← p2(a)← p2(b)←
handle(H)← &callhexfile[sub.hex, p1, p2](H)

A handle is a unique integer representing a certain cache entry. In the implementation, handles are con-
secutive numbers starting with 0. Hence in the example the unique answer set of the program is {handle(0)}
(neglecting facts).

1 http://www.kr.tuwien.ac.at/research/systems/dlvhex/meld.html
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Formally, given an interpretation I , f&callhexfilen
(I,file, p1, . . . , pn, h) = 1 iff h is the handle to the

result of the program in file file, extended by the facts over predicates p1, . . . , pn that are true in I . The
formal notion and use of &callhexn to call embedded subprograms is analogous to &callhexfilen .

Example 3. Consider the following program:

h1(H)← &callhexfile[sub.hex](H)
h2(H)← &callhexfile[sub.hex](H)
h3(H)← &callhex [a← . b← .](H)

The rules execute the program sub.hex and the embedded program Pe = {a←, b←}. No facts will be
added in this example. The single answer set is {h1(0), h2(0), h3(1)} resp. {h1(1), h2(1), h3(0)} depending
on the order in which the subprograms are executed (which is irrelevant). While h1(X) and h2(X) will have
the same value for X , h3(Y ) will be such that Y 6=X . Our implementation realizes that the result of the
program in sub.hex is referred to twice but executes it only once; Pe is (possibly) different from sub.hex
and thus evaluated separately.

Now we want to determine how many (and subsequently which) answer sets it has. For this purpose, we
define external atom &answersets[PH ](AH ) which maps handles PH to call results to sets of respective
answer set handles. Formally, for an interpretation I , f&answersets(I, hP , hA) = 1 iff hA is a handle to an
answer set of the program with program handle hP .

Example 4. The program

ash(PH ,AH )← &callhex [a ∨ b← .](PH ),&answersets[PH ](AH )

calls the embedded subprogram Pe = {a ∨ b← .} and retrieves pairs (PH ,PA) of handles to its answer
sets. &callhex returns a handle PH = 0 to the result of Pe, which is passed to &answersets . This atom
returns a set of answer set handles (0 and 1, as Pe has two answer sets, viz. {a} and {b}). The overall
program has thus the single answer set {ash(0, 0), ash(0, 1)}. As for each program the answer set handles
start with 0, only a pair of program and answer set handles uniquely identifies an answer set.

We now are ready to solve our example of counting shortest paths from above.

Example 5. Suppose paths.hex is the search program and encodes each shortest path in a separate answer
set. Consider the following program:

as(AH)← &callhexfile[paths.hex](PH ),&answersets[PH ](AH )
number(D)← as(C), D = C + 1,not as(D)

The second rule computes the first free handle D; the latter coincides with the number of answer sets
of paths.hex (assuming that some path between the nodes exists).

At this point we still treat answer sets of subprograms as black boxes. We now define an external atom
to investigate them. Given an interpretation I , f&predicates(I, hP , hA, p, a) = 1 iff p occurs as an a-ary
predicate in the answer set identified by hP and hA. Intuitively, the external atom maps pairs of program
and answer set handles to the predicates names with their associated arities occurring in the accourding
answer set.

Example 6. We illustrate the usage of &predicates with the following program:

preds(P,A)← &callhex [node(a). node(b). edge(a, b).](PH ),
&answersets[PH ](AH ),&predicates[PH ,AH ](P,A)

It extracts all predicates (and their arities) occurring in the answer of the embedded program Pe, which
specifies a graph. The single answer set is {preds(node, 1), preds(edge, 2)} as the single answer set of Pe

has atoms with predicate node (unary) and edge (binary).
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The final step to gather all information from the answer of a subprogram is to extract the literals and
their parameters occurring in a certain answer set. This can be done with external atom &arguments , which
is best demonstrated with an example.

Example 7. Consider the following program:

h(PH ,AH )← &callhex [node(a). node(b). node(c). edge(a, b).edge(c, a).](PH ),
&answersets[PH ](AH )

edge(W ,V )← h(PH ,AH ),&arguments[PH ,AH , edge](I , 0,V ),
&arguments[PH ,AH , edge](I , 1,W )

node(V )← h(PH ,AH ),&arguments[PH ,AH , node](I , 0,V )

It extracts the directed graph given by the embedded subprogram Pe and reverses all edges; the single
answer set is {h(0, 0),node(a),node(b),node(c), edge(b, a), edge(a, c)}. Indeed, Pe has a single answer
set, identified by PH = 0, AH = 0; via &arguments we can access in the second resp. third rule the
facts over edge resp. node in it, which are identified by a unique literal id I; the second output term
of &arguments is the argument position, and the third the actual value at this position. If the predicates of a
subprogram were unknown, we can determine them using &predicates .

To check the sign of a literal, the external atom &arguments[PH,AH,Pred](I, s,Sign) supports
argument s. When s = 0, &arguments will match the sign of the I-th positive literal over predicate Pred
into Sign , and when s = 1 it will match the corresponding classically negated atom.

4 Applications

MELD. The MELD system [10] deals with merging multiple collections of belief sets. Roughly, a belief
set is a set of classical ground literals. Practical examples of belief sets include explanations in abduction
problems, encodings of decision diagrams, and relational data. The merging strategy is defined by tree-
shaped merging plans, whose leaves are the collections of belief sets to be merged, and whose inner nodes
are merging operators (provided by the user). The structure is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested HEX-programs; it proceeds
bottom-up, where every step requires inspection of the subresults, i.e., accessing the answer sets of subpro-
grams. Note that for nesting of ASP-programs with arbitrary (finite) depth, XASP [11] is not appropriate.

Aggregate Functions. Nested programs can also emulate aggregate functions [7] (e.g., sum, count, max)
where the (user-defined) host program computes the function given the result of a subprogram. This can
be generalized to aggregates over multiple answer sets of the subprogram; e.g., to answer set counting, or
to find the minimum/maximum of some predicate over all answer sets (which may be exploited for global
optimization).

Generalized Quantifiers. Nested HEX-programs make the implementation of brave and cautious reasoning
for query answering tasks very easy, even if the backend reasoner only supports answer set enumeration.
Furthermore, extended and user-defined types of query answers (cf. [5]) are definable in a very user-friendly
way, e.g., majority decisions (at least half of the answer sets support a query), or minimum and/or maximum
number based decisions (qualified number restrictions).

Preferences. Answer sets as accessible objects can be easily compared wrt. user-defined preference rules,
and used for filtering as well as ranking results (cf. [4]): a host program selects appropriate candidates
produced by a subprogram, using preference rules. The latter can be elegantly implemented as ordinary
integrity constraints (for filtering), or as rules (possibly involving further external calls) to derive a rank.
A popular application are online shops, where the past consumer behavior is frequently used to filter or
sort search results. Doing the search via an ASP program which delivers the matches in answer sets, a host
program can reason about them and act as a filter or ranking algorithm.
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5 Conclusion

To overcome limitations of classical ASP regarding subprograms and reasoning about their possible out-
comes, we briefly presented nested HEX-programs, which realize subprogram calls via special external
atoms of HEX-programs; besides modularity, a plus for readability and program reusability, they allow for
reasoning over multiple answer sets (of subprograms). An prototype implementation on top of DLVHEX is
available. Related to this is the work on macros in [2], which allow to call macros in logic programs.

The possibility to access answer sets in a host program, in combination with access to other external
computations, makes nested HEX-programs a powerful tool for a number of applications. In particular,
libraries and user-defined functions can be incorporated into programs easily. As an interesting aspect is
that dynamic program assembly (using a suitable string library) and execution are possible, which other
approaches to modular ASP programming do not offer. Exploring this remains for future work.
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Abstract. In this paper, we present domain-specific languages (DSLs) that we devised for their use in
the implementation of a finite domain constraint programming system, available aslibrary(clpfd)
in SWI-Prolog and YAP-Prolog. These DSLs are used in propagator selection and constraint reification.
In these areas, they lead to concise specifications that are easy to read and reason about. At compilation
time, these specifications are translated to Prolog code, reducing interpretative run-time overheads. The
devised languages can be used in the implementation of otherfinite domain constraint solvers as well
and may contribute to their correctness, conciseness and efficiency.

Keywords: DSL, code generation, little languages

1 Introduction

Domain-specific languages (DSLs) are languages tailored toa specific application domain. DSLs are typ-
ically devised with the goal of increased expressiveness and ease of use compared to general-purpose
programming languages in their domains of application ([1]). Examples of DSLs includelexandyacc([2])
for lexical analysis and parsing, regular expressions for pattern matching, HTML for document mark-up,
VHDL for electronic hardware descriptions and many other well-known instances.

DSLs are also known as “little languages” ([3]), where “little” primarily refers to the typically limited
intended or main practical application scope of the language. For example, PostScript is a “little language”
for page descriptions.

CLP(FD), constraint logic programming over finite domains,is a declarative formalism for describing
combinatorial problems such as scheduling, planning and allocation tasks ([5]). It is one of the most widely
used instances of the general CLP(·) scheme that extends logic programming to reason over specialized
domains. Since CLP(FD) is applied in many industrial settings like systems verification, it is natural to
ask: How can we implement constraint solvers that are more reliable and more concise (i.e., easier to
read and verify) while retaining their efficiency? In the following chapters, we present little languages that
we devised towards this purpose. They are already being usedin a constraint solver over finite domains,
available aslibrary(clpfd) in SWI-Prolog and YAP-Prolog, and can be used in other systems as
well.

2 Related work

In the context of CLP(FD),indexicals([4]) are a well-known example of a DSL. The main idea of index-
icals is to declaratively describe the domains of variablesas functions of the domains of related variables.
The indexical language consisting of the constraint “in ” and expressions such asmin(X)..max(X)
also includes specialized constructs that make it applicable to describe a large variety of arithmetic and
combinatorial constraints. GNU Prolog ([7]) and SICStus Prolog ([6]) are well-known Prolog systems that
use indexicals in the implementation of their finite domain constraint solvers.

The usefulness of deriving large portions of code automatically from shorter descriptions also motivates
the use ofvariable views, a DSL to automatically deriveperfectpropagator variants, in the implementation
of Gecode ([8]).
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Action rules([9]) and Constraint Handling Rules ([10]) are Turing-complete languages that are very
well-suited for implementing constraint propagators and even entire constraint systems (for example, B-
Prolog’s finite domain solver).

These examples of DSLs are mainly used for the description and generation of constraintpropagation
code in practice. In the following chapters, we contribute to these uses of DSLs in the context of CLP(FD)
systems by presenting DSLs that allow you to concisely express selection of propagators and constraint
reification with desirable properties.

3 Matching propagators to constraint expressions

To motivate the DSL that we now present, consider the following quote from Neng-Fa Zhou, author of
B-Prolog ([11]):

A closer look reveals the reason [for failing to solve the problems within the time limit]: Almost all
of the failed instances contain non-linear (e.g.,X ∗Y = C, abs(X−Y ) = C, andXmodY = C)
and disjunctive constraints which were not efficiently implemented in the submitted version of the
solver.

Consider the specific example ofabs(X−Y ) = C: It is clear that instead of decomposing the constraint
into X − Y = T , abs(T ) = C, a specialized combined propagator can be implemented and applied,
avoiding auxiliary variables and intermediate propagation steps to improve efficiency. It is then left to
detect that such a specialized propagator can actually be applied to a given constraint expression. This
is the task ofmatchingavailable propagators to given constraint expressions, orequivalently, mapping
constraint expressions to propagators.

Manually selecting fitting propagators for given constraint expressions is quite error-prone, and one
has to be careful not to accidentally unify variables that occur in the expression with subexpressions that
one wants to check for. To simplify this task, we devised a DSLin the form of a simple committed-choice
language. The language is a list of rules of the formM → As, whereM is a matcher andAs is a list of
actions that are performed whenM matches a posted constraint.

More formally, amatcherM consists of the termm c(P, C). P denotes apatterninvolving a constraint
relation like #=, #> etc. and its arguments, andC is acondition(a Prolog goal) that must hold for a rule
to apply. The basic building-blocks of a pattern are explained in Table 1. These building-blocks can be
nested inside all symbolic expressions like addition, multiplication etc. A rule is applicable if a given
constraint is matched byP (meaning it unifies withP taking the conditions induced byP into account),
and additionallyC is true. A matcherm c(P, true), can be more compactly written asm(P ).

any(X) Matches any subexpression, unifyingX with that expression.
var(X) Matches a variable or integer, unifyingX with it.

integer(X) Matches an integer, unifyingX with it.
Table 1.Basic building-blocks of a pattern

In a ruleM → As, each actionAi in the list of actionsAs = [A1, . . . , An] is one of the actions
described in Table 2. When a rule is applicable, its actions are performed in the order they occur in the list,
and no further rules are tried.

Figure 1 shows some of the matching rules that we use in our constraint system. It is only an excerpt;
for example, in the actual system, nested additions are alsodetected and handled by a dedicated propaga-
tor. Such a declarative description has several advantages: First, it allows automated subsumption checks
to detect whether specialized propagators are accidentally overshadowed by other rules. This is also a mis-
take that we found easy to make and hard to detect when manually selecting propagators. Second, when
DSLs similar to the one we propose here are also used in other constraint systems, it is easier to compare
supported specialized propagators, and to support common ones more uniformly across systems. Third,
improvements to the expansion phase of the DSL benefits potentially many propagators at once.
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g(G) Call the Prolog goalG.
d(X, Y) Decompose arithmetic subexpressionX, unifying Y with its result. Equiva-

lent tog(parse clpfd(X, Y)) , an internal predicate that is also generated
from a similar DSL.

p(P) Post a constraint propagatorP . This is a shorthand notation for a specific se-
quence of goals that add a constraint to the constraint storeand trigger it.

r(X, Y) Rematch the rule’s constraint relation, using argumentsX andY . Equivalent to
g(call(F,X,Y)) , whereF is the functor of the rule’s pattern.

Table 2.Valid actions in a listAs of a ruleM → As

1 m(integer(I) #>= abs(any(X))) => [d(X, RX), g((I>=0, I1 is −I, RX in I1..I))]
2 m(any(X) #>= any(Y))          => [d(X, RX), d(Y, RY), g(geq(RX, RY))]
3

4 m(var(X) #= var(Y)+var(Z))    => [p(pplus(Y,Z,X))]
5 m(var(X) #= var(Y)−var(Z))    => [p(pplus(X,Z,Y))]
6 m(any(X) #= any(Y))           => [d(X, RX), d(Y, RX)]
7

8 m(var(X) #\= integer(Y))      => [g(neq_num(X, Y))]
9 m(any(X) #\= any(Y) + any(Z)) => [d(X, X1), d(Y, Y1), d(Z, Z1),
10                                   p(x_neq_y_plus_z(X1, Y1, Z1))]
11 m(any(X) #\= any(Y) − any(Z)) => [d(X, X1), d(Y, Y1), d(Z, Z1),
12                                   p(x_neq_y_plus_z(Y1, X1, Z1))]
13 m(any(X) #\= any(Y))          => [d(X, RX), d(Y, RY), g(neq(RX, RY))]

Fig. 1.Rules for matching propagators in our constraint system. (Excerpt)

We found that the languages features we introduced above formatchers and actions enable matching a
large variety of intended specialized propagators in practice, and believe that other constraint systems may
benefit from this or similar syntax as well.

4 Constraint reification

We now present a DSL that simplifies the implementation of constraintreification, which means reflecting
the truth values of constraint relations into Boolean0/1-variables.

When implementing constraint reification, it is tempting toproceed as follows: For concreteness, con-
sider reified equality (#=/2 ) of two CLP(FD) expressionsA andB. We could introduce two temporary
variables,TA andTB, and post the constraintsTA #= A andTB #= B, thus using the constraint solver
itself to decompose the (possibly compound) expressionsA andB, and reducing reified equality of two
expressionsto equality of two finite domainvariables(or integers), which is easier to implement. Un-
fortunately, this strategy yields wrong results in general. Consider for example the constraint (#<==>/2
denotes Boolean equivalence):

(X/0 #= Y/0) #<==> B

It is clear that the relationX/0 #= Y/0 cannot hold, since a divisor can never be 0. A valid (declara-
tively equivalent) answer to the above constraint is thus (note thatX andY must be constrained to integers
for the relation to hold):

B = 0, X in inf..sup, Y in inf..sup

However, if we decompose the equalityX/0 #= Y/0 into two auxiliary constraintsTA #= X/0
andTB #= Y/0 and post them, then (with strong enough propagation of division) both auxiliary con-
straints fail, and thus the whole query (incorrectly) fails. While devising a DSL for reification, we found
one commercial Prolog system and one freely available system that indeed incorrectly failed in this case.
After we reported the issue, the problem was immediately fixed.

It is thus necessary to takedefinednessinto account when reifying constraints. See also [12], where
our constraint system (in contrast to others that were tested) correctly handles all reification test cases,
which we attribute in part to the DSL presented in this chapter. Once any subexpression of a relation
becomes undefined, the relation cannot hold and its associated truth value must be0. Undefinedness can
occur whenY = 0 in the expressionsX/Y , XmodY , andXremY . Parsing an arithmetic expression that
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occurs as an argument of a constraint that is being reified is thus at least a ternary relation, involving the
expression itself, its arithmetic result, and its Boolean definedness.

There is a fourth desirable component in addition to those just mentioned: It is useful to keep track
of auxiliary variablesthat are introduced when decomposing subexpressions of a constraint that is being
reified. The reason for this is that the truth value of a reifiedconstraint may turn out to be irrelevant, for
instance the implication0 #==> C holds for both possible truth values of the constraintC, thus auxiliary
variables that were introduced to hold the results of subexpressions while parsingC can be eliminated.
However, we need to be careful: A constraint propagator mayaliasuser-specified variables with auxiliary
variables. For example, inabs(X) #= T, X #>= 0 , a constraint system may deduceX = T. Thus,
if T was previously introduced as an auxiliary variable, andX was user-specified,X must still retain its
status as a constrained variable.

These considerations motivate the following DSL for parsing arithmetic expressions in reified con-
straints, which we believe can be useful in other constraintsystems as well: A parsing rule is of the
form H → Bs. A headH is either a termg(G), meaning that the Prolog goalG is true, or a termm(P ),
whereP is a symbolic pattern and means that the expressionE that is to be parsed can be decomposed
as stated, recursively using the parsing rules themselves for subterms ofE that are subsumed by vari-
ables inP . The bodyBs of a parsing rule is a list of body elements, which are described in Table 3. The
predicateparse reified/4 , shown in Figure 2, contains our full declarative specification for parsing
arithmetic expressions in reified constraints, relating anarithmetic expressionE to its resultR, Boolean
definednessD, and auxiliary variables according to the given parsing rules, which are applied in the order
specified, committing to the first rule whose head matches. This specification is again translated to Prolog
code at compile time and used in other predicates.

g(G) Call the Prolog goalG.
d(D) D is 1 if and only if all subexpressions ofE are defined.
p(P) Add the constraint propagatorP to the constraint store.
a(A) A is an auxiliary variable that was introduced while parsing the

given compound expressionE.
a(X,A) A is an auxiliary variable, unlessA == X.

a(X,Y,A) A is an auxiliary variable, unlessA == X or A == Y.
skeleton(Y,D,G) A “skeleton” propagator is posted. WhenY cannot become0

any more, it calls the Prolog goalG and bindsD = 1. WhenY

is 0, it bindsD = 0. WhenD = 1 (i.e., the constraint must
hold), it postsY #\= 0.

Table 3.Valid body elements for a parsing rule

1 parse_reified(E, R, D,
2     [g(cyclic_term(E)) => [g(domain_error(clpfd_expression, E))],
3      g(var(E))         => [g((constrain_to_integer(E), R=E, D=1))],
4      g(integer(E))     => [g((R=E, D=1))],
5      m(−X)             => [d(D), p(ptimes(−1,X,R)), a(R)],
6      m(abs(X))         => [g(R#>=0), d(D), p(pabs(X, R)), a(X,R)],
7      m(X+Y)            => [d(D), p(pplus(X,Y,R)), a(X,Y,R)],
8      m(X−Y)            => [d(D), p(pplus(R,Y,X)), a(X,Y,R)],
9      m(X*Y)            => [d(D), p(ptimes(X,Y,R)), a(X,Y,R)],
10      m(X^Y)            => [d(D), p(pexp(X,Y,R)), a(X,Y,R)],
11      m(min(X,Y))       => [d(D), p(pgeq(X, R)), p(pgeq(Y, R)),
12                            p(pmin(X,Y,R)), a(X,Y,R)],
13      m(max(X,Y))       => [d(D), p(pgeq(R, X)), p(pgeq(R, Y)),
14                            p(pmax(X,Y,R)), a(X,Y,R)],
15      m(X/Y)            => [skeleton(Y,D,X/Y #= R)],
16      m(X mod Y)        => [skeleton(Y,D,X mod Y #= R)],
17      m(X rem Y)        => [skeleton(Y,D,X rem Y #= R)],
18      g(true)           => [g(domain_error(clpfd_expression, E))]]).

Fig. 2. Parsing arithmetic expressions in reified constraints withour DSL
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5 Conclusion and future work

We have presented DSLs that are used in the implementation ofa finite domain constraint programming
system. They enable us to capture the intended functionality with concise declarative specifications. We
believe that identical or similar DSLs are also useful in theimplementation of other constraint systems.
In the future, we intend to generate even more currently hand-written code automatically from smaller
declarative descriptions.
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Abstract. A prototype system is described whose core functionality is, based on propositional logic,
the elimination of second-order operators, such as Boolean quantifiers and operators for projection, for-
getting and circumscription. This approach allows to express many representational and computational
tasks in knowledge representation – for example computation of abductive explanations and models
with respect to logic programming semantics – in a uniform operational system, backed by a uniform
classical semantic framework.

1 Computation with Logic as Operator Elimination

We pursue an approach to computation with logic emerging from three theses:

1. Classical first-order logic extended by some second-order operators suffices to express many
techniques of knowledge representation.

Like the standard logic operators, second-order operators can be defined semantically, by specifying the
requirements on an interpretation to be a model of a formula whose principal functor is the operator, de-
pending only on semantic properties of the argument formulas. Neither control structure imposed over
formulas (e.g. Prolog), nor formula transformations depending on a particular syntactic shape (e.g. Clark’s
completion) are involved. Compared to classical first-order formulas, the second-order operators give ad-
ditional expressive power. Circumscription is a prominent knowledge representation technique that can be
expressed with second-order operators, in particular predicate quantifiers [1].

2. Many computational tasks can be expressed as elimination of second-order operators.

Elimination is a way to computationally process second-order operators, for example Boolean quantifiers
with respect to propositional logic: The input is a formula which may contain the operator, for example a
quantified Boolean formula such as ∃q ((p ← q) ∧ (q ← r)). The output is a formula that is equivalent
to the input, but in which the operator does not occur, such as, with respect to the formula above, the
propositional formula p ← r. Let us assume that the method used to eliminate the Boolean quantifiers
returns formulas in which not just the quantifiers but also the quantified propositional variables do not
occur. This syntactic condition is usually met by elimination procedures. Our method then subsumes a
variety of tasks: Computation of uniform interpolants, QBF and SAT solving, as well as computation of
certain forms of abductive explanations, of propositional circumscription, and of stable models, as will be
outlined below.

3. Depending on the application, outputs of computation with logic are conveniently represented
by formulas meeting syntactic criteria.

If results of elimination are formulas characterized just up to semantics, they may contain redundancies
and be in a shape that is difficult to comprehend. Thus, they should be subjected to simplification and
canonization procedures before passed to humans or machine clients. The output format depends on the
application problem: What is a CNF of the formula? Are certain facts consequences of the formula? What
are the models of the formula? What are its minimal models? What are its 3-valued models with respect
to some encoding into 2-valued logics? Corresponding answers can be computed on the basis of normal
form representations of the elimination outputs: CNFs, DNFs, and full DNFs. Of course, transformation
into such normal forms might by itself be an expensive task. Second-order operators allow to counter this
by specifying a small set of application relevant symbols that should be included in the output (e.g. by
Boolean quantification upon the irrelevant atoms).
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2 Features of the System

ToyElim1 is a prototype system developed to investigate operator elimination from a pragmatic point of
view with small applications. For simplicity, it is based on propositional logic, although its characteristic
features should transfer to first-order logic. It supports a set of second-order operators that have been
semantically defined in [11, 14, 13].

Formula Syntax. As the system is implemented in Prolog, formulas are represented by Prolog terms, the
standard connectives corresponding to true/0, false/0, ˜/1, ,/2, ;/2, ->/2, <-/2, <->/2. Propositional
atoms are represented by Prolog atoms or compound ground terms. The system supports propositional
expansion with respect to finite domains of formulas containing first-order quantifiers.

Forgetting. Existential Boolean quantification ∃p F can be expressed as forgetting [11, 4] in formula F
about atom p, written forget{p}(F ), represented by forg([p], F ′) in system syntax, where F ′ is the
system representation of F . To get an intuition of forgetting, consider the equivalence forget{p}(F ) ≡
F [p\true]∨F [p\false], where F [p\true] (F [p\false]) denotes F with all occurrences of p replaced by true
(false). Rewriting with this equivalence constitutes a naive method for eliminating the forgetting operator.
The formula forget{p}(F ) can be said to express the same as F about all other atoms than p, but nothing
about p.

Elimination and Pretty Printing of Formulas. The central operation of the ToyElim system, elimination
of second-order operators, is performed by the predicate elim(F,G), with input formula F and output
formula G. For example, define as extension of kb1/1 a formula (after [3]) as follows:

kb1(((shoes are wet <- grass is wet),
(grass is wet <- rained last night),
(grass is wet <- sprinkler was on))).

(1)

After consulting this, we can execute the following query on the Prolog toplevel:

?- kb1(F), elim(forg([grass is wet], F), G), ppr(G). (2)

This results in binding G to the output of eliminating the forgetting about grass is wet. The predi-
cate ppr/1 is one of several provided predicates for converting formulas into application adequate shapes.
It prints its argument as CNF with clauses written as reverse implications:

((shoes are wet <- rained last night),
(shoes are wet <- sprinkler was on)).

(3)

Scopes. So far, the first argument of forgetting has been a singleton set. More generally, it can be an
arbitrary set of atoms, corresponding to nested existential quantification. Even more generally, also polarity
can be considered: Forgetting can, for example, be applied only to those occurrences of an atom which have
negative polarity in a NNF formula. This can be expressed by literals with explicitly written sign in the
first argument of the forgetting operator. Forgetting about an atom is equivalent to nested forgetting about
the positive and the negative literal with that atom. In accord with this observation, we technically consider
the first argument of forgetting always as a set of literals, and regard an unsigned atom there as a shorthand
representing both of its literals. For example, [+grass is wet, shoes are wet] is a shorthand
for [+grass is wet, +shoes are wet, -shoes are wet]. Not just forgetting, but, as shown
below, also other second-order operators have a set of literals as parameter. Hence, we refer to a set of
literals in this context by a special name, as scope.

Projection. In many applications it is useful to make explicit not the scope that is “forgotten” about, but
what is preserved. The projection [11] of formula F onto scope S, which can be defined for scopes S
and formulas F as projectS(F ) ≡ forgetALL−S(F ), where ALL denotes the set of all literals, serves this
purpose. Vice versa, forgetting could be defined in terms of projection: forgetS(F ) ≡ projectALL−S(F ).
The call to elim/2 in the query (2) can equivalently be expressed with projection instead of forgetting by

elim(proj([shoes are wet, rained last night, sprinkler was on], F). (4)

1 http://cs.christophwernhard.com/provers/toyelim/, under GNU Public License.
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User Defined Logic Operators – An Example of Abduction. ToyElim allows the user to specify macros
for use in the input formulas of elim/2. The following example extends the system by a logic operator
gwsc for a variant of the weakest necessary condition [8], characterized in terms of projection:

:- define elim macro(gwsc(S, F, G), ˜proj(complements(S), (F, ˜G))). (5)

Here complements(S) specifies the set of the literal complements of the members of the scope specified
by S. The term gwsc(S, F, G) is the system syntax for gwscS(F,G), the globally weakest sufficient
condition of formula G on scope S within formula F , which satisfies the following: A formula H is equiv-
alent to gwscS(F,G) if and only if it holds that (1.) H ≡ projectS(H); (2.) F |= H → G; (3.) For all
formulas H ′ such that H ′ ≡ projectS(H ′) and F |= G → H ′ it holds that H |= H ′. With the gwsc
operator certain abductive tasks [3] can be expressed. The following query, for example, yields abductive
explanations for shoes are wet in terms of {rained last night, sprinkler was on} with re-
spect to the knowledge base (1):

?- kb1(F),
elim(gwsc([rained last night, sprinkler was on], F, shoes are wet),

G),
ppm(G).

(6)

The predicate ppm/1 serves, like ppr/1, to convert formulas to application adequate shape. It writes a DNF
of its input, in list notation, and simplified such that it does not contain tautologies and subsumed clauses.
In the example the output has two clauses, each representing an alternate explanation:

[[rained last night],[sprinkler was on]]. (7)

Scope-Determined Circumscription. A further second-order operator supported by ToyElim is scope-
determined circumscription [14]. The corresponding functor circ has, like proj and forg, a scope
specifier and a formula as arguments. It allows to express parallel predicate circumscription with varied
predicates [5] (only propositional, since the system is based on propositional logic). The scope specifier
controls the effect of circumscription: Atoms that occur just in a positive literal in the scope are mini-
mized; symmetrically, atoms that occur just negatively are maximized; atoms that occur in both polarities
are fixed; and atoms that do not at all occur in the scope are allowed to vary. For example, the scope
specifier, [+abnormal, bird], a shorthand for [+abnormal, +bird, -bird], expresses that
abnormal is minimized, bird is fixed, and all other predicates are varied.

Predicate Groups and Systematic Renaming. Semantics for knowledge representation sometimes in-
volve what might be described as handling different occurrences of a predicate differently – for example
depending on whether it is subject to negation as failure. If such semantics are to be modeled with clas-
sical logic, then these occurrences can be identified by using distinguished predicates, which are equated
with the original ones when required. To this end, ToyElim supports the handling of predicate groups: The
idea is that each predicate actually is represented by several corresponding predicates p0, . . . , pn, where
the superscripted index is called predicate group. In the system syntax, the predicate group of an atom is
represented within its main functor: If the group is larger than 0, the main functor is suffixed by the group
number; if it is 0, the main functor does not end in a number. For example p(a)0 and p(a)1 are represented
by p(a) and p1(a), respectively. In scope specifiers, a number is used as shorthand for the set of all
literals whose atom is from the indicated group, and a number in a sign functor for the set of those literals
which have that sign and whose atom is from the indicated group. For example, [+(0), 1] denotes the
union of the set of all positive literals whose atom is from group 0 and of the set of all literals whose atom
is from group 1. Systematic renaming of all atoms in a formula that have a specific group to their corre-
spondents from another group can be expressed in terms of forgetting [13]. The ToyElim system provides
the second-order operator rename for this. For example, rename([1-0], F) is equivalent to F after
eliminating second-order operators, followed by replacing all atoms from group 1 with their correspondents
from group 0.

An Example of Modeling a Logic Programming Semantics. Scope-determined circumscription and
predicate groups can be used to express the characterization of the stable models semantics in terms of
circumscription [7] (described also in [6, 13]). Consider the following knowledge base:
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kb2(((shoes are wet <- grass is wet),
(grass is wet <- sprinkler was on, ˜sprinkler was abnormal1),
sprinkler was on)).

(8)

Group 1 is used here to indicate atoms that are subject to negation as failure: All atoms in (8) are from
group 0, except for sprinkler was abnormal1, which is from 1. The user defined operator stable
renders the stable models semantics:

:- define elim macro(stable(F), rename([1-0], circ([+(0),1], F))). (9)

The following query then yields the stable models:

:- kb2(F), elim(stable((F)), G), ppm(G). (10)

The result is displayed with ppm/1, as in query (6). It shows here a DNF with a single clause, representing
a single model. The positive members of the clause constitute the answer set

[[grass is wet, shoes are wet, ˜sprinkler was abnormal, sprinkler was on]]. (11)

If it is only of interest whether shoes are wet is a consequence of the knowledge base under stable
models semantics, projection can be applied to obtain a smaller result. The query

:- kb2(F), elim(proj([shoes are wet], stable(F)), G), ppm(G). (12)

will effect that the DNF [[shoes are wet]] is printed.

3 Implementation

The ToyElim system is implemented in SWI-Prolog and can invoke external systems such as SAT and QBF
solvers. It runs embedded in the Prolog environment, allowing for example to pass intermediate results
between its components through Prolog variables, as exemplified by the queries shown above.

The implementation of the core predicate elim/2 maintains a formula which is gradually rewritten un-
til it contains no more second-order operators. It is initialized with the input formula, preprocessed such that
only two primitively supported second-order operators remain: forgetting and renaming. It then proceeds
in a loop where alternately equivalence preserving simplifying rewritings are applied, and a subformula
is picked and handed over for elimination to a specialized procedure. The simplifying rewritings include
distribution of forgetting over subformulas and elimination steps that can be performed with low cost [12].
Rewriting of subformulas with the Shannon expansion enables low-cost elimination steps. It is performed
at this stage if the expansion, combined with low-cost elimination steps and simplifications, does not lead
to an increase of the formula size. The subformula for handing over to a specialized method is picked with
the following priority: First, an application of forgetting upon the whole signature of a propositional argu-
ment, which can be reduced by a SAT solver to either true or false, is searched. Second, a subformula that
can be reduced analogously by a QBF solver, and finally a subformula which properly requires elimina-
tion of forgetting. For the latter, ToyElim schedules a portfolio of different methods, where currently two
algorithmic approaches are supported: Resolvent generation (SCAN, Davis-Putnam method) and rewriting
of subformulas with the Shannon expansion [10, 12]. Recent SAT preprocessors partially perform variable
elimination by resolvent generation. Coprocessor [9] is such a preprocessor that is configurable such that
it can be invoked by ToyElim for the purpose of performing the elimination of forgetting.

4 Conclusion

We have seen a prototype system for computation with logic as elimination of second-order operators. The
system helped to concretize requirements on the user interface and on processing methods of systems which
are entailed by that approach. In the long run, such a system should be based on more expressive logics than
propositional logic. ToyElim is just a first pragmatic attempt, taking advantage of recent advances in SAT
solving. A major difference in a first-order setting is that computations of elimination tasks then inherently
do not terminate for all inputs.
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A general system should for special subtasks not behave worse than systems specialized for these.
This can be achieved by identifying such subtasks, or by general methods that implicitly operate like the
specialized ones. ToyElim identifies SAT and QBF subtasks. It is a challenge to extend this range, for
example, such that the encoded stable model computation would be performed efficiently. The system
picks in each round a single subtask that is passed to a specialized solver. We plan to experiment with a
more flexible regime, where different subtasks are alternately tried with increasing timeouts.

Research on the improvement of elimination methods includes further consideration of techniques from
SAT preprocessors, investigation of tableau and DPLL-like techniques [12, 2], and, in the context of first-
order logic, the so called direct methods [1]. In addition, it seems worth to investigate further types of
output: incremental construction, like enumeration of model representations, and representations of proofs.

The approach of computation with logic by elimination leads to a system that provides a uniform
user interface covering many tasks, like satisfiability checking, computation of abductive explanations and
computation of models for various logic programming semantics. Variants of established concepts can be
easily expressed on a clean semantic basis and made operational. The approach supports the co-existence
of different knowledge representation techniques in a single system, backed by a single classical semantic
framework. This seems a necessary precondition for logic libraries that accumulate knowledge indepen-
dently of some particular application.
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Abstract. In this work a stand-alone preprocessor for SAT is presented that is able to perform most
of the known preprocessing techniques. Preprocessing a formula in SAT is important for performance
since redundancy can be removed. The preprocessor is part of the SAT solver riss [9] and is called
Coprocessor. Not only riss, but also MiniSat 2.2 [11] benefit from it, because the SatELite preprocessor
of MiniSat does not implement recent techniques. By using more advanced techniques, Coprocessor is
able to reduce the redundancy in a formula further and improves the overall solving performance.

1 Introduction

In theory SAT problems with n variables have a worst case execution time of O(2n) [2]. Reducing the
number of variables results in a theoretically faster search. However, in practice the number of variables
does not correlate with the runtime. The number of clauses highly influences the performance of unit
propagation. Preprocessing helps to reduce the size of the formula by removing variables and clauses
that are redundant. Due to limited space it is assumed that the reader is familiar with basic preprocessing
techniques [3]. Preprocessing techniques can be classified into two categories: Techniques, which change
a formula in a way that the satisfying assignment for the preprocessed formula is not necessarily a model
for the original formula, are called satisfiability-preserving techniques. Thus, for these techniques undo
information has to be stored. For the second category, this information is not required. The second category
is called equivalence-preserving techniques, because the preprocessed and original formula are equivalent.

This paper is structured in the following way. An overview of the implemented techniques is given in
Sect. 2. Details on Coprocessor, a format for storing the undo information and a comparison to SatELite is
given in Sect. 3. Finally, a conclusion is given in Sect. 4.

2 Preprocessor Techniques

The notation used to describe the preprocessor is the following: variables are numbers and literals are
positive or negative variables, e.g. 2 and ¬2. A clause C is a disjunction of a set of literals, denoted by
[l1, . . . , ln]. A formula is a conjunction of clauses. The original formula will be referred to as F , the
preprocessed formula is always called F ′. Unit propagation on F is denoted by BCP(l), where l is the
literal that is assigned to true.

2.1 Satisfiability-Preserving Techniques

The following techniques change F in a way, that models of F ′ are no model for F anymore. Therefore,
these methods need to store undo information. Undoing of these methods has to be done carefully, because
the order influences the resulting assignment. All the elimination steps have to be undone in the opposite
order they have been applied before [6].

Variable Elimination (VE) [3,13] is a technique to remove variables from the formula. Removing a variable
is done by resolving the according clauses in which the variable occurs. Given two sets of clauses: Cx with
the positive variable x and Cx with negative x. Let G be the union of these two sets G ≡ Cx ∪ Cx.
Resolving these two sets on variable x results in a new set of clauses G′ where tautologies are not included.
It is shown in [3] that G can be replaced by G′ without changing the satisfiability of the formula. If a model
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is needed for the original formula, then the partial model can be extended using the original clauses F to
assign variable x. Usually, applying VE to a variable results in a larger number of clauses. In state-of-the-
art preprocessors VE is only applied to a variable if the number of clauses does not increase. The resulting
formula depends on the order of the eliminated variables. Pure literal elimination is a special case of VE,
because the number of resolvents is zero.

Blocked Clause Elimination (BCE) [7] removes redundant blocked clauses. A clause C is blocked if it
contains a blocking literal l. A literal l is a blocking literal, if l is part of C, and for each clause C ′ ∈ F
with l ∈ C ′ the resolvent C ⊗l C ′ is a tautology [4,7]. Removing a blocked clause from F changes the
satisfying assignments [4]. Since BCE is confluent, the order of the removals does not change the result [7].

Equivalence Elimination (EE) [5] removes a literal l if it is equivalent to another literal l′. Only one literal
per equivalence class is kept. Equivalent literals can be found by finding strongly connected components in
the binary implication graph (BIG). The BIG represents all implications in the formula by directed edges
l → l′ between literals that occur in a clause [ l, l′ ]. If a cycle a → b → c → a is found, there is also a
cycle a→ b→ c→ a and therefore a ≡ b ≡ c can be shown and applied to F by replacing b, and c by a.
Finally, double literal occurrences and tautologies are removed.

Let F be 〈[1,¬2]1, [¬1, 2]2, [1, 2, 3]3, [¬1,¬3]4, [¬3, 4]5, [¬1,¬4]6〉. The index i of a clause Ci gives
the position of the clause in the formula. The order to apply techniques is EE, VE and finally BCE. EE will
find 1 ≡ 2 based on the clauses C1 and C2. Thus, it replaces each occurrence of 2 with 1, since 1 is the
smaller variable. This step alters C3 to C7 = [1, 3]. Now VE on variable 3 detects that there are 3 clauses
in which 3 occurs. The single resolvent that can be build is C7⊗5 = [1, 4]. Finally, BCE removes the two
clauses, because all literals of each clause are blocking literals. Since the resulting formula is empty, it is
satisfied by any interpretation. It can be clearly seen, that the original formula cannot be satisfied by any
interpretation.

2.2 Equivalence-Preserving Techniques

Equivalence-preserving techniques can be applied in any order, because the preprocessed formula is equiv-
alent to the original one. By combining the following techniques with satisfiability-preserving techniques
the order of the applied techniques has to be stored, to be able to undo all changes correctly.

Hidden Tautology Elimination (HTE) [4] is based on the clause extension hidden literal addition (HLA).
After the clause C is extended by HLA, C is removed if it is tautology. The HLA of a clause C with respect
to a formula F is computed as follows: Let l be a literal of C and [l′, l] ∈ F \{C}. If such a literal l′ can be
found, C is extended by C := C ∪ l′. This extension is applied until fix point. HLA can be regarded as the
opposite operation of self subsuming resolution. The algorithm is linear time in the number of variables [4].
An example for HTE is the formula F = 〈[1, 3], [−2, 3], [1, 2]〉. Extending the clause C1 stepwise can look
as follows: C1 = [1, 3,¬2] with C3. Next, C1 = [1, 3,¬2, 2] with C2, so that it becomes tautology and can
be removed.

Probing [8] is a technique to simplify the formula by propagating variables in both polarities l and l
separately and comparing their implications or by propagating all literals of a clause C = [l1, . . . , ln],
because it is known that in the two cases one of the candidates has to be satisfied.

Probing a single variable can find a conflict and thus finds a new unit. The following example illustrates
the other cases:

BCP(1)⇒ 2, 3, 4, ¬5, ¬7
BCP(1)⇒ 2, ¬4, 6, 7

To create a complete assignment, variable 1 has to be assigned and both possible assignments imply
2, so that 2 can be set to true immediately. Furthermore, the equivalences 4 ≡ 1 and 7 ≡ 1 can be found.
These equivalences can also be eliminated. Probing all literals of a clause can find only new units.
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Vivification (also called Asymmetric Branching) [12] reduces the length of a clause by propagating the
negated literals of a clause C = [l1, . . . , ln] iteratively until one of the following three cases occurs:

1. BCP({l1, . . . , li}) results in an empty clause for i < n.
2. BCP({l1, . . . , li}) implies another literal lj of the C with i < j < n
3. BCP({l1, . . . , li}) implies another negated literal lj of the C with i < j ≤ n

In the first case, the unsatisfying partial assignment is disallowed by adding a clause C ′ = [l1, . . . , li].
The clause C ′ subsumes C. The implication l1 ∧ · · · ∧ li → lj in the second case results in the clause
C ′ = [l1, . . . , li, lj ] that also subsumes C. Formulating the third case into a clause C ′ = [l1, . . . , li, lj ]
subsumes C by applying self subsumption to C ′′ = C ⊗lj C ′ = [l1, . . . , lj−1, lj+1, . . . , ln].

Extended Resolution (ER) [1] introduces a new variables v to a formula that is equivalent to a disjunction
of literals v ≡ l∨ l′. All clauses in F are updated by removing the pair and adding the new variable instead.
It has been shown, that ER is good for shrinking the proof size for unsatisfiable formulas. Applying ER
during search as in [1] resulted in a lower performance of riss, so that this technique has been put into the
preprocessor and replaces the most frequent literal pairs. Still, no deep performance analysis has been done
on this technique in the preprocessor, but it seems to boost the performance on unsatisfiable instances.

3 Coprocessor

The preprocessor of riss, Coprocessor, implements all the techniques presented in Sect. 2 and introduces
many algorithm parameters. A description of these parameters can be found in the help of Coprocessor1.
The techniques are executed in a loop on F , so that for example the result of HTE can be processed with
VE and afterwards HTE tries to eliminate clauses again.

It is possible to maintain a blacklist and a white-list of variables. Variables on the white-list are tabooed
for any non-model-preserving techniques so that their semantic is the same in F ′. Variables on the blacklist
are always removed by VE.

Furthermore, the resulting formula can be compressed. If variables are removed or are already assigned
a value, the variables of the reduct of F ′ are usually not dense any more. Giving the reduct to another
solver increases its memory usage unnecessarily. To overcome this weakness, a compressor has been built
into Coprocessor that fills these gaps with variables that still occur in F ′ and stores the already assigned
variables for postprocessing the model. The compression cannot be combined with the white-list.

Another transformation that can be applied by the presented preprocessor is the conversion from en-
coded CSP domains from the direct encoding to the regular encoding as described in [10].

3.1 The Map File Format

A map file is used to store the preprocessing information that is necessary to postprocess a model of F ′

such that it becomes a model for F again. The map file and the model for F ′ can be used to restore the
model for F by giving this information to Coprocessor. The following information has to be stored to be
able to do so:

Once Per elimination step
Compression Table Variable Elimination
Equivalence Classes Blocked Clause Elimination

Equivalence Elimination Step

The map file is divided into two parts. An partial example file for illustration is given in Fig. 1. The
format is described based on this example file. Each occurring case is also covered in the description. The
first line has to state “original variables” (line 1). This number is specified in the next line (line 2). Next,
the compression information is given by beginning with either “compress table” (line 3), if there is a table,
or “no table”, if there is no compression. Afterwards, the tables are given where each starts with a line
“table k v” and k represents the number of the table and v is the number of variables before the applied
compression (line 4). The next line gives the com-

1 The source code can be found at www.ki.inf.tu-dresden.de/˜norbert.

www.ki.inf.tu-dresden.de/~norbert
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1:original variables
2:30867
3:compress tables
4:table 0 30867
5:1 2 3 5 6 7 9 10 11 ... 0
6:units 0
7:-31 32 ... -30666 -30822 0
8:end table
9:ee table

10:1 -19 0
11:2 -20 0
12:...
13:postprocess stack
14:ee
15:bce 523
16:-81 523 -6716 0
17:bce 10623
18:-10429 10623 -30296 0
19:...
20:ve 812 1
21:-812 -74 0
22:ve 6587 4
23:6587 6615 0
24:-79 6587 0
25:...

Fig. 1: Example map file

pression by simply giving a mapping that depends on the order:
the ith number in the line is the variable that is represented by
variable i in the compressed formula (line 5). The line is closed
by a 0, so that a standard clause parser can be used. The next
line introduces the assignments in the original formula by saying
“units k” (line 6). The following line lists all the literals that have
been assigned true in the original formula and is also terminated
by 0 (line 7). The compression is completed with a line stating
“end table” (line 8). At the moment, only a single compression is
supported, and thus, k is always 0. Since there is only a single
compression, it is applied after applying all other techniques and
therefore the following details are given with respect to the decom-
pressed preprocessed formula F ′. The next static information is the
literals of the EE classes. They are introduced by a line “ee table”
(line 9). The following lines represent the classes where the first
element is the representative of the class that is in F ′(line 10-12).
Each class is ordered ascending, so that the EE information can be
stored as a tree and the first element is the smallest one. Again,
each class is terminated by a 0. Finally, the postprocess stack is
given and preluded with a line “postprocess stack” (line 13). After-
wards the eliminations of BCE and VE are stored in the order they
have been performed. BCE is prefaced with a line “bce l” where l
is the blocking literal (line 15,17). The next line gives the accord-
ing blocked clause (line 16,18). For VE the first line is “ve v n”
where v is the eliminated variable and n is the number of clauses
that have been replaced (line 20,22). The following n lines give the
according clauses (line 21,23-26). Finally, for EE it is only stated
that EE has been applied by writing a line “ee”, because postpro-
cessing EE depends also on the variables that are present at the

moment (line 14). Some of the variables might already be removed at the point EE has been run, so that it
is mandatory to store this information.

3.2 Preprocessor Comparison

A comparison of the formula reductions of Coprocessor and the current standard preprocessor SatELite is
given in Fig. 2 and has been performed on 1155 industrial and crafted instances from recent SAT Compe-
titions and SAT Races2. The relative reduction of the clauses by Coprocessor and SatELite is presented.
Due to ER, Coprocessor can increase the number of clauses, whereby the average length is still reduced.
Coprocessor is also able to reduce the number of clauses more than SatELite. The instances are ordered by
the reduction of SatELite so that the plot for Coprocessor produces peaks.

Since SatELite [3] and MiniSAT [11] have been developed by the same authors, the run times of
MiniSAT with the two preprocessors are compared in Fig. 3. Comparing these run times of MiniSAT (MS)
combined with the preprocessors, it can be clearly seen that by using a preprocessor the performance of the
solver is much higher. Furthermore, the combination with Coprocessor (MS+Co) solves more instances
than SatELite (MS+S) for most of the timeouts.

2 For more details visit http://www.ki.inf.tu-dresden.de/˜norbert/paperdata/WLP2011.
html.

http://www.ki.inf.tu-dresden.de/~norbert/paperdata/WLP2011.html
http://www.ki.inf.tu-dresden.de/~norbert/paperdata/WLP2011.html


Coprocessor - a Standalone SAT Preprocessor 103

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000  1200

re
d

u
c
ti
o

n
 o

f 
c
la

u
s
e

s
 i
n

 p
e

rc
e

n
t

instances

Original
Coprocessor

SatELite

Fig. 2: Relative reduction of SatELite and Coprocessor

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100  200  300  400  500  600  700

ti
m

e
 i
n

 s
e

c
o

n
d

s

solved instances

MS

MS+S

MS+Co

Fig. 3: Runtime comparison of MiniSAT combined with Coprocessor and SatELite

4 Conclusion and Future Work

This work introduces the SAT preprocessor Coprocessor that implements almost all known preprocessing
techniques and some additional features. Experiments showed that the default Coprocessor performs better
than SatELite when combined with MiniSAT 2.2. For suiting its techniques better to applications, Coproces-
sor provides many parameters that can be optimized for special use cases. Additionally, a map file format
is presented that is used to store the preprocessing information. This file can be used to re-construct the
model for the original formula if the model for the preprocessed formula is given.

Future development of this preprocessor includes adding the latest techniques such as HLE and HLA [4,5]
and to parallelize it to be able to use multi-core architectures. Furthermore, the execution order of the tech-
niques will be relaxed, so that any order can be applied to the input formula.
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Abstract. Answer set programming (ASP) is a paradigm for declarative problem solving where prob-
lems are first formalized as rule sets, i.e., answer-set programs, in a uniform way and then solved by
computing answer sets for programs. The satisfiability modulo theories (SMT) framework follows a
similar modelling philosophy but the syntax is based on extensions of propositional logic rather than
rules. Quite recently, a translation from answer-set programs into difference logic was provided—
enabling the use of particular SMT solvers for the computation of answer sets. In this paper, the trans-
lation is revised for another SMT fragment, namely that based on fixed-width bit-vector theories. Thus,
even further SMT solvers can be harnessed for the task of computing answer sets. The results of a
preliminary experimental comparison are also reported. They suggest a level of performance which is
similar to that achieved via difference logic.

1 Introduction

Answer set programming (ASP) is a rule-based approach to declarative problem solving [15, 22, 24]. The
idea is to first formalize a given problem as a set of rules also called an answer-set program so that the
answer sets of the program correspond to the solution of the problem. Such problem descriptions are
typically devised in a uniform way which distinguishes general principles and constraints of the problem in
question from any instance-specific data. To this end, term variables are deployed for the sake of compact
representation of rules. Solutions themselves can then be found out by grounding the rules of the answer-
set program, and by computing answer sets for the resulting ground program using an answer set solver.
State-of-the-art answer set solvers are already very efficient search engines [7, 11] and have a wide range
of industrial applications.

The satisfiability modulo theories (SMT) framework [3] follows a similar modelling philosophy but
the syntax is based on extensions of propositional logic rather than rules with term variables. The SMT
framework enriches traditional satisfiability (SAT) checking [5] in terms of background theories which are
selected amongst a number of alternatives.1 Parallel to propositional atoms, also theory atoms involving
non-Boolean variables2 can be used as references to potentially infinite domains. Theory atoms are typically
used to express various constraints such as linear constraints, difference constraints, etc., and they enable
very concise representations of certain problem domains for which plain Boolean logic would be more
verbose or insufficient in the first place.

As regards the relationship of ASP and SMT, it was quite recently shown [20, 25] that answer-set
programs can be efficiently translated into a simple SMT fragment, namely difference logic (DL) [26].
This fragment is based on theory atoms of the form x − y ≤ k formalizing an upper bound k on the
difference of two integer-domain variables x and y. Although the required transformation is linear, it is not
reasonable to expect that such theories are directly written by humans in order to express the essentials of
ASP in SMT. The translations from [20, 25] and their implementation called LP2DIFF3 enable the use of
particular SMT solvers for the computation of answer sets. Our experimental results [20] indicate that the
performance obtained in this way is surprisingly close to that of state-of-the-art answer set solvers. The
results of the third ASP competition [7], however, suggest that the performance gap has grown since the
previous competition. To address this trend, our current and future agendas include a number of points:

1 http://combination.cs.uiowa.edu/smtlib/
2 However, variables in SMT are syntactically represented by (functional) constants having a free interpretation over

a specific domain such as integers or reals.
3 http://www.tcs.hut.fi/Software/lp2diff/
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– We gradually increase the number of supported SMT fragments which enables the use of further SMT
solvers for the task of computing answer sets.

– We continue the development of new translation techniques from ASP to SMT.
– We submit ASP-based benchmark sets to future SMT competitions (SMT-COMPs) to foster the effi-

ciency of SMT solvers on problems that are relevant for ASP.
– We develop new integrated languages that combine features of ASP and SMT, and aim at implementa-

tions via translation into pure SMT as initiated in [18].

This paper contributes to the first item by devising a translation from answer-set programs into theories
of bit-vector logic. There is a great interest to develop efficient solvers for this particular SMT fragment
due to its industrial relevance. In view of the second item, we generalize an existing translation from [20] to
the case of bit-vector logic. Using an implementation of the new translation, viz. LP2BV, new benchmark
classes can be created to support the third item on our agenda. Finally, the translation also creates new
potential for language integration. In the long run, rule-based languages and, in particular, the modern
grounders exploited in ASP can provide valuable machinery for the generation of SMT theories in analogy
to answer-set programs: The source code of an SMT theory can be compacted using rules and term variables
[18] and specified in a uniform way which is independent of any concrete problem instances. Analogous
approaches [2, 14, 23] combine ASP and constraint programming techniques without a translation.

The rest of this paper is organized as follows. First, the basic definitions and concepts of answer-set pro-
grams and fixed-width bit-vector logic are briefly reviewed in Section 2. The new translation from answer-
set programs into bit-vector theories is then devised in Section 3. The extended rule types of SMODELS
compatible systems are addressed in Section 4. Such extensions can be covered either by native transla-
tions into bit-vector logic or translations into normal programs. As part of this research, we carried out a
number of experiments using benchmarks from the second ASP competition [11] and two state-of-the-art
SMT solvers, viz. BOOLECTOR and Z3. The results of the experiments are reported in Section 5. Finally,
we conclude this paper in Section 6 in terms of discussions of results and future work.

2 Preliminaries

The goal of this section is to briefly review the source and target formalisms for the new translation devised
in the sequel. First, in Section 2.1, we recall normal logic programs subject to answer set semantics and the
main notions exploited in their translation. A formal account of bit-vector logic follows in Section 2.2.

2.1 Normal Logic Programs

As usual, we define a normal logic program P as a finite set of rules of the form

a← b1, . . . , bn,∼c1, . . . ,∼cm (1)

where a, b1, . . . , bn, and c1, . . . , cm are propositional atoms and ∼ denotes default negation. The head of
a rule r of the form (1) is hd(r) = a whereas the part after the symbol ← forms the body of r, denoted
by bd(r). The body bd(r) consists of the positive part bd+(r) = {b1, . . . , bn} and the negative part
bd−(r) = {c1, . . . , cm} so that bd(r) = bd+(r)∪{∼c | c ∈ bd−(r)}. Intuitively, a rule r of the form (1)
appearing in a program P is used as follows: the head hd(r) can be inferred by r if the positive body atoms
in bd+(r) are inferable by the other rules of P , but not the negative body atoms in bd−(r). The positive
part of the rule, r+ is defined as hd(r) ← bd+(r). A normal logic program is called positive if r = r+

holds for every rule r ∈ P .

Semantics To define the semantics of a normal program P , we let At(P ) stand for the set of atoms that
appear in P . An interpretation of P is any subset I ⊆ At(P ) such that for an atom a ∈ At(P ), a is true in
I , denoted I |= a, iff a ∈ I . For any negative literal ∼c, I |= ∼c iff I 6|= c iff c 6∈ I . A rule r is satisfied in
I , denoted I |= r, iff I |= bd(r) implies I |= hd(r). An interpretation I is a classical model of P , denoted
I |= P , iff, I |= r holds for every r ∈ P . A modelM |= P is a minimal model of P iff there is noM ′ |= P
such that M ′ ⊂ M . Each positive normal program P has a unique minimal model, i.e., the least model
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of P denoted by LM(P ) in the sequel. The least model semantics can be extended for an arbitrary normal
program P by reducing P into a positive program PM = {r+ | r ∈ P and M ∩bd−(r) = ∅} with respect
to M ⊆ At(P ). Then answer sets, also known as stable models [16], can be defined.

Definition 1 (Gelfond and Lifschitz [16]). An interpretation M ⊆ At(P ) is an answer set of a normal
program P iff M = LM(PM ).

Example 1. Consider a normal program P [20] consisting of the following six rules:

a← b, c. a← d. b← a,∼d.
b← a,∼c. c← ∼d. d← ∼c.

The answer sets of P are M1 = {a, b, d} and M2 = {c}. To verify the latter, we note that PM2 = {a ←
b, c; b ← a; c ←; a ← d} for which LM(PM2) = {c}. On the other hand, we have PM3 = PM2 for
M3 = {a, b, c} so that M3 6∈ AS(P ). �

The number of answer sets possessed by a normal program P can vary in general. The set of answer sets
of a normal program P is denoted by AS(P ). Next we present some concepts and results that are relevant
in order to capture answer sets in terms of propositional logic and its extensions in the SMT framework.

Completion Given a normal program P and an atom a ∈ At(P ), the definition of a in P is the set of rules
DefP (a) = {r ∈ P | hd(r) = a}. The completion of a normal program P , denoted by Comp(P ), is a
propositional theory [8] which contains

a↔
∨

r∈DefP (a)

( ∧
b∈bd+(r)

b ∧
∧

c∈bd−(r)

¬c
)

(2)

for each atom a ∈ At(P ). Given a propositional theory T and its signature At(T ), the semantics of T is
determined by CM(T ) = {M ⊆ At(T ) |M |= T}. It is possible to relate CM(Comp(P )) with the models
of a normal program P by distinguishing supported models [1] for P . A model M |= P is a supported
model of P iff for every atom a ∈M there is a rule r ∈ P such that hd(r) = a andM |= bd(r). In general,
the set of supported models SuppM(P ) of a normal program P coincides with CM(Comp(P )). It can be
shown [21] that stable models are also supported models but not necessarily vice versa. This means that in
order to capture AS(P ) using Comp(P ), the latter has to be extended in terms of additional constraints as
done, e.g., in [17, 20].

Example 2. For the program P of Example 1, the theory Comp(P ) has formulas a ↔ (b ∧ c) ∨ d, b ↔
(a ∧ ¬d) ∨ (a ∧ ¬c), c ↔ ¬d, and d ↔ ¬c. The models of Comp(P ), i.e., its supported models, are
M1 = {a, b, d}, M2 = {c}, and M3 = {a, b, c}. �

Dependency Graphs The positive dependency graph of a normal program P , denoted by DG+(P ), is a pair
〈At(P ),≤〉where b ≤ a holds iff there is a rule r ∈ P such that hd(r) = a and b ∈ bd+(r). Let≤∗ denote
the reflexive and transitive closure of ≤. A strongly connected component (SCC) of DG+(P ) is a maximal
non-empty subset S ⊆ At(P ) such that a ≤∗ b and b ≤∗ a hold for each a, b ∈ S. The set of defining
rules is generalized for an SCC S by DefP (S) =

⋃
a∈S DefP (a). This set can be naturally partitioned into

sets ExtP (S) = {r ∈ DefP (S) | bd+(r) ∩ S = ∅} and IntP (S) = {r ∈ DefP (S) | bd+(r) ∩ S 6= ∅} of
external and internal rules associated with S, respectively. Thus, DefP (S) = ExtP (S)t IntP (S) holds in
general.

Example 3. In the case of the program P from Example 1, the SCCs of DG+(P ) are S1 = {a, b}, S2 =
{c}, and S3 = {d}. For S1, we have ExtP (S1) = {a← d}. �

2.2 Bit-Vector Logic

Fixed-width bit-vector theories have been introduced for high-level reasoning about digital circuitry and
computer programs in the SMT framework [27, 4]. Such theories are expressed in an extension of proposi-
tional logic where atomic formulas speak about bit vectors in terms of a rich variety of operators.
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Syntax As usual in the context of SMT, variables are realized as constants that have a free interpretation
over a particular domain (such as integers or reals)4. In the case of fixed-width bit-vector theories, this
means that each constant symbol x represents a vector x[1 . . .m] of bits of particular width m, denoted
by w(x) in the sequel. Such vectors enable a more compact representation of structures like registers
and often allow more efficient reasoning about them. A special notation n is introduced to denote a bit
vector that equals to n, i.e., n provides a binary representation of n. We assume that the actual width
m ≥ log2(n+ 1) is determined by the context where the notation n is used. For the purposes of this paper,
the most interesting arithmetic operator for combining bit vectors is the addition of two m-bit vectors,
denoted by the parameterized function symbol +m in an infix notation. The resulting vector is also m-bit
which can lead to an overflow if the sum exceeds 2m − 1. Moreover, we use Boolean operators =m and
<m with the usual meanings for comparing the values of two m-bit vectors. Thus, assuming that x and y
are m-bit free constants, we may write atomic formulas like x =m y and x <m y in order to compare the
m-bit values of x and y. In addition to syntactic elements mentioned so far, we can use the primitives of
propositional logic to build more complex well-formed formulas of bit-vector logic. The syntax defined for
the SMT library contains further primitives which are skipped in this paper. A theory T in bit-vector logic
is a set of well-formed bit-vector formulas as illustrated by the following example.

Example 4. Consider a system of two processes, say A and B, and a theory T = {a → (x <2 y), b →
(y <2 x)} formalizing a scheduling policy for them. The intuitive reading of a (resp. b) is that process A
(resp. B) is scheduled with a higher priority and, thus, should start earlier. The constants x and y denote the
respective starting times of A and B. Thus, e.g., x <2 y means that process A starts before process B. �

Semantics Given a bit-vector theory T , we write At(T ) and FC(T ) for the sets of propositional atoms and
free constants, respectively, appearing in T . To determine the semantics of T , we define interpretations for
T as pairs 〈I, τ〉 where I ⊆ At(T ) is a standard propositional interpretation and τ is a partial function
that maps a free constant x ∈ FC(T ) and an index 1 ≤ i ≤ w(x) to the set of bits {0, 1}. Given τ , a
constant x ∈ FC(T ) is mapped onto τ(x) =

∑w(x)
i=1 (τ(x, i) · 2w(x)−i) and, in particular, τ(n) = n for any

n. To cover any well-formed terms5 t1 and t2 involving +m and m-bit constants from FC(T ), we define
τ(t1 +m t2) = τ(t1) + τ(t2) mod 2m and w(t1 +m t2) = m. Hence, the value τ(t) can be determined
for any well-formed term t which enables the evaluation of more complex formulas as formalized below.

Definition 2. Let T be a bit-vector theory, a ∈ At(T ) a propositional atom, t1 and t2 well-formed terms
over FC(T ) such that w(t1) = w(t2), and φ and ψ well-formed formulas. Given an interpretation 〈I, τ〉
for the theory T , we define

1. 〈I, τ〉 |= a ⇐⇒ a ∈ I ,
2. 〈I, τ〉 |= t1 =m t2 ⇐⇒ τ(t1) = τ(t2),
3. 〈I, τ〉 |= t1 <m t2 ⇐⇒ τ(t1) < τ(t2),
4. 〈I, τ〉 |= ¬φ ⇐⇒ 〈I, τ〉 6|= φ,
5. 〈I, τ〉 |= φ ∨ ψ ⇐⇒ 〈I, τ〉 |= φ or 〈I, τ〉 |= ψ,
6. 〈I, τ〉 |= φ→ ψ ⇐⇒ 〈I, τ〉 6|= φ or 〈I, τ〉 |= ψ, and
7. 〈I, τ〉 |= φ↔ ψ ⇐⇒ 〈I, τ〉 |= φ if and only if 〈I, τ〉 |= ψ.

The interpretation 〈I, τ〉 is a model of T , i.e., 〈I, τ〉 |= T , iff 〈I, τ〉 |= φ for all φ ∈ T .

It is clear by Definition 2 that pure propositional theories T are treated classically, i.e., 〈I, τ〉 |= T iff
I |= T in the sense of propositional logic. As regards the theory T from Example 4, we have the sets of
symbols At(T ) = {a, b} and FC(T ) = {x, y}. Furthermore, we observe that there is no model of T of
the form 〈{a, b}, τ〉 because it is impossible to satisfy x <2 y and y <2 x simultaneously using any partial
function τ . On the other hand, there are 6 models of the form 〈{a}, τ〉 because x <2 y can be satisfied in
3 + 2 + 1 = 6 ways by picking different values for the 2-bit vectors x and y.

4 We use typically symbols x, y, z to denote such free (functional) constants and symbols a, b, c to denote proposi-
tional atoms.

5 The constants and operators appearing in a well-formed term t are based on a fixed width m. Moreover, the width
w(x) of each constant x ∈ FC(T ) must be the same throughout T .
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3 Translation

In this section, we present a translation of a logic program P into a bit-vector theory BV(P ) that is similar
to an existing translation [20] into difference logic. As its predecessor, the translation BV(P ) consists of
two parts. Clark’s completion [8], denoted by CC(P ), forms the first part of BV(P ). The second part, i.e.,
R(P ), is based on ranking constraints from [25] so that BV(P ) = CC(P ) ∪ R(P ). Intuitively, the idea is
that the completion CC(P ) captures supported models of P [1] and the further formulas in R(P ) exclude
the non-stable ones so that any classical model of BV(P ) corresponds to a stable model of P .

The completion CC(P ) is formed for each atom a ∈ At(P ) on the basis of (2):

1. If DefP (a) = ∅, the formula ¬a is included to capture the corresponding empty disjunction in (2).
2. If there is r ∈ DefP (a) such that bd(r) = ∅, then one of the disjuncts in (2) is trivially true and the

formula a can be used as such to capture the definition of a.
3. If DefP (a) = {r} for a rule r ∈ P with n+m > 0, then we simplify (2) to a formula of the form

a↔
∧

b∈bd+(r)

b ∧
∧

c∈bd−(r)

¬c. (3)

4. Otherwise, the set DefP (a) contains at least two rules (1) with n+m > 0 and

a↔
∨

r∈DefP (a)

bdr (4)

is introduced using a new atom bdr for each r ∈ DefP (a) together with a formula

bdr ↔
∧

b∈bd+(r)

b ∧
∧

c∈bd−(r)

¬c. (5)

The rest of the translation exploits the SCCs of the positive dependency graph of P that was defined in
Section 2.1. The motivation is to limit the scope of ranking constraints which favors the length of the
resulting translation. In particular, singleton components SCC(a) = {a} require no special treatment if
tautological rules with a ∈ {b1, . . . , bn} in (1) have been removed. Plain completion (2) is sufficient for
atoms involved in such components. However, for each atom a ∈ At(P ) having a non-trivial component
SCC(a) in DG+(P ) such that |SCC(a)| > 1, two new atoms exta and inta are introduced to formalize
the external and internal support for a, respectively. These atoms are defined in terms of equivalences

exta ↔
∨

r∈ExtP (a)

bdr (6)

inta ↔
∨

r∈IntP (a)

[
bdr ∧

∧
b∈bd+(r)∩SCC(a)

(xb <m xa)
]

(7)

where xa and xb are bit vectors of width m = dlog2(|SCC(a)|+ 1)e introduced for all atoms involved in
SCC(a). The formulas (6) and (7) are called weak ranking constraints and they are accompanied by

a→ exta ∨ inta, (8)
¬exta ∨ ¬inta. (9)

Moreover, when ExtP (a) 6= ∅ and the atom a happens to gain external support from these rules, the value
of xa is fixed to 0 by including the formula

exta → (xa =m 0). (10)

Example 5. Recall the program P from Example 1. The completion CC(P ) is:

a↔ bd1 ∨ bd2. bd1 ↔ b ∧ c. bd2 ↔ d.
b↔ bd3 ∨ bd4. bd3 ↔ a ∧ ¬d. bd4 ↔ a ∧ ¬c.
c↔ ¬d.
d↔ ¬c.
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Since P has only one non-trivial SCC, i.e., the component SCC(a) = SCC(b) = {a, b}, the weak ranking
constraints resulting in R(P ) are

exta ↔ bd2. inta ↔ bd1 ∧ (xb <2 xa).
extb ↔ ⊥ .
intb ↔ [bd3 ∧ (xa <2 xb)] ∨ [bd4 ∧ (xa <2 xb)].

In addition to these, the formulas

a→ exta ∨ inta. ¬exta ∨ ¬inta. exta → (xa =2 0).
b→ extb ∨ intb. ¬extb ∨ ¬intb.

are also included in R(P ). �

Weak ranking constraints are sufficient whenever the goal is to compute only one answer set, or to check
the existence of answer sets. However, they do not guarantee a one-to-one correspondence between the
elements of AS(P ) and the set of models obtained for the translation BV(P ). To address this discrepancy,
and to potentially make the computation of all answer sets or counting the number of answer sets more
effective, strong ranking constraints can be imported from [20] as well. Actually, there are two mutually
compatible variants of strong ranking constraints:

bdr →
∨

b∈bd+(r)∩SCC(a)

¬(xb +m 1 <m xa) (11)

inta →
∨

r∈IntP (a)

[bdr ∧
∨

b∈bd+(r)∩SCC(a)

(xa =m xb +m 1)]. (12)

The local strong ranking constraint (11) is introduced for each r ∈ IntP (a). It is worth pointing out that
the condition ¬(xb +m 1 <m xa) is equivalent to xb +m 1 ≥m xa. 6 On the other hand, the global variant
(12) covers the internal support of a entirely. Finally, in order to prune copies of models of the translation
that would correspond to the exactly same answer set of the original program, a formula

¬a→ (xa =m 0) (13)

is included for every atom a involved in a non-trivial SCC. We write Rl(P ) and Rg(P ) for the respective
extensions of R(P ) with local/global strong ranking constraints, and Rlg(P ) obtained using both. Similar
conventions are applied to BV(P ) to distinguish four variants in total. The correctness of these translations
is addressed next.

Theorem 1. Let P be a normal program and BV(P ) its bit-vector translation.

1. If S is an answer set of P , then there is a model 〈M, τ〉 of BV(P ) such that S = M ∩At(P ).
2. If 〈M, τ〉 is a model of BV(P ), then S = M ∩At(P ) is an answer set of P .

Proof. To establish the correspondence of answer sets and models as formalized above, we appeal to the
analogous property of the translation ofP into difference logic (DL), denoted here by DL(P ). In DL, theory
atoms x ≤ y + k constrain the difference of two integer variables x and y. Models can be represented as
pairs 〈I, τ〉 where I is a propositional interpretation and τ maps constants of theory atoms to integers so
that 〈I, τ〉 |= x ≤ y + k ⇐⇒ τ(x) ≤ τ(y) + k. The rest is analogous to Definition 2.

( =⇒ ) Suppose that S is an answer set of P . Then the results of [20] imply that there is a model
〈M, τ〉 of DL(P ) such that S = M ∩ At(P ). The valuation τ is condensed for each non-trivial SCC S of
DG+(P ) as follows. Let us partition S into S0t . . .tSn such that (i) τ(xa) = τ(xb) for each 0 ≤ i ≤ n
and a, b ∈ Si, (ii) τ(xa) = τ(z)7 for each a ∈ S0, and (iii) for each 0 ≤ i < j ≤ n, a ∈ Si, and b ∈ Sj ,
τ(xa) ≤ τ(xb). Then define τ ′ for the bit vector xa associated with an atom a ∈ Si by setting τ ′(xa, j) = 1
iff the jth bit of i is 1, i.e., τ ′(xa) = i. It follows that 〈I, τ〉 |= xb ≤ xa − 1 iff 〈I, τ ′〉 |= xb <m xa for

6 However, the form in (11) is used in our implementation, since +m and <m are amongst the base operators of the
BOOLECTOR system.

7 A special variable z is used as a placeholder for the constant 0 in the translation DL(P ) [20].
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any a, b ∈ S. Moreover, we have 〈M, τ〉 |= (xa ≤ z + 0) ∧ (z ≤ xa + 0) iff 〈M, τ ′〉 |= xa =m 0 for any
a ∈ S. Due to the similar structures of DL(P ) and BV(P ), we obtain 〈M, τ〉 |= BV(P ) as desired.

( ⇐= ) Let 〈M, τ〉 be a model of BV(P ). Then define τ ′ such that τ ′(x) =
∑w(x)

i=1 (τ(x, i) · 2w(x)−i)
where x on the left hand side stands for the integer variable corresponding to the bit vector x on the right
hand side. It follows that 〈I, τ〉 |= xb <m xa iff 〈I, τ ′〉 |= xb ≤ xa − 1. By setting τ ′(z) = 0, we obtain
〈M, τ〉 |= xa =m 0 if and only if 〈M, τ ′〉 |= (xa ≤ z + 0) ∧ (z ≤ xa + 0). The strong analogy present in
the structures of BV(P ) and DL(P ) implies that 〈M, τ ′〉 is a model of DL(P ). Thus, S = M ∩ At(P ) is
an answer set of P by [20]. ut

Even tighter relationships of answer sets and models can be established for the translations BVl(P ),
BVg(P ), and BVlg(P ). It can be shown that the model 〈M, τ〉 of BV∗(P ) corresponding to an answer set
S of P is unique, i.e., there is no other model 〈N, τ ′〉 of the translation such that S = N ∩ At(P ). These
results contrast with [20]: the analogous extensions DL∗(P ) guarantee the uniqueness of M in a model
〈M, τ〉 but there are always infinitely many copies 〈M, τ ′〉 of 〈M, τ〉 such that 〈M, τ ′〉 |= DL∗(P ). Such
a valuation τ ′ can be simply obtained by setting τ ′(x) = τ(x) + 1 for any x.

4 Native Support for Extended Rule Types

The input syntax of the SMODELS system was soon extended by further rule types [28]. In solver interfaces,
the rule types usually take the following simple syntactic forms:

{a1, . . . ,al} ← b1, . . . ,bn,∼c1, . . . ,∼cm. (14)
a← l{b1, . . . ,bn,∼c1, . . . ,∼cm}. (15)

a← l{b1 = wb1 , . . . ,bn = wbn ,∼c1 = wc1 , . . . ,∼cm = wcm}. (16)

The body of a choice rule (14) is interpreted in the same way as that of a normal rule (1). The head, in
contrast, allows to derive any subset of atoms a1, . . . ,al, if the body is satisfied, and to make a choice
in this way. The head a of a cardinality rule (15) is derived, if its body is satisfied, i.e., the number of
satisfied literals amongst b1, . . . ,bn and ∼c1, . . . ,∼cm is at least l acting as the lower bound. A weight
rule of the form (16) generalizes this idea by assigning arbitrary positive weights to literals (rather than
1s). The body is satisfied if the sum of weights assigned to satisfied literals is at least l, thus enabling one
to infer the head a using the rule. In practise, the grounding components used in ASP systems allow for
more versatile use of cardinality and weight rules, but the primitive forms (14), (15), and (16) provide a
solid basis for efficient implementation via translations. The reader is referred to [28] for a generalization
of answer sets for programs involving such extended rule types. The respective class of weight constraint
programs (WCPs) is typically supported by SMODELS compatible systems.

Whenever appropriate, it is possible to translate extended rule types as introduced above back to normal
rules. To this end, a number of transformations are addressed in [19] and they have been implemented as a
tool called LP2NORMAL8. For instance, the head of a choice rule (14) can be captured in terms of rules

a1 ← b,∼a1. . . . al ← b,∼al.
a1 ← ∼a1. . . . al ← ∼al.

where a1, . . . ,al are new atoms and b is a new atom standing for the body of (14) which can be defined
using (14) with the head replaced by b. We assume that this transformation is applied at first to remove
choice rules when the goal is to translate extended rule types into bit-vector logic. The strength of this
transformation is locality, i.e., it can be applied on a rule-by-rule basis, and linearity with respect to the
length of the original rule (14). To the contrary, linear normalization of cardinality and weight rules seems
impossible. Thus, we also provide direct translations into formulas of bit-vector logic.

We present the translation of a weight rule (16) whereas the translation of a cardinality rule (15) is
obtained as a special case wb1= . . .=wbn

= wc1= . . .=wcm
= 1. The body of a weight rule can be

evaluated using bit vectors s1, . . . ,sn+m of width k = dlog2(
∑n

i=1 wbi
+
∑m

i=1 wci
+ 1)e constrained by

2× (n+m) formulas

8 http://www.tcs.hut.fi/Software/asptools/
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gringo program.lp instance.lp \
| smodels -internal -nolookahead \
| lpcat -s=symbols.txt \
| lp2bv [-l] [-g] \
| boolector -fm

Fig. 1. Unix shell pipeline for running a benchmark instance

b1 → (s1 =k wb1), ¬b1 → (s1 =k 0),
b2 → (s2 =k s1 +k wb2), ¬b2 → (s2 =k s1),
...

...
bn → (sn =k sn−1 +k wbn

), ¬bn → (sn =k sn−1),
c1 → (sn+1 =k sn), ¬c1 → (sn+1 =k sn +k wc1),
...

...
cm → (sn+m =k sn+m−1), ¬cm → (sn+m =k sn+m−1 +k wcm

).

The lower bound l of (16) can be checked in terms of the formula ¬(sn+m <k l) where we assume that l
is of width k, since the rule can be safely deleted otherwise. In view of the overall translation, the formula
bdr ↔ ¬(sn+m <k l) can be used in conjunction with the completion formula (4). Weight rules also
contribute to the dependency graph DG+(P ) in analogy to normal rules, i.e., the head a depends on all
positive body atoms b1, . . . ,bn. In this way, BV(P ) generalizes for programs P having extended rules.

5 Experimental Results

A new translator called LP2BV was implemented as a derivative of LP2DIFF9 that translates logic programs
into difference logic. In contrast, the new translator will provide its output in the bit-vector format. In
analogy to its predecessor, it expects to receive its input in the SMODELS10 file format. Models of the
resulting bit-vector theory are searched for using BOOLECTOR11 (v. 1.4.1) [6] and Z312 (v. 2.11) [9] as
back-end solvers. The goal of our preliminary experiments was to see how the performances of systems
based on LP2BV compare with the performance of a state-of-the-art ASP solver CLASP13 (v. 1.3.5) [13]. The
experiments were based on the NP-complete benchmarks of the ASP Competition 2009. In this benchmark
collection, there are 23 benchmark problems with 516 instances in total. Before invoking a translator and
the respective SMT solver, we performed a few preprocessing steps, as detailed in Figure 1, by calling:

– GRINGO (v. 2.0.5), for grounding the problem encoding and a given instance;
– SMODELS14 (v. 2.34), for simplifying the resulting ground program;
– LPCAT (v. 1.18), for removing all unused atom numbers, for making the atom table of the ground

program contiguous, and for extracting the symbols for later use; and
– LP2NORMAL (version 1.11), for normalizing the program.

The last step is optional and not included as part of the pipeline in Figure 1. Pipelines of this kind were
executed under Linux/Ubuntu operating system running on six-core AMD Opteron(TM) 2435 processors
under 2.6 GHz clock rate and with 2.7 GB memory limit that corresponds to the amount of memory
available in the ASP Competition 2009.

For each system based on a translator and a back-end solver, there are four variants of the system to con-
sider: W indicates that only weak ranking constraints are used, while L, G, and LG mean that either local,
or global, or both local and global strong ranking constraints, respectively, are employed when translating
the logic program.

9 http://www.tcs.hut.fi/Software/lp2diff/
10 http://www.tcs.hut.fi/Software/smodels/
11 http://fmv.jku.at/boolector/
12 http://research.microsoft.com/en-us/um/redmond/projects/z3/
13 http://www.cs.uni-potsdam.de/clasp/
14 http://www.tcs.hut.fi/Software/smodels/
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Table 1. Experimental results without normalization

INST CLASP LP2BV+BOOLECTOR LP2BV+Z3 LP2DIFF+Z3
Benchmark W L G LG W L G LG W L G LG

Overall Performance 516 465 276 244 261 256 217 216 194 204 360 349 324 324
347/118 188/ 88 161/ 83 174/ 87 176/ 80 142/ 75 147/ 69 124/ 70 135/ 69 257/103 251/ 98 225/ 99 226/ 98

KnightTour 10 8/ 0 2/ 0 1/ 0 0/ 0 0/ 0 1/ 0 0/ 0 0/ 0 1/ 0 6/ 0 6/ 0 4/ 0 5/ 0
GraphColouring 29 8/ 0 7/0 7/0 7/0 7/0 6/ 0 7/0 7/0 7/0 7/0 7/0 7/0 7/0
WireRouting 23 11/11 2/ 3 1/ 1 1/ 2 0/ 2 1/ 3 0/ 0 0/ 0 0/ 1 3/ 3 2/ 3 2/ 4 5/3
DisjunctiveScheduling 10 5/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0
GraphPartitioning 13 6/ 7 3/ 0 3/ 0 3/ 0 3/ 0 4/ 0 4/ 0 4/ 0 3/ 0 6/2 6/ 1 6/ 1 6/ 1
ChannelRouting 11 6/ 2 6/2 6/2 6/2 6/2 5/ 2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 19/ 0 2/ 0 5/ 0 1/ 0 4/ 0 0/ 0 0/ 0 0/ 0 0/ 0 21/0 21/0 20/ 0 21/0
Labyrinth 29 26/ 0 1/0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0
WeightBoundedDominatingSet 29 26/ 0 18/ 0 18/ 0 17/ 0 18/ 0 12/ 0 12/ 0 11/ 0 12/ 0 22/0 22/0 22/0 21/ 0
MazeGeneration 29 10/15 8/15 1/15 0/15 0/16 5/16 1/15 0/15 1/15 10/17 10/15 5/15 4/15
15Puzzle 16 16/ 0 16/0 15/ 0 14/ 0 15/ 0 4/ 0 4/ 0 5/ 0 5/ 0 0/ 0 0/ 0 0/ 0 0/ 0
BlockedNQueens 29 15/14 2/ 2 0/ 2 1/ 2 0/ 2 1/ 0 2/ 0 2/ 0 0/ 0 15/13 15/13 15/12 15/13
ConnectedDominatingSet 21 10/10 10/11 9/ 8 10/11 6/ 3 10/10 9/10 10/ 9 10/ 9 9/ 8 7/ 6 9/ 7 7/ 6
EdgeMatching 29 29/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 3/0 1/ 0 3/0 2/ 0
Fastfood 29 10/19 9/16 10/16 10/16 9/16 9/ 9 9/ 9 9/10 9/ 9 10/18 10/18 10/18 10/18
GeneralizedSlitherlink 29 29/ 0 29/0 20/ 0 29/0 29/0 29/0 29/0 16/ 0 29/0 29/0 29/0 29/0 29/0
HamiltonianPath 29 29/ 0 27/ 0 25/ 0 29/0 28/ 0 26/ 0 27/ 0 25/ 0 26/ 0 29/0 29/0 29/0 29/0
Hanoi 15 15/ 0 15/0 15/0 15/0 15/0 5/ 0 5/ 0 5/ 0 4/ 0 15/0 15/0 15/0 15/0
HierarchicalClustering 12 8/ 4 8/4 8/4 8/4 8/4 4/ 4 4/ 4 4/ 4 4/ 4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 6/16 5/16 5/16 5/16 9/16 9/16 9/16 9/16 11/16 11/16 11/16 11/16
Sokoban 29 9/20 9/19 8/19 8/19 8/19 7/15 7/13 7/14 5/13 9/20 9/20 9/20 9/20
Sudoku 10 10/ 0 5/ 0 4/ 0 4/ 0 5/ 0 4/ 0 4/ 0 4/ 0 4/ 0 9/0 8/ 0 8/ 0 9/0
TravellingSalesperson 29 29/ 0 3/ 0 0/ 0 6/ 0 10/ 0 0/ 0 8/ 0 0/ 0 0/ 0 29/0 29/0 7/ 0 7/ 0

Table 1 collects the results from our experiments without normalization whereas Table 2 shows the
results when LP2NORMAL [19] was used to remove extended rule types discussed in Section 4. In both
tables, the first column gives the name of the benchmark, followed by the number of instances of that
particular benchmark in the second column. The following columns indicate the numbers of instances that
were solved by the systems considered in our experiments. A notation like 8/4 means that the system was
able to solve eight satisfiable and four unsatisfiable instances in that particular benchmark. Hence, if there
are 15 instances in a benchmark and the system could only solve 8/4, this means that the system was
unable to solve the remaining three instances within the time limit of 600 seconds, i.e. ten minutes, per
instance15. As regards the number of solved instances in each benchmark, the best performing translation-
based approaches are highlighted in boldface. Though it was not shown in all tables, we also run the
experiments using translator LP2DIFF with Z3 as back-end solver, and the summary is included in Table
3—giving an overview of experimental results in terms of total numbers of instances solved out of 516.

It is apparent that the systems based on LP2BV did not perform very well without normalization. As
indicated by Table 3, the overall performance was even worse than that of systems using LP2DIFF for
translation and Z3 for model search. However, if the input was first translated into a normal logic program
using LP2NORMAL, i.e., before translation into a bit-vector theory, the performance was clearly better.
Actually, it exceeded that of the systems based on LP2DIFF and became closer to that of CLASP. We note
that normalization does not help so much in case of LP2DIFF and the experimental results obtained using
both normalized and unnormalized instances are quite similar in terms of solved instances. Thus it seems
that solvers for bit-vector logic are not able to make the best of native translations of cardinality and weight
rules from Section 4 in full. If an analogous translation into difference logic is used, as implemented
in LP2DIFF, such a negative effect was not perceived using Z3. Our understanding is that the efficient
graph-theoretic satisfiability check for difference constraints used in the search procedure of Z3 turns the
native translation feasible as well. As indicated by our test results, BOOLECTOR is clearly better back-end
solver for LP2BV than Z3. This was to be expected since BOOLECTOR is a native solver for bit-vector

15 One observation is that the performance of systems based on LP2BV is quite stable: even when we extended the
time limit to 20 minutes, the results did not change much (differences of only one or two instances were perceived
in most cases).
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Table 2. Experimental results with normalization

INST CLASP LP2BV+BOOLECTOR LP2BV+Z3
Benchmark W L G LG W L G LG

Overall Performance 516 459 381 343 379 381 346 330 325 331
346/113 279/102 243/100 278/101 281/100 240/106 231/ 99 224/101 232/ 99

KnightTour 10 10/ 0 2/0 2/0 1/ 0 0/ 0 1/ 0 0/ 0 0/ 0 0/ 0
GraphColouring 29 9/ 0 8/ 0 8/ 0 8/ 0 8/ 0 9/2 9/2 9/2 9/2
WireRouting 23 11/11 2/ 6 1/ 3 1/ 3 1/ 3 2/7 1/ 4 1/ 4 1/ 3
DisjunctiveScheduling 10 5/ 0 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0
GraphPartitioning 13 4/ 1 5/0 5/0 4/ 0 5/0 2/ 1 2/ 1 2/ 1 2/ 0
ChannelRouting 11 6/ 2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 18/ 0 23/0 23/0 23/0 23/0 22/ 0 22/ 0 22/ 0 22/ 0
Labyrinth 29 27/ 0 1/ 0 1/ 0 2/ 0 3/0 0/ 0 0/ 0 0/ 0 0/ 0
WeightBoundedDominatingSet 29 25/ 0 15/ 0 15/ 0 15/ 0 16/0 10/ 0 10/ 0 10/ 0 10/ 0
MazeGeneration 29 10/15 8/15 0/15 0/15 0/16 5/16 0/15 0/15 0/15
15Puzzle 16 15/ 0 16/0 16/0 16/0 16/0 11/ 0 10/ 0 11/ 0 11/ 0
BlockedNQueens 29 15/14 14/14 14/14 14/14 14/14 15/14 15/14 15/14 15/14
ConnectedDominatingSet 21 10/11 10/11 8/11 9/11 9/10 10/11 9/11 9/11 9/11
EdgeMatching 29 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0
Fastfood 29 10/19 9/14 9/15 9/16 9/15 0/13 0/10 0/12 0/12
GeneralizedSlitherlink 29 29/ 0 29/ 0 21/ 0 29/ 0 29/ 0 29/ 0 29/ 0 21/ 0 29/ 0
HamiltonianPath 29 29/ 0 29/ 0 28/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0 29/ 0
Hanoi 15 15/ 0 15/ 0 15/ 0 15/ 0 15/ 0 15/ 0 15/ 0 15/ 0 15/ 0
HierarchicalClustering 12 8/ 4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 10/16 10/16 9/16 10/16 13/16 13/16 13/16 13/16
Sokoban 29 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/20
Sudoku 10 10/ 0 10/0 10/0 10/0 10/0 10/0 10/0 10/0 10/0
TravellingSalesperson 29 29/ 0 16/ 0 0/ 0 27/0 27/0 0/ 0 0/ 0 0/ 0 0/ 0

logic whereas Z3 supports a wider variety of SMT fragments and can be used for more general purposes.
Moreover, the design of LP2BV takes into account operators of bit-vector logic which are directly supported
by BOOLECTOR and not implemented as syntactic sugar.

In addition, we note on the basis of our results that the performance of the state-of-the-art ASP solver
CLASP is significantly better, and the translation-based approaches to computing stable models are still
left behind. By the results of Table 2, even the best variants of systems based on LP2BV did not work well
enough to compete with CLASP. The difference is especially due to the following benchmarks: Knight Tour,
Wire Routing, Graph Partitioning, Labyrinth, Weight Bounded Dominating Set, Fastfood, and Travelling
Salesperson. All of them involve either recursive rules (Knight Tour, Wire Routing, and Labyrinth), weight
rules (Weight Bounded Dominating Set and Fastfood), or both (Graph Partitioning and Travelling Sales-
person). Hence, it seems that handling recursive rules and weight constraints in the translational approach
is less efficient compared to their native implementation in CLASP. When using the current normalization
techniques to remove cardinality and weight rules, the sizes of ground programs tend to increase signifi-
cantly and, in particular, if weight rules are abundant. For example, after normalization the ground programs
are ten times larger for the benchmark Weight Bounded Dominating Set, and five times larger for Fastfood.
It is also worth pointing out that the efficiency of CLASP turned out to be insensitive to normalization.

While having trouble with recursive rules and weight constraints for particular benchmarks, the transla-
tional approach handles certain large instances quite well. The largest instances in the experiments belong
to the Disjunctive Scheduling benchmark, of which all instances are ground programs of size over one
megabyte but after normalization16, the LP2BV systems can solve as many instances as CLASP.

6 Conclusion

In this paper, we present a novel and concise translation from normal logic programs into fixed-width bit-
vector theories. Moreover, the extended rule types supported by SMODELS compatible answer set solvers
can be covered via native translations. The length of the resulting translation is linear with respect to the

16 In this benchmark, normalization does not affect the size of grounded programs significantly.
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Table 3. Summary of the experimental results

System W L G LG

LP2BV+BOOLECTOR 276 244 261 256
LP2BV+Z3 217 216 194 204
LP2DIFF+Z3 360 349 324 324

CLASP 465

LP2NORMAL2BV+BOOLECTOR 381 343 379 381
LP2NORMAL2BV+Z3 346 330 325 331
LP2NORMAL2DIFF+Z3 364 357 349 349

LP2NORMAL+CLASP 459

length of the original program. The translation has been implemented as a translator, LP2BV, which enables
the use of bit-vector solvers in the search for answer sets. Our preliminary experimental results indicate
a level of performance which is similar to that obtained using solvers for difference logic. However, this
presumes one first to translate extended rule types into normal rules and then to apply the translation into
bit-vector logic. One potential explanation for such behavior is the way in which SMT solvers implement
reasoning with bit vectors: a predominant strategy is to translate theory atoms involving bit vectors into
propositional formulas and to apply satisfiability checking techniques systematically. We anticipate that an
improved performance could be obtained if a native support for certain bit vector primitives were incor-
porated into SMT solvers directly. When comparing to the state-of-the-art ASP solver CLASP, we noticed
that the performance of the translation based approach compared unfavorably, in particular, for benchmarks
which contained recursive rules or weight constraints or both. This indicates that the performance can be
improved by developing new translation techniques for these two features. In order to obtain a more com-
prehensive view of the performance characteristics of the translational approach, the plan is to extend our
experimental setup to include benchmarks that were used in the third ASP competition [7]. Moreover, we
intend to use the new SMT library format [4] in future versions of our translators.

Acknowledgments This research has been partially funded by the Academy of Finland under the project
“Methods for Constructing and Solving Large Constraint Models” (MCM, #122399).
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20. Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing stable models via reductions to difference logic.
In Erdem et al. [12], pages 142–154.

21. Victor Marek and Venkatramana Subrahmanian. The relationship between stable, supported, default and autoepis-
temic semantics for general logic programs. Theor. Comput. Sci., 103(2):365–386, 1992.
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Abstract. Dung’s famous abstract argumentation frameworks represent the core formalism for many
problems and applications in the field of argumentation which significantly evolved within the last
decade. Recent work in the field has thus focused on implementations for these frameworks, whereby
one of the main approaches is to use Answer-Set Programming (ASP). While some of the argumenta-
tion semantics can be nicely expressed within the ASP language, others required rather cumbersome
encoding techniques. Recent advances in ASP systems, in particular, the metasp optimization front-
end for the ASP-package gringo/claspD provides direct commands to filter answer sets satisfying
certain subset-minimality (or -maximality) constraints. This allows for much simpler encodings com-
pared to the ones in standard ASP language. In this paper, we experimentally compare the original
encodings (for the argumentation semantics based on preferred, semi-stable, and respectively, stage
extensions) with new metasp encodings. Moreover, we provide novel encodings for the recently in-
troduced resolution-based grounded semantics. Our experimental results indicate that the metasp ap-
proach works well in those cases where the complexity of the encoded problem is adequately mirrored
within the metasp approach.

Keywords: Abstract Argumentation, Answer-Set Programming, Metasp

1 Introduction

In Artificial Intelligence (AI), the area of argumentation (the survey by Bench-Capon and Dunne [3] gives
an excellent overview) has become one of the central issues during the last decade. Although there are now
several branches within this area, there is a certain agreement that Dung’s famous abstract argumentation
frameworks (AFs) [7] still represent the core formalism for many of the problems and applications in the
field. In a nutshell, AFs formalize statements together with a relation denoting rebuttals between them,
such that the semantics gives a handle to solve the inherent conflicts between statements by selecting
admissible subsets of them, but without taking the concrete contents of the statements into account. Several
semantical principles how to select those subsets have already been proposed by Dung [7] but numerous
other proposals have been made over the last years. In this paper we shall focus on the preferred [7], semi-
stable [4], stage [17], and the resolution-based grounded semantics [1]. Each of these semantics is based on
some kind of ⊆-maximality (resp. -minimality) and thus is well amenable for the novel metasp concepts
which we describe below.

Let us first talk about the general context of the paper, which is the realization of abstract argumen-
tation within the paradigm of Answer-Set Programming (see [16] for an overview). We follow here the
ASPARTIX1 approach [11], where a single program is used to encode a particular argumentation seman-
tics, while the instance of an argumentation framework is given as an input database. For problems located
on the second level of the polynomial hierarchy (i.e. for preferred, stage, and semi-stable semantics) ASP
encodings turned out to be quite complicated and hardly accessible for non-experts in ASP (we will sketch
here the encoding for the stage semantics in some detail, since it has not been presented in [11]). This
is due to the fact that tests for subset-maximality have to be done “by hand” in ASP requiring a certain
saturation technique. However, recent advances in ASP solvers, in particular, the metasp optimization

? Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.
1 See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of ASPARTIX.
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front-end for the ASP-system gringo/claspD allows for much simpler encodings for such tests. More
precisely, metasp allows to use the traditional #minimize statement (which in its standard variant mini-
mizes wrt. cardinality or weights, but not wrt. subset inclusion) also for selection among answer sets which
are minimal (or maximal) wrt. subset inclusion in certain predicates. Details about metasp can be found
in [13].

Our first main contribution will be the practical comparison between handcrafted encodings (i.e. encod-
ings in the standard ASP language without the new semantics for the #minimize statement) and the much
simpler metasp encodings for argumentation semantics. The experiments show that the metasp encod-
ings do not necessarily result in longer runtimes. In fact, the metasp encodings for the semantics located
on the second level of the polynomial hierarchy outperform the handcrafted saturation-based encodings.
We thus can give additional evidence to the observations in [13], where such a speed-up was reported for
encodings in a completely different application area.

Our second contribution is the presentation of ASP encodings for the resolution-based grounded se-
mantics [1]. To the best of our knowledge, no implementation for this quite interesting semantics has been
released so far. In this paper, we present a rather involved handcrafted encoding (basically following the
NP-algorithm presented in [1]) but also two much simpler encodings (using metasp) which rely on the
original definition of the semantics.

Our results indicate that metasp is a very useful tool for problems known to be hard for the second-
level, but one might loose performance in case metasp is used for “easier” problems just for the sake of
comfortability. Nonetheless, we believe that the concept of the advanced #minimize statement is vital for
ASP, since it allows for rapid prototyping of second-level encodings without being an ASP guru.

The remainder of the paper is organized as follows: Section 2 provides the necessary background. Sec-
tion 3 then contains the ASP encodings for the semantics we are interested in here. We first discuss the
handcrafted saturation-based encoding for stage semantics (the ones for preferred and semi-stable are simi-
lar and already published). Then, in Section 3.2 we provide the novel metasp encodings for all considered
semantics. Afterwards, in Section 3.3 we finally present an alternative encoding for the resolution-based
grounded semantics which better mirrors the complexity of this semantics. Section 4 then presents our
experimental evaluation. We conclude the paper with a brief summary and discussion for future research
directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall the semantics we study
in this paper (see also [1, 2]). Moreover, we highlight complexity results for typical decision problems
associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where A is a set of arguments and
R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a attacks b. An argument a ∈ A is
defended by a set S ⊆ A if, for each b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Example 1. Consider the AF F = (A,R) with A = {a, b, c, d, e, f} and R = {(a, b), (b, d), (c, b), (c, d),
(c, e), (d, c), (d, e), (e, f)}, and the graph representation of F :

a b

c

d

e f

Semantics for argumentation frameworks are given via a function σ which assigns to each AF F = (A,R)
a set σ(F ) ⊆ 2A of extensions. We shall consider here for σ the functions stb, adm , com , prf , grd ,
grd∗, stg , and sem which stand for stable, admissible, complete, preferred, grounded, resolution-based
grounded, stage, and semi-stable semantics respectively. Towards the definition of these semantics we have
to introduce two more formal concepts.
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Definition 2. Given an AF F = (A,R). The characteristic function FF : 2A ⇒ 2A of F is defined as
FF (S) = {x ∈ A | x is defended by S}. Moreover, for a set S ⊆ A, we denote the set of arguments
attacked by S as S⊕R = {x | ∃y ∈ S such that (y, x) ∈ R}, and define the range of S as S+

R = S ∪ S⊕R .

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F ), if there are no a, b ∈ S, such
that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of F . For a conflict-free set S ∈ cf (F ), it
holds that

– S ∈ stb(F ), if S+
R = A;

– S ∈ adm(F ), if S ⊆ FF (S);
– S ∈ com(F ), if S = FF (S);
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T ⊃ S;
– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with T+

R ⊃ S
+
R ;

– S ∈ stg(F ), if there is no T ∈ cf (F ) in F , such that T+
R ⊃ S

+
R .

We recall that for each AF F , the grounded semantics yields a unique extension, the grounded extension,
which is the least fix-point of the characteristic function FF .

Example 2. Consider the AF F from Example 1. We have {a, d, f} and {a, c, f} as the stable extensions
and thus stb(F ) = stg(F ) = sem(F ) = {{a, d, f}, {a, c, f}}. The admissible sets of F are {}, {a}, {c},
{a, c}, {a, d}, {c, f}, {a, c, f}, {a, d, f} and therefore prf (F ) = {{a, c, f},{a, d, f}}. Finally we have
com(F ) = {{a}, {a, c, f}, {a, d, f}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution-based semantics [1], with the
resolution-based grounded semantics being the most popular instance.

Definition 4. A resolution β ⊂ R of an F = (A,R) contains exactly one of the attacks (a, b), (b, a) if
{(a, b), (b, a)} ⊆ R, a 6= b, and no further attacks. A set S ⊆ A is a resolution-based grounded extension
of F if (i) there exists a resolution β such that S = grd((A,R \β));2 and (ii) there is no resolution β′ such
that grd((A,R \ β′)) ⊂ S.

Example 3. Recall the AF F = (A,F ) from Example 1. There is one mutual attack and thus we have two
resolutions β1 = {(c, d)} and β2 = {(d, c)}. Definition 4 gives us two candidates, namely grd((A,R \
β1)) = {a, d, f} and grd((A,R \ β2)) = {a, c, f}; as they are not in ⊂-relation they are the resolution-
based grounded extensions of F .

We now turn to the complexity of reasoning in AFs. To this end, we define the following decision problems
for the semantics σ introduced in Definitions 3 and 4:

– Credulous Acceptance Credσ: Given AF F = (A,R) and an argument a ∈ A. Is a contained in some
S ∈ σ(F )?

– Skeptical Acceptance Skeptσ: Given AF F = (A,R) and an argument a ∈ A. Is a contained in each
S ∈ σ(F )?

– Verification of an extension Verσ: Given AF F = (A,R) and a set of arguments S ⊆ A. Is S ∈ σ(F )?

We assume the reader has knowledge about standard complexity classes like P and NP and recall that ΣP2
is the class of decision problems that can be decided in polynomial time using a nondeterministic Turing
machine with access to an NP-oracle. The class ΠP

2 is defined as the complementary class of ΣP2 , i.e.
ΠP

2 = coΣP2 .
In Table 1 we summarize complexity results relevant for our work [1, 6, 8–10].

2 Abusing notation slightly, we use grd(F ) for denoting the unique grounded extension of F .
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prf sem stg grd∗

Credσ NP-c ΣP2 -c ΣP2 -c NP-c

Skeptσ ΠP
2 -c ΠP

2 -c ΠP
2 -c coNP-c

Verσ coNP-c coNP-c coNP-c in P

Table 1. Complexity of abstract argumentation (C-c denotes completeness for class C)

2.2 Answer-Set Programming

We first give a brief overview of the syntax and semantics of disjunctive logic programs under the answer-
sets semantics [14]; for further background, see [15].

We fix a countable set U of (domain) elements, also called constants; and suppose a total order < over
the domain elements. An atom is an expression p(t1, . . . , tn), where p is a predicate of arity n ≥ 0 and
each ti is either a variable or an element from U . An atom is ground if it is free of variables. BU denotes
the set of all ground atoms over U .

A (disjunctive) rule r is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and “not ” stands for
default negation. The head of r is the set H(r) = {a1, . . . , an} and the body of r is B(r) = {b1, . . . , bk,
not bk+1, . . . , not bm}. Furthermore, B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A rule r is
normal if n ≤ 1 and a constraint if n = 0. A rule r is safe if each variable in r occurs in B+(r). A rule
r is ground if no variable occurs in r. A fact is a ground rule without disjunction and empty body. An
(input) database is a set of facts. A program is a finite set of disjunctive rules. For a program π and an input
database D, we often write π(D) instead of D ∪ π. If each rule in a program is normal (resp. ground),
we call the program normal (resp. ground). Besides disjunctive and normal program, we consider here the
class of optimization programs, i.e. normal programs which additionally contain #minimize statements

#minimize[l1 = w1@J1, . . . , lk = wk@Jk], (1)

where li is a literal, wi an integer weight and Ji an integer priority level.
For any program π, let Uπ be the set of all constants appearing in π. Gr(π) is the set of rules rσ

obtained by applying, to each rule r ∈ π, all possible substitutions σ from the variables in r to elements
of Uπ . An interpretation I ⊆ BU satisfies a ground rule r iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I
and B−(r) ∩ I = ∅. I satisfies a ground program π, if each r ∈ π is satisfied by I . A non-ground
rule r (resp., a program π) is satisfied by an interpretation I iff I satisfies all groundings of r (resp.,
Gr(π)). I ⊆ BU is an answer set of π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
πI = {H(r) ← B+(r) | I ∩ B−(r) = ∅, r ∈ Gr(π)}. For a program π, we denote the set of its answer
sets by AS(π).

For semantics of optimization programs, we interpret the #minimize statement wrt. subset-inclusion:
For any sets X and Y of atoms, we have Y ⊆wJ X , if for any weighted literal l = w@J occurring in
(1), Y |= l implies X |= l. Then, M is a collection of relations of the form ⊆wJ for priority levels J and
weights w. A standard answer set (i.e. not taking the minimize statements into account) Y of π dominates
a standard answer set X of π wrt. M if there are a priority level J and a weight w such that X ⊆wJ Y does
not hold for ⊆wJ ∈ M , while Y ⊆w′J′ X holds for all ⊆w′J′∈ M where J ′ ≥ J . Finally a standard answer
set X is an answer set of an optimization program π wrt. M if there is no standard answer set Y of π that
dominates X wrt. M .

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program π and
a set of ground atoms A. Then, we write π |=c A (credulous reasoning), if A is contained in some answer
set of π; we write π |=s A (skeptical reasoning), if A is contained in each answer set of π.

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will deal
with fixed programs we focus on results for data complexity. Depending on the concrete definition of |=,
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e normal programs disjunctive program optimization programs

|=c NP ΣP2 ΣP2

|=s coNP ΠP
2 ΠP

2

Table 2. Data Complexity for logic programs (all results are completeness results).

we give the complexity results in Table 2 (cf. [5] and the references therein). We note here, that even
normal programs together with the optimization technique have a worst case complexity of ΣP2 (resp. ΠP

2 ).
Inspecting Table 1 one can see which kind of encoding is appropriate for an argumentation semantics.

3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we discuss three programs which we need
later on in this section3. Then, in Subsection 3.1 we exemplify on the stage semantics the saturation tech-
nique for encodings which solve associated problems which are on the second level of the polynomial
hierarchy. In Subsection 3.2 we will make use of the newly developed metasp optimization technique.
In Subsection 3.3 we give an alternative encoding based on the algorithm of Baroni et al. in [1], which
respects the lower complexity of resolution-based grounded semantics.

All our programs are fixed which means that the only translation required, is to give an AF F as input
database F̂ to the program πσ for a semantics σ. In fact, for an AF F = (A,R), we define F̂ as

F̂ = { arg(a) | a ∈ A} ∪ {defeat(a, b) | (a, b) ∈ R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S ⊆ A, where in(a)
represents that a ∈ S. The following notion of correspondence is relevant for our purposes.

Definition 5. Let S ⊆ 2U be a collection of sets of domain elements and let I ⊆ 2BU be a collection of sets
of ground atoms. We say that S and I correspond to each other, in symbols S ∼= I, iff (i) for each S ∈ S,
there exists an I ∈ I, such that {a | in(a) ∈ I} = S; (ii) for each I ∈ I, it holds that {a | in(a) ∈ I} ∈ S;
and (iii) |S| = |I|.

Consider an AF F . The following program fragment guesses, when augmented by F̂ , any subset S ⊆ A
and then checks whether the guess is conflict-free in F :

πcf = { in(X)← not out(X), arg(X);
out(X)← not in(X), arg(X);
← in(X), in(Y ),defeat(X,Y ) }.

Proposition 1. For any AF F , cf (F ) ∼= AS(πcf (F̂ )).

Sometimes we have to avoid the use of negation. This might either be the case for the saturation technique
or if a simple program can be solved without a Guess&Check approach. Then, encodings typically rely on
a form of loops where all domain elements are visited and it is checked whether a desired property holds
for all elements visited so far. We will use this technique in our saturation-based encoding in the upcoming
subsection, but also for computing the grounded extension in Subsection 3.2. For this purpose the program
π<, which is taken from [11], is used to encode the infimum, successor and supremum of an order < over
the domain elements in the predicates inf/1, succ/2 and sup/1 respectively. The order over the domain
elements is usually provided by common ASP solvers.

Finally, the following module computes for a guessed subset S ⊆ A the range S+
R (see Def. 2) of S in

an AF (A,R).

3 We make use of some program modules already defined in [11].
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πrange = {in range(X)← in(X);
in range(X)← in(Y ),defeat(Y,X);
not in range(X)← arg(X),not in range(X)}.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter and Gottlob in [12]. In [11],
this technique was already used to encode the preferred and semi-stable semantics. Here we give the en-
codings for the stage semantics, which is similar to the one of semi-stable semantics, to exemplify the use
of the saturation technique.

In fact, for an AF F = (A,R) and S ∈ cf (F ) we need to check whether no T ∈ cf (F ) with S+
R ⊂ T

+
R

exists. Therefore we have to guess an arbitrary set T and saturate in case (i) T is not conflict-free, and (ii)
S+
R 6⊂ T

+
R . Together with πcf this is done with the following module, where in/1 holds the current guess for

S and inN/1 holds the current guess for T . More specifically, rule fail← inN(X), inN(Y ),defeat(X,Y )
checks for (i) and the remaining two rules with fail in the head fire in case S+

R = T+
R (indicated by predicate

eqplus/0 described below), or there exists an a ∈ S+
R such that a /∈ T+

R (here we use predicate in range/1
from above and predicate not in rangeN/1 which we also present below). As is easily checked one of
these two conditions holds exactly if (ii) holds.

πsatstage = { inN(X) ∨ outN(X)← arg(X);
fail← inN(X), inN(Y ),defeat(X,Y );
fail← eqplus;
fail← in range(X),not in rangeN(X);
inN(X)← fail, arg(X);
outN(X)← fail, arg(X);
← not fail }.

For the definition of predicates not in rangeN/1 and eqplus/0 we make use of the aforementioned loop
technique and predicates from program π<.

πrangeN = { undefeated upto(X,Y )← inf(Y ), outN(X), outN(Y );
undefeated upto(X,Y )← inf(Y ), outN(X),not defeat(Y,X);
undefeated upto(X,Y )← succ(Z, Y ),undefeated upto(X,Z), outN(Y );
undefeated upto(X,Y )← succ(Z, Y ),undefeated upto(X,Z),

not defeat(Y,X);
not in rangeN(X)← sup(Y ), outN(X),undefeated upto(X,Y );
in rangeN(X)← inN(X);
in rangeN(X)← outN(X), inN(Y ),defeat(Y,X) }.

π+
eq = { eqp upto(X)← inf(X), in range(X), in rangeN(X);

eqp upto(X)← inf(X),not in range(X),not in rangeN(X);
eqp upto(X)← succ(Z,X), in range(X), in rangeN(X), eqp upto(Z);
eqp upto(X)← succ(Y,X),not in range(X),not in rangeN(X), eqp upto(Y );
eqplus← sup(X), eqp upto(X) };
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Proposition 2. For any AF F , stg(F ) ∼= AS(πstg(F̂ )), where πstg = πcf ∪ π< ∪ πrange ∪ πrangeN ∪
π+
eq ∪ πsatstage .

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are written using the #minimize[·]
statement when evaluated with the subset minimization semantics provided by metasp. For our encodings
we do not need prioritization and weights, therefore these are omitted (i.e. set to default) in the minimization
statements. The fact optimize(1,1,incl) is added to the meta ASP encodings, to indicate that we
use subset inclusion for the optimization technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage semantics using this minimization
technique. First we need one auxiliary module for admissible extensions.

πadm = πcf ∪ {defeated(X)← in(Y ),defeat(Y,X);
← in(X),defeat(Y,X),not defeated(Y )}.

Now the modules for preferred, semi-stable and stage semantics are easy to encode using the minimization
statement of metasp. For the preferred semantics we take the module πadm and minimize the out/1
predicate. This in turn gives us the subset-maximal admissible extensions, which captures the definition of
preferred semantics. The encodings for the semi-stable and stage semantics are similar. Here we minimize
the predicate not in range/1 from the πrange module.

πprf metasp = πadm ∪ {#minimize[out]}.
πsem metasp = πadm ∪ πrange ∪ {#minimize[not in range]}.
πstg metasp = πcf ∪ πrange ∪ {#minimize[not in range]}.

The following results follow now quite directly.

Proposition 3. For any AF F , we have

1. prf (F ) ∼= AS(πprf metasp(F̂ )),
2. sem(F ) ∼= AS(πsem metasp(F̂ )), and
3. stg(F ) ∼= AS(πstg metasp(F̂ )).

Next we give two different encodings for computing resolution-based grounded extensions. Both encodings
use subset minimization for the resolution part, i.e. the resulting extension is subset minimal with respect to
all possible resolutions. The first one computes the grounded extension for the guessed resolution explicitly
(adapting the encoding from [11]; instead of the defeat predicate we use defeat minus beta, since we need
the grounded extensions of a restricted defeat relation). In fact, the πres module which we give next guesses
this restricted defeat relation {R \ β} for a resolution β.

πres = { defeat minus beta(X,Y )← defeat(X,Y ),not defeat minus beta(Y,X),
X 6= Y ;

defeat minus beta(X,Y )← defeat(X,Y ),not defeat(Y,X);
defeat minus beta(X,X)← defeat(X,X)}.

The second encoding uses the metasp subset minimization additionally to get the grounded extension
from the complete extensions of the current resolution (recall that the grounded extension is in fact the
unique subset-minimal complete extension). We again use the restricted defeat relation.
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πcom = πadm ∪ { undefended(X)← defeat minus beta(Y,X),not defeated(Y );
← out(X),not undefended(X) }.

Now we can give the two encodings for resolution-based grounded semantics.

πgrd∗ metasp = πgrd ∪ πres ∪ {#minimize[in]}
π′grd∗ metasp = πcom ∪ πres ∪ {#minimize[in]}.

Proposition 4. For any AF F and π ∈ {πgrd∗ metasp , π
′
grd∗ metasp}, grd∗(F ) corresponds to AS(π(F̂ ))

in the sense of Definition 5, but without property (iii).

3.3 Alternative Encodings for Resolution-based Grounded Semantics

So far, we have shown two encodings for the resolution-based grounded semantics via optimization pro-
grams, i.e. we made use of the #minimize statement under the subset-inclusion semantics. From the com-
plexity point of view this is not adequate, since we expressed a problem on the NP-layer (see Table 1) via an
encoding which implicitly makes use of disjunction (see Table 2 for the actual complexity of optimization
programs). Hence, we provide here an alternative encoding for the resolution-based grounded semantics
based on the verification algorithm proposed by Baroni et al. in [1]. This encoding is just a normal program
and thus located at the right level of complexity.

We need some further notation. For an AF F = (A,R) and a set S ⊆ A we define F |S = ((A ∩
S), R ∩ (S × S)) as the sub-framework of F wrt S; furthermore we also use F − S as a shorthand for
F |A\S . By SCCs(F ), we denote the set of strongly connected components of an AF F = (A,R) which
identify the vertices of a maximal strongly connected4 subgraphs of F ; SCCs(F ) is thus a partition of
A. A partial order ≺F over SCCs(F ) = {C1, . . . , Cn}, denoted as (Ci ≺F Cj) for i 6= j, is defined, if
∃x ∈ Ci, y ∈ Cj such that there is a directed path from x to y in F .

Definition 6. A C ∈ SCCs(F ) is minimal relevant (in an AF F ) iff C is a minimal element of ≺F and
F |C satisfies the following:

(a) the attack relation R(F |C) of F is irreflexive, i.e. (x, x) 6∈ R(F |C) for all arguments x;
(b) R(F |C) is symmetric, i.e. (x, y) ∈ R(F |C)⇔ (y, x) ∈ R(F |C);
(c) the undirected graph obtained by replacing each (directed) pair {(x, y), (y, x)} in F |C with a single

undirected edge {x, y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F ).

Proposition 5 ([1]). Given an AF F = (A,R) such that (F − S+
R ) 6= (∅, ∅) and MR(F − S+

R ) 6= ∅,
where S = grd(F ), a set U ⊆ A of arguments is resolution-based grounded in F , i.e. U ∈ grd∗(F ) iff the
following conditions hold:

(i) U ∩ S+
R = S;

(ii) (T ∩ΠF ) ∈ stb(F |ΠF
), where T = U \ S+

R , and ΠF =
⋃
V ∈MR(F−S+

R) V ;

(iii) (T ∩ΠC
F ) ∈ grd∗(F |ΠC

F
− (S+

R ∪ (T ∩ΠF )⊕R)), where T and ΠF are as in (ii) and ΠC
F = A \ΠF .

To illustrate the conditions of Proposition 5, let us have a look at our example.

4 A directed graph is called strongly connected if there is a directed path from each vertex in the graph to every other
vertex of the graph.
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Example 4. Consider the AF F of Example 1. Let us check whether U = {a, d, f} is resolution-based
grounded in F , i.e. whetherU ∈ grd∗(F ). S = {a} is the grounded extension of F and S+

R = {a, b}, hence
the first Condition (i) is satisfied. We obtain T = {d, f} and ΠF = {c, d}. We observe that T ∩ΠF = {d}
is a stable extension of the AF F |ΠF

; that satisfies Condition (ii). Now we need to check Condition (iii);
we first identify the necessary sets:ΠC

F = {a, b, e, f}, T ∩ΠC
F = {f} and (T ∩ΠF )⊕R = {c, e}. It remains

to check {f} ∈ grd∗({f}, ∅) which is easy to see. Hence, U ∈ grd∗(F ).

The following encoding is based on the Guess&Check procedure which was also used for the encodings
in [11]. After guessing all conflict-free sets with the program πcf , we check whether the conditions of
Definition 6 and Proposition 5 hold. Therefore the program πarg set makes a copy of the actual arguments,
defeats and the guessed set to the predicates arg set/2,defeatN/3 and inU/2. The first variable in these
three predicates serves as an identifier for the iteration of the algorithm (this is necessary to handle the
recursive nature of Proposition 5). In all following predicates we will use the first variable of each predicate
like this. As in some previous encodings in this paper, we use the program π< to obtain an order over the
arguments, and we start our computation with the infimum represented by the predicate inf/1.

πarg set = { arg set(N,X)← arg(X), inf(N);
inU(N,X)← in(X), inf(N);
defeatN(N,Y,X)← arg set(N,X), arg set(N,Y ),defeat(Y,X) }.

We use here the program πdefendedN (which is a slight variant of the program πdefended ) together with the
program πgroundN where we perform a fixed-point computation of the predicate defendedN/2, but now
we use an additional argument N for the iteration step where predicates arg set/2, defeatN/3 and inS/2
replace arg /1, defeat/2 and in/1. In πgroundN we then obtain the predicate inS(N,X) which identifies
argument X to be in the grounded extension of the iteration N .

πgroundN = πcf ∪ π< ∪ πarg set ∪ πdefendedN ∪ { inS(N,X)← defendedN(N,X) }.

The next module πF minus range computes the arguments in (F − S+
R ), represented by the predicate

notInSplusN/2, via predicates in SplusN/2 and u cap Splus/2 (for S+
R and U∩S+

R ). The two constraints
check condition (i) of Proposition 5.

πF minus range = { in SplusN(N,X)← inS(N,X);
in SplusN(N,X)← inS(N,Y ),defeatN(N,Y,X);
u cap Splus(N,X)← inU(N,X), in SplusN(N,X);
← u cap Splus(N,X),not inS(N,X);
← not u cap Splus(N,X), inS(N,X);
notInSplusN(N,X)← arg set(N,X),not in SplusN(N,X) }.

The module πMR computes ΠF =
⋃
V ∈MR(F−S+

R) V , where mr(N,X) denotes that an argument is con-
tained in a set V ∈ MR. Therefore we need to check all three conditions of Definition 6. The first two
rules compute the predicate reach(N,X, Y ) if there is a path between the arguments X,Y ∈ (F − S+

R ).
With this predicate we will identify the SCCs. The third rule computes self defeat/2 for all arguments
violating Condition (a). Next we need to check Condition (b). With nsym/2 we obtain those arguments
which do not have a symmetric attack to any other argument from the same component. Condition (c) is
a bit more tricky. With predicate reachnotvia/4 we say that there is a path from X to Y not going over
argument V in the framework (F − S+

R ). With this predicate at hand we can check for cycles with cyc/4.
Then, to complete Condition (c) we derive bad/2 for all arguments which are connected to a cycle (or a
self-defeating argument). In the predicate pos mr/2, we put all the three conditions together and say that
an argument x is possibly in a set V ∈ MR if (i) x ∈ (F − S+

R ), (ii) x is neither connected to a cycle
nor self-defeating, and (iii) for all y it holds that (x, y) ∈ (F − S+

R ) ⇔ (y, x) ∈ (F − S+
R ). Finally we
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only need to check if the SCC obtained with pos mr/2 is a minimal element of ≺F . Hence we get with
notminimal/2 all arguments not fulfilling this, and in the last rule we obtain with mr/2 the arguments
contained in a minimal relevant SCC.

πMR ={ reach(N,X, Y )← notInSplusN(N,X),notInSplusN(N,Y ),defeatN(N,X, Y );
reach(N,X, Y )← notInSplusN(N,X),defeatN(N,X,Z), reach(N,Z, Y ),

X! = Y ;
self defeat(N,X)← notInSplusN(N,X),defeatN(N,X,X);
nsym(N,X)← notInSplusN(N,X),notInSplusN(N,Y ),defeatN(N,X, Y ),

not defeatN(N,Y,X), reach(N,X, Y ), reach(N,Y,X), X! = Y ;
nsym(N,Y )← notInSplusN(N,X),notInSplusN(N,Y ),defeatN(N,X, Y ),

not defeatN(N,Y,X), reach(N,X, Y ), reach(N,Y,X), X! = Y ;
reachnotvia(N,X, V, Y )← defeatN(N,X, Y ),notInSplusN(N,V ),

reach(N,X, Y ), reach(N,Y,X), X! = V, Y ! = V ;
reachnotvia(N,X, V, Y )← reachnotvia(N,X, V, Z), reach(N,X, Y ),

reachnotvia(N,Z, V, Y ), reach(N,Y,X),
Z! = V,X! = V, Y ! = V ;

cyc(N,X, Y, Z)← defeatN(N,X, Y ),defeatN(N,Y,X),
defeatN(N,Y, Z),defeatN(N,Z, Y ),
reachnotvia(N,X, Y, Z), X! = Y, Y ! = Z,X! = Z;

bad(N,Y )← cyc(N,X,U, V ), reach(N,X, Y ), reach(N,Y,X);
bad(N,Y )← self defeat(N,X), reach(N,X, Y ), reach(N,Y,X);
pos mr(N,X)← notInSplusN(N,X),not bad(N,X),not self defeat(N,X),

not nsym(N,X);
notminimal(N,Z)← reach(N,X, Y ), reach(N,Y,X),

reach(N,X,Z),not reach(N,Z,X);
mr(N,X)← pos mr(N,X),not notminimal(N,X) }.

We now turn to Condition (ii) of Proposition 5, where the first rule in πstableN computes the set T = U\S+
R .

Then we check whether T = ∅ and MR(F − S+
R ) = ∅ via predicates emptyT/1 and not exists mr/1. If

this is so, we terminate the iteration in the last module πiterate . The first constraint eliminates those guesses
where MR(F − S+

R ) = ∅ but T 6= ∅, because the algorithm is only defined for AFs fulfilling this. Finally
we derive the arguments which are defeated by the set T in the MR denoted by defeated/2, and with the
last constraint we eliminate those guesses where there is an argument not contained in T and not defeated
by T in MR and hence (T ∩ΠF ) 6∈ stb(F |ΠF

).

πstableN = { t(N,X)← inU(N,X),not inS(N,X);
nemptyT(N)← t(N,X);
emptyT(N)← not nemptyT(N), arg set(N,X);
existsMR(N)← mr(N,X),notInSplusN(N,X);
not exists mr(N)← not existsMR(N),notInSplusN(N,X);
true(N)← emptyT(N),not existsMR(N);
← not exists mr(N),nemptyT(N);
defeated(N,X)← mr(N,X),mr(N,Y ), t(N,Y ),defeatN(N,Y,X);
← not t(N,X),not defeated(N,X),mr(N,X) }.
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With the last module πiterate we perform Step (iii) of Proposition 5. The predicate t mrOplus/2 computes
the set (T ∩ΠF )⊕R and with the second rule we start the next iteration for the framework (F |ΠC

F
− (S+

R ∪
(T ∩ΠF )⊕R)) and the set (T ∩ΠC

F ).

πiterate = { t mrOplus(N,Y )← t(N,X),mr(N,X),defeatN(N,X, Y );
arg set(M,X)← notInSplusN(N,X),not mr(N,X),

not t mrOplus(N,X), succ(N,M),not true(N);
inU(M,X)← t(N,X),not mr(N,X), succ(N,M),not true(N) }.

Finally we put everything together and obtain the program πgrd∗ .

πgrd∗ = πgroundN ∪ πF minus range ∪ πMR ∪ πstableN ∪ πiterate .

Proposition 6. For any AF F , grd∗(F ) ∼= AS(πgrd∗(F̂ )).

4 Experimental Evaluation

In this section we present our results of the performance evaluation. We compared the time needed for
computing all extensions for the semantics described earlier using both the handcraft saturation-based and
the alternative metasp encodings.

The tests were executed on an openSUSE based machine with eight Intel Xeon processors (2.33 GHz)
and 49 GB memory. For computing the answer sets, we used gringo (version 3.0.3) for grounding and
the solver claspD (version 1.1.1). The latter being the variant for disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments. We used two parametrized
methods for generating the attack relation.The first generates arbitrary AFs and inserts for any pair (a, b)
the attack from a to b with a given probability p. The other method generates AFs with a n × m grid-
structure. We consider two different neighborhoods, one connecting arguments vertically and horizontally
and one that additionally connects the arguments diagonally. Such a connection is a mutual attack with a
given probability p and in only one direction otherwise. The probability p was chosen between 0.1 and 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each execution. Timed out in-
stances are considered as solved in 300 seconds. The time consumption was measured using the Linux
time command. For all the tests we let the solver generate all answer sets, but only outputting the number
of models. To minimize external influences on the test runs, we alternated the different encodings during
the tests.

Figures 1 - 3 depict the results for the preferred, semi-stable and stage semantics respectively. The
figures show the average computation time for both the handcraft and the metasp encoding for a certain
number of arguments. We distinguish here between arbitrary, i.e. completely random AFs and grid struc-
tured ones. One can see that the metasp encodings have a better performance, compared to the handcraft
encodings. In particular, for the stage semantics the performance difference between the handcraft and
the metasp variant is noticeable. Recall that the average computation time includes the timeouts, which
strongly influence the diagrams.

For the resolution-based grounded semantics Figure 4 shows again the average computation time
needed for a certain number of arguments. Let us first consider the case of arbitrary AFs. The handcraft
encoding struggled with AFs of size 40 or larger. Many of those instances could not be solved due to mem-
ory faults. This is indicated by the missing data points. Both metasp encodings performed better overall,
but still many timeouts were encountered. If we look more closely at the structured AFs then we see that
π′grd∗ metasp performs better overall than the other metasp variant. Interestingly, computing the grounded
part with a handcraft encoding without a Guess&Check part did not result in a lower computation time on
average. The handcraft encoding performed better than πgrd∗ metasp on grids.
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Fig. 1. Average computation time for preferred semantics.
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Fig. 2. Average computation time for semi-stable semantics.



Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems 129

20 40 60 80 100

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

ti
m

e
 (

s
e
c
)

l l l l l
l

l

l

l

l

l l l
l

l

l

l

l

l

l

l

l

πstg_metasp arbitrary
πstg_metasp grid
πstg arbitrary
πstg grid

Fig. 3. Average computation time for stage semantics.
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5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics in the area of abstract
argumentation. (1) For the preferred and the semi-stable semantics, we compared existing saturation-based
encodings [11] (here we called them handcrafted encodings) with novel alternative encodings which are
based on the recently developed metasp approach [13], where subset minimization can be directly spec-
ified (and a front-end, i.e. a meta-interpreter) compiles such statements back into the core ASP language.
(2) For the stage semantics, we presented here both a handcrafted and a metasp encoding. Finally, (3)
for the resolution-based grounded semantics we provided three encodings, two of them using the metasp
techniques.

Although the metasp encodings are much simpler to design (since saturation techniques are delegated
to the meta-interpreter), they perform surprisingly well when compared with the handcraft encodings which
are directly given to the ASP solver. This shows the practical relevance of the metasp technique also in
the area of abstract argumentation. Future work has to focus on further experiments which hopefully will
strengthen our observations.
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Abstract. Publishing private data on external servers incurs the problem of how to avoid unwanted
disclosure of confidential data. We study a problem of confidentiality in extended disjunctive logic
programs and show how it can be solved by extended abduction. In particular, we analyze how credu-
lous non-monotonic reasoning affects confidentiality.

Keywords: Data publishing, confidentiality, privacy, extended abduction, answer set programming, nega-
tion as failure, non-monotonic reasoning

1 Introduction

Confidentiality of data (also called privacy or secrecy in some contexts) is a major security goal. Releasing
data to a querying user without disclosing confidential information has long been investigated in areas like
access control, k-anonymity, inference control, and data fragmentation. Such approaches prevent disclo-
sure according to some security policy by restricting data access (denial, refusal), by modifying some data
(perturbation, noise addition, cover stories, lying, weakening), or by breaking sensitive associations (frag-
mentation). Several approaches (like [3, 8, 13, 14, 2, 15]) employ logic-based mechanisms to ensure data
confidentiality. In particular, [5] use brave reasoning in default logic theories to solve a privacy problem
in a classical database (a set of ground facts). For a non-classical knowledge base (where negation as fail-
ure not is allowed) [16] study correctness of access rights. Confidentiality of predicates in collaborative
multi-agent abduction is a topic in [10].

In this article we analyze confidentiality-preserving data publishing in a knowledge base setting:
data as well as integrity constraints or deduction rules are represented as logical formulas. If such a knowl-
edge base is released to the public for general querying (e.g., microcensus data) or outsourced to a storage
provider (e.g., database-as-a-service in cloud computing), confidential data could be disclosed. We assume
that users accessing the published knowledge base use a form of credulous (also called brave) reasoning to
retrieve data from it; users also possess some invariant “a priori knowledge” that can be applied to these
data to deduce further information. On the knowledge base side, a confidentiality policy specifies which is
the confidential information that must never be disclosed. This paper is one of only few papers (see [11,
16, 10]) covering confidentiality for logic programs. This formalism however has relevance in multi-agent
communications where agent knowledge is modeled by logic programs. With extended abduction ([12])
we obtain a “secure version” of the knowledge base that can safely be published even when a priori knowl-
edge is applied. We show that computing the secure version for a credulous user corresponds to finding a
skeptical anti-explanation for all the elements of the confidentiality policy. Extended abduction has been
used in different applications like for example providing a logical framework for dishonest reasoning [11].
It can be solved by computing the answer sets of an update program (see [12]); thus an implementation
of extended abduction can profit from current answer set programming (ASP) solvers [4]. To retrieve the

? Lena Wiese gratefully acknowledges a postdoctoral research grant of the German Academic Exchange Service
(DAAD).
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Fig. 1. Finding a confidentiality-preserving Kpub for a credulous user

confidentiality-preserving knowledge base Kpub from the input knowledge base K, the a priori knowledge
prior and the confidentiality policy policy , a row of transformations are applied; the overall approach is
depicted in Figure 1.

In sum, this paper makes the following contributions:

– it formalizes confidentiality-preserving data publishing for a user who retrieves data under a credulous
query response semantics.

– it devises a procedure to securely publish a logic program (with an expressiveness up to extended
disjunctive logic programs) respecting a subset-minimal change semantics.

– it shows that confidentiality-preservation for credulous users corresponds to finding a skeptical anti-
explanation and can be solved by extended abduction.

In the remainder of this article, Section 2 provides background on extended disjunctive logic programs
and answer set semantics; Section 3 defines the problem of confidentiality in data publishing; Section 4
recalls extended abduction and update programs; Section 5 shows how answer sets of update programs
correspond to confidentiality-preserving knowledge bases; and Section 6 gives some discussion and con-
cluding remarks.

2 EDPs and answer set semantics

In this article, a knowledge base K is represented by an extended disjunctive logic program (EDP) – a set
of formulas called rules of the form:

L1; . . . ; Ll ← Ll+1, . . . , Lm,notLm+1, . . . ,notLn (n ≥ m ≥ l ≥ 0)

A rule contains literals Li, disjunction “;”, conjunction “,”, negation as failure “not”, and material impli-
cation “←”. A literal is a first-order atom or an atom preceded by classical negation “¬”. notL is called a
NAF-literal. The disjunction left of the implication← is called the head, while the conjunction right of←
is called the body of the rule. For a rule R, we write head(R) to denote the set of literals {L1, . . . , Ll} and
body(R) to denote the set of (NAF-)literals {Ll+1, . . . , Lm,notLm+1, . . . ,notLn}. Rules consisting only
of a singleton head L ← are identified with the literal L and used interchangeably. An EDP is ground if it
contains no variables. If an EDP contains variables, it is identified with the set of its ground instantiations:
the elements of its Herbrand universe are substituted in for the variables in all possible ways. We assume
that the language contains no function symbol, so that each rule with variables represents a finite set of
ground rules. For a program K , we denote LK the set of ground literals in the language of K . Note that
EDPs offer a high expressiveness including disjunctive and non-monotonic reasoning.

Example 1. In a medical knowledge base Ill(x, y) states that a patient x is ill with disease y; Treat(x, y)
states that x is treated with medicine y. Assume that if you read the record and find that one treatment
(Medi1) is recorded and another one (Medi2) is not recorded, then you know that the patient is at least ill
with Aids or Flu (and possibly has other illnesses).
K = {Ill(x, Aids); Ill(x, Flu)← Treat(x, Medi1),notTreat(x, Medi2) ,

Ill(Mary, Aids) , Treat(Pete, Medi1)} serves as a running example.
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The semantics of K can be given by the answer set semantics [7]: A set S ⊆ LK of ground literals satisfies
a ground literal L if L ∈ S; S satisfies a conjunction if it satisfies every conjunct; S satisfies a disjunction
if it satisfies at least one disjunct; S satisfies a ground rule if whenever the body literals are contained in
S ({Ll+1, . . . , Lm} ⊆ S) and all NAF-literals are not contained in S ({Lm+1, . . . , Ln} ∩ S = ∅), then at
least one head literal is contained in S (Li ∈ S for an i such that 1 ≤ i ≤ l). If an EDP K contains no
NAF-literals (m = n), then such a set S is an answer set of K if S is a subset-minimal set such that

1. S satisfies every rule from the ground instantiation of K ,
2. If S contains a pair of complementary literals L and ¬L, then S = LK .

This definition of an answer set can be extended to full EDPs (containing NAF-literals) as in [12]: For
an EDP K and a set of ground literals S ⊆ LK , K can be transformed into a NAF-free program KS as
follows. For every ground rule from the ground instantiation of K (with respect to its Herbrand universe),
the rule L1; . . . ; Ll ← Ll+1, . . . , Lm is in KS if {Lm+1, . . . , Ln} ∩ S = ∅. Then, S is an answer set of K
if S is an answer set of KS . An answer set is consistent if it is not LK . A program K is consistent if it has
a consistent answer set; otherwise K is inconsistent.

Example 2. The example K has the following two consistent answer sets

S1 = {Ill(Mary, Aids), Treat(Pete, Medi1), Ill(Pete, Aids)}
S2 = {Ill(Mary, Aids), Treat(Pete, Medi1), Ill(Pete, Flu)}

When adding the negative fact ¬Ill(Pete, Flu) to K , then there is just one consistent answer set left: for
K ′ := K ∪ {¬Ill(Pete, Flu)} the unique answer set is

S′ = {Ill(Mary, Aids),¬Ill(Pete, Flu), Treat(Pete, Medi1), Ill(Pete, Aids)}.

If a rule R is satisfied in every answer set of K , we write K |= R. In particular, K |= L if a literal L is
included in every answer set of K .

3 Confidentiality-Preserving Knowledge Bases

When publishing a knowledge base K while preserving confidentiality of some data in K we do this
according to

– the query response semantics that a user querying the published knowledge base applies; we focus on
credulous query response semantics

– a confidentiality policy (denoted policy) describing confidential information that should not be released
to the public

– background (a priori) knowledge (denoted prior ) that a user can combine with query responses from
the published knowledge base

First we define the credulous query response semantics: a ground formula Q is true in K , if Q is satisfied
in some answer set of K – that is, there might be answer sets that do not satisfy Q. If a rule Q is non-ground
and contains some free variables, the credulous response of K is the set of ground instantiations of Q that
are true in K .

Definition 1 (Credulous query response semantics). Let U be the Herbrand universe of a consistent
knowledge base K . The credulous query responses of formula Q(X) (with a vector X of free variables) in
K are

cred(K , Q(X)) = {Q(A) | A is a vector of elements a ∈ U and there

is an answer set of K that satisfies Q(A)}

In particular, for a ground formula Q,

cred(K , Q) =
{

Q if K has an answer set that satisfies Q
∅ otherwise
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It is usually assumed that in addition to the query responses a user has some additional knowledge that
he can apply to the query responses. Hence, we additionally assume given a set of rules as some invariant
a priori knowledge prior . Without loss of generality we assume that prior is an EDP. Thus, the priori
knowledge may consist of additional facts that the user assumes to hold in K , or some rules that the user
can apply to data in K to deduce new information.

A confidentiality policy policy specifies confidential information. We assume that policy contains
only conjunctions of (NAF-)literals. However, see Section 5.1 for a brief discussion on how to use more
expressive policy formulas. We do not only have to avoid that the published knowledge base contains
confidential information but also prevent the user from deducing confidential information with the help of
his a priori knowledge; this is known as the inference problem [6, 2].

Example 3. If we wish to declare the disease aids as confidential for any patient x we can do this with
policy = {Ill(x, Aids)}. A user querying Kpub might know that a person suffering from flu is not able to
work. Hence prior = {¬AbleToWork(x) ← Ill(x, Flu)}. If we wish to also declare a lack of work ability
as confidential, we can add this to the confidentiality policy: policy ′ = {Ill(x, Aids) , ¬AbleToWork(x)}.

Next, we establish a definition of confidentiality-preservation that allows for the answer set semantics as
an inference mechanism and respects the credulous query response semantics: when treating elements of
the confidentiality policy as queries, the credulous responses must be empty.

Definition 2 (Confidentiality-preservation for credulous user). A knowledge base Kpub preserves con-
fidentiality of a given confidentiality policy under the credulous query response semantics and with respect
to a given a priori knowledge prior , if for every conjunction C(X) in the policy, the credulous query
responses of C(X) in Kpub ∪ prior are empty: cred(Kpub ∪ prior , C(X)) = ∅.

Note that in this definition the Herbrand universe of Kpub ∪ prior is applied in the query response
semantics; hence, free variables in policy elements C(X) are instantiated according to this universe. Note
also that Kpub ∪ prior must be consistent. Confidentiality-preservation for skeptical query response se-
mantics is topic of future work.

A goal secondary to confidentiality-preservation is minimal change: We want to publish as many data
as possible and want to modify these data as little as possible. Different notions of minimal change are
used in the literature (see for example [1] for a collection of minimal change semantics in a data integration
setting). We apply a subset-minimal change semantics: we choose a Kpub that differs from K only subset-
minimally. In other words, there is not other confidentiality-preserving knowledge base Kpub ′ which inserts
(or deletes) less rules to (from) K than Kpub .

Definition 3 (Subset-minimal change). A confidentiality-preserving knowledge base Kpub subset-min-
imally changes K (or is minimal, for short) if there is no confidentiality-preserving knowledge base Kpub ′

such that ((K \Kpub ′) ∪ (Kpub ′ \K)) ⊂ ((K \Kpub) ∪ (Kpub \K)).

Example 4. For the example K and policy and no a priori knowledge, the fact Ill(Mary, Aids) has to be
deleted. But also Ill(Pete, Aids) can be deduced credulously, because it is satisfied by answer set S1. In
order to avoid this, we have three options: delete Treat(Pete, Medi1), delete the non-literal rule in K or
insert Treat(Pete, Medi2). The same solutions are found for K , policy ′ and prior : they block the credulous
deduction of ¬AbleToWork(Pete). The same applies to K ′ and policy .

In the following sections we obtain a minimal solution Kpub for a given input K, prior and policy
by transforming the input into a problem of extended abduction and solving it with an appropriate update
program.

4 Extended Abduction

Traditionally, given a knowledge base K and an observation formula O, abduction finds a “(positive) ex-
planation” E – a set of hypothesis formulas – such that every answer set of the knowledge base and the
explanation together satisfy the observation; that is, K ∪ E |= O. Going beyond that [9, 12] use extended
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abduction with the notions of “negative observations”, “negative explanations” F and “anti-explanations”.
An abduction problem in general can be restricted by specifying a designated set A of abducibles. This set
poses syntactical restrictions on the explanation sets E and F . In particular, positive explanations are char-
acterized by E ⊆ A\K and negative explanations by F ⊆ K ∩A. IfA contains a formula with variables,
it is meant as a shorthand for all ground instantiations of the formula. In this sense, an EDP K accompanied
by an EDP A is called an abductive program written as 〈K ,A〉. The aim of extended abduction is then to
find (anti-)explanations as follows (where in this article only skeptical (anti-)explanations are needed):

– given a positive observation O, find a pair (E,F ) where E is a positive explanation and F is a negative
explanation such that
1. [skeptical explanation] O is satisfied in every answer set of (K \F )∪E; that is, (K \F )∪E |= O
2. [consistency] (K \ F ) ∪ E is consistent
3. [abducibility] E ⊆ A \K and F ⊆ A ∩K

– given a negative observation O, find a pair (E,F ) where E is a positive anti-explanation and F is a
negative anti-explanation such that
1. [skeptical anti-explanation] there is no answer set of (K \ F ) ∪ E in which O is satisfied
2. [consistency] (K \ F ) ∪ E is consistent
3. [abducibility] E ⊆ A \K and F ⊆ A ∩K

Among (anti-)explanations, minimal (anti-)explanations characterize a subset-minimal alteration of the
program K : an (anti-)explanation (E,F ) of an observation O is called minimal if for any (anti-)explanation
(E′, F ′) of O, E′ ⊆ E and F ′ ⊆ F imply E′ = E and F ′ = F .

For an abductive program 〈K ,A〉 both K and A are semantically identified with their ground instan-
tiations with respect to the Herbrand universe, so that set operations over them are defined on the ground
instances. Thus, when (E,F ) contain formulas with variables, (K \F )∪E means deleting every instance
of formulas in F , and inserting any instance of formulas in E from/into K . When E contains formulas with
variables, the set inclusion E′ ⊆ E is defined for any set E′ of instances of formulas in E. Generally, given
sets S and T of literals/rules containing variables, any set operation ◦ is defined as S◦T = inst(S)◦inst(T )
where inst(S) is the ground instantiation of S. For example, when p(x) ∈ T , for any constant a occurring
in T , it holds that {p(a)} ⊆ T , {p(a)} \ T = ∅, and T \ {p(a)} = (T \ {p(x)}) ∪ {p(y) | y 6= a}, etc.
Moreover, any literal/rule in a set is identified with its variants modulo variable renaming.

4.1 Normal form

Although extended abduction can handle the very general format of EDPs, some syntactic transformations
are helpful. Based on [12] we will briefly describe how a semantically equivalent normal form of an abduc-
tive program 〈K ,A〉 is obtained – where both the program K and the set A of abducibles are EDPs. This
makes an automatic handling of abductive programs easier; for example, abductive programs in normal
form can be easily transformed into update programs as described in Section 4.2. The main step is that
rules in A can be mapped to atoms by a naming function n. LetR be the set of abducible rules:

R = {Σ ← Γ | (Σ ← Γ ) ∈ A and (Σ ← Γ ) is not a literal}

Then the normal form 〈Kn,An〉 is defined as follows where n(R) maps each rule R to a fresh atom with
the same free variables as R:

Kn = (K \ R) ∪{Σ ← Γ, n(R) | R = (Σ ← Γ ) ∈ R}
∪{n(R) | R ∈ K ∩R}

An = (A \R) ∪{n(R) | R ∈ R}

We define that any abducible literal L has the name L, i.e., n(L) = L. It is shown in [12], that for any
observation O there is a 1-1 correspondence between (anti-)explanations with respect to 〈K , A〉 and those
with respect to 〈Kn, An〉. That is, for n(E) = {n(R)|R ∈ E} and n(F ) = {n(R)|R ∈ F}: an observation
O has a (minimal) skeptical (anti-)explanation (E,F ) with respect to 〈K , A〉 iff O has a (minimal) skeptical
(anti-)explanation (n(E), n(F )) with respect to 〈Kn, An〉. Hence, insertion (deletion) of a rule’s name
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in the normal form corresponds to insertion (deletion) of the rule in the original program. In sum, with
the normal form transformation, any abductive program with abducible rules is reduced to an abductive
program with only abducible literals.

Example 5. We transform the example knowledge base K into its normal form based on a set of abducibles
that is identical to K : that is A = K ; a similar setting will be used in Section 5.2 to achieve deletion of
formulas from K . Hence we transform 〈K ,A〉 into its normal form 〈Kn,An〉 as follows where we write
n(R) for the naming atom of the only rule in A:

Kn = {Ill(Mary, Aids), Treat(Pete, Medi1), n(R),
Ill(x, Aids); Ill(x, Flu)← Treat(x, Medi1),notTreat(x, Medi2), n(R)}

An = {Ill(Mary, Aids), Treat(Pete, Medi1), n(R) }

4.2 Update programs

Minimal (anti-)explanations can be computed with update programs (UPs) [12]. The update-minimal (U-
minimal) answer sets of a UP describe which rules have to be deleted from the program, and which rules
have to be inserted into the program, in order (un-)explain an observation.

For the given EDP K and a given set of abduciblesA, a set of update rules UR is devised that describe
how entries of K can be changed. This is done with the following three types of rules.

1. [Abducible rules] The rules for abducible literals state that an abducible is either true in K or not. For
each L ∈ A, a new atom L̄ is introduced that has the same variables as L. Then the set of abducible
rules for each L is defined as

abd(L) := {L← notL̄ , L̄← notL}.

2. [Insertion rules] Abducible literals that are not contained in K might be inserted into K and hence
might occur in the set E of the explanation (E,F ). For each L ∈ A\K , a new atom +L is introduced
and the insertion rule is defined as

+L← L.

3. [Deletion rules] Abducible literals that are contained in K might be deleted from K and hence might
occur in the set F of the explanation (E,F ). For each L ∈ A ∩K , a new atom −L is introduced and
the deletion rule is defined as

−L← notL.

The update program is then defined by replacing abducible literals in K with the update rules; that is,

UP = (K \ A) ∪ UR.

Example 6. Continuing Example 5, from 〈Kn,An〉 we obtain

UP = { abd(Ill(Mary, Aids)), abd(Treat(Pete, Medi1)), abd(n(R)),
−Ill(Mary, Aids)← notIll(Mary, Aids),
−Treat(Pete, Medi1)← notTreat(Pete, Medi1),
−n(R)← not n(R),
Ill(x, Aids); Ill(x, Flu)← Treat(x, Medi1),notTreat(x, Medi2), n(R)}

The set of atoms +L is the set UA+ of positive update atoms; the set of atoms −L is the set UA− of
negative update atoms. The set of update atoms is UA = UA+ ∪UA−. From all answer sets of an update
program UP we can identify those that are update minimal (U-minimal): they contain less update atoms
than others. Thus, S is U-minimal iff there is no answer set T such that T ∩ UA ⊂ S ∩ UA.
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4.3 Ground observations

It is shown in [9] how in some situations the observation formulas O can be mapped to new positive
ground observations. Non-ground atoms with variables can be mapped to a new ground observation. Several
positive observations can be conjoined and mapped to a new ground observation. A negative observation
(for which an anti-explanation is sought) can be mapped as a NAF-literal to a new positive observation
(for which then an explanation has to be found). Moreover, several negative observations can be mapped
as a conjunction of NAF-literals to one new positive observation such that its resulting explanation acts
as an anti-explanation for all negative observations together. Hence, in extended abduction it is usually
assumed that O is a positive ground observation for which an explanation has to be found. In case of
finding a skeptical explanation, an inconsistency check has to be made on the resulting knowledge base.
Transformations to a ground observation and inconsistency check will be detailed in Section 5.1 and applied
to confidentiality-preservation.

5 Confidentiality-Preservation with UPs

We now show how to achieve confidentiality-preservation by extended abduction: we define the set of
abducibles and describe how a confidentiality-preserving knowledge base can be obtained by computing
U-minimal answer sets of the appropriate update program. We additionally distinguish between the case
that we allow only deletions of formulas – that is, in the anti-explanation (E,F ) the set E of positive
anti-explanation formulas is empty – and the case that we also allow insertions.

5.1 Policy transformation for credulous users

Elements of the confidentiality policy will be treated as negative observations for which an anti-explanation
has to be found. Accordingly, we will transform policy elements to a set of rules containing new positive
observations as sketched in Section 4.3. We will call these rules policy transformation rules for credulous
users (PTRcred ).

More formally, assume policy contains k elements. For each conjunction Ci ∈ policy (i = 1 . . . k),
we introduce a new negative ground observation O−

i and map Ci to O−
i . As each Ci is a conjunction of

(NAF-)literals, the resulting formula is an EDP rule. As a last policy transformation rule, we add one that
maps all new negative ground observations O−

i (in their NAF version) to a positive observation O+. Hence,

PTRcred := {O−
i ← Ci | Ci ∈ policy} ∪ {O+ ← not O−

1 , . . . ,not O−
k }.

Example 7. The set of policy transformation rules for policy ′ is

PTRcred = {O−
1 ← Ill(x, Aids) , O−

2 ← ¬AbleToWork(x) , O+ ← not O−
1 ,not O−

2 }

Lastly, we consider a goal rule GR that enforces the single positive observation O+: GR = {←
not O+}.

We can also allow more expressive policy elements in disjunctive normal form (DNF: a disjunction of
conjunctions of (NAF-)literals). If we map a DNF formula to a new observation (that is, O−

disj ← C1∨. . .∨
Cl) this is equivalent to mapping each conjunct to the observation (that is, O−

disj ← C1, . . . , O
−
disj ← Cl).

We also semantically justify this splitting into disjuncts by arguing that in order to protect confidentiality
of a disjunctive formula we indeed have to protect each disjunct alone. However, if variables are shared
among disjuncts, these variables have to be grounded according to the Herbrand universe of K ∪ prior
first; otherwise the shared semantics of these variables is lost.

5.2 Deletions for credulous users

As a simplified setting, we first of all assume that only deletions are allowed to achieve confidentiality-
preservation. This setting can informally be described as follows: For a given knowledge base K , if we
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only allow deletions of rules from K , we have to find a skeptical negative explanation F that explains the
new positive observation O+ while respecting prior as invariable a priori knowledge. The set of abducibles
is thus identical to K as we want to choose formulas from K for deletion: A = K . That is, in total we
consider the abductive program 〈K ,A〉. Then, we transform it into normal form 〈Kn,An〉, and compute
its update program UP as described in Section 4.2. As for prior , we add this set to the update program UP
in order to make sure that the resulting answer sets of the update program do not contradict prior . Finally,
we add all the policy transformation rules PTRcred and the goal rule GR. The goal rule is then meant as a
constraint that filters out those answer sets of UP ∪ prior ∪PTRcred in which O+ is true. We thus obtain
a new program P as

P = UP ∪ prior ∪ PTRcred ∪GR

and compute its U-minimal answer sets. If S is one of these answer sets, the negative explanation F is
obtained from the negative update atoms contained in S: F = {L | −L ∈ S}.

To obtain a confidentiality-preserving knowledge base for a credulous user, we have to check for incon-
sistency with the negation of the positive observation O+ (which makes F a skeptical explanation of O+);
and allow only answer sets of P that are U-minimal among those respecting this inconsistency property.
More precisely, we check whether

(K \ F ) ∪ prior ∪ PTRcred ∪ {← O+} is inconsistent. (1)

Example 8. We combine the update program UP of K with prior and the policy transformation rules and
goal rule. This leads to the following two U-minimal answer sets with only deletions which satisfy the
inconsistency property (1):

S′1 = {−Ill(Mary, Aids),−Treat(Pete, Medi1), n(R), Ill(Mary, Aids), Treat(Pete, Medi1), O+}
S′2 = {−Ill(Mary, Aids), Treat(Pete, Medi1),−n(R), Ill(Mary, Aids), n(R), O+}.

These answer sets correspond to the minimal solutions from Example 4 where Ill(Mary, Aids) must be
deleted together with either Treat(Pete, Medi1) or the rule named R.

Theorem 1 (Correctness for deletions). A knowledge base Kpub = K \ F preserves confidentiality and
changes K subset-minimally iff F is obtained by an answer set of the program P that is U-minimal among
those satisfying the inconsistency property (1).

Proof. (Sketch) First of all note that because we chose K to be the set of abducibles A, only negative
update atoms from UA− occur in UP – no insertions with update atoms from UA+ will be possible.
Hence we automatically obtain an anti-explanation (E,F ) where E is empty. As shown in [12], there is
a 1-1 correspondence of minimal explanations and U-minimal answer sets of update programs; and anti-
explanations are identical to explanations of a new positive observation when applying the transformations
as in PTRcred . By properties of skeptical (anti-)explanations we have thus Kpub∪prior∪PTRcred |= O+

but for every O−
i there is no answer set in which O−

i is satisfied. This holds iff for every policy element Ci

there is no answer set of Kpub ∪ prior that satisfies any instantiation of Ci (with respect to the Herbrand
universe of Kpub ∪ prior ); thus cred(Kpub ∪ prior , Ci) = ∅. Subset-minimal change carries over from
U-minimality of answer sets.

5.3 Deletions and literal insertions

To obtain a confidentiality-preserving knowledge base, (incorrect) entries may also be inserted into the
knowledge base. To allow for insertions of literals, a more complex set A of abducibles has to be chosen.
We reinforce the point that the subset A ∩ K of abducibles that are already contained in the knowledge
base K are those that may be deleted while the subset A \K of those abducibles that are not contained in
K may be inserted.

First of all, we assume that the policy transformation is applied as described in Section 5.1. Then,
starting from the new negative observations O−

i used in the policy transformation rules, we trace back all
rules in K ∪ prior ∪ PTRcred that influence these new observations and collect all literals in the bodies
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of these rules. In other words, we construct a dependency graph (as in [16]) and collect the literals that the
negative observations depend on. More formally, let P0 be the set of literals that the new observations O−

i

directly depend on:

P0 = {L | L ∈ body(R) or notL ∈ body(R)
where R ∈ PTRcred and O−

i ∈ head(R)}

Next we iterate and collect all the literals that the P0 literals depend on:

Pj+1 = {L | L ∈ body(R) or notL ∈ body(R)

where R ∈ K ∪ prior ∪ PTRcred and head(R) ∩ Pj 6= ∅}

and combine all such literals in a set P =
⋃∞

j=0 Pj .
As we also want to have the option to delete rules from K (not only the literals in P), we define the set

of abducibles as the set P plus all those rules in K whose head depends on literals in P:

A = P ∪ {R | R ∈ K and head(R) ∩ P 6= ∅}

Example 9. For the example K ∪ prior ∪ PTRcred , the dependency graph is shown in Figure 2. We
note that the new negative observation O−

1 directly depends on the literal Ill(x, Aids) and the new nega-
tive observation O−

2 directly depends on the literal ¬AbleToWork(x); this is the first set of literals P0 =
{Ill(x, Aids),¬AbleToWork(x)}. By tracing back the dependencies in the graph,

P = {Ill(x, Aids),¬AbleToWork(x), Ill(x, Flu), Treat(x, Medi1), Treat(x, Medi2)}

is obtained. Lastly, we also have to add the rule R from K toA because literals in its head are contained in
P .

Fig. 2. Dependency graph for literals in K ∪ prior ∪ PTR

We obtain the normal form and then the update program UP for K and the new set of abducibles A.
The process of finding a skeptical explanation proceeds with finding an answer set of program P as in
Section 5.2 where additionally the positive explanation E is obtained as E = {L | +L ∈ S} and S is
U-minimal among those satisfying

(K \ F ) ∪ E ∪ prior ∪ PTRcred ∪ {← O+} is inconsistent. (2)

Example 10. For UP from Example 8 the new set of abducibles leads to additional insertion rules. Among
others, the insertion rule for the new abducible Treat(Pete, Medi2) is +Treat(Pete, Medi2)← Treat(Pete,
Medi2). With this new rule included in UP , we also obtain the solution of Example 4 where the fact
Treat(Pete, Medi2) is inserted into K (together with deletion of Ill(Mary, Aids)).

Theorem 2 (Correctness for deletions & literal insertions). A knowledge base Kpub = (K \ F ) ∪
E preserves confidentiality and changes K subset-minimally iff (E,F ) is obtained by an answer set of
program P that is U-minimal among those satisfying inconsistency property (2).

Proof. (Sketch) In UP , positive update atoms from UA+ occur for literals on which the negative obser-
vations depend. For subset-minimal change, only these literals are relevant for insertions; inserting other
literals will lead to non-minimal change. In analogy to Theorem 1, by the properties of minimal skep-
tical (anti-)explanations that correspond to U-minimal answer sets of an update program, we obtain a
confidentiality-preserving Kpub with minimal change.
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6 Discussion and Conclusion

This article showed that when publishing a logic program, confidentiality-preservation can be ensured
by extended abduction; more precisely, we showed that under the credulous query response it reduces
to finding skeptical anti-explanations with update programs. This is an application of data modification,
because a user can be mislead by the published knowledge base to believe incorrect information; we hence
apply dishonesties [11] as a security mechanism. This is in contrast to [16] whose aim is to avoid incorrect
deductions while enforcing access control on a knowledge base. Another difference to [16] is that they
do not allow disjunctions in rule heads; hence, to the best of our knowledge this article is the first one
to handle a confidentiality problem for EDPs. In [3] the authors study databases that may provide users
with incorrect answers to preserve security in a multi-user environment. Different from our approach, they
consider a database as a set of formulas of propositional logic and formulate the problem using modal
logic. In analogy to [12], a complexity analysis for our approach can be achieved by reduction of extended
abduction to normal abduction. Work in progress covers data publishing for skeptical users; future work
might handle insertion of non-literal rules.
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Abstract. We report about the current state and designated features of the tool SeaLion, aimed to
serve as an integrated development environment (IDE) for answer-set programming (ASP). A main
goal of SeaLion is to provide a user-friendly environment for supporting a developer to write, evalu-
ate, debug, and test answer-set programs. To this end, new support techniques have to be developed that
suit the requirements of the answer-set semantics and meet the constraints of practical applicability. In
this respect, SeaLion benefits from the research results of a project on methods and methodologies
for answer-set program development in whose context SeaLion is realised. Currently, the tool pro-
vides source-code editors for the languages of Gringo and DLV that offer syntax highlighting, syntax
checking, and a visual program outline. Further implemented features are support for external solvers
and visualisation as well as visual editing of answer sets. SeaLion comes as a plugin of the popular
Eclipse platform and provides itself interfaces for future extensions of the IDE.

1 Introduction

Answer-set programming (ASP) is a well-known and fully declarative problem-solving paradigm based
on the idea that solutions to computational problems are represented in terms of logic programs such that
the models of the latter, referred to as the answer sets, provide the solutions of a problem instance.1 In
recent years, the expressibility of languages supported by answer-set solvers increased significantly [3]. As
well, ASP solvers have become much more efficient, e.g., the solver Clasp proved to be competitive with
state-of-the-art SAT solvers [4].

Despite these improvements in solver technology, a lack of suitable engineering tools for developing
programs is still a handicap for ASP towards gaining widespread popularity as a problem-solving paradigm.
This issue is clearly recognised in the ASP community and work to fill this gap has started recently, ad-
dressing issues like debugging, testing, and the modularity of programs [5–13]. Additionally, in order to
facilitate tool support as known for other programming languages, attempts to provide integrated devel-
opment environments (IDEs) have been put forth. Work in this direction includes the systems APE [14],
ASPIDE [15], and iGROM [16].

Following this endeavour, in this paper, we describe the current status and designated features of a
further IDE, SeaLion, developed as part of an ongoing research project on methods and methodologies
for developing answer-set programs [17].

SeaLion is designed as an Eclipse plugin, providing useful and intuitive features for ASP. Besides
experts, the target audience for SeaLion are software developers new to ASP, yet who are familiar with
support tools as used in procedural and object-oriented programming. Our goal is to fully support the lan-
guages of the current state-of-the-art solvers Clasp (in conjunction with Gringo) [3, 18] and DLV [19],
which distinguishes SeaLion from the other IDEs mentioned above which support only a single solver.
Indeed, APE [14], which is also an Eclipse plugin, supports only the language of Lparse [20] that is a sub-
set of the language of Gringo, whilst ASPIDE [15], a recently developed standalone IDE, offers support
only for DLV programs. Although iGROM provides basic functionality for the languages of both Lparse
and DLV [16], it currently does not support the latest version of DLV or the full syntax of Gringo.
? This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
1 For an overview about ASP, we refer the reader to a survey article by Gelfond and Leone [1] or the textbook by

Baral [2].
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At present, SeaLion is in an alpha version that already implements important core functionality. In
particular, the languages of DLV and Gringo are supported to a large extent. The individual parsers trans-
late programs and answer sets to data structures that are part of a rich and flexible framework for internally
representing program elements. Based on these structures, the editor provides syntax highlighting, syntax
checks, error reporting, error highlighting, and automatic generation of a program outline. There is func-
tionality to manage external tools such as answer-set solvers and to define arbitrary pipes between them (as
needed when using separate grounders and solvers). Moreover, in order to run an answer-set solver on the
created programs, launch configurations can be created in which the user can choose input files, a solver
configuration, command line arguments for the solver, as well as output-processing strategies. Answer sets
resulting from a launch can either be parsed and stored in a view for interpretations, or the solver output
can be displayed unmodified in Eclipse’s built-in console view.

Another key feature of SeaLion is the capability for the visualisation and visual editing of inter-
pretations. This follows ideas from the visualisation tools ASPVIZ [21] and IDPDraw [22], where a
visualisation program ΠV (itself being an answer-set program) is joined with an interpretation I that shall
be visualised. Subsequently, the overall program is evaluated using an answer-set solver, and the visual-
isation is generated from a resulting answer set. However, the editing feature of SeaLion allows also
to graphically manipulate the interpretations under consideration which is not supported by ASPVIZ and
IDPDraw.

The visualisation functionality of SeaLion is itself represented as an Eclipse plugin, called Kara.2

In this paper, however, we describe only the basic functionality of Kara; a full description is given in a
companion paper [23].

2 Architecture and Implementation Principles

We assume familiarity with the basic concepts of answer-set programming (ASP) (for a thorough introduc-
tion to the subject, cf. Baral [2]). In brief, an answer-set program consists of rules of the form

a1 ∨ · · · ∨ al :− al+1, . . . , am,not am+1, . . . ,not an,

where n ≥ m ≥ l ≥ 0, “not” denotes default negation, and all ai are first-order literals (i.e., atoms possibly
preceded by the strong negation symbol ¬). For a rule r as above, the expression left to the symbol “:−”
is the head of r and the expression to the right of “: − ” is the body of r. If n = l = 1, r is a fact; if r
contains no disjunction, r is normal; and if l = 0 and n > 0, r is a constraint. For facts, the symbol “:−”
is usually omitted. The grounding of a program P relative to its Herbrand universe is defined as usual. An
interpretation I is a finite and consistent set of ground literals, where consistency means that {a,¬a} 6⊆ I ,
for any atom a. I is an answer set of a program P if it is a minimal model of the grounding of the reduct
of P relative to I (see Baral [2] for details).

A key aspect in the design of SeaLion is extensibility. That is, on the one hand, we want to have
enough flexibility to handle further ASP languages such that previous features can deal with them with
no or little adaption. On the other hand, we want to provide a powerful API framework that can be used
by future features. To this end, we defined a hierarchy of classes and interfaces that represent program
elements, i.e., fragments of ASP languages. This is done in a way such that we can use common inter-
faces and base classes for representing similar program elements of different ASP languages. For instance,
we have different classes for representing literals of the Gringo language and literals of the DLV lan-
guage in order to be able to handle subtle differences. For example, in Gringo, a literal can have several
other literals as conditions, e.g., redEdge(X,Y):edge(X,Y):red(X):red(Y). Intuitively, during
grounding, this literal is replaced by the list of all literals redEdge(n1,n2), where edge(n1,n2),
red(n1), and red(n2) can be derived during grounding. As DLV is unaware of conditions, an object
of class DLVStandardLiteral has no support for them, whereas a GringoStandardLiteral ob-
ject keeps a list of condition literals. Substantial differences in other language features, like aggregates,

2 The name derives, with all due respect, from “Kara Zor-El”, the native Kryptonian name of Supergirl, given that
Kryptonians have visual superpowers on Earth.
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optimisation, and filtering support, are also reflected by different classes for Gringo and DLV, respec-
tively. However, whenever possible, these classes are derived from a common base class or share common
interfaces. Therefore, plugins can, for example, use a general interface for aggregate literals to refer to ag-
gregates of both languages. Hence, current and future feature implementations can make use of high-level
interfaces and stay independent of the concrete ASP language to a large extent.

Also, within the SeaLion implementation, the aim is to have independent modules for different fea-
tures, in form of Eclipse plugins, that ensure a well-structured code. Currently, there are the following
plugins: (i) the main plugin, (ii) a plugin that adapts the ANTLR parsing framework [24] to our needs,
(iii) two solver plugins, one for Gringo/Clasp and one for DLV, and (iv) the Kara plugin for answer-set
visualisation and visual editing. Moreover, it is a key aim to smoothly integrate SeaLion in the Eclipse
platform and to make use of functionality the latter provides wherever suitable. The motivation is to exploit
the rich platform as well as to ensure compatibility with upcoming versions of Eclipse.

The decision to build on Eclipse, rather than writing a stand-alone application from scratch, has many
benefits. For one, we profit from software reuse as we can make use of the general GUI of Eclipse and
just have to adapt existing functionality to our needs. Examples include the text editor framework, source-
code annotations, problem reporting and quick fixes, project management, the undo-redo mechanism, the
console view, the navigation framework (Outline, Project Explorer), and launch configurations. Moreover,
much functionality of Eclipse can be used without any adaptions, e.g., workspace management, the possi-
bility to define working sets, i.e., grouping arbitrary files and resources together, software versioning and
revision control (e.g., based on SVN or CVS), and task management. Another clear benefit is the popularity
of Eclipse among software developers, as it is a widely used standard tool for developing Java applications.
Arguably, people who are familiar with Eclipse and basic ASP skills will easily adapt to SeaLion. Fi-
nally, choosing Eclipse for an IDE for ASP offers a chance for integration of development tools for hybrid
languages, i.e., combinations of ASP and procedural languages. For instance, Gringo supports the use of
functions written in the LUA scripting language [25]. As there is a LUA plugin for Eclipse available, one
can at least use that in parallel with SeaLion, however there is also potential for a tighter integration of
the two plugins.

The sources of SeaLion are available for download from

http://sourceforge.net/projects/mmdasp/.

An Eclipse update site will be made available as soon as SeaLion reaches beta status.

3 Current Features

In this section, we describe the features that are already operational in SeaLion, including technical
details on the implementation.

3.1 Source-Code Editor

The central element in SeaLion is the source-code editor for logic programs. For now, it comes in two
variations, one for DLV and one for Gringo. A screenshot of a Gringo source file in SeaLion’s editor is
given in Fig. 1. By default, files with names ending in “.lp”, “.lparse”, “.gr”, or “.gringo” are opened in the
Gringo editor, whereas files with extensions “.dlv” or “.dl” are opened in the DLV editor. Nevertheless,
any file can be opened in either editor if required.

The editors provide syntax highlighting, which is computed in two phases. Initially, a fast syntactic
check provides initial colouring and styling for comments and common tokens like dots concluding rules
and the rule implication symbol. While editing the source code, after a few moments of user inactivity, the
source code is parsed and data structures representing the program are computed and stored for various
purposes. The second phase of syntax highlighting is already based on this program representation and
allows for fine-grained highlighting depending not only on the type of the program element but also on its
role. For instance, a literal that is used in the condition of another literal is highlighted in a different way
than stand-alone literals.
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Fig. 1. A screenshot of SeaLion’s editor, the program outline, and the interpretation view.

The parsers used are based on the ANTLR framework [24] and are in some respect more lenient than the
respective solver parsers. For one thing, they are more tolerant towards syntax errors. For instance, in many
cases they accept terms of various types (constants, variables, aggregate terms) where a solver requires a
particular type, like a variable. The errors will still be noticed, during building the program representation
or afterwards, by means of explicit checks. This tolerance allows for more specific warning and error
reporting than provided by the solvers. For example, the system can warn the user that he or she used a
constant on the left-hand side of an assignment where only a variable is allowed. Another parsing difference
is the handling of comments. The parser does not throw them away but collects them and associates them to
the program elements in their immediate neighbourhood. One benefit is that the information contained in
comments can be kept when performing automatic transformations on the program, like rule reorderings or
translations to other logic programming dialects. Another advantage is that we can make use of comments
for enriching the language with our own meta-statements that do not interfere with the solver when running
the file. We reserved the token “%!” for initiating meta commands and “%*!” and “*%” for the start and
end of block meta commands in the Gringo editor, respectively. Currently, one type of meta command is
supported: assigning properties to program elements.

Example 1. In the following source code, a meta statement assigns the name “r1” to the rule it precedes.

%! name = r1;
a(X) :- c(X).

These names are currently used in a side application of SeaLion for reifying disjunctive non-ground
programs as used in a previous debugging approach [10]. Moreover, names assigned to program elements
as above can be seen in Eclipse’s “Outline View”. SeaLion uses this view to give an overview of the edited
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Fig. 2. Selecting two source files for ASP solving in Eclipse’s launch configuration dialog.

program in a tree-shaped graphical representation. The rules of the programs are represented by the nodes
of depth 1 of this tree. By expanding the ancestor nodes of an individual rule, one can see its elements, i.e.,
head, body, literals, predicates, terms, etc. Clicking on such an element selects the corresponding program
code in the editor, and the programmer can proceed editing there. A similar outline is also available in
Eclipse’s “Project Explorer”, as subtree under the program’s source file.

Another feature of the editor is the support for annotations. These are means to temporarily highlight
parts of the source code. For instance, SeaLion annotates occurrences of the program element under the
text cursor. If the cursor is positioned over a literal, all literals of the same predicate are highlighted in
the text as well as in a bar next to the vertical scrollbar that indicates the positions of all occurrences in
the overall document. Likewise, when a constant or a variable in a rule is on the cursor position, their
occurrences are detected within the whole source code or within the rule, respectively.

Another application of annotations is problem reporting. Syntax errors and warnings are displayed
in two ways. First, as annotations in the source code, they are marked with a zig-zag styled underline.
Second, they are displayed in Eclipse’s “Problem View” that collects various kinds of problems and allows
for directly jumping to the problematic source code region upon mouse click.

3.2 Support for External Tools

In order to interact with solvers and grounders from SeaLion, we implemented a mechanism for handling
external tools. One can define external tool configurations that specify the path to an executable as well as
default command-line parameters. Arbitrary command-line tools are supported; however, there are special
configuration types for some programs such as Gringo, Clasp, and DLV. For these, it is planned to have a
specialised GUI that allows for a more convenient modification of command-line parameters. In addition to
external command-line tools, one can also define tool configurations that represent pipes between external
tools. This is needed when grounding and solving are provided by separate executables. For instance, one
can define two separate tool configurations for Gringo and Clasp and define a piped tool configuration
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Fig. 3. SeaLion’s interpretation view.

for using the two tools in a pipe. Pipes of arbitrary length are supported such that arbitrary pre- and post-
processing can be done when needed.

For executing answer-set solvers, we make use of Eclipse’s “launch configuration framework”. In our
setting, a launch configuration defines which programs should be executed using which solver. Figure 2
shows the the page of the launch configuration editor on which input files for a solver invocation can be
selected.

Besides using the standard command-line parameters from the tool configurations, also customised
parameters can be set for the individual program launches.

3.3 Interpretation View

The programmer can define how the output of an ASP solver run should be treated. One option is to print
the solver output as it is for Eclipse’s “console view”. The other option is to parse the resulting answer
sets and store them in SeaLion’s interpretation view that is depicted in Fig. 3. Here, interpretations are
visualised as expandable trees of depth 3. The root node is the interpretation (marked by a yellow “I”),
and its children are the predicates (marked by a red “P ”) appearing in the interpretation. Finally, each of
these predicates is the parent node of the literals over the predicate that are contained in the interpretation
(marked by a red “L”). Compared to a standard textual representation, this way of visualising answer
sets provides a well-arranged overview of the individual interpretations. We find it also more appealing
than a tabular representation where only entries for a single predicate are visible at once. Moreover, by
horizontally arranging trees for different interpretations next to each other, it is easy to compare two or
more interpretations.

The interpretation view is not only meant to provide a good visualisation of results, but also serves as a
starting point for ASP developing tools that depend on interpretations. One convenient feature is dragging
interpretations or individual literals from the interpretation view and dropping them on the source-code
editor. When released, these are transformed into facts of the respective ASP language.

3.4 Visualisation and Visual Editing

The plugin Kara [23] is a tool for the graphical visualisation and editing of interpretations. It is started
from the interpretation view. One can select an interpretation for visualisation by right-clicking it in the
view and choose between a generic visualisation or a customised visualisation. The latter is specified by
the user by means of a visualisation answer-set program. The former represents the interpretation as a
labelled hypergraph.
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Fig. 4. A screenshot of SeaLion’s visual interpretation editor.

In the generic visualisation, the nodes of the hypergraph are the individuals appearing in the interpre-
tation. The edges represent the literals in the interpretation, connecting the individuals appearing in the
respective literal. Integer labels on the endings of an edge are used for expressing the argument position
of the individual. In order to distinguish between different predicates, each edge has an additional label
stating the predicate name. Moreover, edges of the same predicate are of the same colour. An example of a
generic visualisation of a spanning tree interpretation is shown in Fig. 4 (the layout of the graph has been
manually optimised in the editor).

The customised visualisation feature allows for specifying how the interpretation should be illustrated
by means of an answer-set program that uses a powerful pre-defined visualisation vocabulary. The approach
follows the ideas of ASPVIZ [21] and IDPDraw [22]: a visualisation program ΠV is joined with the
interpretation I to be visualised (technically, I is considered as a set of facts) and evaluated using an
answer-set solver. One of the resulting answer sets, IV , is then interpreted by SeaLion for building the
graphical representation of I . The vocabulary allows for using and positioning basic graphical elements
such as lines, rectangles, polygons, labels, and images, as well as graphs and grids composed of such
elements.

The resulting visual representation of an interpretation is shown in a graphical editor that also allows
for manipulating the visualisation in many ways. Properties such as colours, IDs, and labels can be manip-
ulated and graphical elements can be repositioned, deleted, or even created. This is useful for two different
purposes. First, for fine-tuning the visualisation before saving it as a scalable vector graphic (SVG) for use
outside of SeaLion, using our SVG export functionality. Second, modifying the visualisation can be used
to obtain a modified version I ′ of the visualised interpretation I by abductive reasoning.

In fact, we implemented a feature that allows for abducing an interpretation that would result in the
modified visualisation. Modifications in the visual editor are automatically reflected in an adapted version
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Fig. 5. A customised visualisation of an 8-queens instance.

I ′
V of the answer set IV representing the visualisation. We then use an answer-set program λ(I ′

V , ΠV ) that
is constructed depending on the modified visualisation answer set I ′

V and the visualisation program ΠV

for obtaining the modified interpretation I ′ as a projected answer set of λ(I ′
V , ΠV ). For more details, we

refer to a companion paper [23]. An example for a customised visualisation for a solution to the 8-queens
problem is given in Fig. 5.

4 Projected Features

In the following, we give an overview of further functionality that we plan to incorporate into SeaLion
in the near future.

One core feature that is already under development is the support for stepping-based debugging of
answer-set programs as introduced in recent work [26]. Here, we aim for an intuitive and easy-to-handle
user interface, which is clearly a challenge to achieve for reasons intrinsic to ASP. In particular, the dis-
crepancy of having non-ground programs but solutions based on their groundings makes the realisation of
practical debugging tools for ASP non-trivial.

We want to enrich SeaLion with support for typed predicates. That is, the user can define the domain
for a predicate. For instance consider a predicate age/2 stating the age of a person. Then, with typing, we
can express that for every atom age(t1,t2), the term t1 represents an element from a set of persons,
whereas t2 represents an integer value. Two types of domain specifications will be supported, namely
direct ones, which explicitly state the names of the individuals of the domain, and indirect ones that allow
for specifications in terms of the domain of other predicates. We expect multiple benefits from having this
kind of information available. First, it is useful as a documentation of the source code. A programmer can
clearly specify the intended meaning of a predicate and look it up in the type specifications. Moreover, type
violations in the source code of the program can be automatically detected as illustrated by the following
example.
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Example 2. Assume we want to define a rule deriving atoms with predicate symbol serves/3, where
serves(R,D,P) expresses that restaurant R serves dish D at price P. Furthermore, the two predi-
cates dishAvailable/2 and price/3 state which dishes are currently available in which restau-
rants and the price of a dish in a restaurant, respectively. Assume we have type specifications stating that
for serves(R,D,P) and dishAvailable(D,R), R is of type restaurant and D of type dish.
Then, a potential type violation in the rule

serves(R,D,P) :- dishAvailable(R,D),price(R,D,P)

could be detected, where the programmer mixed up the order of variables in dishAvailable(R,D).

In order to avoid problems like in the above example in the first place, autocompletion functionality could
be implemented such that variables and constants of correct types are suggested when writing the arguments
of a literal in a rule. Technically, we plan to realise type definitions within program comments, similar to
other meta-statements as sketched in Section 3.

We want to combine the typing system with functionality that allows for defining program signatures.
One application of such signatures is for specifying the predicates and terms used for abducing a modified
interpretation I ′ in our plugin for graphically editing interpretations. Moreover, input and output signatures
can be defined for uniform problem encodings, i.e., answer-set programs that expect a set of facts repre-
senting a problem instance as input such that its answer sets correspond to the solutions for this instance.
Then, such signatures can be used in our planned support for assertions that will allow for defining pre-
and post-conditions of answer-set programs. Having a full specification for the input of a program, i.e., a
typed signature and input constraints in the form of preconditions, one can automatically generate input
instances for the program and use them, e.g., for random testing [12]. Also, more advanced testing and
verification functionality can be realised, like the automatic generation of valid input (with respect to the
pre-conditions) that violates a post-condition.

In order to reduce the amount of time a programmer has to spend for writing type and signature defini-
tions, we want to explore methods for partially extracting them from the source code or from interpretations.

Other projected features include typical amenities of Eclipse editors such as refactoring, autocomple-
tion, pretty-printing, and providing quick-fixes for typical problems in the source code. Moreover, checks
for errors and warnings that are not already detected by the parser, for example for detecting unsafe vari-
ables, need still to be implemented.

We also want to provide different kinds of program translations in SeaLion. To this end, we already
implemented a flexible framework for transforming program elements to string representations following
different strategies. In particular, we aim at translations between different solver languages at the non-
ground level. Here, we first have to investigate strategies when and how transformations of, e.g., aggre-
gates can be applied such that a corresponding overall semantics can be achieved. Other specific program
translations that we consider for implementation would be necessary for realising the import and export of
rules in the Rule Interchange Format (RIF) [27] which is a W3C recommendation for exchanging rules in
the context of the Semantic Web. Notably, a RIF dialect for answer-set programming, called RIF-CASPD,
has been proposed [28].

Further convenience improvements regarding the use of external tools in SeaLion include the support
for setting default solvers for different languages and a specialised GUI for choosing the command-line
parameters. For launch configurations, we want to add the possibility to directly write the output of a tool
invocation into a file and to allow for exporting the launch configuration as native stand-alone scripts.

Finally, there are many possible ways to enhance the GUI of SeaLion. We want to extend the support
for drag-and-drop operations such that, e.g., program elements in the outline can be dragged into the editor.
Moreover, we plan to realise sorting and filtering features for the outline and interpretation view. Regarding
interpretations, we aim for supporting textual editing of interpretations directly in the view, besides visual
editing, and a feature for comparing multiple interpretations by highlighting their differences.

5 Related Work

In this section, we give a short overview of existing IDEs for core ASP languages. To begin with, the
tool APE that has been developed at the University of Bath [14] is also based on Eclipse. It supports
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the language of Lparse and provides syntax highlighting, syntax checking, program outline, and launch
configuration. Additionally, APE has a feature to display the predicate dependency graph of a program.
ASPIDE, a recent IDE for DLV programs [15], is a standalone tool that already offers many features as
it builds on previous tools [29–31]. Some functionality we want to incorporate in SeaLion is already
supported by ASPIDE, e.g., code completion, refactoring, and quick fixes. Further features of ASPIDE are
support for code templates and a visual program editor. We do not aim for comprehensive visual source-
code editing in SeaLion but consider the use of program templates that allow for expressing common
programming patterns. One disadvantage of ASPIDE is that the tracing component of the IDE [30] is not
publicly available. In their current releases, neither APE nor ASPIDE support graphical visualisation or
visual editing of answer sets as available in SeaLion. ASPIDE allows for displaying answer sets in a
tabular form. This is an improvement compared to the standard textual representation but comes with the
drawback that only entries for a single predicate are visible at once. Besides the graphical representation,
SeaLion can display interpretations in a dedicated view that gives a good overview of the individual
interpretations and allows also to compare different interpretations.

Concerning supported ASP languages, SeaLion is the first IDE to support the language of Gringo,
rather than its Lparse subset. Moreover, other proposed IDEs for ASP do only consider the language of
either DLV or Lparse, with the exception of iGROM that provides basic syntax highlighting and syntax
checking for the languages of both, Lparse and DLV [16]. Note that iGROM has been developed at our
department independently from SeaLion as a student project. A speciality of iGROM is the support for the
front-end languages for planning and diagnosis of DLV. There also exist proprietary IDEs for ASP related
languages with support for object-oriented features, OntoStudio and OntoDLV [32, 33].

Compared to ASPVIZ [21] and IDPDraw [22], our plugin Kara [23] allows not only for visualisation
of an interpretation but also for visually editing the graphical representation such that changes are reflected
in the visualised interpretation. Moreover, Kara offers support for generic visualisation, automatic layout
of graph structures, and special support for grids.

6 Conclusion

In this paper, we presented the current status of SeaLion, an IDE for ASP languages that is currently
under development. We discussed general principles that we follow in our implementation and gave an
overview of current and planned features. SeaLion is an Eclipse plugin and supports the ASP languages
of Gringo and DLV. The most important step in the advancement of the IDE is the integration of an
easy-to-use debugging system.
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Abstract. In answer-set programming (ASP), the solutions of a problem are encoded in dedicated
models, called answer sets, of a logical theory. These answer sets are computed from the program that
represents the theory by means of an ASP solver and returned to the user as sets of ground first-order
literals. As this type of representation is often cumbersome for the user to interpret, tools like ASPVIZ
and IDPDraw were developed that allow for visualising answer sets. The tool Kara, introduced in
this paper, follows these approaches, using ASP itself as a language for defining visualisations of
interpretations. Unlike existing tools that position graphic primitives according to static coordinates
only, Kara allows for more high-level specifications, supporting graph structures, grids, and relative
positioning of graphical elements. Moreover, generalising the functionality of previous tools, Kara
provides modifiable visualisations such that interpretations can be manipulated by graphically editing
their visualisations. This is realised by resorting to abductive reasoning techniques. Kara is part of
SeaLion, a forthcoming integrated development environment (IDE) for ASP.

1 Introduction

Answer-set programming (ASP) [1] is a well-known paradigm for declarative problem solving. Its key idea
is that a problem is encoded in terms of a logic program such that dedicated models of it, called answer
sets, correspond to the solutions of the problem. Answer sets are interpretations, usually represented by
sets of ground first-order literals.

A problem often faced when developing answer-set programs is that interpretations returned by an ASP
solver are cumbersome to read—in particular, in case of large interpretations which are spread over several
lines on the screen or the output file. Hence, a user may have difficulties extracting the information he or
she is interested in from the textual representation of an answer set. Related to this issue, there is one even
harder practical problem: editing or writing interpretations by hand.

Although the general goal of ASP is to have answer sets computed automatically, we identify different
situations during the development of answer-set programs in which it would be helpful to have adequate
means to manipulate interpretations. First, in declarative debugging [2], the user has to specify the seman-
tics he or she expects in order for the debugging system to identify the causes for a mismatch with the
actual semantics. In previous work [3], a debugging approach has been introduced that takes a program P
and an interpretation I that is expected to be an answer set of P and returns reasons why I is not an answer
set of P . Manually producing such an intended interpretation ahead of computation is a time-consuming
task, however. Another situation in which the creation of an interpretation can be useful is testing post-
processing tools. Typically, if answer-set solvers are used within an online application, they are embedded
as a module in a larger context. The overall application delegates a problem to the solver by transforming it
to a respective answer-set program and the outcome of the solver is then processed further as needed by the
application. In order to test post-processing components, which may be written by programmers unaware

? This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
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Fig. 1. Overview of the workflow (visualisation and abduction process).

of ASP, it would be beneficial to have means to create mock answer sets as test inputs. Third, the same idea
of providing test input applies to modular answer-set programming [4], when a module B that depends
on another module A is developed before or separately from A. In order to test B, it can be joined with
interpretations mocking answer sets from A.

In this paper, we describe the system Karawhich allows for both visualising interpretations and editing
them by manipulating their visualisations.3 The visualisation functionality of Kara has been inspired by
the existing tools ASPVIZ [5] and IDPDraw [6] for visualising answer sets. The key idea is to use ASP
itself as a language for specifying how to visualise an interpretation I . To this end, the user takes a dedicated
answer-set program V —which we call a visualisation program—that specifies how the visualisation of I
should look like. That is, V defines how different graphical elements, such as rectangles, polygons, images,
graphs, etc., should be arranged and configured to visually represent I .

Kara offers a rich visualisation language that allows for defining a superset of the graphical elements
available in ASPVIZ and IDPDraw, e.g., providing support for automatically layouting graph structures,
relative and absolute positioning, and support for grids of graphical elements. Moreover, Kara also offers
a generic mode of visualisation, not available in previous tools, that does not require a domain-specific
visualisation program, representing an answer set as a hypergraph whose set of nodes corresponds to the
individuals occurring in the interpretation.4 A general difference to previous tools is that Kara does not
just produce image files right away but presents the visualisation in form of modifiable graphical elements
in a visual editor. The user can manipulate the visualisation in various ways, e.g., change size, position, or
other properties of graphical elements, as well as copy, delete, and insert new graphical elements. Notably,
the created visualisations can also be used outside our editing framework, as Kara offers an SVG export
function that allows to save the possibly modified visualisation as a vector graphic. Besides fine-tuning
exported SVG files, manipulation of the visualisation of an interpretation I can be done for obtaining a
modified version I ′ of I by means of abductive reasoning [7]. This gives the possibility to visually edit
interpretations which is useful for debugging and testing purposes as described above.

In Section 3, we present a number of examples that illustrate the functionality of Kara and the ease of
coping with a visualised answer set compared to interpreting its textual representation.

Kara is designed as a plugin of SeaLion, an Eclipse-based integrated development environment
(IDE) for ASP [8] that is currently developed as part of a project on programming-support methods for
ASP [9].

2 System Overview

We assume familiarity with the basic concepts of answer-set programming (ASP) (for a thorough introduc-
tion to the subject, cf. Baral [1]). In brief, an answer-set program consists of rules of the form

a1 ∨ · · · ∨ al :− al+1, . . . , am, not am+1, . . . ,not an,

3 The name “Kara” derives, with all due respect, from “Kara Zor-El”, the native Kryptonian name of Supergirl, given
that Kryptonians have visual superpowers on Earth.

4 A detailed overview of the differences concerning the visualisation capabilities of Kara with other tools is given in
Section 4.
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Fig. 2. The visualisation of interpretation I from Example 1.

where n ≥ m ≥ l ≥ 0, “not” denotes default negation, and all ai are first-order literals (i.e., atoms
possibly preceded by the strong negation symbol, ¬). For a rule r as above, we define the head of r as
H(r) = {a1, . . . , al} and the positive body as B+(r) = {al+1, . . . , am}. If n = l = 1, r is a fact, and if
l = 0, r is a constraint. For facts, we will usually omit the symbol “: − ”. The grounding of a program
P relative to its Herbrand universe is defined as usual. An interpretation I is a finite and consistent set of
ground literals, where consistency means that {a,¬a} 6⊆ I , for any atom a. I is an answer set of a program
P if it is a minimal model of the grounding of the reduct of P relative to I (see Baral [1] for details).

The overall workflow of Kara is depicted in Fig. 1, illustrating how an interpretation I can be visualised
in the upper row and how changing the visualisation can be reflected back to I such that we obtain a
modified version I ′ of I in the lower row. In the following, we call programs that encode problems for
which I and I ′ provide solution candidates domain programs.

2.1 Visualisation of Interpretations

As discussed in the introduction, we use ASP itself as a language for specifying how to visualise an inter-
pretation. In doing so, we follow a similar approach as the tools ASPVIZ [5] and IDPDraw [6]. We next
describe this method on an abstract level.

Assume we want to visualise an interpretation I that is defined over a first-order alphabet A. We join
I , interpreted as a set of facts, with a visualisation program V that is defined over A′ ⊃ A, where A′ may
contain auxiliary predicates and function symbols, as well as predicates from a fixed set Pv of reserved
visualisation predicates that vary for the three tools.5

The rules in V are used to derive different atoms with predicates from Pv , depending on I , that control
the individual graphical elements of the resulting visualisation including their presence or absence, position,
and all other properties. An actual visualisation is obtained by post-processing an answer set Iv of V ∪ I
that is projected to the predicates in Pv . We refer to Iv as a visualisation answer set for I . The process
is depicted in the upper row of Fig. 1. An exhaustive list of visualisation predicates available in Kara is
given in Appendix A.

Example 1. Assume we deal with a domain program whose answer sets correspond to arrangements of
items on two shelves. Consider the interpretation I = {book(s1, 1), book(s1, 3), book(s2, 1), globe(s2, 2)}
stating that two books are located on shelf s1 in positions 1 and 3 and that there is another book and a globe
on shelf s2 in positions 1 and 2. The goal is to create a simple graphical representation of this and similar
interpretations, depicting the two shelves as two lines, each book as a rectangle, and globes as circles.
Consider the following visualisation program:

visline(shelf 1, 10, 40, 80, 40, 0). (1)
visline(shelf 2, 10, 80, 80, 80, 0). (2)
visrect(f(X, Y ), 20, 8) :− book(X, Y ). (3)
visposition(f(s1, Y ), 20 ∗ Y, 20, 0) :− book(s1, Y ). (4)
visposition(f(s2, Y ), 20 ∗ Y, 60, 0) :− book(s2, Y ). (5)
visellipse(f(X, Y ), 20, 20) :− globe(X, Y ). (6)
visposition(f(s1, Y ), 20 ∗ Y, 20, 0) :− globe(s1, Y ). (7)
visposition(f(s2, Y ), 20 ∗ Y, 60, 0) :− globe(s2, Y ). (8)

5 Technically, in ASPVIZ, V is not joined with I but with a domain program P such that I is an answer set of P .
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Rules (1) and (2) create two lines with the identifiers shelf 1 and shelf 2, representing the top and bottom
shelf. The second to fifth arguments of visline/6 represent the origin and the target coordinates of the line.6

The last argument of visline/6 is a z-coordinate determining which graphical element is visible in case
two or more overlap. Rule (3) generates the rectangles representing books, and Rules (4) and (5) determine
their position depending on the shelf and the position given in the interpretation. Likewise, Rules (6) to (8)
generate and position globes. The resulting visualisation of I is depicted in Fig. 2. ut

Note that the first argument of each visualisation predicate is a unique identifier for the respective
graphical element. By making use of function symbols with variables, like f(X,Y ) in Rule (3) above, these
labels are not limited to constants in the visualisation program but can be generated on the fly, depending
on the interpretation to visualise. While some visualisation predicates, like visline , visrect , and visellipse ,
define graphical elements, others, e.g., visposition , are used to change properties of the elements, referring
to them by their respective identifiers.

Kara also offers a generic visualisation that visualises an arbitrary interpretation without the need for
defining a visualisation program. In such a case, the interpretation is represented as a labelled hypergraph.
Its nodes are the individuals appearing in the interpretation and the edges represent the literals in the
interpretation, connecting the individuals appearing in the respective literal. Integer labels on the endings
of the edge are used for expressing the term position of the individual. To distinguish between different
predicates, each edge has an additional label stating the predicate. Edges of the same predicate are of the
same colour. A generic visualisation is presented in Example 4.

2.2 Editing of Interpretations

We next describe how we can obtain a modified version I ′ of an interpretation I corresponding to a manip-
ulation of the visualisation of I . We follow the steps depicted in the lower row of Fig. 1, using abductive
reasoning. Recall that abduction is the process of finding hypotheses that explain given observations in the
context of a theory. Intuitively, in our case, the theory is the visualisation program, the observation is the
modified visualisation of I , and the desired hypothesis is I ′.

In Kara, the visualisation of I is created using the Graphical Editing Framework (GEF) [10] of Eclipse.
It is displayed in a graphical editor which allows for various kinds of manipulation actions such as mov-
ing, resizing, adding or deleting graphical elements, adding or removing edges between them, editing their
properties, or change grid values. Each change in the visual editor of Kara is internally reflected by a mod-
ification to the underlying visualisation answer set Iv . We denote the resulting visualisation interpretation
by I ′v . From that and the visualisation program V , we construct a logic program λ(I ′v, V ) such that the
visualisation of any answer set I ′ of λ(I ′v, V ) using V corresponds to the modified one.

The idea is that λ(I ′v, V ), which we refer to as the abduction program for I ′v and V , guesses a set
of abducible atoms. On top of these atoms, the rules of V are used in λ(I ′v, V ) to derive a hypothetical
visualisation answer set I ′′v for I ′. Finally, constraints in the abduction program ensure that I ′′v coincides
with the targeted visualisation interpretation I ′v on a set Pi of selected predicates from Pv , which we call
integrity predicates. Hence, a modified interpretation I ′ can be obtained by computing an answer set of
λ(I ′v, V ) and projecting it to the guessed atoms. To summarise, the abduction problem underlying the
described process can be stated as follows:

(∗) Given the interpretation I ′v , determine an interpretation I ′ such that I ′v coincides with each answer set
of V ∪ I ′ on Pi.

Clearly, visualisation programs must be written in a way that manipulated visualisation interpretations
could indeed be the outcome of the visualisation program for some input. This is not the case for arbitrary
visualisation programs, but usually it is easy to write an appropriate visualisation program that allows for
abducing interpretations.

The following problems have to be addressed for realising the sketched approach:

– determining the predicates and domains of the abducible atoms, and
6 The origin of the coordinate system is at the top-left corner of the illustration window with the x-axis pointing to

the right and the y-axis pointing down.
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dom(I ′v, V ) = {nonRecDom(t) :− v(t′) | r ∈ V, v/m ∈ Pv, v(t′) ∈ H(r),
a(t) ∈ B+(r), t = t1, . . . , t, . . . , tn, a/n /∈ Pv,
VAR(t) 6= ∅,VAR(t) ⊆ VAR(t′)}∪

{dom(t) :− v(t′),nonRecDom(X1), . . . ,nonRecDom(Xl) | r ∈ V,
v/m ∈ Pv, v(t′) ∈ H(r), a(t) ∈ B+(r), t = t1, . . . , t, . . . , tn,
a/n /∈ Pv,VAR(t) ∩VAR(t′) 6= ∅,
VAR(t) \VAR(t′) = {X1, . . . , Xl}}∪

{dom(X) :− nonRecDom(X)},

guess(V ) = {a(X1, . . . , Xn) :− not ¬a(X1, . . . , Xn), dom(X1), . . . , dom(Xn),
¬a(X1, . . . , Xn) :− not a(X1, . . . , Xn), dom(X1), . . . , dom(Xn) |

a/n /∈ Pv, a(t1, . . . , tn) ∈
S

r∈V B(r),
{a(t′1, . . . , t

′
n) | a(t′1, . . . , t

′
n) ∈ H(r), r ∈ V } = ∅},

check(I ′v) = {:− not v(t1, . . . , tn), :− v(X1, . . . , Xn), not v′(X1, . . . , Xn),
v′(t1, . . . , tn) | v(t1, . . . , tn) ∈ I ′v, v/n ∈ Pi},

Fig. 3. Elements of the abduction program λ(I ′v, V ).

– choosing the integrity predicates among the visualisation predicates.

For solving these issues, we rely on pragmatic choices that seem useful in practice. We obtain the set Pa of
predicates of the abducible atoms from the visualisation program V . The idea is that every predicate that
is relevant to the solution of a problem encoded in an answer set has to occur in the visualisation program
if the latter is meant to provide a complete graphical representation of the solution. Moreover, we restrict
Pa to those non-visualisation predicates in V that occur in the body of a rule but not in any head atom in
V . The assumption is that atoms defined in V are most likely of auxiliary nature and not contained in a
domain program.

An easy approach for generating a domain Da of the abducible atoms would be to extract the terms
occurring in I ′v . We follow, however, a more fine-grained approach that takes the introduction and deletion
of function symbols in the rules in V into account. Assume V contains the rules

visrect(f(Street ,Num), 9, 10) :− house(Street ,Num) and
visellipse(sun,Width,Height) :− property(sun, size(Width,Height)),

and I ′v contains visrect(f(bakerstreet , 221b), 9, 10) and visellipse(sun, 10, 11). Then, when extracting
the terms in I ′v , the domain includes f(bakerstreet , 221b), bakerstreet , 221b, 9, 10, sun , and 11 for the
two rules. However, the functor f is solely an auxiliary concept in V and not meant to be part of domain
programs. Moreover, the term 9 is introduced in V and is not needed in the domain for I ′. Also, the terms
10 and 11 as standalone terms and sun are not needed in I ′ to derive I ′v . Even worse, the term size(10, 11),
that has to be contained in I ′ such that I ′v can be a visualisation answer set for I ′, is missing in the domain.
Hence, we derive Da in λ(I ′v, V ) not only from I ′v but also consider the rules in V . Using our translation
that is detailed below, we obtain bakerstreet , 221b, and size(10, 12) as domain terms from the rules above.

For the choice of Pi, i.e., of the predicates on which I ′v and the actual visualisation answer sets of I ′

need to coincide, we exclude visualisation predicates that require a high preciseness in visual editing by
the user in order to match exactly a value that could result from the visualisation program. For example, we
do not include predicates determining position and size of graphical elements, since in general it is hard to
position and scale an element precisely such that an interpretation I ′ exists with a matching visualisation.
Note that this is not a major restriction, as in general it is easy to write a visualisation program such that
aspects that the user wants to be modifiable are represented by graphical elements that can be elegantly
modified visually. For example, instead of representing a Sudoku puzzle by labels whose exact position is
calculated in the visualisation program, the language of Kara allows for using a logical grid such that the
value of each cell can be easily changed in the visual editor.

We next give the details of the abduction program.
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Definition 1. Let I ′v be an interpretation with atoms over predicates in Pv , V a (visualisation) program,
and Pi ⊆ Pv the fixed set of integrity predicates. Moreover, let VAR(T ) denote the variables occurring in
T , where T is a term or a list of terms. Then, the abduction program with respect to I ′v and V is given by

λ(I ′v, V ) = dom(I ′v, V ) ∪ guess(V ) ∪ V ∪ check(I ′v),

where dom(I ′v, V ), guess(V ), and check(I ′v) are given in Fig. 3, and nonRecDom/1, dom/1, and v′/n,
for all v/n ∈ Pi, are fresh predicates.

The idea of dom(I ′v, V ) is to consider non-ground terms t contained in the body of a visualisation rule that
share variables with a visualisation atom in the head of the rule and to derive instances of these terms when
the corresponding visualisation atom is contained in I ′v . In case less variables occur in the visualisation
atom than in t, we avoid safety problems by restricting their scope to parts of the derived domain. Here,
the distinction between predicates dom and nonRecDom is necessary to prevent infinite groundings of
the abduction program. Note that in general it is not guaranteed that the domain we derive contains all
necessary elements for abducing an appropriate interpretation I ′. For instance, consider the case that the
visualisation program contains a rule visrect(id , 5 , 5 ) :− foo(X ), and V together with the constraints in
check(I ′v) require that for all terms t of a domain that can be obtained from I ′v and V , foo(t) must not hold.
Then, there is no interpretation that will trigger the rule using this domain, although an interpretation with
a further term t ′ might exist that results in the desired visualisation. Hence, we added an editor to Kara
that allows for changing and extending the automatically generated domain as well as the set of abducible
predicates.

The following result characterises the answer sets of the abduction program.

Theorem 1. Let I ′v be an interpretation with atoms over predicates in Pv , V a (visualisation) program,
and Pi ⊆ Pv the fixed set of integrity predicates. Then, any answer set I ′′v of λ(I ′v, V ) coincides with I ′v on
the atoms over predicates from Pi, and a solution I ′ of the abduction problem (∗) is obtained from I ′′v by
projection to the predicates in

{a/n | a(t1, . . . , tn) ∈
⋃
r∈V

B(r), {a(t′1, . . . , t
′
n) | a(t′1, . . . , t

′
n) ∈ H(r), r ∈ V } = ∅} \ Pv.

2.3 Integration in SeaLion

Kara is written in Java and integrated in the Eclipse-plugin SeaLion [8] for developing answer-set pro-
grams. Currently, it can be used with answer-set programs in the languages of Gringo and DLV. SeaLion
offers functionality to execute external ASP solvers on answer-set programs. The resulting answer sets can
be parsed by the IDE and displayed as expandable tree structures in a dedicated Eclipse view for interpreta-
tions. Starting from there, the user can invoke Kara by choosing a pop-up menu entry of the interpretation
he or she wants to visualise. A run configuration dialog will open that allows for choosing the visualisation
program and for setting the solver configuring to be used by Kara. Then, the visual editor opens with the
generated visualisation. The process for abducing an interpretation that reflects the modifications to the
visualisation can be started from the visual editor’s pop-up menu. If a respective interpretation exists, one
will be added to SeaLion’s interpretation view.

The sources of Kara and the alpha version of SeaLion can be downloaded from

http://sourceforge.net/projects/mmdasp/.

An Eclipse update site will be made available as soon as SeaLion reaches beta status.

3 Examples

In this section, we provide examples that give an overview of Kara’s functionality. We first illustrate the
use of logic grids and the visual editing feature.
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visgrid(maze,MAXR,MAXC ,MAXR∗20+5,MAXC∗20+5):−maxC (MAXC ),maxR(MAXR). (9)
visposition(maze, 0, 0, 0). (10)

% A cell with a wall on it.
visrect(wall , 20, 20). (11)
visbackgroundcolor(wall , black). (12)

% An empty cell.
visrect(empty , 20, 20). (13)
visbackgroundcolor(empty ,white). (14)
viscolor(empty ,white). (15)

% Entrance and exit.
visimage(entrance, “entrance.jpg”). (16)
visscale(entrance, 18, 18). (17)
visimage(exit , “exit .png”). (18)
visscale(exit , 18, 18). (19)

% Filling the cells of the grid.
visfillgrid(maze, empty , R, C) :− empty(C, R), not entrance(C, R), not exit(C, R). (20)
visfillgrid(maze,wall , R, C) :− wall(C, R), not entrance(C, R), not exit(C, R). (21)
visfillgrid(maze, entrance, R, C) :− entrance(C, R). (22)
visfillgrid(maze, exit , R, C) :− exit(C, R). (23)

% Vertical and horizontal lines.
visline(v(0), 5, 5, 5,MAXR ∗ 20 + 5, 1) :−maxR(MAXR). (24)
visline(v(C), C∗20+5, 5, C∗20+5,MAXR∗20+5, 1) :− col(C),maxR(MAXR). (25)
visline(h(0), 5, 5,MAXC ∗ 20 + 5, 5, 1) :−maxC (MAXC ). (26)
visline(h(R), 5, R ∗ 20 + 5,MAXC ∗ 20 + 5, R ∗ 20 + 5, 1) :− row(R),maxC (MAXC ). (27)

% Define possible grid values for editing.
vispossiblegridvalues(maze,wall). (28)
vispossiblegridvalues(maze, empty). (29)
vispossiblegridvalues(maze, entrance). (30)
vispossiblegridvalues(maze, exit). (31)

Fig. 4. Visualisation program for Example 2.

Example 2. Maze-generation is a benchmark problem from the second ASP competition [11]. The task is to
generate a two-dimensional grid, where each cell is either a wall or empty, that satisfies certain constraints.
There are two dedicated empty cells, being the maze’s entrance and its exit, respectively. The following
facts represent a sample answer set of a maze generation encoding restricted to interesting predicates.

col(1..5). row(1..5). maxC (5). maxR(5). wall(1, 1). empty(1, 2). wall(1, 3).
wall(1, 4). wall(1, 5). wall(2, 1). empty(2, 2). empty(2, 3). empty(2, 4). wall(2, 5).
wall(3, 1). wall(3, 2). wall(3, 3). empty(3, 4). wall(3, 5). wall(4, 1). empty(4, 2).
empty(4, 3). empty(4, 4). wall(4, 5). wall(5, 1).wall(5, 2). wall(5, 3). empty(5, 4).
wall(5, 5). entrance(1, 2). exit(5, 4).

Predicates col/1 and row/1 define indices for the rows and columns of the maze, while maxC/1
and maxR/1 give the maximum column and row number, respectively. The predicates wall/2, empty/2,
entrance/2, and exit/2 determine the positions of walls, empty cells, the entrance, and the exit in the grid,
respectively. One may use the visualisation program from Fig. 4 for maze-generation interpretations of this
kind.

In Fig. 4, Rule (9) defines a logic grid with identifier maze , MAXR rows, and MAXC columns. The
fourth and fifth parameter define the height and width of the grid in pixel. Rule (10) is a fact that defines
a fixed position for the maze. The next step is to define the graphical objects to be displayed in the grid.
Because these objects are fixed (i.e., they are used more than once), they can be defined as facts. A wall is



Kara: A System for Visualising and Visual Editing of Interpretations for Answer-Set Programs 159

Fig. 5. Visualisation output for the maze-generation program.

represented by a rectangle with black background and foreground colour7 (Rules (11) and (12)) whereas an
empty cell is rendered as a rectangle with white background and foreground colour (Rules (13) to (15)). The
entrance and the exit are represented by two images (Rules (16) to (19)). Then, these graphical elements
are assigned to the respective cell of the grid (Rules (20) to (23)). Rules (24) to (27) render vertical and
horizontal lines to better distinguish between the different cells. Rules (28) to (31) are not needed for
visualisation but define possible values for the grid that we want to be available in the visual editor.

Once the grid is rendered, the user can replace the value of a cell with a value defined using predicate
vispossiblegridvalues/2 (e.g., replacing an empty cell with a wall). The visualisation of the sample inter-
pretation using this program is given in Fig. 5. Note that the visual representation of the answer set is much
easier to cope with than the textual representation of the answer set given in the beginning of the example.

Next, we demonstrate how to use the visual editing feature of Kara to obtain a modified interpretation,
as shown in Fig. 6. Suppose we want to change the cell (3, 2) from being a wall to an empty cell. The user
can select the respective cell and open a pop-up menu that provides an item for changing grid-values. A
dialog opens that allows for choosing among the values that have been defined in the visualisation program,
using the vispossiblegridvalues/2 predicate. When the user has finished editing the visualisation, he or she
can start the abduction process for inferring the new interpretation. When an interpretation is successfully
derived, it is added to SeaLion’s interpretation view. ut

Kara supports absolute and relative positioning of graphical elements. If for any visualisation element
the predicate visposition/4 is defined, then we have fixed positioning. Otherwise, the element is positioned
automatically. Then, by default, the elements are randomly positioned on the graphical editor. However, the
user can define the position of an element relative to another element. This is done by using the predicates
visleft/2, visright/2, visabove/2, visbelow/2, and visinfrontof /2.

Example 3. The following visualisation program makes use of relative positioning for sorting elements
according to their label.

visrect(a, 50, 50). (32)
vislabel(a, laba). (33)
vistext(laba, 3). (34)
vispolygon(b, 0, 20, 1). (35)
vispolygon(b, 25, 0, 2). (36)
vispolygon(b, 50, 20, 3). (37)
vislabel(b, labb). (38)
vistext(labb, 10). (39)
visellipse(c, 30, 30). (40)
vislabel(c, labc). (41)
vistext(labc, 5). (42)
element(X) :− visrect(X, , ). (43)
element(X) :− vispolygon(X, , , ). (44)
element(X) :− visellipse(X, , ).element (45)

7 Black foreground colour is default and may not be set explicitly.
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Fig. 6. Abduction steps in the plugin.

visleft(X, Y ) :− element(X), element(Y ), vislabel(X,LABX ),
vistext(LABX ,XNUM ), vislabel(Y,LABY ), (46)
vistext(LABY ,YNUM ),XNUM < YNUM .

The program defines three graphical objects, a rectangle, a polygon, and an ellipse. In Rules (32) to (34),
the rectangle together with its label 3 is generated. The shape of the polygon (Rules (35) to (37)) is defined
by a sequence of points relative to the polygon’s own coordinate system using the vispolygon/4 predicate.
The order in which these points are connected with each other is given by the predicate’s fourth argument.
Rules (38) and (39) generate the label for the polygon and specify its text. Rules (43) to (45) state that every
rectangle, polygon, and ellipse is an element. The relative position of the three elements is determined by
Rule (46). For two elements E1 and E2, E1 has to appear to the left of E2 whenever the label of E1

is smaller than the one of E1. The output of this visualisation program is given in Fig. 7. Note that the
visualisation program does not make reference to predicates from an interpretation to visualise, hence the
example illustrates that Kara can also be used for creating arbitrary graphics. ut

The last example demonstrates the support for graphs in Kara. Moreover, the generic visualisation
feature is illustrated.

Example 4. We want to visualise answer sets of an encoding of a graph-colouring problem. Assume we
have the following interpretation that defines nodes and edges of a graph as well as a colour for each node.

{node(1), node(2), node(3), node(4), node(5), node(6), edge(1, 2), edge(1, 3),
edge(1, 4), edge(2, 4), edge(2, 5), edge(2, 6), edge(3, 1), edge(3, 4), edge(3, 5),
edge(4, 1), edge(4, 2), edge(5, 3), edge(5, 4), edge(5, 6), edge(6, 2), edge(6, 3),
edge(6, 5), color(1, lightblue), color(2, yellow), color(3, yellow), color(4, red),
color(5, lightblue), color(6, red)}.

We make use of the following visualisation program:
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Fig. 7. Output of the visualisation program in Example 3.

% Generate a graph.
visgraph(g). (47)

% Generate the nodes of the graph.
visellipse(X, 20, 20) :− node(X). (48)
visisnode(X, g) :− node(X). (49)

% Connect the nodes (edges of the input).
visconnect(f(X, Y ), X, Y ) :− edge(X, Y ). (50)
vistargetdeco(X, arrow) :− visconnect(X, , ). (51)

% Generate labels for the nodes.
vislabel(X, l(X)) :− node(X). (52)
vistext(l(X), X) :− node(X). (53)
visfontstyle(l(X), bold) :− node(X). (54)

% Color the node according to the solution.
visbackgroundcolor(X,COLOR) :− node(X), color(X,COLOR). (55)

In Rule (47), a graph, g, is defined and a circle for every node from the input interpretation is created
(Rule (48)). Rule (49) states that each of these circles is logically considered a node of graph g. This has
the effect that they will be considered by the algorithm layouting the graph during the creation of the
visualisation. The edges of the graph are defined using the visconnect/3 predicate (Rule (50)). It can be
used to connect arbitrary graphical elements with a line, also if they are not nodes of some graph. As we
deal with a directed graph, an arrow is set as target decoration for all the connections (Rule (51)). Labels
for the nodes are set in Rules (52) to (54). Finally, Rule (55) sets the colour of the node according to the
interpretation. The resulting visualisation is depicted in Fig. 8. Moreover, the generic visualisation of the
graph colouring interpretation is given in Fig. 9. ut

4 Related Work

The visualisation feature of Kara follows the previous systems ASPVIZ [5] and IDPDraw [6], which also
use ASP for defining how interpretations should be visualised.8 Besides the features beyond visualisation,
viz. the framework for editing visualisations and the support for multiple solvers, there are also differences
between Kara and these tools regarding visualisation aspects.

Kara allows to write more high-level specifications for positioning the graphical elements of a visuali-
sation. While IDPDraw and ASPVIZ require the use of absolute coordinates, Kara additionally supports
relative positioning and automatic layouting for graph and grid structures. Note that technically, the former
is realised using ASP, by guessing positions of the individual elements and adding respective constraints to
ensure the correct layout, while the latter is realised by using a standard graph layouting algorithm which
is part of the Eclipse framework. In Kara, as well as in IDPDraw, each graphical element has a unique
identifier that can be used, e.g., to link elements or to set their properties (e.g., colour or font style). That
way, programs can be written in a clear and elegant way since not all properties of an element have to be
specified within a single atom. Here, Kara exploits that the latest ASP solvers support function symbols

8 IDPDraw has been used for visualisation of the benchmark problems of the second and third ASP competition.
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Fig. 8. Visualisation of a coloured graph.

that allow for generating new identifiers from terms of the interpretation to visualise. IDPDraw does not
support function symbols. Instead, for having compound identifiers, IDPDraw uses predicates of variable
length (e.g., idp polygon(id1, id2, ...)). A disadvantage of this approach is that some solvers, like DLV, do
not support predicates of variable length. ASPVIZ does not support identifiers for graphical objects.

The support for a z-axis to determine which object should be drawn over others is available in Kara
and IDPDraw but missing in ASPVIZ. Both Kara and ASPVIZ support the export of visualisations as
vector graphics in the SVG format, which is not possible with IDPDraw. A feature that is supported by
ASPVIZ and IDPDraw, however, is creating animations which is not possible with Kara so far.

Kara and ASPVIZ are written in Java and depend only on a Java Virtual Machine. IDPDraw, on
the other hand, is written in C++ and depends on the qt libraries. Finally, Kara is embedded in an IDE,
whereas ASPVIZ and IDPDraw are stand-alone tools.

A related approach from software engineering is the Alloy Analyzer, a tool to support the analysis of
declarative software models [12]. Models are formulated in a first-order based specification language. The
Alloy Analyzer can find satisfying instances of a model using translations to SAT. Instances of models
are first-order structures that can be automatically visualised as graphs, where the nodes correspond to
atoms from respective signature declarations in the specification, and the edges correspond to relations
between atoms. Since the Alloy approach is based on finding models for declarative specifications, it can
be regarded as an instance of ASP in a broader sense. The visualisation of first-order structures in Alloy
is closely related to the generic visualisation mode of Kara where no dedicated visualisation program is
needed. Alloy supports filtering predicates and arguments away of the graph. We consider to add such a
feature in future versions of Kara for getting a clearer generic visualisation.

5 Conclusion

We presented the tool Kara for visualising and visual editing of interpretations in ASP. It supports generic
as well as customised visualisations. For the latter, a powerful language for defining a visualisation by
means of ASP is provided, supporting, e.g., automated graph layouting, grids of graphical elements, and
relative positioning. The editing feature is based on abductive reasoning, inferring a new interpretation as
hypothesis to explain a modified visualisation. In future work, we want to add support for defining input
and output signatures for programs in SeaLion. Then, the abduction framework of Kara could be easily
extended such that instead of deriving an interpretation that corresponds to the modified visualisation, one
can derive inputs for a domain program such that one of its answer sets has this visualisation.
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Fig. 9. A screenshot of SeaLion’s visual interpretation editor showing a generic visualisation of the graph colouring
interpretation of Example 4 (the layout of the graph has been manually optimised by moving the nodes in the editor).

A Predefined Visualisation Predicates in Kara

Atom Intended meaning
visellipse(id , height ,width) Defines an ellipse with specified height and width.
visrect(id ,height ,width) Defines a rectangle with specified height and width.
vispolygon(id ,x,y,ord) Defines a point of a polygon. The ordering defines in which order

the defined points are connected with each other.
visimage(id ,path) Defines an image given in the specified file.
visline(id ,x1,y1,x2,y2,z) Defines a line between the points (x1, y1) and (x2, y2).
visgrid(id ,rows ,cols ,height , width) Defines a grid, with the specified number of rows and columns;

height and width determine the size of the grid.
visgraph(id) Defines a graph.
vistext(id ,text) Defines a text element.
vislabel(idg ,idt) Sets the text element idt as a label for graphical element idg . Labels

are supported for the following elements: visellipse/3, visrect/3,
vispolygon/4, and visconnect/3.

visisnode(idn ,idg) Adds the graphical element idn as a node to a graph idg for au-
tomatic layouting. The following elements are supported as nodes:
visrect/3, visellipse/3, vispolygon/4, visimage/2.

visscale(id ,height ,weight) Scales an image to the specified height and width.
visposition(id ,x,y,z) Puts an element id on the fixed position (x, y, z).
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visfontfamily(id ,ff ) Sets the specified font ff for a text element id .
visfontsize(id ,size) Sets the font size size for a text element id .
visfontstyle(id ,style) Sets the font style for a text element id to bold or italics.
viscolor(id ,color) Sets the foreground colour for the element id .
visbackgroundcolor(id ,color) Sets the background colour for the element id .
visfillgrid(idg ,idc ,row ,col) Puts element idc in cell (row , col) of the grid idg .
visconnect(idc ,idg1

,idg2
) Connects two elements, idg1

and idg2
, by a line such that idg1

is the
source and idg2

is the target of the connection.
vissourcedeco(id ,deco) Sets the source decoration for a connection.
vistargetdeco(id ,deco) Sets the target decoration for a connection.
visleft(idl ,idr ) Ensures that the x-coordinate of idl is less than that of idr .
visright(idr ,idl) Ensures that the x-coordinate of idr is greater than that of idl .
visabove(idt ,idb) Ensures that the y-coordinate of idt is smaller than that of idb .
visbelow(idb ,idt) Ensures that the y-coordinate of idb is greater than that of idt .
visinfrontof (id1 ,id2 ) Ensures that the z-coordinate of id1 is greater than that of id2 .
vishide(id) Hides the element id .
visdeletable(id) Defines that the element id can be deleted in the visual editor.
viscreatable(id) Defines that the element id can be created in the visual editor.
vischangable(id ,prop) Defines that the property prop can be changed for the element id in

the visual editor.
vispossiblegridvalues(id ,ide) Defines that graphical element ide is available as possible grid value

for a grid id in the visual editor.
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Abstract. Answer Set Programming (ASP) is a declarative logic programming formalism, which is
employed nowadays in both academic and industrial real-world applications. Although some tools for
supporting the development of ASP programs have been proposed in the last few years, the crucial task
of testing ASP programs received less attention, and is an Achilles’ heel of the available programming
environments.
In this paper we present a language for specifying and running unit tests on ASP programs. The test-
ing language has been implemented in ASPIDE, a comprehensive IDE for ASP, which supports the
entire life-cycle of ASP development with a collection of user-friendly graphical tools for program
composition, testing, debugging, profiling, solver execution configuration, and output-handling.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative logic programming formalism proposed in the area
of non-monotonic reasoning. The idea of ASP is to represent a given computational problem by a logic
program whose answer sets correspond to solutions, and then use a solver to find those solutions [2].

The language of ASP [1] supports a number of modeling constructs including disjunction in rule heads,
nonmonotonic negation [1], (weak and strong) constraints [3], aggregate functions [4], and more. These fea-
tures make ASP very expressive [5], and suitable for developing advanced real-world applications. ASP is
employed in several fields, from Artificial Intelligence [6–11] to Information Integration [12], and Knowl-
edge Management [13, 14]. Interestingly, these applications of ASP recently have stimulated some interest
also in industry [14].

On the one hand, the effective application of ASP in real-world scenarios was made possible by the
availability of efficient ASP systems [6, 18, 19]. On the other hand, the adoption of ASP can be further
boosted by offering effective programming tools capable of supporting the programmers in managing large
and complex projects [20].

In the last few years, a number of tools for developing ASP programs have been proposed, including
editors and debuggers [21–31]. Among them, ASPIDE [31] –which stands for Answer Set Programming
Integrated Development Environment– is one of the most complete development tools1 and it integrates
a cutting-edge editing tool (featuring dynamic syntax highlighting, on-line syntax correction, autocom-
pletion, code-templates, quick-fixes, refactoring, etc.) with a collection of user-friendly graphical tools
for program composition, debugging, profiling, DBMS access, solver execution configuration and output-
handling.

Although so many tools for developing ASP programs have been proposed up to now, the crucial
task of testing ASP programs received less attention [32, 46], and is an Achilles’ heel of the available
programming environments. Indeed, the majority of available graphic programming environments for ASP
does not provide the user with a testing tool (see [31]), and also the one present in the first versions of
ASPIDE is far from being effective.

In this paper we present a pragmatic solution for testing ASP programs. In particular, we present a new
language for specifying and running unit tests on ASP programs. The testing language presented in this
paper is inspired by the JUnit [33] framework: the developer can specify the rules composing one or sev-
eral units, specify one or more inputs and assert a number of conditions on both expected outputs and the

1 For an exaustive feature-wise comparison with existing environments for developing logic programs we refer the
reader to [31].
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expected behavior of sub-programs. The obtained test case specification can be run by exploiting an ASP
solver, and the assertions are automatically verified by analyzing the output of the chosen ASP solver. Note
that test case specification is applicable independently of the used ASP solver. The testing language was
implemented in ASPIDE, which also provides the user with some graphic tools that make the development
of test cases simpler. The testing tool described in this work extends significantly the one formerly available
in ASPIDE, by both extending the language by more expressive (non-ground) assertions and the support
of weak-constraints, and enriching its collection of user-friendly graphical tools (including program com-
position, debugging, profiling, database management, solver execution configuration, and output-handling)
with a graphical test suite management interface.

As far as related work is concerned, the task of testing ASP programs was approached for the first time,
to the best of our knowledge, in [32, 46] where the notion of structural testing for ground normal ASP
programs is defined and methods for automatically generating tests is introduced. The results presented
in [32, 46] are, somehow, orthogonal to the contribution of this paper. Indeed, no language/implementation
is proposed in [32, 46] for specifying/automatically-running the produced test cases; whereas, the language
presented in this paper can be used for encoding the output of a test case generator based on the methods
proposed in [32]. Finally, it is worth noting that, testing approaches developed for other logic languages,
like prolog [34–36], cannot be straightforwardly ported to ASP because of the differences between the
languages.

The rest of this paper is organized as follows: in Section 2 we overview ASPIDE; in section 3 we
introduce a language for specifying unit tests for ASP programs; in Section 4 we describe the user inter-
face components of ASPIDE conceived for creating and running tests; finally, in Section 5 we draw the
conclusion.

2 ASPIDE: Integrated Development Environment for ASP

ASPIDE is an Integrated Development Environment (IDE) for ASP, which features a rich editing tool
with a collection of user-friendly graphical tools for ASP program development. In this section we first
summarize the main features of the system and then we overview the main components of the ASPIDE
user interface. For a more detailed description of ASPIDE, as well as for a complete comparison with
competing tools, we refer the reader to [31] and to the online manual published in the system web site
http://www.mat.unical.it/ricca/aspide.

System Features. ASPIDE is inspired by Eclipse, one of the most diffused programming environments.
The main features of ASPIDE are the following:

– Workspace management. The system allows one to organize ASP programs in projects, which are
collected in a special directory (called workspace).

– Advanced text editor. The editing of ASP files is simplified by an advanced text editor. Currently, the
system is able to load and store ASP programs in the syntax of the ASP system DLV [15], and sup-
ports the ASPCore language profile employed in the ASP System Competition 2011 [37]. ASPIDE
can also manage TYP files specifying a mapping between program predicates and database tables in
the DLVDB syntax [38]. Besides the core functionality that basic text editors offer (like code line num-
bering, find/replace, undo/redo, copy/paste, etc.), ASPIDE offers other advanced functionalities, like:
Automatic completion, Dynamic code templates, Quick fix, and Refactoring. Indeed, the system is able
to complete (on request) predicate names, as well as variable names. Predicate names are both learned
while writing, and extracted from the files belonging to the same project; variables are suggested by
taking into account the rule we are currently writing. When several possible alternatives for completion
are available the system shows a pop-up dialog. Moreover, the writing of repeated programming pat-
terns (like transitive closure or disjunctive rules for guessing the search space) is assisted by advanced
auto-completion with code templates, which can generate several rules at once according to a known
pattern. Note that code templates can also be user defined by writing DLT [39] files. The refactoring
tool allows one to modify in a guided way, among others, predicate names and variables (e.g., variable
renaming in a rule is done by considering bindings of variables, so that variables/predicates/strings
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occurring in other expressions remain unchanged). Reported errors or warnings can be automatically
fixed by selecting (on request) one of the system’s suggested quick fixes, which automatically change
the affected part of code.

– Outline navigation. ASPIDE creates an outline view which graphically represents program elements.
Each item in the outline can be used to quickly access the corresponding line of code (a very useful
feature when dealing with long files), and also provides a graphical support for building rules in the
visual editor (see below).

– Dynamic code checking and error highlighting. Syntax errors and relevant conditions (like safety)
are checked while typing programs: portions of code containing errors or warnings are immediately
highlighted. Note that the checker considers the entire project, and warns the user by indicating e.g.,
that atoms with the same predicate name have different arity in several files. This condition is usually
revealed only when programs divided in multiple files are run together.

– Dependency graph. The system is able to display several variants of the dependency graph associated
to a program (e.g., depending on whether both positive and negative dependencies are considered).

– Debugger and Profiler. Semantic error detection as well as code optimization can be done by exploiting
graphic tools. In particular, we developed a graphical user interface for embedding in ASPIDE the
debugging tool spock [23] (we have also adapted spock for dealing with the syntax of the DLV system).
Regarding the profiler, we have fully embedded the graphical interface presented in [40].

– Unit Testing. The user can define unit tests and verify the behavior of program units. The language for
specifying unit tests, as well as the graphical tools of ASPIDE assisting the development of tests, are
described in detail in the following sections.

– Configuration of the execution. This feature allows one to configure and manage input programs and
execution options (called run configurations).

– Presentation of results. The output of the program (either answer sets, or query results) are visualized
in a tabular representation or in a text-based console. The result of the execution can be also saved in
text files for subsequent analysis.

– Visual Editor. The users can draw logic programs by exploiting a full graphical environment that
offers a QBE-like tool for building logic rules [41]. The user can switch, every time he needs, from the
text editor to the visual one (and vice-versa) thanks to a reverse-engineering mechanism from text to
graphical format.

– Interaction with databases. Interaction with external databases is useful in several applications (e.g.,
[12]). ASPIDE provides a fully graphical import/export tool that automatically generates mappings by
following the DLVDB TYP file specifications [38]. Text editing of TYP mappings is also assisted by
syntax coloring and auto-completion. Database oriented applications can be run by setting DLVDB as
solver in a run configuration.

Interface Overview The user interface of ASPIDE is depicted in Figure 1. The most common operations
can be quickly executed through a toolbar present in the upper part of the GUI (zone 1). From left to right
there are buttons allowing to: save files, undo/redo, copy & paste, find & replace, switch between visual to
text editor, run the solver/profiler/debugger. The main editing area (zone 4) is organized in a multi-tabbed
panel possibly collecting several open files. On the left there is the explorer panel (zone 2) which allows
one to browse the workspace; and the error console (zone 3). The explorer panel lists projects and files
included in the workspace, while the error console organizes errors and warnings according to the project
and files where they are localized. On the right, there are the outline panel (zone 5) and the sources panel
(zone 6). The first shows an outline of the currently edited file, while the latter reports a list of the database
sources connected with the current project. Note that, the layout of the system can be customized by the
user, indeed panels can be moved and rearranged.

ASPIDE is written in Java and runs on the most diffused operating systems (Microsoft Windows, Linux,
and Mac OS) and can connect to any database supporting Java DataBase Connectivity (JDBC).

3 A language for testing ASP programs

Software testing [42] is an activity aimed at evaluating the behavior of a program by verifying whether it
produces the required output for a particular input. The goal of testing is not to provide means for estab-
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Fig. 1. The ASPIDE graphical user interface.

lishing whether the program is totally correct; conversely testing is a pragmatic and cheap way of finding
errors by executing some test. A test case is the specification of some input I and corresponding expected
outputs O. A test case fails when the outputs produced by running the program does not correspond to O,
it passes otherwise.
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One of the most diffused white-box2 testing techniques is unit testing. The idea of unit testing is to
assess an entire software by testing its subparts called units (and corresponding to small testable parts of
a program). In a software implemented by using imperative object-oriented languages, unit testing corre-
sponds to assessing separately portions of the code like class methods. The same idea can be applied to
ASP, once the notion of unit is given. We intend as unit of an ASP programs P any subset of the rules of P
corresponding to a splitting set [43] (actually the system exploits a generalization of the splitting theorem
by Lifschitz and Turner [43] to the non-ground case [44]). In this way, the behavior of units can be verified
(by avoiding unwanted behavioral changes due to cycles) both when they run isolated from the original
program as well as when they are left immersed in (part of) the original program.

In the following, we present a pragmatic solution for testing ASP programs, which is a new language,
inspired by the JUnit [33] framework, for specifying and running unit tests. The developer, given an ASP
program, can select the rules composing a unit, specify one or more inputs, and assert a number of condi-
tions on the expected output. The obtained test case specification can be run, and the assertions automati-
cally verified by calling an ASP solver and checking its output. In particular, we allow three test execution
modes:

– Execution of selected rules. The selected rules will be executed separated from the original program
on the specified inputs.

– Execution of split program. The program corresponding to the splitting set containing the atoms of the
selected rules is run and tested. In this way, the ”interface” between two splitting sets can be tested
(e.g., one can assert some expected properties on the candidates produced by the guessing part of a
program by excluding the effect of some constraints in the checking part).

– Execution in the whole program. The original program is run and specific assertions regarding predi-
cates contained in the unit are checked. This corresponds to filtering test results on the atoms contained
in the selected rules.

Testing Language. A test file can be written according to the following grammar:3

1 : invocation("invocationName" [ ,"solverPath", "options" ]?);
2 : [ [ input("program"); ] | [ inputFile("file"); ] ]*
3 : [
4 : testCaseName([ SELECTED RULES | SPLIT PROGRAM | PROGRAM ]?)
5 : {
6 : [newOptions("options");]?
7 : [ [ input("program"); ] | [ inputFile("file"); ] ]*
8 : [ [ excludeInput("program"); ]
9 : | [ excludeInputFile("file"); ] ]*
10 : [
11 : [ filter | pfilter | nfilter ]
12 : [ [ (predicateName [ ,predicateName ]* ) ]
13 : | [SELECTED RULES] ] ;
14 : ]?
15 : [ selectRule(ruleName); ]*
16 : [ [ assertName( [ intnumber, ]? [ [ "atoms" ] | [ "constraint" ] ); ]
17 : | [ assertBestModelCost(intcost [, intlevel ]? ); ] ]*
18 : }
19 : ]*
20 : [ [ assertName( [ intnumber, ]? [ [ "atoms" ] | [ "constraint" ] ); ]

21 : | [ assertBestModelCost(intcost [, intlevel ]? ); ] ]*

A test file might contain a single test or a test suite (a set of tests) including several test cases. Each test
case includes one or more assertions on the execution results.

The invocation statement (line 1) sets the global invocation settings, that apply to all tests specified
in the same file (name, solver, and execution options). In the implementation, the invocation name might
correspond to an ASPIDE run configuration, and the solver path and options are not mandatory.

2 A test conceived for verifying some functionality of an application without knowing the code internals is said to
be a black-box test. A test conceived for verifying the behavior of a specific part of a program is called white-box
test. White box testing is an activity usually carried out by developers and is a key component of agile software
development [42].

3 Non-terminals are in bold face; token specifications are omitted for simplicity.
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The user can specify one or more global inputs by writing some input and inputFile statements (line 2).
The first kind of statement allows one for writing the input of the test in the form of ASP rules or simply
facts; the second statement indicates a file that contains some input in ASP format.

A test case declaration (line 4) is composed by a name and an optional parameter that allows one to
choose if the execution will be done on the entire program, on a subset of rules, or on the program cor-
responding to the splitting set containing the selected rules. The user can specify particular solver options
(line 6), as well as certain inputs (line 7) which are valid in a given test case. Moreover, global inputs of the
test suite can be excluded by exploiting excludeInput and excludeInputFile statements (lines 8 and 9). The
optional statements filter, pfilter and nfilter (lines 11, 12, and 13) are used to filter out output predicates
from the test results (i.e., specified predicate names are filtered out from the results when the assertion is
executed).4 The statement selectRule (line 15) allows one for selecting rules among the ones composing
the global input program. A rule r to be selected must be identified by a name, which is expected to be
specified in the input program in a comment appearing in the row immediately preceding r (see Figure 1).
ASPIDE adds automatically the comments specifying rule names. If a set of selected rules does not belong
to the same splitting set, the system has to print a warning indicating the problem.

The expected output of a test case is expressed in terms of assertion statements (lines 16/21). The
possible assertions are:

– assertTrue(”atomList”)/assertCautiouslyTrue(”atomList”). Asserts that all atoms of the atom list must
be true in any answer sets;

– assertBravelyTrue(”atomList”). Asserts that all atoms of the atom list must be true in at least one
answer set;

– assertTrueIn(number, ”atomList”). Asserts that all atoms of the atom list must be true in exactly num-
ber answer sets;

– assertTrueInAtLeast(number, ”atomList”). Asserts that all atoms of the atom list must be true in at
least number answer sets;

– assertTrueInAtMost(number, ”atomList”). Asserts that all atoms of the atom list must be true in at most
number answer sets;

– assertConstraint(”:-constraint.”). Asserts that all answer sets must satisfy the specified constraint;
– assertConstraintIn(number, ”:-constraint.”). Asserts that exactly number answer sets must satisfy the

specified constraint;
– assertConstraintInAtLeast(number, ”:-constraint.”). Asserts that at least number answer sets must sat-

isfy the specified constraint;
– assertConstraintInAtMost(number, ”:-constraint.”). Asserts that at most number answer sets must sat-

isfy the specified constraint;
– assertBestModelCost(intcost) and assertBestModelCost(intcost, intlevel). In case of execution of pro-

grams with weak constraints, they assert that the cost of the best model with level intlevel must be
intcost;

together with the corresponding negative assertions: assertFalse, assertCautiouslyFalse, assertBravely-
False, assertFalseIn, assertFalseInAtLeast, assertFalseInAtMost. The atomList specifies a list of atoms
that can be ground or non-ground; in the case of non-ground atoms the assertion is true if some ground
instance matches in some/all answer sets. Assertions can be global (line 20-21) or local to a single test (line
16-17).

In the following we report an example of test case.

Test case example. The maximum clique is a classical hard problem in graph theory requiring to find the
largest clique (i.e., a complete subgraph of maximal size) in an undirected graph. Suppose that the graph
G is specified by using facts over predicates node (unary) and edge (binary), then the program in Figure 1
solves the problem.

The disjunctive rule (r1) guesses a subset S of the nodes to be in the clique, while the rest of the pro-
gram checks whether S constitutes a clique, and the weak constraint (r5) maximizes the size of S. Here,

4 pfilter selects only positive literals and excludes the strongly negated ones, while nfilter has opposite behavior.
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Fig. 2. Input graphs.

an auxiliary predicate uedge exploits an ordering for reducing the time spent in checking. Suppose that
the encoding is stored in a file named clique.dl; and suppose also that the graph instance, composed by
facts { node(1). node(2). node(3). node(4). node(5). node(6). node(7). edge(1,2). edge(2,3). edge(2,4).
edge(1,4). edge(1,5). edge(4,5). edge(2,5). edge(4,6). edge(5,7). edge(3,7).}, is stored in the file named
graphInstance.dl (the corresponding graph is depicted in Figure 2a). The following is a simple test suite
specification for the above-reported ASP program:

invocation("MaximalClique", "/usr/bin/dlv", "");
inputFile("clique.dl");
inputFile("graphInstance.dl");
maximalClique()
{
assertBestModelCost(3);
}
constraintsOnCliques()
{
excludeInput(":˜ outClique(X2).");
assertConstraintInAtLeast(1,":- not inClique(1), not inClique(4).");
assertConstraintIn(5,":- #count{ X1: inClique(X1) } < 3.");
}
checkNodeOrdering(SELECTED RULES)
{
inputFile("graphInstance.dl");
selectRule("r2");
selectRule("r3");
assertFalse("uedge(2,1).");
}
guessClique(SPLIT PROGRAM)
{
selectRule("r1");
assertFalseInAtMost(1,"inClique(X).");
assertBravelyTrue("inClique(X).");
}

Here, we first set the invocation parameters by indicating DLV as solver, then we specify the file to be
tested clique.dl and the input file graphInstance.dl, by exploiting a global input statement; then, we add the
test case maximalClique, in which we assert that the best model is expected to have a cost (i.e., the number
of weak constraint violations corresponding to the vertexes out of the clique) of 3 (assertBestModelCost(3)
in Figure 3).

In the second test case, named constraintsOnCliques, we require that (i) vertexes 1 and 4 belong to at
least one clique, and (ii) for exactly five answer sets the size of the corresponding clique is greater than 2.
(The weak constraint is removed to ensure the computation of all cliques by DLV.)

In the third test case, named checkNodeOrdering, we select rules r2 and r3, and we require to test
selected rules in isolation, discarding all the other statements of the input. We are still interested in con-
sidering ground facts that are included locally (i.e., we include the file graphInstance.dl). In this case we
assert that uedge(2,1) is false, since edges should be ordered by rules r2 and r3.

Test case guessClique is run in SPLIT PROGRAM modality, which requires to test the subprogram con-
taining all the rules belonging to the splitting set corresponding to the selection (i.e., {inClique, outClique,
node}). In this test case the sub-program that we are testing is composed by the disjunctive rule and by
the facts of predicate node only. Here we require that there is at most one answer set modeling the empty
clique, and there is at least one answer set modeling a non-empty clique.
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Fig. 3. Test case creation.

The test file described above can be created graphically and executed in ASPIDE as described in the
following section.
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Fig. 4. Test case execution and assertion management.

4 Unit Testing in ASPIDE

In this section we describe the graphic tools implemented in ASPIDE conceived for developing and running
test cases. Space constraints prevent us from providing a complete description of all the usage scenarios
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and available commands. However, in order to have an idea about the capabilities of the testing interface
of ASPIDE, we describe step by step how to implement the example illustrated in the previous section.

Suppose that we have created in ASPIDE a project named MaxClique, which contains the files clique.dl
and graphInstance.dl (see Fig. 1) storing the encoding of the maximal clique problem and the graph in-
stance presented in the previous section, respectively. Moreover we assume that both input files are included
in a run configuration named MaximalClique, and we assume that the DLV system is the solver of choice in
MaximalClique. Since the file that we want to test in our example is clique.dl, we select it in the workspace
explorer, then we click the right button of the mouse and select New Test from the popup menu (Fig. 3a).
The system shows the test creation dialog (Fig. 3b), which allows one for both setting the name of the
test file and selecting a previously-defined run configuration (storing execution options and input files).
By clicking on the Finish button, the new test file is created (see Fig. 3c) where a statement regarding
the selected run configuration is added automatically. We add the first unit test (called maximalClique) by
exploiting the text editor (see Fig. 3d), whereas we build the remaining ones (working on some selected
rules) by exploiting the logic program editor. After opening the clique.dl file, we select rules r2 and r3

inside the text editor, we right-click on them and we select Add selected rules in test case from the menu
item Test of the popup menu (fig. 3e). The system opens a dialog window where we indicate the test file
in which we want to add the new test case (fig. 3f). We click on the Create test case; the system will ask
for the name of the new test case and we write guessClique; after that, on the window, we select the option
execute selected rules and click on the Finish button. The system will add the test case guessClique filled
with the selectRule statements indicating the selected rules. To add project files as input of the test case,
we select them from the workspace explorer and click on Use file as input in the menu item Test (fig. 3g).
We complete the test case specification by adding the assertion, thus the test created up to now is shown in
figure 3h. Following an analogous procedure we create the remaining test cases (see Fig. 4a). To execute
our tests, we right-click on the test file and select Execute Test. The Test Execution Dialog appears and the
results are shown to the programmer (see Fig. 4b). Failing tests are indicated by a red icon, while green
icons indicate passing tests. At this point we add the following additional test:

checkNodeOutClique()
{
excludeInput("edge(2,4).edge(2,5).");
assertFalse("inClique(2). inClique(5).");

}

This additional test (purposely) fails, this can be easily seen by looking at Figure 2b; and the reason
for this failure is indicated (see Fig. 4b) in the test execution dialog. In order to know which literals of
the solution do not satisfy the assertion, we right-click on the failed test and select Manage Asserts from
the menu. A dialog showing the outputs of the test appears where, in particular, predicates and literals
matching correctly the assertions are marked in green, whereas the ones violating the assertion are marked
in red (gray icons may appear to indicate missing literals which are expected to be in the solution). In
our example, the assertion is assertFalse(”inClique(2). inClique(5).”); however, in our instance, node 5 is
contained in the maximal clique composed by nodes 1, 4, 5; this is the reason for the failing test. Assertions
can be modified graphically, and, in this case, we act directly on the result window (fig. 4c). We remove the
node 5 from the assertion by selecting it; moreover we right-click on the instance of inClique that specifies
the node 5 and we select Remove from Assert. The atom node(5) will be removed from the assertion and
the window will be refreshed showing that the test is correctly executed (see fig. 4e). The same window
can be used to manage constraint assertions; in particular, by clicking on Manage Constraint Assert of the
popup menu, a window appears that allows the user to set/edit constraints (see fig. 4d).

5 Conclusion

This paper presents a pragmatic environment for testing ASP programs. In particular, we propose a new
language, inspired by the JUnit [33] framework, for specifying and running unit tests on ASP programs. The
testing language is general and suits both the DLV [15] and clasp [16] ASP dialects. The testing language
has been implemented in ASPIDE together with some graphic tools for easing both the development of
tests and the analysis of test execution (via DLV).
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As far as future work is concerned, we plan to extend ASPIDE by improving/introducing additional
dynamic editing instruments, and graphic tools like VIDEAS [45]. Moreover, we plan to further improve
the testing tool by supporting (semi)automatic test case generation based on the structural testing techniques
proposed in [32, 46].
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ming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17
7. Balduccini, M., Gelfond, M., Watson, R., Nogeira, M.: The USA-Advisor: A Case Study in Answer Set Planning.

In: LPNMR 2001 (LPNMR-01). LNCS 2173, (2001) 439–442
8. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Logic-Based Artificial Intelligence. Kluwer

(2000) 257–279
9. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auctions Using Logic Programming.

In: LPNMR 2001 (LPNMR-01). LNCS 2173, (2001) 186–199
10. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a Challenging Application of

Disjunctive Logic Programming. In: LPAR 2001. LNCS 2250, (2001) 561–578
11. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision Support System for

the Space Shuttle. In: Practical Aspects of Declarative Languages, Third International Symposium (PADL 2001).
LNCS 1990, (2001) 169–183

12. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka, E., Lembo, D.,
Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.: The INFOMIX System for Advanced
Integration of Incomplete and Inconsistent Data. In: SIGMOD 2005, Baltimore, Maryland, USA, ACM Press
(2005) 915–917

13. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP (2003)
14. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowledge Management. In: LPNMR

2009. LNCS 5753, (2009) 591–597
15. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge

Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562
16. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: IJCAI 2007,(2007)

386–392
17. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.: Conflict-Driven Dis-

junctive Answer Set Solving. In: KR 2008, Sydney, Australia, AAAI Press (2008) 422–432
18. Denecher, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer set programming system
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A Prototype of a Knowledge-based Programming Environment
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Abstract. In this paper we present a proposal for a knowledge-based programming environment. In
such an environment, declarative background knowledge, procedures, and concrete data are represented
in suitable languages and combined in a flexible manner. This leads to a highly declarative program-
ming style. We illustrate our approach on an example and report about our prototype implementation.

1 Context

An obvious requirement for a powerful and flexible programming paradigm seems to be that within the
paradigm different types of information can be expressed in suitable languages. However, most traditional
programming paradigms and languages do not really have this property. In imperative languages, for ex-
ample, non-executable background knowledge can not be described. The consequences become clear when
we try to solve a scheduling problem in an imperative language: the background knowledge, the constraints
that need to be satisfied by the schedule, gets mixed up with the algorithms. This makes adding new con-
straints and finding and modifying existing ones cumbersome.

On the other hand, most logic-based declarative programming paradigms lack the capacity to express
procedures. Typically, they consist of a logic together with one specific type of inference. For example,
Prolog uses Horn clause logic and does querying, in Description Logic the studied task is deduction, and
Answer Set Programming and Constraint Programming make use of model generation. In such paradigms,
whenever we try to perform a task that does not fit the inference mechanism at hand, the declarative aspect
of the paradigm disappears. For example, when we try to solve a scheduling problem (which is a typical
model-generation problem) in Prolog, then we need to represent the schedule as a term, say a list (rather
than as a logical structure), and as a result the constraints do not really reside in the logic program, but will
have to be expressed by clauses that iterate over a list [4]. Proving that a certain requirement is implied by
another, is possible (in theory) for a theorem prover, but not in ASP. Etc.

To overcome these restrictions of existing paradigms, we propose a paradigm in which each compo-
nent can be expressed in an appropriate language. We distinguish three components: procedures, (non-
executable) background knowledge, and concrete data. For the first we need an imperative language, for
the second an (expressive) logic, for the third a logical structure (which corresponds to a database). The
connection between these components is mostly realized by various reasoning tasks, such as theorem prov-
ing, model generation, model checking, model revision, belief revision, constraint propagation, querying,
datamining, visualization, etc.

The idea to support multiple forms of inference for the same logic or even for the same theories, was
argued in [6]. Here it is argued that logic has a more flexible, multifunctional and therefore also more
declarative role for problem solving than provided in many declarative programming paradigms, where
typically one form of inference is central and theories are written to be used for this form of inference,
sometimes even for a specific algorithm implementing this form of inference (such as PROLOG resolution).
This view was therefore called the Knowledge Base System paradigm for declarative problem solving. The
framework presented here is based on this view and goes beyond it in the sense that it offers a programming
environment in which complex tasks can be programmed using multiple forms of inference and processing
tools.

2 Overview of the language and system

To try out the above mentioned ideas in practice, we built a prototype interpreter that supports some basic
reasoning tasks and a set of processing tools on high-level data such as vocabularies, structures and the-
ories. In this section we will highlight various decisions in the design of our programming language and
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interpreter. In the next section we will illustrate the usage of the language with an example. We named our
language DECLIMP, which is an aggregation of “declarative” and “imperative”.

2.1 Program structure

A DECLIMP program typically contains several blocks of code. Each block is either a procedure, a vo-
cabulary (which is a list of sort, predicate and function names), a logic theory over vocabularies (which
describes a piece of background knowledge using the relation and function names of its vocabulary), or a
(possibly three-valued) structure over vocabularies. The latter represent databases over their vocabularies.
To bring more structure into a program and to be able to work with multiple files, namespaces and include
statements are provided.

Because vocabularies, logic theories and databases are not executable, and a program needs to be ex-
ecuted, control of a DECLIMP program is always in the hands of the procedures. Moreover, when a main
procedure is available, the run of the program will start with the execution of this procedure. When there is
no main procedure, the user can run commands in an interactive shell, after parsing the program.

In the next sections, we will describe the languages for the respective components in a DECLIMP pro-
gram.

2.2 Knowledge representation language

For representing background knowledge we use an extended version of classical logic. A first advantage
in using this language lies in the fact that classical logic is the best known and most studied logic. Also,
classical logic has the important property that its informal semantics corresponds to its formal semantics.
In other words, in classical logic the meaning of expressions1 is intuitively clear. This is an important re-
quirement in the design of a language that is accessible to a wider audience. Furthermore, there are already
numerous declarative systems that use a language based on classical logic, or can easily be translated to
it. Think of the languages of most theorem provers, various Description logics, and the language of model
generators such as IDP [20, 8] and ENFRAGMO [14].

Research in the Knowledge Representation and Reasoning community has clearly shown that classical
logic is in many ways insufficient. Aggregates and (recursive) definitions are well-known concepts that
are common in the background knowledge of many applications, and which can generally not, or not in a
concise and intuitively clear manner, be expressed in first-order logic. In DECLIMP we use an order-sorted
version of first-order logic, extended with inductive definitions [5], aggregates [15], (partial) functions and
arithmetic.

2.3 Structures

Structures in DECLIMP are written in a simple language that allows to enumerate all elements that belong
to a sort and all tuples that belong to a relation or function. As an alternative to enumerating a relation,
it is also possible to specify the relation in a procedural way, namely as all the tuples for which a given
procedure returns ‘true’. Furthermore, the interpretation of a function can be specified by a procedure,
somewhat similar to “external procedure” in DLV [2].

As mentioned before, structures in DECLIMP are not necessarily two-valued. Three-valued structures
are useful for representing incomplete information (which might be completed during the run of the pro-
gram). To enumerate a three-valued relation (or function), two out of three of the following sets must be
provided: tuples that certainly belong to the relation, tuples that certainly do not belong to the relation,
and tuples for which it is unknown whether they belong to the relation or not. The third set can always be
computed from the two given sets.

1 We mean expressions that occur in practice, not artificially constructed sentences that do not really have meaning in
real life.
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2.4 Procedures

The imperative programming language in our prototype system is LUA [9]. The main reason for this choice
is the fact that LUA is a lightweight scripting language and also because it has a good C++ API [10]. This
facilitates on the one hand the compilation of programs written in DECLIMP and, on the other hand, the
integration with the components of our DECLIMP interpreter, which is written in C++. When we do not
take those reasons into account, any other imperative language is candidate.

In procedures, various reasoning methods on theories and structures can be called. Currently, the most
important tasks supported by the DECLIMP-interpreter are the following:

Finite model expansion: Given a three-valued structure S and a theory T , find a completion of S to a two-
valued structure that satisfies T . This is essentially a generalization of the reasoning task performed by
ASP solvers, constraint programming systems, Alloy analyzers, etc. It is suitable for problems such as
scheduling, planning and diagnosis. In our DECLIMP interpreter, model expansion is implemented by
calls to the IDP system [20], which consists of the grounder GIDL [21] and solver MINISATID [11].

Finite model checking: Check whether a given two-valued structure is a model of a theory. This is an
instance of model expansion and is implemented as such.

Constraint propagation: Deduce facts that must hold in all models of a given theory which complete a
given three-valued structure. This is a useful mechanism in configuration systems [18] and for query an-
swering in incomplete databases [3]. The propagation algorithm we implemented is described in [19].

Querying: Given an FO formula ϕ and a two-valued structure S, find all substitutions for free variables
of ϕ that make ϕ true in S. The implementation of this mechanism makes use of Binary Decision
Diagrams as described in [21].

Theorem proving: Given two FO theories T1 and T2, check whether T1 |= T2. This is implemented by
calling a theorem prover provided by the user. In principle, any theorem prover that accepts TPTP [16]
can be used.

Visualization: Show a visual representation of a given structure. We implement this by calling IDPDRAW,
a tool for visualizing finite structures in which visual output is specified declaratively by definitions in
our knowledge representation language or in ASP.

The values returned by the reasoning methods can be used in other reasoning methods and LUA-statements.
We will illustrate this with an example in the next section.

3 Programming in DECLIMP

Say we want to write an application that allows players to solve sudoku puzzles. Such an application should
be able to perform tasks such as generating puzzles, showing puzzles on the screen, checking whether
solutions (player’s choices) satisfy the sudoku rules, giving hints to the player, etc. In this application the
different components we described before can clearly be distinguished: (1) the background knowledge
consists of a logic theory containing the well-known sudoku constraints;

∀r∀n∃!c : Sudoku(r, c) = n
∀c∀n∃!r : Sudoku(r, c) = n
∀b∀n∃!r∃!c : InBlock(b, r, c) ∧ Sudoku(r, c) = n
∀b∀r∀c : InBlock(b, r, c)⇔ b = ((r − 1)/3) ∗ 3 + ((c− 1)/3) + 1

(2) the data is stored in logical structures representing puzzles, and (partial and complete) solutions; and
(3) the tasks we want it to perform, can be implemented using well-known inference methods.

Below we show (part of) a DECLIMP program. This code shows the use of an include statement and a
namespace, and the declaration of a vocabulary sudokuVoc and a theory sudokuTheory, where the
latter is simply an ASCII version of the theory shown above. Also note the main procedure at the bottom,
which will be called when this program is passed to the interpreter.

#include "grid.idp"
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namespace sudoku {

vocabulary sudokuVoc {
extern vocabulary grid::simpleGridVoc
type Num isa nat
type Block isa nat
Sudoku(Row,Col) : Num
InBlock(Block,Row,Col)

}

theory sudokuTheory : sudokuVoc {
! r n : ?1 c : Sudoku(r,c) = n.
! c n : ?1 r : Sudoku(r,c) = n.
! b n : ?1 r c : InBlock(b,r,c) & Sudoku(r,c) = n.
! r c b : InBlock(b,r,c) <=> b = ((r-1)/3)*3 + ((c-1)/3) + 1.

}

procedure solve(input) {
return modelExpand(sudokuTheory,input)

}

procedure printSudoku(puzzle) {
-- code for visualizing a sudoku puzzle.

}

procedure createSudoku() {
math.randomseed(os.time())
local puzzle = grid::makeEmptyGrid(9) -- defined in grid.idp

stdoptions.nrmodels = 2
local currsols = modelExpand(sudokuTheory,puzzle)
while #currsols > 1 do

repeat
col = math.random(1,9)
row = math.random(1,9)
num = currsols[1][sudokuVoc::Sudoku](row,col)

until num ˜= currsols[2][sudokuVoc::Sudoku](row,col)
makeTrue(puzzle[sudokuVoc::Sudoku].graph,{row,col,num})
currsols = modelExpand(sudokuTheory,puzzle)

end

printSudoku(puzzle)
}

}

procedure main() {
sudoku::createSudoku()

}

Let us have a closer look at procedure createSudoku for creating sudoku puzzles. First it initializes an
empty puzzle by instantiating a new logical structure. This is done by calling a procedure makeSquare-
Gridwhich instantiates a structure with data about a generic grid of a certain size, and then adding domains
for numbers and blocks particular for sudoku grids.

The second part of the procedure adds numbers to the grid until there is only one solution left for the
puzzle. This is realized by performing model expansion (by calling modelExpand) to find two models of
the theory that extend the given partially filled in puzzle. When two models are found, the algorithm selects
a number that is unique for the first solution (that is, the number at the same position in the second solution
is different) and is not yet present in the puzzle. When such an entry is found, it is added to the puzzle by
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making the tuple {row,col,num} true in the interpretation of the function Sudoku(Row,Col):Num.
Next, the procedure ask for two new models, and the process starts over. When only one model is found,
the iteration stops, and procedure printSudoku is called to show the result on the screen using the
visualization tool mentioned in the previous section.

4 Related work

There have been many proposals in the literature to combine procedural and declarative languages. A
frequently occuring combination is that of a procedural language in which a program can post constraints
expressed in an (often ad-hoc) declarative constraint language, while other primitives allow to call the
constraint-solving process on the constraint store, express heuristics or call other processes, for example
to edit or visualize output. Examples of systems with such languages are CPLEX [1], MOZART [17] and
COMET [13]. These systems differ from DECLIMP in the sense that they offer only one kind of inference,
namely constraint solving. A similar remark can be made about CLP and PROLOG systems with support
for constraint propagation. Here the “procedural language” is the PROLOG language under its procedural
semantics. In our system high-level concepts such as vocabularies, theories and structures are treated as
first-class citizens that can be operated upon by arbitrary inference and processing tools, which offers more
flexibility.

For another group of systems, control over execution of programs is in hands of one inference mech-
anism – or at least that inference is the main mechanism – and an integrated procedural language then
allows users to stear some aspects of the inference mechanism, or for example format input and output, but
do not allow to take over control. Examples of such systems are CLINGO [7] and ZINC [12]. The procedural
languages in these systems have a more limited task then the one in DECLIMP. In DECLIMP the procedures
are in control during execution, not just one of the inference mechanisms.

5 Conclusion

We have presented a knowledge-based programming environment, providing a declarative language for ex-
pressing background knowledge, an imperative programming language for writing procedures, and logical
structures for expressing concrete data. The system also provides some state-of-the-art inference tools for
performing various reasoning tasks.

We believe that a programming environment like the one proposed here overcomes some of the limita-
tions of “single-programming-style” paradigms, by allowing a programmer to express the different types of
information in software applications in appropriate languages. Making this explicit distinction in different
types of information will increase readability, maintainability and reusability of programming code.
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Abstract. University timetabling (UTT) is a complex problem due to its combinatorial nature but
also the type of constraints involved. The holy grail of (constraint) programming: ”the user states
the problem the program solves it” remains a challenge since solution quality is tightly coupled with
deriving ”effective models”, best handled by technology experts. In this paper, focusing on the field
of university timetabling, we introduce a visual graphic communication tool that lets the user specify
her problem in an abstract manner, using a visual entity-relationship model. The entities are nodes
of mainly two types: resource nodes (lecturers, assistants, student groups) and events nodes (lectures,
lab sessions, tutorials). The links between the nodes signify a desired relationship between them. The
visual modeling abstraction focuses on the nature of the entities and their relationships and abstracts
from an actual constraint model.

1 Introduction

University timetabling (UTT) is a complex problem due to its combinatorial nature but also the type of
constraints involved. Several approaches have been proposed to solve timetabling problems for specific
instances using several approaches, e.g. [5, 3, 1].
One of the shortcomings of the current constraint-based systems is the existence of modeling tools/languages
to express constraint problems. Several approaches have been proposed to overcome these problems. A lot
of work has been invested to propose languages that allow the specification of a combinatorial problem at a
high level of abstraction, e.g. [2]. Alternatively, visual modeling languages have been proposed to generate
constraint programs from visual drawings, e.g. [4]. In general, the visual drawings correspond to constraint
graphs where the nodes describe the variables of the problem with their associated domains and the edges
correspond to the constraints between each pair of variables. The constraint graphs provide a visual coun-
terpart to constraint satisfaction problems. However, in practice they are intractable for real world problems
even if abstraction is introduced into the constraint graph.
In this work, we propose an orthogonal approach where the user models the constraint problem visually
by drawing a graph that defines the available resources and the tasks to be scheduled. The graph does not
describe the constraints explicitly. It consists of nodes and links, where the nodes are mainly of two types:
resource nodes (lecturers, assistants, student groups) and events nodes (lectures, lab sessions, tutorials).
The links describe relationships between the nodes. Depending on the type of node, the semantics of the
links is determined.
This approach enjoys three main properties: 1) the problem is stated at a high level in a constraint and vari-
able free manner, 2) online preliminary consistency checks of proposed links are possible thanks the rich
semantic carried by the nodes, 3) a compilation into an effective constraint programming model including
global constraints is performed using the properties of the nodes and specified links.
Our system was built in Java and compiled into SICStus Prolog. Tests were run to build a complete
timetable for the German University in Cairo (GUC) including over 200 events to be scheduled and over
400 resources in 3 minutes.
This paper is organized as follows. In Section 2, we present the GUC timetabling problem. In Section 3, we
describe how the problem can be modeled as a constraint satisfaction problem. Section 4 presents the visual
graphic communication tool for generic timetabling problems. In Section 5, we address additional problem
components that are particular for the GUC. In Section 6, we discuss the scalability and the modularity of
the approach. Finally, we conclude with a summary and directions for future work.
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2 GUC Timetabling

The GUC consists of four faculties. Each faculty offers a set of majors. Currently at the GUC, there are
140 courses offered and 6500 students registered for which course timetables should be generated every
semester. There are 200 staff members available for teaching. Each faculty offers a set of majors. For every
major, there is a set of associated courses. Faculties do not have separate buildings, therefore all courses
from all faculties should be scheduled taking into consideration shared room resources.
Students registered to a major are distributed among groups for lectures (lecture groups) and groups for
tutorials or labs (study groups). A study group consists of maximum 25 students. In each semester, study
groups are assigned to courses according to their corresponding curricula and semester. Due to the large
number of students in a faculty and lecture hall capacities, all study groups cannot attend the same lecture
at the same time. Therefore, sets of study groups are usually assigned to more than one lecture group. For
example, if there are 27 groups studying Mathematics, then 3 lecture groups will be formed.
The timetable at the GUC spans a week starting from Saturday to Thursday. A day is divided into five time
slots, where a time slot corresponds to 90 minutes. An event can take place in a time slot. This can be either
a lecture, tutorial, or lab session and it is given by either a lecturer or a teaching assistant. Lectures are given
by lecturers and tutorial and lab sessions are given by teaching assistants (TA). In normal cases, lectures
take place in lecture halls, tutorials in exercise rooms and lab sessions take place in specialized laboratories
depending on the requirements of a course. In summary, an event is given by a lecturer or a teaching
assistant during a time slot in a day to a specific group using a specific room resource. This relationship is
represented by a timetable for all events provided that hard constraints are not violated. These constraints
cannot be violated and are considered to be of great necessity to the university operation. The timetable
also tries to satisfy other constraints which are not very important or critical. Such constraints are known
as soft constraints that should be satisfied but may be violated. For example, these constraints can come in
form of wishes from various academic staff.
Some courses require specialized laboratories or rooms for their tutorials and lab sessions. For example, for
some language courses a special laboratory with audio and video equipment is required. The availability of
required room resources must be taken into consideration while scheduling. Some lecturers have specific
requirements on session precedences. For example, in a computer science introductory course a lecturer
might want to schedule tutorials before lab sessions.
Furthermore, some constraints should be taken into consideration to improve the quality of education. One
of the constraints requires that a certain day should have an activity slot for students, and a slot where
all university academics can meet. For those slots no sessions should be scheduled. A study group should
avoid spending a full day at the university. In other words, the maximum number of slots that a group can
attend per day is 4. Therefore, if a group starts its day on the first slot, then it should end its day at most on
the fourth slot. Furthermore, though the university runs for 6 days a week each study group must have at
least two days off which means that a study group can only have sessions for five days a week.
A certain number of academics are assigned to a course at the beginning of a semester. Teaching assistants
are assigned to one course at a time. For courses involving lab and tutorial sessions, a teaching assistant
can be assigned to both or just one of them. This should be taken into consideration when scheduling to
avoid a possible clash. Furthermore, the total numbers of TAs assigned to a session should not exceed
the maximum number of assistants assigned to the corresponding course at any time. A lecturer can be
assigned to more than one course. This should be considered when scheduling in order to avoid a possible
overlap. Academics assigned to courses have a total number of working and research hours per day and
days off that need to be considered when scheduling. Courses should be scheduled in a manner such that
the number of session hours given by an academic should not exceed his or her teaching load taking into
consideration days off.

3 Modeling UTT as a Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is a tuple (X, D, C) where X is a set of variables {x1, ..., xn},
D = {D1, ..., Dn} a set of associated domains for all xi ∈ X , and C a set of constraints [6].
In the CSP model of the UTT, we define the variables E (possibly subscripted) to be lecture slots, tutorial
slots, and lab slots taken by groups. Since we have 5 slots in a day and 6 days in a week, the domain is
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[0..29]. Slot 0 would correspond to the first slot on Saturday (first day of the week in Egypt), and slot 22
would correspond to the third slot on Wednesday. Consequently, slots from 0 to 4 correspond to Saturday,
5 to 9 correspond to Sunday, etc. The goal is to find an allocation of one slot per variable such that the
problem resource and scheduling constraints hold.
The generic UTT constraints are of three kinds: 1) temporal constraints requiring precedences among events
(Ei ≤ Ej), 2) resource constraints requiring events sharing some resources not to overlap in time, 3) and
university specific constraints such as preferences for lecturers and teaching Assistants.
Note that resource constraints can take two forms in the timetabling problem:

1. when different events share a single resource, like a number of lectures taught by one lecturer, in this
case none of those events can overlap. They can be modeled using inequality (Ei 6= Ej) among events
associated with the same resource or the all_different([Ei,Ej]) global constraint,

2. when a set of events share multiple resources. This generalizes the previous form and it occurs in
the UTT problem for instance when a set of events require the same type of rooms (halls or labs)
and there is a limited amount of them. A global constraint can be used to enforce this which is the
cumulative/2 constraint. In SICStus Prolog, the cumulative constraint takes a list of task
predicates defined by their start time, duration, end time, resource usage and identifier. Its second
argument is a list containing the amount of resource available. It will be used in our code generation.

The last type of constraints applied are university specific constraints which for the GUC relate to the extra
day off (not bound to Saturday) and the maximum allowed slots per day for study groups. A day off would
mean a day with no events scheduled for that lecturer or TA. This can be expressed as follows if we consider
Saturday as the day-off for a given lecturer. All the lectures relative to a lecturer(we denote by Li the list
of events associated with lecturer i) must start after time slot 4:

∀jEj ∈ Li ⇒ Ej > 4

In general, timetabling is an over-constrained problem. Thus, the main aim is to find the best solution
that satisfies all hard constraints and as many soft constraints as possible. For the German University in
Cairo, different lecturers have different requirements in terms of days off and time slots they would like
to have free. Thus, the best solution for the German University In Cairo is the one that satisfies the largest
number of the lecturers’ wishes. These soft constraints are modeled by associating a flag with each wish
that determines whether the wish is satisfied or not. For example, the constraint that a lecturer i would like
to have the first slot on Saturday free can be modeled as follows:

0 /∈ Li =⇒ Pk = 1

where Pk is the flag associated with the kth wish.
The best solution for the GUC would be the one that maximizes the number of satisfied wishes, i.e., the
solution maximizes a cost function that is defined as follows:

SCORE =
n=m∑
n=1

Pn

where m is total number of wishes .

4 From a visual graph to a CSP program

Our goal is to offer the end-user a tool that would allow her to specify the problem as she sees it, while
enabling us to derive from it an effective constraint model. To do so we chose the concept of graph as
a natural vehicle of connections or relationships between multiple entities or nodes. In this section we
define the components that define a graphical specification elaborating on the semantic of the nodes which
is carried visually and internally as a typed data structure. It applies to the generic components of UTT
problems. We then give the modular structure of the tool and show how a graphical specification is compiled
into a SICStus program. We finally develop the specification of additional problem components that are
particular to a given university and are specified using other elements of our tool.
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4.1 Visual graph components

The graph is not a constraint graph in the sense that nodes are not variables and edges constraints. The
visual structure of a graph has been chosen to ease the abstract specification of the problem. Its visual
nature helps convey the problem structure to third party (faculty deans, administration,etc). It is structured
in a way that aids in both problem specification and future compilation into a CP model. Elements of
the timetabling problem are available resources (lecturers, teaching assistants, study groups), courses, and
different course events. The graph is composed of nodes and undirected links. As the user constructs her
visual graph to specify her problem, certain information must be held at the node to aid in the dynamic CP
model generation. In particular the nodes specify different components of a UTT. Let us first describe the
different types the nodes can denote.

Fig. 1. Created graph with two courses and 4 events

Nodes. Nodes can be of three types:

1. A resource. These are lecturers, study groups or teaching assistants.
2. An event. These are lectures, tutorials or lab sessions.
3. Meta-events. These are the courses. A course is often composed of a lecture and a tutorial and possibly

some lab sessions. Thus, the end-user can define a course and associate with it the relevant events it
involves. This type of node does not appear in the generated CSP model, it is used to ease the visual
specification of the problem.

Each node instance corresponds to a specific icon, carrying out its semantics from the end-user viewpoint.
To illustrate drawing facilities of the system, we give a snapshot of a small graph being created. The end-
user defined two courses (meta-events), Math and Physics, connected to 3 and 1 events, respectively. The
Math course comes with 2 tutorial sessions and one lecture, whereas the Physics course comes so far with
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only one lecture. In Fig. 1, we present the system with the drawing graph components. On the left hand
side, the node icons are available. On the right hand side, the drawing pad, where the graph is created, is
available. Below the node icons, the node properties to be added once a node has been inserted into the
graph tab is available.
The icon indicates the type of a node and properties associated with it. For instance, lectures and tutorials
require certain room size; lectures require lecture halls while tutorials require classrooms. Representing
this on the diagram would require creating an icon or a node for each room type and connecting this node
to all events that require this type of node. Since all events require a certain type of room, displaying the
rooms as an extra icon would increase the number of edges and make the graph harder to trace. Instead of
connecting events that share a certain type of rooms to a single resource node, all events requiring the same
room resource have similar icons (lectures have the same icon which is different from that of tutorials and
labs). Additional properties are filled in for each created node in the property tab.

Links. Links between nodes are undirected connections, signifying a relationship between two nodes (ie. a
resource will carry out an event, or a course is defined by one lecture and 3 tutorials). The approach is user-
friendly, but could be prone to specification errors. Thus while the end-user does not deal with node types
explicitly, the system performs a dynamic checking at link creation to ensure that resource-resource links
can not be validated, and resource-event links are only created if the event suits the type of the resource
(e.g. a lecturer can only teach lectures no tutorials or labs). This is described below.

4.2 Graph semantic check

During the creation of the graph, we perform a dynamic semantic check that prevents incorrect link requests
from being drawn between two nodes. While the user can add any number of nodes, certain connections
would not make sense.
The semantic check is performed as the end-user attempts to connect two previously created nodes. When
the user attempts such a connection, a request is sent that ensures that:

– A course can only be connected to lectures, tutorials or labs nodes.
– A lecture node can only be connected to one lecturer, one course and study groups.
– A tutorial or lab node can only be connected to one TA, one course and one group.
– A group node can only be connected to event nodes (lectures, tutorials or labs).
– A lecturer node can only be connected to lectures nodes.
– A TA node can only be connected to tutorials or labs nodes.

Any other connection request is ignored and no line can be drawn between the desired nodes.

Node implementation. At the implementation level, each resource node is associated with a dynamic list
of events this resource node is currently connected to. For instance a lecturer node would be linked to a list
of lectures, the person is assigned to. Each event node (Lecture, tutorial, lab) is linked with two flags: one
flag stating whether this node is connected to its corresponding event (lecture to a lecturer, lab to a TA, etc).
This flag is primarily used to prevent a single event node from being connected to multiple resource node
of the suitable type. The second flag states whether the event node is connected to a course and is used to
prevent a single event from being connected to multiple courses. A static information is also attached to
each resource node which is the constraint predicate the list will be applied to.

4.3 Generic CP code generation

This is a core component of the system. The main objective is to generate an efficient CP code from the
visual graph and node properties that goes beyond binary constraints and includes global constraints. Our
code generation module is based on the following observations: 1) links involving resource nodes drive the
model. Thus when a resource node is created in the graph we create a dynamic list in the CSP model that
will contain all the events connected to it, 2) all the established connections are semantically viable because
the dynamic checks at link creation have been carried out beforehand.
Since the constraints are derived from the relations between nodes then a node must be aware of all its
direct neighbors. In other words, each node contains a list of nodes representing its direct neighbors. Each
node has a type from which we know the type of constraints to be applied.
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The alldifferent constraint . Consider the graph of Fig. 1, there is no resource node involved at this stage,
thus no constraints are generated yet. Adding the lecturer as illustrated in Fig 2. will constrain events that
share a common resource and trigger the code generation.

Fig. 2. Two courses talked by one lecturer

This establishes a resource dependency link between event nodes. From a constraint point of view, this
implies that the two lecture events (MATH and PHYSICS) share a common resource, thus can not oc-
cur simultaneously. The system generates a list of event variables (corresponding to the events connected
to a resource node) and constrains all the variables in this list to be pairwise distinct. The most efficient
constraint available to this date in CP systems to enforce this restriction is the all_different/1 con-
straint. It takes as input a list of event variables that cannot share a value. In our case, the domain of event
variables is the time slot at which it can occur. Note that the initial domains are defined as the system is
initialized, since the user will enter the number of slots per day and the number of days per week. In the
case of the GUC we have 5 × 6 = 30 (with domains [0..29]). The following code block will be generated
as the lecturer node is connected:

LECTURER1 = [MATHL1, PHYSICSL1],
all_different(LECTURER1),

Now if the user adds resource nodes relative to the study groups as illustrated in Fig. 3, two blocks of code
will be generated relative to these resources.
In this case, the code block generated on creation of the node GROUP1 and its relative links, is:

GROUP1 = [MATHL1, MATHT1, MATHT2],
all_different(GROUP1),

and the code generated by GROUP2 will be:
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Fig. 3. Addition of study groups

GROUP2 = [PHYSICSL1],
all_different(GROUP2),

Note that the code is updated dynamically, which means that as a new event is connected to a given resource
node, the list of events associated to this node is updated and so is the relative code block.

The cumulative constraint . Lectures and tutorials require specific rooms: lectures require lecture halls
while tutorials require classrooms. As mentioned before, all events requiring the same room type (or re-
source) have similar icons. The most effective way to constrain events that share a finite number of re-
sources is the global cumulative/2 constraint. This constraint takes as input a set of event variables
with possible start dates as domain, and number of possible resources to share. It ensures that the number
of overlapping events requiring a common room type should not exceed the number of rooms available of
that type. We generate the code block using the cumulative constraint for each room type existing in the
university and each event is included in its corresponding cumulative constraint according to its type.
The program generation is done by concatenating blocks of code generated by node with the cumulative
constraints and the domain constraint. The block code generated is as follows:

domain([MATHT1E0, MATHT2E1], 1, 4),
%% each event last one slot and consumes 2 rooms,
%% there are atmost 2 rooms available in this example
cumulative([task(MATHT1, 1, MATHT1E0, 2, 0),
task(MATHT2, 1, MATHT2E1, 2, 1)],
[limit(2), global(true)]),

domain([PHYSICSL1E0, MATHL1E1], 1, 4),
cumulative([task(PHYSICSL1, 1, PHYSICSL1E0, 2, 0),
task(MATHL1, 1, MATHL1E1, 2, 1)],
[limit(2), global(true)]),

The system with the draw tab allows the user to visualize the generated code as illustrated in Fig 4.
The window is divided into three major sections; the first contains the graph, below it are two other win-
dows, one appears whenever the user clicks on a node which allows the user to provide simple information
that is node specific like the node name. The third window shows the user the generated SICStus program.
The model specified and generated so far is generic.
However, a UTT problem deals with university specific constraints and preferences and these should be
part of the visualization and the CP model. We present two other features of our system, namely the time
tab, and the preference tab.
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Fig. 4. The system with the draw tab

5 University specific constraints

The use of specific icons indicates the type of room an event node is related to. This eliminated the need for
a room resource node. However, to ensure that there is enough room resources available, we must know the
capacity of each room resource, and we must know the number of rooms of that type. These informations
can not be acquired from the graph. Therefore we provide complementary means for the user to provide
additional information. The user can choose between different tabs. The first tab described previously deals
with the graph construction. We now present the preference tab and the time tab.

5.1 Dealing with preferences

The second tab (Fig. 5) enables the user to tailor the problem to a specific university and set preferences
(room availability, extra day-off considered or not, full day for student groups or not).
All node types can access the preference tab and thus information can be exchanged. If the day off for a
study group is selected a corresponding code block will be generated. The following block of code will be
generated as for LECTURER1. It is a hard constraint then ensures that only one extra day-off is allowed
per resource node.
The count_interval is a user defined constraint that constrains the number of events per resource (list
LECTURER1) that fall in the time interval (eg. [0,2]) to be LECTURER1DOC.

count_interval(0, 2, LECTURER1, LECTURER1D0C),
LECTURER1D0C #\= 0 #<=> LECTURER1D0,
count_interval(3, 5, LECTURER1, LECTURER1D1C),
LECTURER1D1C #\= 0 #<=> LECTURER1D1,
count_interval(6, 8, LECTURER1, LECTURER1D2C),
LECTURER1D2C #\= 0 #<=> LECTURER1D2,
LECTURER1D2 + LECTURER1D1 + LECTURER1D0 #< 3,

Also, according to the GUC policy, a student should not have a full day which means a student having a
class on the first time slot of a day can not have a class on the last time slot of the same day. Ensuring this
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Fig. 5. The system with the preferences tab selected

would mean that on each day a study group can either have a class on the first time slot, or a class on the last
time slot of that day but not both. Applying this to our problem would result on the following constraints
being generated as the user creates the study group nodes. The count predicate is a SICStus constraint.
If the first line below it can be read as: the list of events in GROUP1 is constrained to have GROUP1S0C
variables (Boolean) with value ”0” (meaning taking place in the first slot of Saturday). It also constrains
the events to take place only in the first or last slot of the day (line 3):

%% Group1 will generate
count(0, GROUP1, GROUP1S0C),
count(2, GROUP1, GROUP1S2C),
GROUP1S0C + GROUP1S2C#=<1,
count(3, GROUP1, GROUP1S3C),
count(5, GROUP1, GROUP1S5C),
GROUP1S3C + GROUP1S5C#=<1,
count(6, GROUP1, GROUP1S6C),
count(8, GROUP1, GROUP1S8C),
GROUP1S6C + GROUP1S8C#=<1,

%% The same code will be generated for all groups

5.2 Dealing with time

The German University in Cairo requires lecturers to have Friday off and another day off (not necessarily
Saturday). Thus, each lecturer should have one extra day where there is no scheduled events. Applying this
to our problem would mean that either no lectures are given on the first day or no lectures are given on the
second day or no lectures are given on the third day, etc. The end-user specifies the lecturer’s day off using
the following tab in Fig. 6. It shows the time line and allows the user to block slots by simply clicking on
the required slot.
If a lecturer wishes that no lectures should be given in the first slot on Saturday as illustrated in Fig. 6, then
the following fragment of code will be generated:
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Fig. 6. The time tab of a lecturer with a single slot blocked

count(0, DR_WAFIK_LOTFALLAH, SCOUNT0),
SCOUNT0 #= 0 #<=> SCON0,
SCONS #= SCON0,

SCOUNT0 is the number of 0s in the list of the lecturer DR_WAFIK LOTFALLAH. SCOUNT0 being equal
to 0 would result in the flag SCON0 being set to 1. SCONS is supposed to be the sum of the satisfied
soft constraints. In this example, we only have one soft constraint thus SCONS is equal to SCON0. As
mentioned in Section 3, the aim of the timetabling is to find a solution that maximizes the number of
lecturers’ wishes. Thus, the labeling part will be modified as follows:

labeling([ffc, maximize(SCONS)],L).

Where fcc is the heuristic to select the variable with the smallest domain, breaking ties by selecting the
variable that has the most constraints suspended on it and selecting the leftmost one.

6 System scalability and evaluation

In addition to the use of global constraints, a key asset of this approach is its modularity and scalability.
With a focus on the resources and their direct links we can easily change properties of any created icon
or add new links to the graph. This will lead to a dynamic update of the CP model. From the constructed
graph, direct and indirect relations (e.g which lecturer teaches which study group) between events and
resources can be clearly understood. Looking at the diagram one can clearly see all the components of a
UTT instance. This is not the case if the problem is modelled as a constraint network [4]. Fig. 7 repre-
sents a constraint network with four variables. From the network, one can clearly understand that variables
COURSE1L1 and COURSE2L1 can not be equal. However, one cannot understand the reason behind it,
since on the network there is no difference between these two variables and any other two unequal vari-
ables in their representation. Either the problem description or the constructed problem model should be
consulted to understand why such relation exists. Since the people involved in the university timetabling
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process are usually not programming experts, a visual representation would require a clear representation
of the problem through which the problem can be clearly understood by all stakeholders which is the case
using our visual entity-relationship model.

Fig. 7. A constraint network representing the timetabling problem

The system was used to generate the GUC university timetabling for one term. It was run on an Intel(R)
Core(Tm) 2 Duo , with CPU 2.4 GHz with 2GB ram. The problem corresponds to 2233 events to be
scheduled, over 400 resources, including 224 study groups and 201 lecturers and teaching assistants.
For this instance, the visual entity-relationship model was drawn in 5 hours. The corresponding SICStus
code was generated in 7 seconds from the constructed graph. The first 5 solutions were found after three
and half minutes. However, a manually generated schedule takes in general two to three months to be
constructed by one timetable specialist.

7 Conclusion and Future Work

We have presented a visual graphical approach to specify combinatorial problems with application to uni-
versity timetabling. The main contribution lies in the usage of type nodes to be distinguished from con-
straint graph variable nodes, and represent resources and events of the problem at hand. The rich semantic
of the nodes and the links created among them can be used to generate efficient CP models using global
constraints in a dynamic setting.
We intend to improve the representation of the graphs by providing additional features to group a number
of icons and to combine them into one icon with the ability to expand and collapse that icon. Additionally,
an interesting direction for future work is to investigate how the proposed approach can be generalized
to handle any resource allocation problem by adding a generic interface to express application specific
constraints.
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Comenius University, Bratislava, Slovakia; [sefranek,simko]@fmph.uniba.sk

Abstract. We are aiming at a semantics of logic programs with preferences defined on rules, which
always selects a preferred answer set, if there is a non-empty set of (standard) answer sets of the given
program.
It is shown in a seminal paper by Brewka and Eiter that the goal mentioned above is incompatible with
their second principle and it is not satisfied in their semantics of prioritized logic programs. Similarly,
also according to other established semantics, based on a prescriptive approach, there are programs
with standard answer sets, but without preferred answer sets.
According to the standard prescriptive approach no rule can be fired before a more preferred rule,
unless the more preferred rule is blocked. This is a rather imperative approach, in its spirit.
In our approach, rules can be blocked by more preferred rules, but the rules which are not blocked are
handled in a more declarative style, their execution does not depend on the given preference relation
on the rules.
An argumentation framework (different from the Dung’s framework) is proposed in this paper. Argu-
mentation structures are derived from the rules of a given program. An attack relation on argumentation
structures is defined, which is derived from attacks of more preferred rules against the less preferred
rules. Preferred answer sets correspond to complete argumentation structures, which are not blocked
by other complete argumentation structures.

Keywords: extended logic program, answer set, preference, preferred answer set, argumentation struc-
ture

1 Introduction

The meaning of a nonmonotonic theory is often characterized by a set of (alternative) belief sets. It is
appropriate to select sometimes some of the belief sets as more preferred.

We are focused in this paper on extended logic programs with a preference relation on rules, see, e.g.,
[1, 3, 9, 15]. Such programs are denoted by the term prioritized logic programs in this paper.

It is suitable to require that some preferred answer sets can be selected from a non-empty set of standard
answer sets of a (prioritized) logic program.

Unfortunately, there are prioritized logic programs with standard answer sets, but without preferred
answer sets according to the semantics of [1] and also of [3] or [15]. This feature is a consequence of the
prescriptive approach to preference handling [4]. According to that approach no rule can be fired before a
more preferred rule, unless the more preferred rule is blocked. This is a rather imperative approach, in its
spirit.

An investigation of basic principles which should be satisfied by any system containing a preference
relation on defeasible rules is of fundamental importance. This type of research has been initialized in the
seminal paper [1]. Two basic principles are accepted in the paper.

The second of the principles is violated, if a function is assumed, which always selects a non-empty
subset of preferred answer sets from a non-empty set of all standard answer sets of a prioritized logic
program.

We believe that the possibility to select always a preferred answer set from a non-empty set of standard
answer sets is of critical importance. This goal requires to accept a descriptive approach to preference
handling. The approach is characterized in [5, 4] as follows: The order in which rules are applied, reflects
their “desirability” – it is desirable to apply the most preferred rules.

In our approach, rules can be blocked by more preferred rules, but the rules which are not blocked are
handled in a more declarative style. If we express this in terms of desirability, it is desirable to apply all



196 Ján Šefránek and Alexander Šimko

(applicable) rules, which are not blocked by a more preferred rule. The execution of non-blocked rules does
not depend on their order. Dependencies of more preferred rules on less preferred rules do not prevent the
execution of non-blocked rules.

Our goal is:

– to modify the Principles proposed by [1] in such a way that they do not contradict a selection of a
non-empty set of preferred answer sets from the underlying non-empty set of standard answer sets,

– to introduce a notion of preferred answer sets that satisfies the above mentioned modification.

The proposed method is inspired by [7]. While there defeasible rules are treated as (defeasible) argu-
ments, here (defeasible) assumptions, sets of default negations, are considered as arguments. Reasoning
about preferences in a logic program is here understood as a kind of argumentation. Sets of default literals
can be viewed as defeasible arguments, which may be contradicted by consequences of some applicable
rules. The preference relation on rules is used in order to ignore the attacks of less preferred arguments
against more preferred arguments. The core problem is to transfer the preference relation defined on rules
to argumentation structures and, consequently, to answer sets.1

The basic argumentation structures correspond to the rules of a given program. Derivation rules, which
enable derivation of argumentation structures from the basic ones are defined. That derivation leads from
the basic argumentation structures (corresponding to the rules of a given program) to argumentation struc-
tures corresponding to the rules of an negative equivalent of the given program introduced in [6].

Attacks of more preferred rules against the less preferred rules are transferred via another set of deriva-
tion rules to the attacks between argumentation structures. Preferred answer sets are defined over that
background. They correspond to complete and non-blocked (warranted) argumentation structures.

The contributions of this paper are summarized as follows. A modified set of principles for preferred
answer set specification is proposed. A new type of argumentation framework is constructed, which enables
a selection of preferred answer sets. There are basic arguments (argumentation structures) and attacks in the
framework and also derived arguments and attacks. Rules for derivation of argumentation structures and
rules for derivation of attacks of some argumentation structures against other argumentation structures are
defined. Preferred answer sets are defined in terms of complete and non-blocked (warranted) argumentation
structures. Finally, we emphasize that each program with a non-empty set of answer sets has a preferred
answer set.

A preliminary version of the presented research has been published in [11]. The main differences be-
tween the preliminary and the current version are summarized in the Conclusions.2 An extended version of
this paper with proofs is accessible as [12].

2 Preliminaries

The language of extended logic programs is used in this paper.
Let At be a set of atoms. The set of objective literals is defined as Obj = At ∪ {¬ A : A ∈ At}. If

L is an objective literal then the expression of the form not L is called default literal. Notation: Def =
{not L | L ∈ Obj}. The set of literals Lit is defined as Obj ∪Def .

A convention: ¬¬A = A, where A ∈ At . If X is a set of objective literals, then not X = {not L |
L ∈ X}.

A rule is each expression of the form L ← L1, . . . , Lk, where k ≥ 0, L ∈ Obj and Li ∈ Lit . If r is
a rule of the form as above, then L is denoted by head(r) and {L1, . . . , Lk} by body(r). If R is a set of
rules, then head(R) = {head(r) | r ∈ R} and body(R) = {body(r) | r ∈ R}. A finite set of rules is
called extended logic program (program hereafter).

1 Our intuitions connected to the notion of argumentation structure and also the used constructions are different from
Dung’s arguments or from arguments of [7, 2]. On the other hand, we plan an elaboration of presented constructions
aiming at a theory, which generalizes Dung’s abstract argumentation framework, TMS, constructions given, e.g., by
[7] or [2]. Anyway, this paper does not present a contribution to argumentation theory.

2 They are described in technical terms, assuming a familiarity with this paper. Most importantly, the notion of pre-
ferred answer set is changed in this paper.
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The set of conflicting literals is defined as CON = {(L1, L2) | L1 = not L2 ∨ L1 = ¬L2}. A set
of literals S is consistent if (S × S) ∩ CON = ∅. An interpretation is a consistent set of literals. A total
interpretation is an interpretation I such that for each objective literal L either L ∈ I or not L ∈ I . A
literal L is satisfied in an interpretation I iff L ∈ I (notation: I |= L). A set of literals S is satisfied in I iff
S ⊆ I (notation: I |= S). A rule r is satisfied in I iff I |= head(r) whenever I |= body(r).

If S is a set of literals, then we denote S ∩ Obj by S+ and S ∩ Def by S−. Symbols (body(r))−

and (body(r))+ are used here in that sense (notice that the usual meaning of body−(r) is different). If
X ⊆ Def then pos(X) = {L ∈ Obj | not L ∈ X}. Hence, not pos((body(r))−) = (body(r))−. If r is a
rule, then the rule head(r)← (body(r))+ is denoted by r+.

An answer set of a program can be defined as follows (only consistent answer sets are defined).
A total interpretation S is an answer set of a program P iff S+ is the least model3 of the program

P+ = {r+ | S |= (body(r))−}. Note that an answer set S is usually represented by S+ (this convention
is sometimes used also in this paper).

The set of all answer sets of a program P is denoted by AS (P ). A program is called coherent iff it has
an answer set.

Strict partial order is a binary relation, which is irreflexive, transitive and, consequently, asymmetric.
A prioritized logic program is usually defined as a triple (P,≺,N ), where P is a program, ≺ a strict

partial order on rules of P and a function N assigns names to rules of P . If r1 ≺ r2 it is said that r2 is
more preferred than r1.

We will not use N . If a symbol r is used in this paper in order to denote a rule, then r is considered as
the name of that rule (no different name N (r) is introduced).

3 Argumentation Structures

Our aim is to transfer a preference relation defined on rules to a preference relation on answer sets and,
finally, to a notion of preferred answer sets. To that end argumentation structures are introduced. The basic
argumentation structures correspond to rules. Some more general types of argumentation structures are
derived from the basic argumentation structures. A special type of argumentation structures corresponds to
answer sets.

Definition 1 (�P , [10]) An objective literal L depends on a set of default literals W ⊆ Def with respect
to a program P (L�P W 4) iff there is a sequence of rules 〈r1, . . . , rk〉, k ≥ 1, ri ∈ P such that

– head(rk) = L,
– W |= body(r1),
– for each i, 1 ≤ i < k, W ∪ {head(r1), . . . , head(ri)} |= body(ri+1).

The set {L ∈ Lit | L�P W} ∪W is denoted by Cn�P
(W ).

W ⊆ Def is self-consistent w.r.t. a program P iff Cn�P
(W ) is consistent. 2

If Z ⊆ Obj , we will use sometimes the notation Cn�P∪Z
(W ), assuming that the program P is ex-

tended by the set of facts Z.

Definition 2 (Dependency structure) Let P be a program.
A self-consistent set X ⊆ Def is called an argument w.r.t. the program P for a consistent set of

objective literals Y , given a set of objective literals Z iff

1. pos(X) ∩ Z = ∅,
2. Y ⊆ Cn�P∪Z

(X).

We will use the notation 〈Y ←↩ X;Z〉 and the triple denoted by it is called a dependency structure (w.r.t.
P ). 2

3 P+ is treated as definite logic program, i.e., each objective literal of the form ¬A, where A ∈ At , is considered as
a new atom.

4 L�P W could be defined as T ω
P (W ) and Cn�P (W ) as T ω

P (W )
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If Z = ∅ also a shortened notation 〈Y ←↩ X〉 can be used. We will omit sometimes the phrase “w.r.t.
P ” and speak simply about dependency structures and arguments, if the corresponding program is clear
from the context.

Basic argumentation structures comply with Definition 2 of dependency structures, if some conditions
are satisfied:

Definition 3 (Basic argumentation structure) Let r ∈ P be a rule such that

– (body(r))− is self-consistent and
– pos((body(r))−) ∩ (body(r))+ = ∅.

Then A = 〈{head(r)} ←↩ (body(r))−; (body(r))+〉 is called a basic argumentation structure. 2

Proposition 4 Each basic argumentation structure is a dependency structure. 2

We emphasize that only self-consistent arguments for consistent sets of objective literals are considered
in this paper. Hence, programs as P = {p← not p} or Q = {p← not q;¬p← not q} are irrelevant for
our constructions.

Some dependency structures can be derived from the basic argumentation structures. Only the depen-
dency structures derived from the basic argumentation structures using derivation rules from Definition
5 are of interest in the rest of this paper, we will use the term argumentation structure for dependency
structures derived from basic argumentation structures using derivation rules.

Derivation rules are motivated in Example 6.

Definition 5 (Derivation rules and argumentation structures) Each basic argumentation structure is an
argumentation structure. Let P be a program.

R1 Let r1, r2 ∈ P ,A1 = 〈{head(r1)} ←↩ X1;Z1〉 andA2 = 〈{head(r2)} ←↩ (body(r2 ))−; (body(r2 ))+〉
be argumentation structures, head(r2) ∈ Z1, X1 ∪ (body(r2 ))− ∪Z1 ∪ (body(r2 ))+ ∪{head(r1)} be
consistent and X1 ∪ (body(r2 ))− be self-consistent.
Then also A3 = 〈head(r1)←↩ X1 ∪ (body(r2 ))−; (Z1 \ {head(r2)})∪ (body(r2 ))+〉 is an argumen-
tation structure. We also write A3 = u(A1,A2). We define u as a symmetric relation: u(A1,A2) =
u(A2,A1)5

R2 Let A1 = 〈Y1 ←↩ X1〉 and A2 = 〈Y2 ←↩ X2〉 be argumentation structures and X1 ∪X2 ∪ Y1 ∪ Y2 be
consistent and X1 ∪X2 be self-consistent.
Then also A3 = 〈Y1 ∪ Y2 ←↩ X1 ∪X2〉 is an argumentation structure. We also write A3 = A1 ∪ A2.

R3 Let A1 = 〈Y1 ←↩ X1〉 be an argumentation structure and W ⊆ Def .
If X1 ∪W ∪ Y1 is consistent and X1 ∪W is self-consistent, then also A2 = 〈Y1 ←↩ X1 ∪W 〉 is an
argumentation structure. We also write A2 = A1 ∪W .2

Example 6 ([1]) Let a program P be given (P is used as a running example in this paper):
r1 b← a,not ¬b
r2 ¬b← not b
r3 a← not ¬a.

Suppose that ≺= {(r2, r1)}.
Consider the rule r2. The default negation not b plays the role of a defeasible argument. If the argument

can be consistently evaluated as true with respect to a program containing r2, then also ¬b can (and must)
be evaluated as true.

As regards the rule r1, default negation not ¬b can be treated as an argument for b, if a is true, it is an
example of a “conditional argument”.

The following basic argumentation structures correspond to the rules of P :
〈{b} ←↩ {not ¬b}; {a}〉,〈{¬b} ←↩ {not b}〉, 〈{a} ←↩ {not ¬a}〉. Let us denote them by A1,A2,A3,
respectively.

5 Symmetry of u enables below a more succinct formulation of derivation rules Q1, Q2. The symbol u indicates that
A3 is a result of an unfolding.
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Some arguments can be treated as counterarguments against other arguments. If we accept the argument
not b (with the consequence ¬b), it can be treated as a counterargument to not ¬b and, similarly, not ¬b
(with the consequence b, if a is true) as a counterargument against not b. On the level of argumentation
structures it can be said that A1 contradicts A2 and vice versa.

The preference relation can be directly transferred to basic argumentation structures, henceA1 is more
preferred than A2. Consequently, only the attack of A1 against A2 is relevant.

An example of a derived argumentation structure: A3 enables to “unfold” the condition a in A1, the
resulting argumentation structure can be expressed as A4 = 〈{b} ←↩ {not ¬b,not ¬a}〉. Similarly,
A5 = 〈{a, b} ←↩ {not ¬b,not ¬a}〉 can be derived from A3 and A4, A5 = A3 ∪ A4.

We will also transfer the attack relation from the basic argumentation structures to the derived argu-
mentation structures.

Observe that some argumentation structures correspond to answer sets. A5 corresponds to the answer
set {a, b} and A6 = 〈{a,¬b} ←↩ {not b,not ¬a}〉 to {a,¬b}. Notice that A6 = A2 ∪ A3. The attack
relation enables to select the preferred answer set. This will be discussed later in Example 19. 2

Proposition 7 Each argumentation structure is a dependency structure.

Proof. We have to show that an application of R1, R2 and R3 preserves properties of dependency structures.

R1 Since S1 = X1∪(body(r2 ))−∪Z1∪(body(r2 ))+∪{head(r1)} is consistent S2 = X1∪(body(r2 ))−∪
(Z1 \ {head(r2)}) ∪ (body(r2 ))+ ⊆ S1 is also consistent. It means pos(X1 ∪ (body(r2 ))−) ∩ ((Z1 \
{head(r2)}) ∪ (body(r2 ))+) = ∅.
Let Q = P ∪ (Z1 \ {head(r2)}) ∪ (body(r2 ))+ and w = head(r2)←.
From head(r2) ∈ Cn�P∪(body(r2 ))+

((body(r2 ))−) we have sequence of rules R2 = 〈q1, q2, . . . , qm〉
where m > 0 and qm = r2.
From head(r1) ∈ Cn�P∪Z1

(X1) we have sequence of rules R1 = 〈p1, p2, . . . , pn〉 where n > 0 and
pn = r1. We assume there is at most one occurrence of w in R1. Otherwise we can remove all but
leftmost one. Note that since r2 ∈ P there is a possibility to satisfy body(r1) in a different way than
using w.
If w ∈ R1 then we have pi = w for some 1 ≤ i < n. We construct sequence
R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pi−1, pi+1, . . . , pn〉. If w 6∈ R1 we construct sequence
R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pn〉. In both cases R3 satisfy conditions from definition 1 for as-
sumption X1 ∪ (body(r2 ))−.
Since rules in R3 are from program Q we have head(r1) ∈ Cn�Q

(X1 ∪ (body(r2 ))−).
R3 Z2 = ∅ hence pos(X1 ∪W ) ∩ Z2 = ∅. We have Y1 ⊆ Cn�P

(X1). So for every y ∈ Y1 there is a
sequence R of rules that satisfy Definition 1 for assumption X1. Same sequence satisfy definition 1 for
superset assumption X1 ∪W . Hence y ∈ Cn�P

(X1 ∪W ) and Y1 ⊆ Cn�P
(X1 ∪W ).

R2 Z3 = ∅ hence pos(X1∪X2)∩Z3 = ∅. We have Y1 ⊆ Cn�P
(X1) hence Y1 ⊆ Cn�P

(X1∪X2). We
also have Y2 ⊆ Cn�P

(X2) hence Y2 ⊆ Cn�P
(X1 ∪X2). Therefore Y1 ∪ Y2 ⊆ Cn�P

(X1 ∪X2).

A derivation of an argumentation structure A (w.r.t. P ) is a sequence 〈A1,A2, . . . ,Ak〉 of argumenta-
tion structures (w.r.t. P ) such that A1 is a basic argumentation structure, A = Ak and each Ai, 1 < i ≤ k,
is either a basic argumentation structure or it is obtained by R1 or R2 or R3 from preceding argumentation
structures.

4 Attacks

Our approach to preferred answer sets is based on a solution of conflicts between argumentation structures.
We distinguish three steps towards that goal. Contradictions between argumentation structures represent
the elementary step. Rule preference and contradiction between basic argumentation structures are used to
form an attack relation. Consider two basic argumentation structures A1 and A2. If A1 contradicts A2 and
corresponds to a more preferred rule, then it attacks A2. Attacks are propagated to other argumentation
structures using derivation rules. Attacks between argumentation structures depend on how argumentation
structures are derived. Hence, we need a more context-independent notion and we define a relation of block-
ing between argumentation structures. The complement of blocking (warranting) is used in the definition
of preferred argumentation structures.
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Definition 8 Consider argumentation structures A = 〈Y1 ←↩ X1;Z1〉 and B = 〈Y2 ←↩ X2;Z2〉.
If there is a literal L ∈ Y1 such that not L ∈ X2, it is said that the argument X1 contradicts the

argument X2 and the argumentation structure A contradicts the argumentation structure B.
It is said that X1 is a counterargument to X2. 2

The basic argumentation structures corresponding to the facts of the given program are not contradicted.
Let r1 = a ← be a fact and not a ∈ (body(r2 ))−. Then any W ⊆ Def s.t. (body(r2 ))− ⊆ W is not

self-consistent and, therefore, it is not an argument.

Example 9 In Example 6, A1 contradicts A2 and A2 contradicts A1.
Only some counterarguments are interesting: the rule r1 is more preferred than the rule r2, therefore

the counterargument of A2 against A1 should not be “effectual”. We are going to introduce a notion of
attack in order to denote “effectual” counterarguments. 2

Similarly as for the case of argumentation structures, the basic attacks are defined first. A terminological
convention: if A1 attacks A2, it is said that the pair (A1,A2) is an attack.

Definition 10 Let r2 ≺ r1 and let A1 = 〈{head(r1)} ←↩ (body(r1 ))−; (body(r1 ))+〉 contradicts A2 =
〈{head(r2)} ←↩ (body(r2 ))−; (body(r2 ))+〉.

Then A1 attacks A2 and it is said that this attack is basic. 2

Attacks between argumentation structures “inherited” (propagated) from basic attacks are defined in
terms of derivation rules. The rules of that inheritance are motivated and defined below.

Example 11 Let us continue with Example 6.
Consider the basic argumentation structuresA1 = 〈{b} ←↩ {not ¬b}; {a}〉,A2 = 〈{¬b} ←↩ {not b}〉,

A3 = 〈{a} ←↩ {not ¬a}〉 and the derived argumentation structures A4 = 〈{b} ←↩ {not ¬b,not ¬a}〉,
A5 = 〈{b, a} ←↩ {not ¬b,not ¬a}〉, A6 = 〈{¬b, a} ←↩ {not b,not ¬a}〉.

(A1,A2) is the only basic attack (the more preferred A1 attacks the less preferred A2).
Derivations of the attacks of (A4,A2) and (A5,A2) could be motivated as follows.A4 is derived from

A1 and A3 using R1, the attack of A1 against A2 should be propagated to the attack (A4,A2). Note that
A3 is not attacked.

Now, A5 is derived from A3 and A4. Again, the attack of A4 against A2 should be inherited by
(A5,A2).

Similarly, A6 is derived from attacked A2. The attacks against A2 are transferred to the attacks against
A6. The attack (A5,A6) is a crucial one, a selection of preferred answer set is based on it; compare with
Example 19.

On the contrary, A2 contradicts A4 and A5, but it is based on a less preferred rule, hence those contra-
dictions are not considered as attacks. 2

First we define two rules, Q1 and Q2, which specify inheritance of attacks “via unfolding” - use of the
rule R1. Second, two rules Q3 and Q4 derive attacks when the attacking or attacked side is joined with
another argumentation structure - use of the rule R2. Finally, rules Q5 and Q6 derive attacks, if attacking
or attacked side is extended by an assumption - use of the rule R3. Some asymmetries between pairs Q1,
Q2 and Q3, Q4 will be discussed below, see Example 22.

Definition 12 (Attack derivation rules) Basic attacks are attacks.

Q1 Let A1,A2,A3 be argumentation structures such that:
– A1 attacks A2,
– A3 does not attack A1, and
– u(A2,A3) is argumentation structure.

Then A1 attacks u(A2,A3).
Q2 Let A1,A2,A3 be argumentation structures such that:

– A1 attacks A2,
– A3 is not attacked, and
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– u(A1,A3) is argumentation structure.
Then u(A1,A3) attacks A2.

Q3 Let A1 and A3 be argumentation structures of the form 〈X ←↩ Y 〉 and A2 be an argumentation
structure. Suppose that:

– A1 attacks A2,
– A3 is not attacked and
– A1 ∪ A3 is argumentation structure.

Then A1 ∪ A3 attacks A2.
Q4 Let A1 be an argumentation structure and A2, A3 be argumentation structures of the form 〈X ←↩ Y 〉

such that:
– A1 attacks A2,
– A3 does not attack A1, and
– A2 ∪ A3 is argumentation structure.

Then A1 attacks A2 ∪ A3.
Q5 Let A1 = 〈X ←↩ Y 〉 and A2 be argumentation structures. Let W ⊆ Def . Suppose that:

– A1 attacks A2, and
– A1 ∪W = 〈X ←↩ Y ∪W 〉 is argumentation structure.

Then A1 ∪W attacks A2.
Q6 Let A1 and A2 = 〈X ←↩ Y 〉 be argumentation structures. Let W ⊆ Def . Suppose that:

– A1 attacks A2, and
– 〈X ←↩ Y ∪W 〉 = A2 ∪W is argumentation structure.

Then A1 attacks A2 ∪W .

There are no other attacks except those specified above. 2

Definition 13 A derivation of an attack X is a sequence X1, . . . ,Xk, where X = Xk, each Xi is an attack
(a pair of attacking and attacked argumentation structures), X1 is a basic attack and each Xi, 1 < i ≤ k is
either a basic attack or it is derived from the previous attacks using rules Q1, Q2, Q3, Q4, Q5, Q6.

Derivations of argumentation structures and of attacks blend together. Example 15 shows that a pair of
argumentation structures (B,A) is an attack w.r.t. a derivation, but it is not an attack w.r.t another derivation.
Let us start with a definition.

Definition 14 Let a program P and an answer set S be given. Let be R = {r ∈ P | body(r) ⊆ S}. It is
said that R is the set of all generating rules of S+. 2

Example 15 Let P be
r1 a← not b
r2 b← not a
r3 a← not c
r4 c← b.

≺= {(r1, r2)}.
There are two answer sets of P : S1 = {a} and S2 = {b, c}. The corresponding argumentation struc-

tures are A = 〈{a} ←↩ {not b,not c}〉 and B = 〈{b, c} ←↩ {not a}〉, respectively.
There are two derivations of A. Both derivations start from a basic argumentation structure and R3

is used. The first is the sequence A1,A and the second is A3,A, where A1 = 〈{a} ←↩ {not b}〉 and
A3 = 〈{a} ←↩ {not c}〉.

If the sequence A1,A is considered, an attack against A is derivable. Let be A2 = 〈{b} ←↩ {not a}〉,
A4 = 〈{c} ←↩ ∅; {b}}〉. The corresponding attack derivation is as follows:
(A2,A1), (u(A4,A2),A1), (B,A1), (B,A), where Q2, Q3 and Q6 are used.

The only basic attack of our example is (A2,A1). Hence, the second derivation A3,A of A cannot be
attacked.

The derivations of A correspond to two sets of rules generating S1, i.e., R1 = {r1}, and R2 = {r3}.
R1 contains an attacked rule, while R2 does not contain such a rule. We accept that if there is a set of rules
generating an answer set S s.t. no rule is attacked by a rule generating another answer set, then we can
consider S as a preferred one.

We transfer this rather credulous approach to derivations of preferred argumentation structures. 2
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Definition 16 (Complete arguments) An argumentation structure 〈Y ←↩ X〉 is called complete iff for
each literal L ∈ Obj it holds that L ∈ Y or not L ∈ X . 2

Definition 17 (Warranted and blocked derivations) Let σ = A1, . . . ,Ak be a derivation of an argumen-
tation structure A, where A = Ak.

It is said that σ is blocked iff there is a derivation τ of the attack (B,A), where B is a complete
argumentation structure and each member of τ contains an Ai as a second component.

A derivation is warranted if it is not blocked. 2

Definition 18 (Warranted and blocked argumentation structures) An argumentation structureA is war-
ranted iff there is a warranted derivation of A.
A is blocked iff each derivation of A is blocked. 2

5 Preferred answer sets

Example 19 Consider our running example, where we have complete argumentation structures A5 =
〈{b, a} ←↩ {not ¬b,not ¬a}〉,A6 = 〈{¬b, a} ←↩ {not ¬a,not b}〉.

We will prefer A5 over A6. A6 is blocked by A5. On the other hand, A5 is not blocked.
Consequently, we will consider {a, b} as a preferred answer set of the given prioritized logic program.

2

Definition 20 (Preferred answer set) An argumentation structure is preferred iff it is complete and war-
ranted.

Y ∪X is a preferred answer set iff 〈Y ←↩ X〉 is a preferred argumentation structure. 2

Notice that our notion of preferred answer set is rather a credulous one, it is based on the notion of
warranted derivation, i.e., at least one derivation of a preferred answer set should not be blocked.

The following example shows that the argumentation structure corresponding to the only answer set of
a program is preferred, even if it is attacked (by an argumentation structure which is not complete).

Example 21

r1 b← not a
r2 a← not b
r3 c← a

r4 c← not c

≺= {(r1, r2), (r3, r4)}.
Let the basic argumentation structures be denoted byAi, i = 1, . . . , 4. (A1,A2), (A3,A4) are the basic

attacks. A1 attacks A5 = 〈{c} ←↩ {not b}〉 according to the rule Q1 and A1 attacks A6 = 〈{c, a} ←↩
{not b}〉 according to the rule Q4.

Remind that according to Definition 17 a derivation can be blocked only by a complete argumentation
structure and an argumentation structure is blocked iff each its derivation is blocked. Consequently, the
complete argumentation structure A6 is not blocked by another complete argumentation structure (there is
no such structure) and, consequently, it is the preferred argumentation structure.

We distinguish between attacking and blocking. A blocked argumentation structure is attacked by a
complete argumentation structure. Preferred argumentation structures are not blocked. 2

Next example explains asymmetries between Q1, Q2 and Q3, Q4. The main idea is as follows. We are
more cautious when an attacking argumentation structure is derived (Q2, Q3) and we require that a “parent”
of the attacking argumentation structure is not attacked at all. On the other hand, a scheme of derivation
rules Q1 and Q4 is as follows:A1 attacksA2,A is a derived argumentation structure from the attackedA2

and an argumentation structure A3. In order to derive an attack of A1 against A it is sufficient to assume
that A3 does not attack A1. However, there are some problems with this design decision.
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Example 22 Consider a program P :
r1 a1 ← not a3,not d2

r2 d1 ← not a3,not d2

r3 a2 ← not a1,not d3

r4 d2 ← not a1,not d3

r5 a3 ← not a2,not d1

r6 d3 ← not a2,not d1

≺= {(r1, r4), (r3, r5), (r6, r2)}.
Notice that a complete argumentation structure B1 = 〈{a1, d1} ←↩ {not a3,not d2}〉 is derived from

A1 corresponding to r1 and from A2 corresponding to r2, similarly B2 = 〈{a2, d2} ←↩ {not a1,not d3}〉
is derived from A3 corresponding to r3 and from A4 corresponding to r4 and B3 = 〈{a3, d3} ←↩
{not a2,not d1}〉 is derived from A5 corresponding to r5 and from A6 corresponding to r6. B1,B2,B3

are all complete argumentation structures of our example.
Suppose that Q3 does not contain condition that a “parent” of the attacking argumentation structure is

not attacked at all. Then we get that each complete argumentation structure is blocked, consequently, no
preferred answer set can be selected. But we are extremely interested in a selection of a preferred answer
set.

As a consequence, we are too liberal in selecting preferred answer sets: Consider program
r1 a←
r2 b← not a
r3 c← not b
r4 b← not c

≺= {(r2, r3), (r3, r4)}.
We get that both S1 = {a, c} and S2 = {a, b} are preferred answer sets, but S2 is not an intuitive se-

lection. The reason is that both argumentation structures (let us denote them by A1 and A2) corresponding
to S1 and S2, respectively, are attacked and rule Q3 cannot be applied. Hence, each derivation of A1 and
A2 is warranted. A weaker version of Q3 would enable to repair this, however, it is a too high price for us.
2

Theorem 23 If S is a preferred answer set of (P,≺,N ), then S is an answer set of P .

6 Principles

The principles (partially) specify what it means that an order on answer sets corresponds to the given
order on rules. The first two principles below are dependent on [1]. Principle III reproduces an idea of
Proposition 6.1 from [1]. The Principles of [1] are originally expressed in an abstract way for the general
case of nonmonotonic prioritized defeasible rules. We restrict the discussion (and the wording) of the
Principles to the case of logic programs and answer sets.

Let P be a program and r1, r2 ∈ P . It is said that r2 is attacked by r1 (r1 attacks r2) iff not head(r1) ∈
(body(r2 ))−.

Definition 24 Let a prioritized logic program (P,≺,N ) be given. Let R1, R2 be sets of generating rules
for some answer sets of P . It is said that R1 attacks R2 iff there is r1 ∈ R1, r2 ∈ R2 such that r2 ≺ r1 and
r1 attacks r2.

Definition 25 Let a prioritized logic program (P,≺,N ) be given. Let R be a set of generating rules of
some answer set of P . It is said that R is a warranted set of generating rules iff there is no set Q of
generating rules of some answer set of P such that Q attacks R . 2

Principle I in its original formulation does not hold for our approach. A terminological remark – words
associated to our approach (attack, warranted) are used in presented formulations of Principles. But remind
definitions 24 and 25 – the notions are defined for generating sets of rules independently on our approach.
We have considered the same principles also in another approach, see [14] and also [13]. It is defined
directly on generating sets, and uses neither argumentation structures nor derivation rules.
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In all principles below it is assumed that a prioritized logic program (P,≺,N ) is given.6

Principle I Let A1 and A2 be two answer sets of the program P . Let R ⊂ P be a set of rules and
d1, d2 ∈ P \ R are rules. Let A+

1 , A
+
2 be generated by the rules R ∪ {d1} and R ∪ {d2}, respectively. If

d1 is preferred over d2 and each set of generating rules of A+
2 is attacked by a warranted set of generating

rules of some answer set of P , then A2 is not a preferred answer set of (P,≺,N ). 2

Our formulation of Principle I differs from the original formulation in [1] – the condition “each set of
generating rules ofA+

2 is attacked by a warranted set of generating rules of some answer set of P ” is added
because of the credulous stance to warranted derivations accepted in this paper

We do not accept the following principle. See discussion below.
Principle II Let A be a preferred answer set of a prioritized logic program (P,≺,N ) and r be a rule

such that (body(r))+ 6⊆ A+. Then A is a preferred answer set of (P ∪ {r},≺′,N ′), whenever ≺′ agrees
with ≺ on rules in P and N ′ extends N with the name r. 2

We believe that the possibility to always select a preferred answer set from a non-empty set of standard
answer sets is of critical importance.

Principle III Let B 6= ∅ be the set of all answer sets of P . Then there is a selection function Σ s.t.
Σ(B) is the set of all preferred answer sets of (P,≺,N ), where ∅ 6= Σ(B) ⊆ B. 2

It is shown in [1], Proposition 6.1, that Principle II is incompatible with Principle III, if the notion of
preferred answer set from [1] is accepted:

Example 26 ([1]) Consider program P , whose single standard answer set is S = {b} and the rule (1) is
preferred over the rule (2).

c← not b (1)
b← not a (2)

S is not a preferred answer set in the framework of [1]. Assume that S, the only standard answer set of P , is
selected – according to the Principle III – as the preferred answer set of (P,≺,N ).7 Let P ′ be P ∪{a← c}
and a ← c be preferred over the both rules 1 and 2. P ′ has two standard answer sets, S and T = {a, c}.
Note that {c} 6⊆ S+. Hence, S should be the preferred answer set of P ′ according to the Principle II.
However, in the framework of [1] the only preferred answer set of (P ′,≺′,N ′) is T . This selection of
preferred answer set satisfies clear intuitions – T is generated by the two most preferred rules.

In our approach the complete argumentation structure A4 = 〈{a, c} ←↩ {not b}〉 blocks the complete
argumentation structure A5 = 〈{b} ←↩ {not a,not c}〉, hence, A4 is preferred and {a, c} is the preferred
answer set.

Principle III is of crucial value according to our view. A more detailed justification of our decision not
to accept Principle II is presented in [11]. We mention here only that we select preferred answer sets of P ′

from a broader variety of possibilities. Consequently, no condition satisfied by a subset of those possibilities
should constrain the selection of preferred answer set from the extended set of possibilities. 2

Principle II is not accepted also in [8]. According to [4] descriptive approaches do not satisfy this principle
in general.

Principle IV expresses when an answer set is a preferred one. We consider it as an expression of a
descriptive approach to preferred answer set specification, as we understand it and accept in this paper.

Principle IV Let S be answer set of P . Suppose that S is generated by a set of rules R. If R is a
warranted set of generating rules then S is a preferred answer set. 2

6 The original formulation of principles by [1] is as follows.
Principle I. Let B1 and B2 be two belief sets of a prioritized theory (T ;≺) generated by the (ground) rules R∪d1

and R∪ d2, where d1, d2 6∈ R, respectively. If d1 is preferred over d2, then B2 is not a (maximally) preferred belief
set of T .

Principle II. Let B be a preferred belief set of a prioritized theory (T ;≺) and r a (ground) rule such that at least
one prerequisite of r is not in B. Then B is a preferred belief set of (T ∪ {r};≺′) whenever ≺′ agrees with ≺ on
priorities among rules in T .

7 Observe that the only derived complete argumentation structure is 〈{b} ←↩ {not a,not c}〉. Hence, {b} is a
preferred answer set of (P,≺,N ) in our framework.
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As regards a choice of principles, we accept the position of [1]: even if somebody does not accept a
set of principles for preferential reasoning, those (and similar) principles are still of interest as they may be
used for classifying different patterns of reasoning.

7 Discussion

The question whether derivation rules for attacks are sufficient and necessary arises in a natural way. Our
only response to the question in this paper is that Principles I, III, IV are satisfied, when we use notions
of attack, blocking and warranting introduced in this paper We proceed to theorems about satisfaction of
principles.

Theorem 27 Principle III is satisfied. Let P = (P,≺,N ) be a prioritized logic program and AS (P ) 6= ∅.
Then there is a preferred answer set of P .

Proof. Case 1 is trivial – if a program P have only one answer set S, then no complete argumentation
structure blocks 〈S+ ←↩ S−〉.

Case 2. Let a program P has only two answer sets S1 and S2. Let the corresponding complete argu-
mentation structures be A1 = 〈S+

1 ←↩ S
−
1 〉 and A2 = 〈S+

2 ←↩ S
−
2 〉, respectively. Suppose that A1 and A2

block each other.
It means that each derivation of both is blocked by the other complete argumentation structure. Consider

all derivations of A1 (which should be blocked by A2). Hence, each derivation σi contains an argumenta-
tion structure Bi attacked by A2, i.e., X = (A2,Bi) is an attack. Each derivation of X should start from a
basic attack and ends with (A2, Bi).

If X is a basic attack, then the only generating set of rules of S2 contains only one rule r = S+
2 ← S−2 ,

where S+ = {head(r)}. We assume that there is a rule r1 s.t. r1 ≺ r and not head(r) ∈ (body(r1 ))−.
On the other hand,A1 blocksA2 and there is an r2 ∈ P which is among the generating rules of S1, r ≺ r2
and not head(r2) ∈ (body(r))−.

Notice that 〈head(r2) ←↩ (body(r2 ))−; (body(r2 ))+〉 attacks A2. If (body(r2 ))+ 6= ∅, then a deriva-
tion of attack (A2,A1) has to use Q1 and 〈head(r2) ←↩ (body(r2 ))−; (body(r2 ))+〉. But Q1 is not appli-
cable – attacking argumentation structure should be not attacked. Similarly, if (body(r2 ))+ = ∅, Q4 should
be used, but Q4 is not applicable because of the same reason.

Assume that X is not a basic attack. Then there is a basic attack as follows.
Let beR1 = 〈head(r1)←↩ (body(r1 ))−; (body(r1 ))+〉,
R2 = 〈head(r2)←↩ (body(r2 ))−; (body(r2 ))+〉, where
head(r2) ∈ S2, head(r1) ∈ S1, r1 ≺ r2,not head(r2) ∈ (body(r1 ))− and, consequently, (R2,R1) is a
basic attack.

We will prove that if each derivation of A2 is blocked by A1, then it is impossible to derive the attack
(A2,A1).

Let the basic attack (R2,R1) be given. A derivation of (A2,A1) from the basic attack should contain
rules Q2 or Q3 or Q4 or Q5 in order to proceed from R2 to A2 (X is not a basic attack). A derivation of
A2 using R1, R2, R3 could be reconstructed from this. The derivation is blocked. Therefore, Q2, Q3, Q4
and Q5 are not applicable and the derivation of (A2,A1) is impossible.

Case 3. Let be AS (P ) = {S1, . . . , Sk}, k ≥ 3. Assume that the corresponding complete argumentation
structures are Ai, i = 1, . . . , k. Suppose that each of them is blocked. Let us denote the set {Ai | i =
1, . . . , k} by O.

Suppose that the setN ⊆ O contains only blocked, but not blocking complete argumentation structures
(each A ∈ N is blocked and not blocking). If O \N contains only basic argumentation structures then the
preference relation ≺ is cyclic. Let M ⊆ O be the set of complete argumentation structures which block
an argumentation structure and they are not basic argumentation structures.

We will show that there is A ∈M which is not blocked.
We assumed to the contrary that each complete argumentation structure in M is blocked (and blocking

simultaneously). If the cardinality of M is 2, Case 2 applies.
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Let A1 be in M , i.e., A1 is a not basic argumentation structure. Assume (without loss of generality)
that each derivation of A1 is blocked and A1 blocks a derivation of A3. We have to show that an attack
(A1,A3) is not derivable.

Consider a derivation of the attack (A1,A3) and reconstruct the corresponding derivation of A1. Sup-
pose that A2 (again without loss of generality) blocks this derivation of A1.

Hence, A2 attacks an argumentation structure B in the derivation of A1. It follows that some argu-
mentation structure in a derivation of A2 attacks a basic argumentation structure in the derivation of A1.
Consequently, neither rules Q1 and Q4, nor rules Q2 and Q3 are applicable in a derivation of the attack
(A1,A3). Therefore, it is not derivable.

Let R ∈ R be attacked by a warranted set Q of generating rules for some answer set of P . Since
Q is warranted, there is a warranted derivation of complete argumentation structure B corresponding to
Q. There is also a derivation of complete argumentation structure A corresponding to R. Q attacks R, so
there is a basic argumentation structure C from the derivation of A attacked by D from derivation of B.
Q is warranted, rules Q2 and Q3 are applicable and hence attack (D, C) is propagated to attack (B, C). It
follows that derivation of A is blocked.

Theorem 28 Principle I is satisfied. Let P = (P,≺,N ) be a prioritized logic program, A1 and A2 be two
answer sets of P . Let R ⊂ P be a set of rules and d1, d2 ∈ P \ R are rules, d1 is preferred over d2. Let
A+

1 , A
+
2 be generated by the rules R∪{d1} and R∪{d2}, respectively. Assume that each set of generating

rules of A+
2 is attacked by a warranted set of generating rules of some answer set of P .

Then A2 is not a preferred answer set of (P,≺,N ).

Proof. It is assumed that each set of generating rules of A2 is attacked by a warranted set of generating
rules of some answer set of P. A2 is not a preferred answer set of (P,≺,N ).

Theorem 29 Principle IV is satisfied. Let P = (P,≺,N ) be a prioritized logic program and S be an
answer set of P . Suppose that S is generated by a warranted set of rules R.

Then S is a preferred answer set.

Proof. Let R be a set of rules generating an answer set S. If R is a warranted set of generating rules, then
there is a derivation of the argumentation structure 〈S+ ←↩ S−〉 which is warranted.

8 Conclusions

An argumentation framework has been constructed, which enables transferring attacks of rules to attacks of
argumentation structures and, consequently, to warranted complete argumentation structures. Preferred an-
swer sets correspond to warranted complete argumentation structures. This construction enables a selection
of a preferred answer set whenever there is a non-empty set of standard answer sets of a program.

We did not accept the second principle from [1] and we needed to modify their first principle. On the
other hand, new principles, which reflect the role of blocking, have been proposed. We stress the role of
blocking – in our approach, rules can be blocked by more preferred rules, but the rules which are not
blocked are handled in a declarative style.

Among goals for our future research are first of all a thorough analysis of properties and weaknesses of
the presented approach (supported by an implementation of the derivation rules) and a detailed comparison
to other approaches.

Finally, we have to mention the main differences between the preliminary version [11] and this paper.
A more subtle set of attack derivation rules is introduced. A new assumption in Q3 (A3 is not attacked)
changed the set of attacked derivations and, consequently, our semantics. A new and more adequate notion
of warranted and blocked argumentation structure is introduced, which is based on new concepts of war-
ranted and blocked derivations. Consequently, the notion of preferred answer set is changed. A connection
of attacks between argumentation structures to different derivations of argumentation structures was not
expressed in [11]. More precise and appropriate formulations of Principles IV and I are presented.

Acknowledgements: We are grateful to anonymous referees for very valuable comments and propos-
als. This paper was supported by the grant 1/0689/10 of VEGA.
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Abstract. Combinatory categorial grammar (CCG) is a grammar formalism used for natural language
parsing. CCG assigns structured lexical categories to words and uses a small set of combinatory rules
to combine these categories to parse a sentence. In this work we propose and implement a new ap-
proach to CCG parsing that relies on a prominent knowledge representation formalism, answer set
programming (ASP) — a declarative programming paradigm. We formulate the task of CCG parsing
as a planning problem and use an ASP computational tool to compute solutions that correspond to
valid parses. Compared to other approaches, there is no need to implement a specific parsing algo-
rithm using such a declarative method. Our approach aims at producing all semantically distinct parse
trees for a given sentence. From this goal, normalization and efficiency issues arise, and we deal with
them by combining and extending existing strategies. We have implemented a CCG parsing tool kit —
ASPCCGTK— that uses ASP as its main computational means. The C&C supertagger can be used as a
preprocessor within ASPCCGTK, which allows us to achieve wide-coverage natural language parsing.

1 Introduction

The task of parsing, i.e., recovering the internal structure of sentences, is an important task in natural lan-
guage processing. Combinatory categorial grammar (CCG) is a popular grammar formalism used for this
task. It assigns basic and complex lexical categories to words in a sentence and uses a set of combinatory
rules to combine these categories to parse the sentence. In this work we propose and implement a new
approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set pro-
gramming (ASP) — a declarative programming paradigm. Our aim is to create a wide-coverage3 parser
which returns all semantically distinct parse trees for a given sentence.

One major challenge of natural language processing is ambiguity of natural language. For instance,
many sentences have more than one plausible internal structure, which often provide different semantics to
the same sentence. Consider a sentence

John saw the astronomer with the telescope.

It can denote that John used a telescope to see the astronomer, or that John saw an astronomer who had a
telescope. It is not obvious which meaning is the correct one without additional context. Natural language
ambiguity inspires our goal to return all semantically distinct parse trees for a given sentence.

CCG-based systems OPENCCG [23] and TCCG [1, 3] (implemented in the LKB toolkit) can provide
multiple parse trees for a given sentence. Both use chart parsing algorithms with CCG extensions such
as modalities or hierarchies of categories. While OPENCCG is primarily geared towards generating sen-
tences from logical forms, TCCG targets parsing. However, both implementations require lexicons4 with
specialized categories. Generally, crafting a CCG lexicon is a time–consuming task. An alternative method
to using a (hand-crafted) lexicon has been developed and implemented in a wide-coverage CCG parser —
C&C [6,7]. C&C relies on machine learning techniques for tagging an input sentence with CCG categories
as well as for creating parse trees with a chart algorithm.As training data, C&C uses CCGbank— a corpus

3 The goal of wide-coverage parsing is to parse sentences that are not within a controlled fragment of natural language,
e.g., sentences from newspaper articles.

4 A CCG lexicon is a mapping from each word that can occur in the input to one or more CCG categories.
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of CCG derivations and dependency structures [17]. The parsing algorithm of C&C returns a single most
probable parse tree for a given sentence.

In the approach that we describe in this paper we formulate the task of CCG parsing as a planning
problem. Then we solve it using answer set programming [19, 20]. ASP is a declarative programming
formalism based on the answer set semantics of logic programs [15]. The idea of ASP is to represent a
given computational problem by a program whose answer sets correspond to solutions, and then use an
answer set solver to generate answer sets for this program. Utilizing ASP for CCG parsing allows us to
control the parsing process with declarative descriptions of constraints on combinatory rule applications
and parse trees. Moreover, there is no need to implement a specific parsing algorithm, as an answer set
solver is used as a computational vehicle of the method. Similarly to OPENCCG and TCCG, in our ASP
approach to CCG parsing we formulate a problem in such a way that multiple parse trees are computed.

An important issue inherent to CCG parsing are spurious parse trees: a given sentence may have many
distinct parse trees which yield the same semantics. Various methods for eliminating such spurious parse
trees have been proposed [6, 9, 24]. We adopt some of these syntactic methods in this work.

We implemented our approach in an ASPCCGTK toolkit. The toolkit equips a user with two possibilities
for assigning plausible categories to words in a sentence: it can either use a given (hand-crafted) CCG
lexicon or it can take advantage of the C&C supertagger [7] for this task. The second possibility provides us
with wide-coverage CCG parsing capabilities comparable to C&C. The ASPCCGTK toolkit computes best-
effort parses in cases where no full parse can be achieved with CCG, resulting in parse trees for as many
phrases of a sentence as possible. This behavior is more robust than completely failing in producing a parse
tree. It is also useful for development, debugging, and experimenting with rule sets and normalizations. In
addition to producing parse trees, ASPCCGTK contains a module for visualizing CCG derivations.

A number of theoretical characterizations of CCG parsing exists. They differ in their use of specialized
categories, their sets of combinatory rules, or specific conditions on applicability of rules. An ASP approach
to CCG parsing implemented in ASPCCGTK can be seen as a basis of a generic tool for encoding different
CCG category and rule sets in a declarative and straightforward manner. Such a tool provides a test-bed
for experimenting with different theoretical CCG frameworks without the need to craft specific parsing
algorithms.

The structure of this paper is as follows: we start by reviewing planning, ASP, and CCG. We describe
our new approach to CCG parsing by formulating this task as a planning problem in Section 3. The imple-
mentation and framework for realizing this approach using ASP technology is the topic of Section 4. We
conclude with a discussion of future work directions and challenges.

2 Preliminaries

2.1 Planning

Automated planning [5] is a widely studied area in Artificial Intelligence. In planning, given knowledge
about

(a) available actions, their executability, and effects,
(b) an initial state, and
(c) a goal state,

the task is to find a sequence of actions that leads from the initial state to the goal state. A number of special
purpose planners have been developed in this sub-area of Artificial Intelligence. Answer set programming
provides a viable alternative to special-purpose planning tools [10, 18, 20].

2.2 Answer Set Programming (for Planning)

Answer set programming (ASP) [19, 20] is a declarative programming formalism based on the answer set
semantics of logic programs [15, 16]. The idea of ASP is to represent a given computational problem by a
program whose answer sets correspond to solutions, and then use an answer set solver to generate answer
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sets for this program. In this work we use the CLASP5 system with its front-end (grounder) GRINGO [13],
which is currently one of the most widely used answer set solvers.

A common methodology to solve a problem in ASP is to design GENERATE, DEFINE, and TEST [18]
parts of a program. The GENERATE part defines a large collection of answer sets that could be seen as
potential solutions. The TEST part consists of rules that eliminate the answer sets that do not correspond to
solutions. The DEFINE section expresses additional concepts and connects the GENERATE and TEST parts.

A typical logic programming rule has a form of a Prolog rule. For instance, program

p.
q ← p, not r.

is composed of such rules. This program has one answer set {p, q}. In addition to Prolog rules, GRINGO
also accepts rules of other kinds — “choice rules” and “constraints”. For example, rule

{p, q, r}.

is a choice rule. Answer sets of this one-rule program are arbitrary subsets of the atoms p, q, r. Choice rules
are typically the main members of the GENERATE part of the program. Constraints often form the TEST
section of a program. Syntactically, a constraint is the rule with an empty head. It encodes the conditions
on the answer sets that have to be met. For instance, the constraint

← p, not q.

eliminates the answer sets of a program that include p and do not include q.
System GRINGO allows the user to specify large programs in a compact way, using rules with schematic

variables and other abbreviations. A detailed description of its input language can be found in the online
manual [13]. Grounder GRINGO takes a program “with abbreviations” as an input and produces its propo-
sitional counterpart that is then processed by CLASP. Unlike Prolog systems, the inference mechanism of
CLASP is related to that of Propositional Satisfiability (SAT) solvers [14].

The GENERATE-DEFINE-TEST methodology is suitable for modeling planning problems. To illustrate
how ASP programs can be used to solve such problems, we present a simplified part of the encoding of a
classic toy planning domain blocks world given in [18]. In this domain, blocks are moved by a robot. There
are a number of restrictions including the fact that a block cannot be moved unless it is clear.

Lifschitz [18] models the blocks world domain by means of five predicates: time/1, block/1, location/1,
move/3, on/3; a location is a block or the table. The constant maxsteps is an upper bound on the length of
a plan. States of the domain are modeled by the ground atoms of the form on(b,l,t) stating that block b is
at location l at time t. Actions are modeled by ground atoms move(b,l,t) stating that block b is moved to
location l at time t.

The GENERATE section of a program consists of a single rule

{move(B, L, T )} ← block(B), location(L), time(T ), T < maxsteps.

that defines a potential solution to be an arbitrary set of move actions executed before maxsteps.
The fact that moving a block to a position at time T forces a block to be at this position at time T+1 is

encoded in DEFINE part of the program by the rule

on(B, L, T+1)←move(B, L, T ), block(B), location(L), time(T ), T<maxsteps.

The rule below specifies the commonsense law of inertia for a predicate on stating that unless we know that
the block is no longer at the same position it remains where it was:

on(B, L, T+1)← on(B, L, T ), not ¬on(B, L, T+1), block(B), location(L),
time(T ), T < maxsteps.

5 http://potassco.sourceforge.net/.
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The following constraint in TEST encodes the restriction that a block cannot be moved unless it is clear

← move(B, L, T ), on(B1 , B, T ), block(B), block(B1 ),
location(L), time(T ), T < maxsteps.

Given the rest of the encoding and the description of an initial state and of the goal state, answer sets of
the resulting program represent plans. The ground atoms of the form move(b,l,t) present in an answer set
form the list of actions of a corresponding plan.

2.3 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) [22] is a linguistic grammar formalism. Compared to other gram-
mar formalisms, CCG uses a comparatively small set of combinatory rules – combinators – to combine
comparatively rich lexical categories of words.

Categories in CCG are either atomic or complex. For instance, noun N , noun phrase NP , propositional
phrase PP , and sentence S are atomic categories. Complex categories are functors that specify the type
and direction of the arguments and the type of the result. A complex category

S\NP

is a category for English intransitive verbs (such as walk, hug), which states that a noun phrase is required
to the left, resulting in a sentence. A category

(S\NP)/NP

for English transitive verbs (such as like and bite) specifies that a noun phrase is required to the right and
yields the category of an English intransitive verb, which (as before) requires a noun phrase to the left to
form a sentence.

Given a sentence and a lexicon containing a set of word-category pairs, we can replace words in the
sentence by appropriate categories. For example, for a sentence

The dog bit John (1)

and a lexicon containing pairs

The - NP/N ; dog - N ; bit - (S\NP)/NP ; John - NP (2)

we obtain
The

NP/N

dog

N
bit

(S\NP)/NP
John
NP .

Words may have multiple categories, e.g., “bit” is also an intransitive verb and a noun. For presentation
of parsing we limit each word to one category. Our framework is able to handle multiple categories by
considering all combinations of word categories.

To parse English sentences a number of combinators are required [22]: forward and backward appli-
cation (> and <, respectively), forward and backward composition (>B and <B), forward and backward
type raising (>T and <T), backward cross composition, backward cross substitution, and coordination.
Specifications of some of these combinators follow:

A/B B

A
>

A/B B/C

A/C
>B

A
B/(B\A)

>T

B A\B
A

<
B\C A\B

A\C <B
A

B\(B/A)
<T

where A, B, C are variables that can be substituted by CCG categories such as N or S\NP . An instance
of a CCG combinator is obtained by substituting CCG categories for variables. For example,

NP/N N

NP
>

(3)
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is an instance of the forward application combinator (>).
A CCG combinatory rule combines one or more adjacent categories and yields exactly one output

category. To parse a sentence is to apply instances of CCG combinators so that the final category S is
derived at the end. A sample CCG derivation for sentence (1) follows

The
NP/N

dog

N

NP
>

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

. (4)

Section 3.1 gives a formal definition of the CCG parsing task.

Type Raising and Spurious Parses: CCG restricted to application combinators generates the same lan-
guage as CCG restricted to application, composition, and type raising rules [8, 21]. One of the motivations
for type raising are non-constituent coordination constructions6 that can only be parsed with the use of
raising [2, Example (2)].

Unrestricted applications of composition and type raising combinators often create spurious parse trees
which are semantically equivalent to parse trees derived using application rules only. Eisner [9, Exam-
ple (3)] presents a sample sentence with 12 words and 252 parses but only 2 distinct meanings. An example
of a spurious parse for sentence (1) is the following derivation

The
NP/N

dog
N

NP
>

S/(S\NP)
>T

bit
(S\NP)/NP

S/NP
>B John

NP
S

>
(5)

which utilizes application, type raising, and composition combinators. Both derivations (4) and (5) have the
same semantic value (in a sense, the difference between (4) and (5) is not essential for subsequent semantic
analysis).

In this work we aim at the generation of parse trees that have different semantic values so that they
reflect a real ambiguity of natural language, and not a spurious ambiguity that arises from the underlying
CCG formalism. Various methods for dealing with spurious parses have been proposed such as limiting type
raising only to certain categories [6], normalizing branching direction of consecutive composition rules by
means of predictive combinators [24] or restrictions on parse tree shape [9]. We combine and extend these
ideas to pose restrictions on generated parse trees within our framework. Details about normalizations and
type raising limits that we implement are discussed in Section 3.3.

3 CCG Parsing via Planning

3.1 Problem Statement

We start by defining precisely the task of CCG parsing. We then state how this task can be seen as a
planning problem.

A sentence is a sequence of words. An abstract sentence representation (ASR) is a sequence of cat-
egories annotated by a unique id . Recall that given a lexicon, we can replace words in the sentence by
appropriate categories. As a result we can turn any sentence into ASR using a lexicon. For instance, for
sentence (1) and lexicon (2) a sequence

[NP/N1, N2, (S\NP)/NP3, NP4]. (6)
6 E.g, in the sentence “We gave Jan a record and Jo a book”, neither “Jan a record” nor “Jo a book” is a linguistic

constituent of the sentence. With raising we can produce meaningful categories for these non-constituents and
subsequently coordinate them using “and”.
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is an ASR of (1). We refer to categories annotated by id ’s as annotated categories. Members of (6) are
annotated categories.

Recall that an instance of a CCG combinator C has a general form

X1, . . . , Xn

Y
C.

We say that the sequence [X1, . . . , Xn] is a precondition sequence of C, whereas Y is an effect of applying
C. The precondition sequence and the effect of instance (3) of the combinator > are [NP/N, N ] and NP ,
respectively. Given an instance C of a CCG combinator we may annotate it by (i) assigning a distinct id to
each member of its precondition sequence, and (ii) assigning the id of the left most annotated category in
the precondition sequence to its effect. We say that such an instance is an annotated (combinator) instance.
For example,

NP/N1 N2

NP1
>

(7)

is an annotated instance w.r.t. (3).
We say that an annotated instance C of a CCG combinator is relevant to an ASR sequence A if the

precondition sequence of C is a substring of A. An annotated instance C is applied to an ASR sequence A
by replacing the substring of A corresponding to the precondition sequence of C by its effect. For example,
annotated instance (7) is relevant to ASR (6). Applying (7) to (6) yields ASR [NP1, (S\NP)/NP3, NP4].
In the following we will often say annotated combinator in place of annotated instance.

To view CCG parsing as a planning problem we need to specify states and actions of this domain. In
CCG planning, states are ASRs and actions are annotated combinators. So the task is given the initial ASR,
e.g., [X1

1 , . . . , Xn
n ], to find a sequence of annotated combinators that leads to the goal ASR — [S1].

Let C1 denote annotated combinator (7), C2 denote

(S\NP)/NP 3 NP4

S\NP3
>

,

and C3 denote
NP1 S\NP3

S1
>

.

Given ASR (6) a sequence of actions C1, C2, and C3 forms a plan:

Time 0: [NP/N1, N2, (S\NP)/NP3, NP4]
action: C1

Time 1: [NP1, (S\NP)/NP3, NP4],
action: C2

Time 2: [NP1, S\NP3],
action: C3

Time 3: [S1].

(8)

This plan corresponds to parse tree (4) for sentence (1). On the other hand, a plan formed by a sequence of
actions C2, C1, and C3 also corresponds to (4).

In planning the notion of serializability is important. Often given a plan, applying several consecutive
actions in the plan in any order or in parallel does not change the effect of their application. Such plans
are called serializable. Consequently, by allowing parallel execution of actions one may represent a class
of plans by a single one. This is a well-known optimization in planning. For example, plan

Time 0: [NP/N1, N2, (S\NP)/NP3, NP4]
actions: C1, C2

Time 1: [NP1, S\NP3],
action: C3

Time 2: [S1]
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may be seen as an abbreviation for a group of plans, i.e., itself, plan (8), and a plan formed by a sequence
C2, C1, and C3. In CCG parsing as a planning problem, we are interested in finding plans of this kind, i.e.,
plans with concurrent actions.

We note that the planning problem that we solve is somewhat different from the one we just described
as we would like to eliminate (“ban”) some of the plans corresponding to spurious parses by enforcing
normalizations.

3.2 ASP Encoding

In an ASP approach to CCG parsing, the goal is to encode the planning problem presented above as a logic
program so that its answer sets correspond to plans. As a result answer sets of this program will contain the
sequence of annotated combinators (actions, possibly concurrent) such that the application of this sequence
leads from a given ASR to the ASR composed of a single category S. We present a part of the encoding
ccg.asp7 in the GRINGO language that solves a CCG parsing problem by means of ideas presented in
Section 2.2.

First, we need to decide how we represent states — ASRs — by sets of ground atoms. To this end,
we introduce symbols called “positions” that encode annotations of ASR members. In ccg.asp, relation
posCat(p, c, t) states that a category c is annotated with (position) p at time t. Relation posAdjacent(pL,
pR, t) states that a position pL is adjacent to a position pR at time t. In other words, a category annotated
by pL immediately precedes a category annotated by pR in an ASR that corresponds to a state at time t
(intuitively, L and R denote left and right, respectively.) These relations allow us to encode states of a
CCG planning domain. For example, given an ASR (6) as the initial state, we can encode this state by the
following set of facts

posCat(1, rfunc(“NP”, “N”), 0). posCat(2, “N”, 0).
posCat(3, rfunc(lfunc(“S”, “NP”), “NP”), 0). posCat(4, “NP”, 0).
posAdjacent(1, 2, 0). posAdjacent(2, 3, 0). posAdjacent(3, 4, 0).

(9)

Next we need to choose how we encode actions by ground atoms. The combinators mentioned in
Section 2.3 are of two kinds: the ones whose precondition sequence consists of a single element (i.e., >T
and <T) and of two elements (e.g., > and <)8. We call these combinators unary and binary respectively.
Reification of actions is a technique used in planning that allows us to talk about common properties of
actions in a compact way. To utilize this idea, we first introduce relations unary(a) and binary(a) for
every unary and binary combinator a respectively. For a unary combinator a, a relation occurs(a, p, c, t)
states that a type raising action a occurring at time t raises a category identified with position p (at time t)
to category c. For a binary combinator a a relation occurs(a, pL, pR, t) states that an action a applied to
positions pL and pR occurs at time t. For instance, given the initial state (9)

– occurs(ruleFwdTypeR, 4, (S\NP)/NP , 0) represents an application of the annotated combinator

NP4

(S\NP)/NP4 >T

to (9) at time 0,
– occurs(ruleFwdAppl , 1, 2, 0) represents an application of (7) to (9) at time 0.

Given an atom occurs(A, P, X, T ) we sometimes say that an action A modifies a position P at time T .
The GENERATE section of ccg.asp contains the rules of the kind

{occurs(ruleFwdAppl , L,R, T )} ← posCat(L, rfunc(A, B), T ), posCat(R,B, T ),
posAdjacent(L, R, T ),
not ban(ruleFwdAppl , L, T ),
time(T ), T < maxsteps.

7 The complete listing of ccg.asp is available at
http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/ccg.asp

8 In fact, coordination combinator is of the third type, i.e., its precondition sequence contains three elements. Present-
ing the details of its encoding is out of the scope of this paper.



Parsing Combinatory Categorial Grammar with Answer Set Programming: Preliminary Report 215

for each combinator. Such choice rules describe a potential solution to the planning problem as an arbitrary
set of actions executed before maxsteps. These rules also captures some of the executability conditions
of the corresponding actions. For example, posCat(L, rfunc(A, B), T ) states that the left member of the
precondition sequence of the forward application combinator ruleFwdAppl is of the form A/B. At the
same time, posAdjacent(L, R, T ) states that ruleFwdAppl may be applied only to adjacent positions. A
relation ban(a, p, t) specifies when it is impossible for an action a to modify position p at time t. Often
there are several rules defining this relation for a combinator. These rules form the main mechanism by
which normalization techniques are encoded in ccg.asp. For instance, a rule defining ban relation

ban(ruleFwdAppl , L, T )← occurs(ruleBwdRaise, L,X, TLast−1),
posLastAffected(L, TLast , T ), time(TLast),
time(T ), T < maxsteps.

states that a forward application modifying a position L may not occur at time T if the last action modifying
L was backward type raising (posLastAffected is an auxiliary predicate that helps to identify the last action
modifying an element of the ASR). This corresponds to one of the normalization rules discussed in [9].

There are a number of rules that specify effects of actions in the CCG parsing domain. One such rule

posCat(L, A, T+1)← occurs(ruleFwdAppl , L,R, T ),
posCat(L, rfunc(A, B), T ), time(T ), T < maxsteps.

states that an application of a forward application combinator at time T causes a category annotated by L
to be X at time T+1.

The following rule characterizes an effect of binary combinators and defines the posAffected concept
which is useful in stating several normalization conditions described in Section 3.3:

posAffected(L, T+1)← occurs(Act, L,R, T ), binary(Act),
time(T ), T < maxsteps.

Relation posAffected(L, T+1) holds if the element annotated by L in the ASR was modified by a combi-
nator at time T . Note that this rule takes advantage of reification and provides means for compact encoding
of common effects of all binary actions. Furthermore, posAffected is used to state the law of inertia for the
predicate posCat

posCat(P,C, T+1)← posCat(P,C, T ), not posAffected(P, T+1),
time(T ), T < maxsteps.

In the TEST section of the program we encode such restrictions as no two combinators may modify the
same position simultaneously and the fact that the goal has to be reached. We allow two possibilities for
specifying a goal. In one case, the goal is to reach an ASR composed of a single category S by maxsteps .
In another case, the goal is to reach the shortest possible ASR sequence by maxsteps .

Finally we pose additional restrictions, which ensure that only a single plan is produced when multiple
serializable plans correspond to the same parse tree. Note that applying a CCG rule r at a time t creates
a new category required for subsequent application of another rule r′ at a time t′>t. We request that r′ is
applied at t′=t+1. Furthermore, in ccg.asp we enforce the condition that combinators are applied as
early as possible: by requesting that a rule applied at time t uses at least one position that was modified at
time t−1.

Given ccg.asp and the set of facts describing the initial state (ASR representation of a sentence) and
the goal state (ASR containing a single category S), answer sets of the resulting program encode plans
corresponding to parse trees. The ground atoms of the form occurs(a, p, c, t) present in an answer set form
the list of actions of a matching plan.

3.3 Normalizations

Currently, ccg.asp implements a number of normalization techniques and strategies for improving effi-
ciency and eliminating spurious parses:
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• One of the techniques used in C&C to improve its efficiency is to limit type raising to certain categories
based on the most commonly used type raising rule instantiations in sections 2-21 of CCGbank [6]. We
adopt this idea by limiting type raising to be applicable only to noun phrases, NP , so that NP can be raised
using categories S, S\NP , or (S\NP)/NP . This technique reduces the size of the propositional (ground)
program for ccg.asp and subsequently the performance of ccg.asp considerably. We plan to extend
limiting type raising to the full set of categories used in C&C that proved to be suitable for wide-coverage
parsing.
• We normalize branching direction of subsequent functional composition operations [9]. This is realized
by disallowing functional forward composition to apply to a category on the left side, which has been
created by functional forward composition. (And similar for backward composition.)
• We disallow certain combinations of rule applications if the same result can be achieved by other rule
applications as shown in the following

X/Y Y/Z Z
>B

X/Z
>

X

no
rm

al
iz

e

⇒

X/Y Y/Z Z
>

Y
>

X

X Y \X
>T

Y/(Y \X)
>

Y

no
rm

al
iz

e

⇒

X Y \X
<

Y

where the left-hand side is the spurious parse and the right-hand side the normalized parse. These two nor-
malizations (plus analogous normalizations for backward composition and backward type raising) elimi-
nate spurious parses like (5) and have been discussed in similar form in [3, 9].

4 ASPCCG Toolkit

We have implemented ASPCCGTK— a python9 framework for using ccg.asp. The framework is avail-
able online10, including documentation and examples.

Figure 1 shows a block diagram of ASPCCGTK. We use GRINGO and CLASP for ASP solving and
control these solvers from python using a modified version of the BioASP library [11]. BioASP is used for
calling ASP solvers as subtasks, parsing answer sets, and writing these answer sets to temporary files as
facts.

Input for parsing can be (a) a natural language sentence given as a string, or (b) a sequence of words
and a dictionary providing possible categories for each word, both given as ASP facts. In the first case, the
framework uses C&C supertagger11 [7] to tokenize and tag this sentence. The result of supertagging is a
sequence of words of the sentence, where each word is assigned a set of likely CCG categories. From the
C&C supertagger output, ASPCCGTK creates a set of ASP facts representing the sequence of words and a
corresponding set of likely CCG categories. This set of facts is passed to ccg.asp as the initial state. In
the second case (b) the input can be processed directly by ccg.asp. The maximum parse tree depth (i.e.,
the maximum plan length – maxsteps) currently has to be specified by the user. Auto detection of useful
depth values is subject of future work.

ASPCCGTK first attempts to find a “strict” parse which requires that the resulting parse tree yields a
category S (by maxsteps). If this is not possible, we do “best-effort” parsing using CLASP optimization
features to minimize the number of categories left at the end. For instance, consider a lexicon that provides
a single category for “bit”, namely (S\NP)/NP , then the following derivation

The dog bit

NP/N N (S\NP)/NP
>

NP
>T

S/(S\NP)
>B

S/NP

(10)

corresponds to a best-effort parse.

9 http://www.python.org/
10 http://www.kr.tuwien.ac.at/staff/ps/aspccgtk/
11 http://svn.ask.it.usyd.edu.au/trac/candc
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Answer sets resulting from ccg.asp represent parse trees. ASPCCGTK passes them to a visualiza-
tion component, which invokes GRINGO+CLASP on another ASP encoding ccg2idpdraw.asp.12 The
resulting answer sets of ccg2idpdraw.asp contain drawing instructions for the IDPDraw tool [25],
which is used to produce a two-dimensional image for each parse tree. Figure 2 demonstrates an image
generated by IDPDraw for parse tree (4) of sentence (1). If multiple parse trees exist, IDPDraw allows to
switch between them.

C&C supertagger

GRINGO + CLASP

GRINGO + CLASP

+ IDPDraw

Sequence of words + category tags for each word

Parser answer sets

Sentence (string)

OR

Sequence of words
+

Dictionary

Visualisation

ccg.asp

ccg2idpdraw.asp

ASPCCGTK

Fig. 1. Block diagram of the ASPCCG framework. (Arrows indicate data flow.)

Fig. 2. Visualization of parse tree (4) for sentence (1) using IDPDraw.

5 Discussion and Future Work

Preliminary experiments on using the C&C supertagger as a front-end of ASPCCGTK yielded promising
results for achieving wide-coverage parsing. The supertagger of C&C not only provides a set of likely
category assignments for the words in a given sentence but also includes probability values for assigned
categories. C&C uses a dynamic tagging strategy for parsing. First only very likely categories from the
tagger are used for parsing. If this yields no result then less likely categories are also taken into account. In
the future, we will implement a similar approach in ASPCCGTK.

We have evaluated the efficiency of ASPCCGTK on a small selection of examples from CCGbank [17].
In the future we will evaluate our parser against a larger corpus of CCGbank, considering both parsing
efficiency and quality of results as evaluation criteria. Experiments done so far are encouraging and we are
convinced that wide-coverage CCG parsing using ASP technology is feasible.

12 This visualization component could be put directly into ccg.asp. However, for performance reasons it has proved
crucial to separate the parsing calculation from the drawing calculations.
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To increase parsing efficiency we consider to reformulate the CCG parsing problem as a “configuration”
problem. This might improve performance. At the same time the framework would keep its beneficial
declarative nature. Investigating applicability of incremental ASP [12] to enhance system’s performance is
another direction of future research.

Creating semantic representations for sentences is an important task in natural language processing.
Boxer [4] is a tool which accomplishes this task, given a CCG parse tree from C&C. To take advantage of
this advanced computational semantics tool, we aim at creating an output format for ASPCCGTK that is
compatible with Boxer.

As our framework is a generic parsing framework, we can easily compare different CCG rule sets with
respect to their efficiency and normalization behavior. We next discuss an idea for improving scalability
of ccg.asp that is based on an alternative combinatory rule set to the one currently implemented in
ccg.asp. Type raising is a core source of nondeterminism in CCG parsing and is one of the main reasons
for spurious parse trees and long parsing times. In the future we would like to evaluate an approach that
partially eliminates type raising by pushing it into all non-type-raising combinators. A similar strategy has
been proposed for composition combinators by Wittenburg [24].13 Combining CCG rules this way creates
more combinators, however these rules contain fewer nondeterministic guesses about raising categories.
The reduced nondeterminism should improve solving efficiency without losing any CCG derivations.
Acknowledgments. We would like to thank John Beavers and Vladimir Lifschitz for valuable detailed
comments on the first draft of this paper. We are grateful to Jason Baldridge, Johan Bos, Esra Erdem,
Michael Fink, Michael Gelfond, Joohyung Lee, and Miroslaw Truszczynski for useful discussions related
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Abstract. The work we describe here is a part of a research program of developing foundations of
declarative solving of search problems. We consider the model expansion task as the task representing
the essence of search problems where we are given an instance of a problem and are searching for a so-
lution satisfying certain properties. Such tasks are common in artificial intelligence, formal verification,
computational biology. Recently, the model expansion framework was extended to deal with multiple
modules. In the current paper, inspired by practical combined solvers, we introduce an algorithm to
solve model expansion tasks for modular systems. We show that our algorithm closely corresponds to
what is done in practice in different areas such as Satisfiability Modulo Theories (SMT), Integer Linear
Programming (ILP), Answer Set Programming (ASP).

1 Introduction

The research described in this paper is a part of a research program of developing formal foundations for
specification/modelling languages (declarative programming) for solving computationally hard problems.
In [1], the authors formalize search problems as the logical task of model expansion (MX), the task of ex-
panding a given (mathematical) structure with new relations. They started a research program of finding
common underlying principles of various approaches to specifying and solving search problems, finding
appropriate mathematical abstractions, and investigating complexity-theoretic and expressiveness issues. It
was emphasized that it is important to understand the expressiveness of a specification language in terms of
the computational complexity of the problems it can represent. Complexity-theoretic aspects of model ex-
pansion for several logics in the context of related computational tasks of satisfiability and model checking
were studied in [2]. Since built-in arithmetic is present in all realistic modelling languages, it was important
to formalize built-in arithmetic in such languages. In [3], model expansion ideas were extended to provide
mathematical foundation for dealing with arithmetic and aggregate functions (min, sum etc.). There, the
instance and expansion structures are embedded into an infinite structure of arithmetic, and the property of
capturing NP was proven for a logic which corresponds to practical languages. The proposed formalism
applies to other infinite background structures besides arithmetic. The analysis of practical languages was
given in [4]. It was proved that certain common problems involving numbers (e.g. integer factorization) are
not expressible in the ASP and IDP system languages naturally, and in [5], the authors improved the result
of [3] by defining a new logic which unconditionally captures NP over arithmetical structures.

The next step in the development of the MX-based framework is adding modularity concepts. It is
convenient from the point of view of a user to be able to split a large problem into subproblems, and to
use the most suitable formalism for each part, and thus a unifying semantics is needed. In a recent work
[6], a subset of the authors extended the MX framework to be able to represent a modular system. The
most interesting aspect of that proposal is that modules can be considered from both model-theoretic and
operational view. Under the model-theoretic view, an MX module is a set (or class) of structures, and under
the operational view it is an operator, mapping a subset of the vocabulary to another subset. An abstract
algebra on MX modules is given, and it allows one to combine modules on abstract model-theoretic level,
independently from what languages are used for describing them. Perhaps the most important operation
in the algebra is the loop (or feedback) operation, since iteration underlies many solving methods. The
authors show that the power of the loop operator is such that the combined modular system can capture all
of the complexity class NP even when each module is deterministic and polytime. Moreover, in general,
adding loops gives a jump in the polynomial time hierarchy, one step from the highest complexity of the
components. It is also shown that each module can be viewed as an operator, and when each module is
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(anti-) monotone, the number of the potential solutions can be significantly reduced by using ideas from
the logic programming community.

To develop the framework further, we need a method for “solving” modular MX systems. By solving
we mean finding structures which are in the modular system, where the system is viewed as a function
of individual modules. Our goal is to come up with a general algorithm which takes a modular system in
input and generates its solutions.

We take our inspiration in how “combined” solvers are constructed in the general field of declarative
problem solving. The field consists of many areas such as Integer Linear Programming (ILP), Answer Set
Programming (ASP), Satisfiability Modulo Theories (SMT), Satisfiability (SAT), and Constraint Program-
ming (CP), and each of these areas has developed multitudes of solvers, including powerful “combined”
solvers such as SMT solvers. Moreover, SMT-like techniques are needed in the ASP community [7]. Our
main challenge is to come up with an appropriate mathematical abstraction of “combined” solving. Our
contributions are as follows.
1. We formalize common principles of “combined” solving in different communities in the context of

modular model expansion. Just as in [6], we use a combination of a model-theoretic, algebraic and
operational view of modular systems.

2. We design an abstract algorithm that given a modular system, computes the models of that modular
system iteratively, and we formulate conditions on languages of individual modules to participate in the
iterative solving. We use the formalization above of these common principles to show the effectiveness
of our algorithm.

3. We introduce abstractions for many ideas in practical systems such as the concept of a valid acceptance
procedure that abstractly represents unit propagation in SAT, well-founded model computation in ASP,
arc-consistency checkers in CP, etc.

4. As a proof of concept, we show that, in the context of the model expansion task, our algorithm gen-
eralizes the work of different solvers from different communities in a unifying and abstract way. In
particular, we investigate the branch-and-cut technique in ILP and methods used in SMT, DPLL(Agg)
and combinations of ASP and CP [8–11]. We aim to show that, although no implementation is pre-
sented, the algorithm should work fine as it mimics the current technology.

5. We develop an improvement of our algorithm by using approximation methods proposed in [6].

2 Background

2.1 Model Expansion

In [1], the authors formalize combinatorial search problems as the task of model expansion (MX), the logical
task of expanding a given (mathematical) structure with new relations. Formally, the user axiomatizes the
problem in some logic L. This axiomatization relates an instance of the problem (a finite structure, i.e., a
universe together with some relations and functions), and its solutions (certain expansions of that structure
with new relations or functions). Logic L corresponds to a specification/modelling language. It could be an
extension of first-order logic such as FO(ID), or an ASP language, or a modelling language from the CP
community such as ESSENCE [12].

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An interpretation for
a vocabulary is provided by a structure, which consists of a set, called the domain or universe and denoted
by dom(.), together with a collection of relations and (total) functions over the universe. A structure can be
viewed as an assignment to the elements of the vocabulary. An expansion of a structure A is a structure B
with the same universe, and which has all the relations and functions of A, plus some additional relations
or functions. The task of model expansion for an arbitrary logic L (abbreviated L-MX), is:

Model Expansion for logic L
Given: 1. An L-formula φ with vocabulary σ ∪ ε

2. A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.
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Thus, we expand the structure A with relations and functions to interpret ε, obtaining a model B of φ.
We call σ, the vocabulary ofA, the instance vocabulary, and ε := vocab(φ)\σ the expansion vocabulary1.

Example 1. The following formula φ of first order logic constitutes an MX specification for Graph 3-
colouring:

∀x [(R(x) ∨B(x) ∨G(x))
∧¬((R(x) ∧B(x)) ∨ (R(x) ∧G(x)) ∨ (B(x) ∧G(x)))]

∧ ∀x∀y [E(x, y) ⊃ (¬(R(x) ∧R(y))
∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))].

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E). The task is to find
an interpretation for the symbols of the expansion vocabulary ε = {R,B,G} such that the expansion of A
with these is a model of φ:

Az }| {
(V ;EA, RB, BB, GB)| {z }

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-colourings of G.

Given a specification, we can talk about a set of σ ∪ ε-structures which satisfy the specification. Alter-
natively, we can simply talk about a set of σ ∪ ε-structures as an MX-task, without mentioning a particular
specification the structures satisfy. This abstract view makes our study of modularity language-independent.

2.2 Modular Systems

This section reviews the concept of a modular system defined in [6] based on the initial development in
[13]. As in [6], each modular system abstractly represents an MX task, i.e., a set (or class) of structures
over some instance and expansion vocabulary. A modular system is formally described as a set of primitive
modules (individual MX tasks) combined using the operations of:
1. Projection(πτ (M)) which restricts the vocabulary of a module,
2. Composition(M1 BM2) which connects outputs of M1 to inputs of M2,
3. Union(M1 ∪M2),
4. Feedback(M [R = S]) which connects output S of M to its inputs R and,
5. Intersection(M1 ∩M2).

Formal definitions of these operations are not essential for understanding this paper, thus, we refer the
reader to [6] for details. The algebraic operations are illustrated in Examples 2 and 3. In this paper, we only
consider modular systems which do not use the union operator.

Our goal in this paper is to solve the MX task for a given modular system, i.e., given a modular system
M (described in algebraic terms using the operations above) and structure A, find a structure B in M
expanding A. We find our inspiration in existing solver architectures by viewing them at a high level of
abstraction.

Example 2 (Timetabling [13]). Here, we use the example of timetabling from [13] and modify its repre-
sentation using our additional feedback operator. Figure 1 shows the new modular representation of the
timetabling problem where the event data and the resource data are the inputs and a list of events with their
associated sessions and resources (locations) is the output. This timetabling is done so that the allocations
of resource and sessions to the events do not conflict. Unlike [13] where the “allDifferent” module is com-
pletely independent of the “testAllocation” module, here, through our feedback operator, these modules are
inter-dependent. This inter-dependency provides a better model of the whole system by making the model
closer to the reality. Also, here, unlike [13] module “allDifferent” can be a deterministic module. In fact,
as proved in [6], the non-determinacy of all NP problems can be modeled through the feedback operator.
As will be shown later in this paper, the existence of such loops can also help us to speed up the solving
process of some problems.

1 By “:=” we mean “is by definition” or “denotes”.
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In this paper, we propose an algorithm such that: given a modular system as in Figure 1 and given the
inputs to this modular system, the algorithm finds a solution to (or a model of) the given modular system,
i.e., an interpretation to the symbol “occurs” on this example that is not in conflict with the constraints on
the timetable.

Fig. 1. Modular System Representing a Timetabling Problem

Fig. 2. Modular
System Rep-
resenting an
SMT Solver for
the Theory of
Integer Linear
Arithmetic

Example 3 (SMT Solvers). Consider Figure 2: The inner boxes (with solid borders) show simpler MX
modules and the outer box shows our module of interest. The vocabulary consists of all symbols A, R, L,
L′, M and F where A, R and L′ are internal to the module, and others form its interface. Also, there is a
feedback from L to L′.
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Overall, this modular system describes a simple SMT solver for the theory of Integer Linear Arithmetic
(TILA). Our two MX modules are SAT and ILP. They work on different parts of a specification. The ILP
module takes a set L′ of literals and a mapping M from atoms to linear arithmetic formulas. It returns
two sets R and A. Semantically, R represents a set of subsets of L′ so that TILA ∪M |r2 is unsatisfiable
for all subsets r ∈ R. Set A represents a set of propagated literals together with their justifications, i.e.,
a set of pairs (l, Q) where l is an unassigned literal (i.e., neither l ∈ L′ nor ¬l ∈ L′) and Q is a set of
assigned literals asserting l ∈ L′, i.e., Q ⊆ L′ and TILA ∪M |Q |= M |l (the ILA formula M |l is a logical
consequence of ILA formulas M |Q). The SAT module takes R and A and a propositional formula F and
returns set L of literals such that: (1) L makes F true, (2) L is not a superset of any r ∈ R and, (3) L
respects all propagations (l, Q) in A, i.e., if Q ⊆ L then l ∈ L. Using these modules and our operators,
module SMT is defined as below to represent our simple SMT solver:

SMT := π{F,M,L}((ILP B SAT )[L = L′]). (1)

The combined module SMT is correct because, semantically, L satisfies F and all models in it should
have R = ∅, i.e., TILA ∪M |L is satisfiable. This is because ILP contains structures for which if r ∈ R,
then r ⊆ L′ = L. Also, for structures in SAT, if r ∈ R then r 6⊆ L. Thus, to satisfy both these conditions,
R has to be empty. Also, one can easily see that all sets Lwhich satisfy F and make TILA∪M |L satisfiable
are solutions to this modular system (set A = R = ∅ and L′ = L).

So, there is a one-to-one correspondence between models of the modular system above and SMT’s
solutions to the propositional part. To find a solution, one can compute a model of this modular system.
Note that, looking at modules as operators, all models of module SMT are its fixpoints.

A description of a modular system (1) looks like a formula in some logic. One can define a satisfaction
relation for that logic, however it is not needed here. Still, since each modular system is a set of structures,
we call the structures in a modular system models of that system. We are looking for models of a modular
system M which expand a given instance structure A. We call them solutions of M for A.

3 Computing Models of Modular Systems

In this section, we introduce an algorithm which takes a modular system M and a structure A and finds
an expansion B of A in M . Our algorithm uses a tool external to the modular system (a solver). It uses
modules of a modular system to “assist” the solver in finding a model (if one exists). Starting from an empty
expansion of A (i.e., a partial structure which contains no information about the expansion predicates), the
solver gradually extends the current structure (through an interaction with the modules of the given modular
system) until it either finds a model that satisfies the modular system or concludes that none exists. To model
this procedure, a definition of a partial structure is needed.

3.1 Partial Structures

Recall that a structure is a domain together with an interpretation of a vocabulary. A partial structure,
however, may contain unknown values. For example, for a structure B and a unary relation R, we may
know that 〈0〉 ∈ RB and 〈1〉 6∈ RB, but we may not know whether 〈2〉 ∈ RB or 〈2〉 6∈ RB. Partial
structures deal with gradual accumulation of knowledge.

Definition 1 (Partial Structure). We say B is a τp-partial structure over vocabulary τ if:
1. τp ⊆ τ ,
2. B gives a total interpretation to symbols in τ\τp and,
3. for each n-ary symbol R in τp, B interprets R using two sets R+ and R− such that R+∩R− = ∅, and
R+ ∪R− ( (dom(B))n.

2 For a set τ of literals,M |τ denotes a set of linear arithmetical formulas containing: (1)M ’s image of positive atoms
in τ , and (2) the negation of M ’s image of negative atoms in τ .
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We say that τp is the partial vocabulary of B. If τp = ∅, then we say B is total. For two partial structures
B and B′ over the same vocabulary and domain, we say that B′ extends B if all unknowns in B′ are also
unknowns in B, i.e., B′ has at least as much information as B.

If a partial structure B has enough information to satisfy or falsify a formula φ, then we say B |= φ,
or B |= ¬φ, respectively. Note that for partial structures, B |= ¬φ and B 6|= φ may be different. We call
a ε-partial structure B over σ ∪ ε the empty expansion of σ-structure A, if B agrees with A over σ but
R+ = R− = ∅ for all R ∈ ε.

In the following, by structure we always mean a total structure, unless otherwise specified. We may talk
about “bad” partial structures which, informally, are the ones that cannot be extended to a structure in M .
Also, when we talk about a τp-partial structure, in the MX context, τp is always a subset of ε.

Total structures are partial structures with no unknown values. Thus, in the algorithmic sense, total
structures need no further guessing and should only be checked against the modular system. A good algo-
rithm rejects “bad” partial structures sooner, i.e., the sooner a “bad” partial structure is detected, the faster
the algorithm is.

Up to now, we defined partial and total structures and talked about modules rejecting “bad” partial
structures. However, modules are sets of structures (in contrast with sets of partial structures). Thus, ac-
ceptance of a partial structure has to be defined properly. Towards this goal, we first formalize the informal
concept of “good” partial structures. The actual acceptance procedure for partial structures is defined later
in the section.

Definition 2 (Good Partial Structures). For a set of structures S and partial structure B, we say B is a
good partial structure wrt S if there is B′ ∈ S which extends B.

3.2 Requirements on the Modules

Untill now, we have the concept of partial structures that the solver can work on, but, clearly, as the solver
does not have any information about the internals of the modules, it needs to be assisted by the modules.
Therefore, the next question could be: “what assistance does the solver need from modules so that its
correctness is always guaranteed?” Intuitively, modules should be able to tell whether the solver is on the
“right” direction or not, i.e., whether the current partial structure is bad, and if so, tell the solver to stop
developing this direction further. We accomplish this goal by letting a module accept or reject a partial
structure produced by the solver and, in the case of rejection, provide a “reason” to prevent the solver from
producing the same model later on. Furthermore, a module may “know” some extra information that solver
does not. Due to this fact, modules may give the solver some hints to accelerate the computation in the
current direction. Our algorithm models such hints using “advices” to the solver.

Note that reasons and advices we are now talking about are different from predicate symbols R and
A in Example 3. While, conceptually, R and A also represent reasons and advices there, to our algorithm,
they are just predicate symbols for which an interpretation has to be found. On the other hand, reasons
and advices used by our algorithm are not specific to a modular system. They are entities known to our
algorithm which contain information to guide the solver in its search for a model.

Also note that in order to pass a reason or an advice to a solver, there should be a common language
that the solver and the modules understand (although it may be different from all internal languages of
the modules). We expect this language to have its own model theory and to support basic syntax such
as conditionals or negations. We expect the model theory of this language to 1) be monotone: adding a
sentence can not decrease the set of consequences and 2) have resolution theorem which is the converse of
the deduction theorem, i.e., if Γ |= A ⊃ B then Γ ∪ {A} |= B. The presence of the resolution theorem
guarantees that, once an advice of form Pre ⊃ Post is added to the solver, and when the solver has
deduced Pre under some assumptions, it can also deduce Post under the same assumptions. From now
on, we assume that our advices and reasons are expressed in such a language.

We talked about modules assisting the solver, but a module is a set of structures and has no compu-
tational power. Instead, we associate each module with an “oracle” to accept/reject a partial structure and
give “reasons” and “advices” accordingly. Note that it is unreasonable to require a strong acceptance con-
dition from oracles because, for example, assuming access to oracles which accept a partial structure iff it
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is a good partial structure, one can always find a total model by polynomially many queries to such oracles.
While theoretically possible, in practice, access to such oracles is usually not provided. Thus, we have to
(carefully) relax our assumptions for a weaker procedure (what we call a Valid Acceptance Procedure).

Definition 3 (Advice). Let Pre and Post be formulas in the common language of advices and reasons,
Formula φ := Pre ⊃ Post is an advice wrt a partial structure B and a set of structures M if:
1. B |= Pre,
2. B 6|= Post and,
3. for every total structure B′ in M , we have B′ |= φ.

The role of an advice is to prune the search and to accelerate extending a partial structure B by giving
a formula that is not yet satisfied by B, but is always satisfied by any total extensions of B in M . Pre
corresponds to the part that is satisfied by B and Post corresponds to the unknown part that is not yet
satisfied by B.

Definition 4 (Valid Acceptance Procedure). Let S be a set of τ -structures. We say that P is a valid
acceptance procedure for S if for all τp-partial structures B, we have:

– If B is total, then if B ∈ S, then P accepts B, and if B 6∈ S, then P rejects B.
– If B is not total but B is good wrt S, then P accepts B.
– If B is neither total nor good wrt B, then P is free to either accept or reject B.

The procedure above is called valid as it never rejects any good partial structures. However, it is a weak
acceptance procedure because it may accept some bad partial structures. This kind of weak acceptance
procedures are abundant in practice, e.g., Unit Propagation in SAT, Arc-Consistency Checks in CP, and
computation of Founded and Unfounded Sets in ASP. As these examples show, such weak notions of
acceptance can usually be implemented efficiently as they only look for local inconsistencies. Informally,
oracles accept/reject a partial structure through a valid acceptance procedure for a set containing all possible
instances of a problem and their solutions. We call this set a Certificate Set.

In theoretical computer science, a problem is a subset of {0, 1}∗. In logic, a problem corresponds to a
set of structures. Here, we use the logic notion.

Definition 5 (Certificate Set). Let σ and ε be instance and expansion vocabularies. Let P be a problem,
i.e., a set of σ-structures, and C be a set of (σ ∪ ε)-structures. Then, C is a (σ ∪ ε)-certificate set for P if
for all σ-structures A: A ∈ P iff there is a structure B ∈ C that expands A.

Oracles are the interfaces between our algorithm and our modules. Next we present conditions that
oracles should satisfy so that their corresponding modules can contribute to our algorithm.

Definition 6 (Oracle Properties). Let L be a formalism with our desired properties. Let P be a problem,
and let O be an oracle. We say that O is

– Complete and Constructive (CC) wrt L if O returns a reason ψB in L for each partial structure B that
it rejects such that: (1) B |= ¬ψB and, (2) all total structures accepted by O satisfy ψB.

– Advising (A) wrt L if O provides a set of advices in L wrt B for all partial structures B.
– Verifying (V) if O is a valid acceptance procedure for some certificate set C for P .

OracleO is complete wrtL because it ensures the existence of such a sentence and constructive because
it provides such a sentence. Oracle O differs from the usual oracles in the sense that it does not only give
yes/no answers, but also provides reasons for why the answer is correct. It is advising because it provides
some facts that were previously unknown to guide the search. Finally, it is verifying because it guides the
partial structure to a solution through a valid acceptance procedure. Although the procedure can be weak as
described above, good partial structures are never rejected and O always accepts or rejects total structures
correctly. This property guarantees the convergence to a total model. In the following sections, we use the
term CCAV oracle to denote an oracle which is complete, constructive, advising, and verifying.
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3.3 Requirements on the Solver

In this section, we discuss properties that a solver needs to satisfy. Although the solver can be realized
by many practical systems, for them to work in an orderly fashion and for algorithm to converge to a
solution fast, it has to satisfy certain properties. First, the solver has to be online since the oracles keep
adding reasons and advices to it. Furthermore, to guarantee the termination, the solver has to guarantee
progress, which means it either reports a proper extension of the previous partial structure or, if not, the
solver is guaranteed to never return any extension of that previous partial structure later on. Now, we give
the requirements on the solver formally.

Definition 7 (Complete Online Solver). A solver S is complete and online if the following conditions are
satisfied by S:

– S supports the actions of initialization, adding sentences, and reporting its state as either 〈UNSAT 〉
or 〈SAT,B〉.

– If S reports 〈UNSAT 〉 then the set of sentences added to S are unsatisfiable,
– If S reports 〈SAT,B〉 then B does not falsify any of the sentences added to S,
– If S has reported 〈SAT,B1〉, · · · , 〈SAT,Bn〉 and 1 ≤ i < j ≤ n, then either Bj is a proper extension

of Bi or, for all k ≥ j, Bk does not extend Bi.

A solver as above is guaranteed to be sound (it returns partial structures that at least do not falsify any
of the constraints) and complete (it reports unsatisfiability only when unsatisfiability is detected and not
when, for example, some heuristic has failed to find an answer or some time limit is reached). Also, for
finite structures, such a solver guarantees that our algorithm either reports unsatisfiability or finds a solution
to modular system M and instance structure A.

3.4 Lazy Model Expansion Algorithm

In this section, we present an iterative algorithm to solve model expansion tasks for modular systems. Algo-
rithm 1 takes an instance structure and a modular system (and its CCAV oracles) and integrates them with
a complete online solver to iteratively solve a model expansion task. The algorithm works by accumulating
reasons and advices from oracles and gradually converging to a solution to the problem.

The role of the reasons is to prevent some bad structures and their extensions from being proposed more
than once, i.e., when a model is deducted to be bad by an oracle, a new reason is provided by the oracle
and added to the solver such that all models of the system satisfy that reason but the “bad” structure does
not. The role of an advice is to provide useful information to the solver (satisfied by all models) but not yet
satisfied by partial structure B. Informally, an advice is in form “if Pre then Post”, where “Pre” corresponds
to something already satisfied by current partial structure B and “Post” is something that is always satisfied
by all models of the modular system satisfying the “Pre” part, but not yet satisfied by partial structure B.
It essentially tells the solver that “Post” part is satisfied by all intended structures (models of the system)
extending B, thus helping the solver to accelerate its computation in its current direction.

The role of the solver is to provide a possibly good partial structure to the oracles, and if none of the
oracles rejects the partial structure, keep extending it until we find a solution or conclude none exists. If
the partial structure is rejected by any one of the oracles, the solver gets a reason from the oracle for the
rejection and tries some other partial structures. The solver also gets advices from oracles to accelerate the
search.

4 Examples: Modelling Existing Frameworks

In this section, we describe algorithms from three different areas and show that they can be effectively
modelled by our proposed algorithm in the context of model expansion. Note that our purpose here is not
to analyze other systems but to show the effectiveness of our algorithm in the absence of an implementation.
We establish this claim by showing that our algorithm acts similar to the state-of-the-art algorithms when
the right components are provided.
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Data: Modular System M with each module Mi associated with a CCAV oracle Oi, input structure A and
complete online solver S

Result: Structure B that expands A and is in M
begin

Initialize the solver S using the empty expansion of A ;
while TRUE do

Let R be the state of S ;
if R = 〈UNSAT 〉 then return Unsatisfiable ;
else if R = 〈SAT,B〉 then

Add the set of advices from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept B|vocab(Mi) ;
Let ψ be the reason given by oracle Oi ;
Add ψ to S ;

else if B is total then return B ;

end
Algorithm 1: Lazy Model Expansion Algorithm

4.1 Modelling DPLL(T )

DPLL(T ) [14] system is an abstract framework to model the lazy SMT approach. It is based on a general
DPLL(X) engine, whereX can be instantiated with a theory T solver. DPLL(T ) engine extends the Decide,
UnitPropagate, Backjump, Fail and Restart actions of the classic DPLL framework with three new actions:
(1) TheoryPropagate gives literals that are T -consequences of current partial assignment, (2) T -Learn
learns T -consistent clauses, and (3) T -Forget forgets some previous lemmas of theory solver.

To participate in DPLL(T ) solving architecture, a theory solver provides three operations: (1) taking
literals that have been set true, (2) checking if setting these literals true is T -consistent and, if not, providing
a subset of them that causes inconsistency, (3) identifying some currently undefined literals that are T -
consequences of current partial assignment and providing a justification for each. More details can be
found in [14].

The modular system DPLL(T ) of the DPLL(T ) system is the same as the one in Example 3, except
that we have module MP instead of SAT and MT instead of ILP . In Figure 2, A corresponds to the
result of TheoryPropagate action that contains some information about currently undefined values in L′

together with their justifications; R is calculated from the T -Learn action and corresponds to reasons of
MT rejecting L′.

To model DPLL(T ), we introduce a solver S to be any DPLL-based online SAT solver, so that it per-
forms the basic actions of Decide, UnitPropagate, Fail, Restart, and also Backjump when the backjumping
clause is added the solver. The two modules MT and MP are attached with oracles OT and OP respec-
tively. They accept a partial structure B iff their respective module constraints is not falsified by B. When
rejecting B, a reason “Pin then Pout” (true about all models of the module) is returned where Pin (resp.
Pout) is a property about input (resp. output) vocabulary of the module satisfied (resp. falsified) by B. They
may also return advices of the same form but with Pout being neither satisfied nor falsified by B. The con-
structions of these two modules are similar; so, we only give a construction for the solver S and module
MT :

Solver S is a DPLL-based online SAT solver (clearly complete and online).
Module MT The associated oracle OT accepts a partial structure B if it does not falsify the constraints

described in Example 3 on L′, M , A, and R for module MT . If B is rejected, OT returns a reason ψ :=
ψin ⊃ ψout where B|{L′,M} |= ψin but B|{A,R} |= ¬ψout. Clearly, B |= ¬ψ and all models in MT satisfy
ψ. Thus,OT is complete and constructive.OT may also return some advices which are similar to the reason
above except that ψout is neither satisfied nor falsified by B. Hence, OT is an advising oracle. Also, OT

always makes the correct decision for a total structure and rejects a partial structure only when it falsifies
the constraints for MT . OT never rejects any good partial structure B (although it may accept some bad
non-total structures). Therefore, OT is a valid acceptance procedure for MT and, thus, a verifying oracle.
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Proposition 1. 1. Modular system DPLL(T ) models the DPLL(T ) system. 2. Solver S is complete and
online. 3. OP and OT are CCAV oracles.

DPLL(T) architecture is known to be very efficient and many solvers are designed to use it, includ-
ing most SMT solvers [9]. The DPLL(Agg) module [10] is suitable for all DPLL-based SAT, SMT and
ASP solvers to check satisfiability of aggregate expressions in DPLL(T ) context. All these systems are
representable in our modular framework.

4.2 Modelling ILP Solvers

Integer Linear Programming solvers solve optimization problems. In this paper, we model ILP solvers
which use general branch-and-cut method to solve search problems instead, i.e., when target function is
constant. We show that Algorithm 1 models such ILP solvers. ILP solvers with other methods and Mixed
Integer Linear Programming solvers use similar architectures and, thus, can be modelled similarly.

The search version of general branch-and-cut algorithm [8] is as follows:
1. Initialization: S = {ILP0} with ILP0 the initial problem.
2. Termination: If S = ∅, return UNSAT.
3. Problem Select: Select and remove problem ILPi from S.
4. Relaxation: Solve LP relaxation of ILPi (as a search problem). If infeasible, go to step 2. Otherwise, if

solution XiR of LP relaxation is integral, return solution XiR.
5. Add Cutting Planes: Add a cutting plane violating XiR to relaxation and go to 4.
6. Partitioning: Find partition {Cij}j=k

j=1 of constraint setCi of problem ILPi. Create k subproblems ILPij

for j = 1, · · · , k, by restricting the feasible region of subproblem ILP ij to Cij . Add those k problems
to S and go to step 2. Often, in practice, finding a partition is simplified by picking a variable xi with
non-integral value vi in XiR and returning partition {Ci ∪ {xi ≤ bvic}, Ci ∪ {xi ≥ dvie}}.

Fig. 3. Modular System Representing
an ILP Solver

We use the modular system shown in figure 3 to represent the ILP solver. The ILPc module takes
the problem specification F , a set of assignments L′ and a set of range information R′ (which, in theory,
describes assumptions about ranges of variables and, in practice, describes the branch information of an
LP+Branch solver) as inputs and returns a set C. When all the assignments in L′ are integral, C is empty,
and if not, C represents a set of cutting planes conditioned by a subset of range information R′, i.e., set of
linear constraints that are violated by L′ and all the set of assignments satisfy both F and R′ also satisfy
the set of cutting planes. The ILPp module only takes the set of assignments L′ as input and outputs a set
of partitioning clauses P , such that when all the assignments in L′ is integral, P is empty and when there
is a non-integral assignment to a variable x, P is a set of partitioning clauses indicating that assignment to
x should be either less than or equal to bL′(x)c or greater than or equal to dL′(x)e. The LPBranch module
takes F , C and P as inputs and outputs the set of assignment L and the set of range information R such
that L satisfies specification F , the range information R, the set of conditional cutting planes in C, and the
set of partitioning clauses in P . We define the compound module ILP to be:

ILP := π{F,L}(((ILPc ∩ ILPp) B LPBranch)[L = L′][R = R′]).
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The module ILP defined above is correct because all models satisfying it should have C = B = ∅
because, ILPc contains structures in which, for every (S, c) ∈ C, which denotes cutting plane c under
condition S, we have S ⊆ R′ = R and c is violated by L′ = L. Furthermore, LPBranch contains structures
in which L satisfies both R and C, which indicates that either S is not the subset of R or L satisfies c. Thus
C is empty. By a similar argument, one can prove that B also has to be empty.

We compute a model of this modular system by introducing a solver that interacts with all of the
three modules above. We introduce an extended LP solver S which allows us to deal with disjunctions.
S performs a depth-first-like search on disjunctive constraints, and runs its internal LP solver on non-
disjunctive constraints plus the range information the search branch corresponds to. So, Partitioning action
of ILP corresponds to adding a disjunctive constraint to the solver. All three modules above are associated
with oracles Oc, Op and Olp, respectively. Exact constructions are similar to the ones in section 4.1. Here
we only give a construction for the solver S:

Solver S is an extended LP solver, i.e., uses an internal LP solver. Let Br denote the set of branch
constraints in S (constraints involving disjunctions) and L denote the set of pure linear constraints. When
new constraint is added to S, S adds it to Br or L accordingly. S then performs a depth-first-like search
on branch clauses, and, at branch i, passes L ∪ Bri (a set of linear constraints specifying branch i) to
its internal LP solver. Then, S returns 〈SAT,B〉 if LP finds a model B in some branch, and 〈UNSAT 〉
otherwise. Note that, by construction, S is complete and online.

Proposition 2. 1. Modular system ILP models the branch-and-cut-based ILP solver. 2. S is complete and
online. 3. Oc, Op and Olp are CCAV oracles.

There are many other solvers in ILP community that use some ILP or MILP solver as their low-level
solver. It is not hard to observe that most of them also have similar architectures that can be closely mapped
to our algorithm.

4.3 Modelling Constraint Answer Set Solvers

The Answer Set Programming (ASP) community puts a lot of effort into optimizing their solvers. One
such effort addresses ASP programs with variables ranging over huge domains (for which, ASP solvers
alone perform poorly due to the huge memory the grounding uses). However, embedding Constraint Pro-
gramming (CP) techniques into ASP solving is proved useful because grounding such variables is partially
avoided.

In [15], the authors extend the language of ASP and its reasoning method to avoid grounding of vari-
ables with large domains by using constraint solving techniques. The algorithm uses ASP and CP solvers
as black boxes and non-deterministically extends a partial solution to the ASP part and checks it with the
CP solver. Paper [16] presents another integration of answer set generation and constraint solving in which
a traditional DPLL-like backtracking algorithm is used to embed the CP solver into the ASP solving.

Recently, the authors of [11] developed an improved hybrid solver which supports advanced backjump-
ing and conflict-driven no good learning (CDNL) techniques. They show that their solver’s performance
is comparable to state-of-the-art SMT solvers. Paper [11] applies a partial grounding before running its
algorithm, thus, it uses an algorithm on propositional level. A brief description of this algorithm follows:
Starting from an empty set of assignments and nogoods, the algorithm gradually extends the partial as-
signments by both unit propagation in ASP and constraint propagation in CP. If a conflict occurs (during
either unit propagation or constraint propagation), a nogood containing the corresponding unique impli-
cation point (UIP) is learnt and the algorithm backjumps to the decision level of the UIP. Otherwise, the
algorithm decides on the truth value of one of the currently unassigned atoms and continues to apply the
propagation. If the assignment becomes total, the CP oracle queries to check whether this is indeed a so-
lution for the corresponding constraint satisfaction problem (CSP). This step is necessary because simply
performing constraint propagation on the set of constraints, i.e., arc-consistency checking, is not sufficient
to decide the feasibility of constraints.

The modular model of this solver is very similar to the one in Figure 2, except that we have module
ASP instead of SAT and CP instead of ILP . The compound module CASP is defined as:

CASP := π{F,M,L}((CP BASP )[L = L′]).
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As a CDNL-like technique is also used in SMT solvers, the above algorithm is modelled similarly to
Section 4.1. We define a solver S to be a CDNL-based ASP solver. We also define modules ASP and CP
to deal with the ASP part and the CP part. They are both associated oracles similar to those described in
Section 4.1. We do not include the details here as they are similar to the ones in section 4.1.

Note that one can add reasons and advices to an ASP solver safely in the form of conflict rules because
stable model semantics is monotonic with respect to such rules. Also, practical CP solvers do not provide
reasons for rejecting partial structures. This issue is dealt with in [11] by wrapping CP solvers with a
conflict analysis mechanism to compute nogoods based on the first UIP scheme.

5 Extension: Approximations

Almost all practical solvers use some kind of propagation technique. However, in a modular system, prop-
agation is not possible in general because nothing is known in advance about a module. According to [6], it
turns out that knowing only some general information about modules such as their totality and monotonicity
or anti-monotonicity, one can hugely reduce the search space.

Moreover, paper [6] proposes two procedures to approximate models of what are informally called
positive and negative feedbacks. These procedures correspond to least fixpoint and well-founded model
computations (but in modular setting). Here, we extend Algorithm 1 using these procedures. The extended
algorithm prunes the search space of a model by propagating information obtained by these approximation
procedures to the solver. First, let us define some properties that a module may satisfy.

Definition 8 (Module Properties [6]). Let M be a module and τ , τ ′ and τ ′′ be some subsets of M ’s
vocabulary. M is said to be:
1. τ -total over a class C of structures if by restricting models of M to vocabulary τ we can obtain all

structures in C.
2. τ -τ ′-τ ′′-monotone (resp. τ -τ ′-τ ′′-anti-monotone) if for all structures B and B′ in M we have that if
B|τ v B′|τ and B|τ ′ = B′|τ ′ then B|τ ′′ v B′|τ ′′ (resp. B′|τ ′′ v B|τ ′′ ).

In [6], it is shown that these properties are fairly general and that, given such properties about basic
MX modules, one can derive similar properties about complex modules.

Now, we can restate the two approximation procedures from [6]. For B and B′ over the same domain,
but distinct vocabularies, let B||B′ denote the structure over that domain and voc(B) ∪ voc(B′) where
symbols in voc(B) [resp. voc(B′)] are interpreted as in B [resp. B′]. We first consider the case of a positive
feedback, i.e., when relation R which increases monotonically when S increases is fed back into S itself.
This procedure is defined for a module M ′ := M [S = R] and partial structure B where M is (τ ∪ {S})-
total and {S}-τ -{R}-monotone and B gives total interpretation to τ . It defines a chain Li of interpretations
for S as follows:

L0 := S+B ,
Li+1 := RM(B|τ || L) where dom(L) = dom(A) and SL = Li.

(2)

The procedure for a negative feedback is similar, but forM being {S}-τ -{R}-anti-monotone. It defines
an increasing sequence Li and a decreasing sequence Ui which say what should be in added to S+ and S−.
Here, n is the arity of relations R and S:

L0 := S+, U0 := [dom(A)]n\S−,
Li+1 := RM(B|τ || U) where dom(U) = dom(A) and SU = Ui,
Ui+1 := RM(B|τ || L) where dom(L) = dom(A) and SL = Li.

(3)

Now, Algorithm 1 can be extended to Algorithm 2 which uses the procedures above to find new propa-
gated information which has to be true under the current assumptions, i.e., the current partial structure. This
information is sent back to the solver to speed up the search process. Algorithm 2 needs a solver which can
get propagated literals.
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Data: Similar to Algorithm 1, but with modules’ totality, monotonicity and anti-monotonicity properties given
Result: Structure B expands A and is in M
begin

Initialize the solver S using the empty expansion of A ;
while true do

Let R be the state of S ;
if R = 〈UNSAT 〉 then return Unsatisfiable ;
else if R = 〈SAT,B〉 then

Add the set of advices from oracles wrt B to S ;
if M does not accept B then

Find a module Mi in M such that Mi does not accept B|vocab(Mi) ;
Let ψ be the reason given by oracle Oi ;
Add ψ to S ;

else if B is total then return B ;
else

foreach applicable positive feedback M1 := M2[T = T ′] do
Let L∗ be the limit of series Li in Equation 2 ;
Propagate L∗\T+B to S ;

foreach applicable negative feedback M1 := M2[T = T ′] do
Let 〈L∗, U∗〉 be the limit of series 〈Li, Ui〉 in Equation 3 ;
Propagate (L∗\T+B ) ∪ not([dom(A)]n\(U∗ ∪ T−

B
)) to S ;

end
Algorithm 2: Lazy Model Expansion with Approximation (Propagation)

6 Related Works

This paper is a continuation of [6] and proposes an algorithm for solving model expansion tasks in the
modular setting. The modular framework of [6] expands the idea of model theoretic (and thus language
independent) modelling of [13] and introduces the feedback operator and discusses some of the conse-
quences (such as complexity implications) of this new operator. There are many other works on modularity
in declarative programming that we only briefly review.

An early work on adding modularity to logic programs is [17]. The authors derive a semantics for mod-
ular logic programs by viewing a logic program as a generalized quantifier. This is further generalized in
[18] by considering the concept of modules in declarative programming and introducing modular equiva-
lence in normal logic programs under the stable model semantics. This line of work is continued in [19] to
define modularity for disjunctive logic programs. There are also other approaches to adding modularity to
ASP languages and ID-Logic as described in [20–22].

The works mentioned earlier focus on the theory of modularity in declarative languages. However, there
are also works that focus on the practice of modular declarative programming and, in particular, solving.
These works generally fall into one of the two following categories:

The first category consists of practical modelling languages which incorporate other modelling lan-
guages. For example, X-ASP [23] and ASP-PROLOG [24] extend prolog with ASP. Also ESRA [25],
ESSENCE [12] and Zinc [26] are CP languages extended with features from other languages. However,
these approaches give priority to the host language while our modular setting gives equal weight to all
modelling languages that are involved. It is important to note that, even in the presence of this distinction,
such works have been very important in the development of this paper because they provide guidelines on
how a practical solver deals with efficiency issues. We have emphasized on this point in Section 4.

The second category consists of the works done on multi-context systems. In [27], the authors introduce
non-monotonic bridge rules to the contextual reasoning and originated an interesting and active line of re-
search followed by many others for solving or explaining inconsistencies in non-monotonic multi-context
systems [28–31]. However, these works do not consider the model expansion task. Moreover, the motiva-
tions of these works originate from distributed or partial knowledge, e.g., when agents interact or when
trust or privacy issues are important. Despite these differences, the field of multi-context systems is very
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relevant to our research. Investigating this connection as well as incorporating results from the research on
multi-context system into our framework is our most important future research direction.

7 Conclusion

We addressed the problem of finding solutions to a modular system in the context of model expansion
and proposed an algorithm which finds such solutions. We defined conditions on modules such that once
satisfied, modules described with possibly different languages can participate in our algorithm. We argued
that our algorithm captures the essence of practical solvers, by showing that DPLL(T ) framework, ILP
solvers and state-of-the-art combinations of ASP and CP are all specializations of our modular framework.
We believe that our work bridges work done in different communities and contributes to cross-fertilization
of the fields.
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Abstract. We present a constraint-based approach to interactive product configuration. Our configura-
tor tool FdConfig is based on feature models for the representation of the product domain. Such models
can be directly mapped into constraint satisfaction problems and dealt with by appropriate constraint
solvers. During the interactive configuration process the user generates new constraints as a result of his
configuration decisions and even may retract constraints posted earlier. We discuss the configuration
process, explain the underlying techniques and show optimizations.

1 Introduction

Product lines for mass customization [22] allow to fulfill the needs and requirements of the individual
consumer while keeping the production costs low. They enhance extensibility and maintainance by re-
using the common core of the set of all products.

Product configuration describes the process of specifying a product according to user-specific needs
based on the description of all possible (valid) products (the search space). When done interactively, the
user specifies the features of the product step-by-step according to his requirements, thus, gradually shrink-
ing the search space of the configuration problem. This interactive configuration process is supported by a
software tool, the configurator.

In this paper, we present an approach on interactive product configuration based on constraint program-
ming techniques. Building on constraints enables us to equip our interactive product configurator FdCon-
fig with functionality and expressiveness exceeding traditional approaches but at the cost of performance
penalty which must be dealt with in turn.

The paper is structured as follows: In Sect. 2 we briefly review the area of interactive configuration
methods and discuss related work. Section 3 introduces important notions from the constraint paradigm as
needed for the discussion of our approach. We present the constraint-based interactive product configurator
FdConfig in Sect. 4. There, we introduce FdFeatures, a language for the definition of feature models, it’s
transformation into constraint problems, and the configuration process using FdConfig. Furthermore, we
discuss optimizations and improvements by analyses and multithreading. Section 5 draws a conclusion and
points out directions of future research.

2 Interactive Configuration Methods

An interactive product configurator is a tool which allows the user to specify a product according to his
specific needs based on the common core of the set of all products of a product line. This process can be
done interactively, i.e. in a step-wise fashion, thus gradually shrinking the search space of the configuration
problem.

For the sake of applicability and user-friendliness, a configurator requires a number of properties like
backtrack-freeness, completeness, order-independent retraction of decisions, short response times and oth-
ers. These strongly depend on the method1 underlying the configurator system. Cost optimization and
arithmetic constraints are a desired functionality too, but these are seldom supported or only provided in a
very restricted form.

1 For a discussion of the solutions methods see below.
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While completeness ensures that no solutions are lost, backtrack-freeness [7, 20] guarantees that the
configurator only offers decision alternatives for which solutions remain. Thus, the user can always generate
a valid solution from the current configuration state and does not need to unwind a decision (i.e. he does not
need to backtrack). The Calculate Valid Domains (CVD) function [7] of a configurator realizes this latter
property.

Feature models are particularly used in the context of software product line engineering to support the
reuse when building software-intensive products. However, they are of course applicable to many other
product line domains. They stem from the feature oriented domain analysis methodology (FODA) [14].

A feature model describes a product domain by a combination of features, i.e. specific aspects of the
product which the user can configure by instantiation and further constraints. A product line is given by the
set of possible combinations of feature alternatives.

The semantics of feature models is typically mapped to propositional logics [11] and can accordingly
be mapped onto a restricted class of constraint satisfaction problems (cf. Sect. 3), namely constraints of the
Boolean domain. While many approaches in the literature (e.g. [7, 8, 12]) only consider constraints of the
Boolean domain (including equality constraints), Benavides et.al. [1] discuss the realization of arithmetic
computations and cost optimization in a feature model (by so-called ”extra-functional features”) which can
be represented by general constraint problems.

Solution techniques applied to the interactive configuration problem have been compared by Hadzic et.al.
[7, 8] and Benavides et.al. [2]. They mainly distinguish approaches based on propositional logic on the one
hand and on constraint programming on the other hand.

When using propositional logic based approaches, configuration problems are restricted to logic con-
nectives and equality constraints (see e.g. [7, 21]). Arithmetic expressions are excluded because of the
underlying solution methods. These approaches perform in two steps. First, the feature model is translated
into a propositional formula. In the second step the formula is solved (satisfiability checking, computation
of solutions) by appropriate solvers, in particular SAT solvers (as in [12]) and BDD-based solvers (see e.g.
[8, 20]). BDD-based solvers translate the propositional formula into a compact representation, the BDD
(binary decision diagram). While many operations on BDDs can be implemented efficiently, the structure
of the BDD is crucial as a bad variable ordering may result in exponential size and, thus, in memory blow
up. Therefore the compilation of the BDD is done in an offline phase, so a suitable variable ordering can
be found and the BDD’s size becomes reasonably small.

Feature models can be naturally mapped into constraint systems, in particular into CSPs. There are
some approaches [1, 21] using this correspondence to deal with interactive configuration problems. These
typically work as follows: The feature model is translated into a constraint satisfaction problem (CSP, see
Definition 1 below) and afterwards analysed by a CSP solver. Using this approach, no pre-compilation is
necessary. In general it is possible to use predicate logic expressions and arithmetic in the feature defini-
tions, even if this is not realized in the above mentioned approaches.

Transformations of feature models into programs of CLP languages (i.e. Prolog systems with con-
straints) have been shown recently in [15, 17]. However, beside the transformation target beeing different
from ours, these approaches do not focus on using these methods for interactive configuration.

Since our FdConfig tool aims primarily at the software engineering community as the main users of
feature models, we decided in favour of a JAVA-implementation, which would make later integration with
common software development infrastructure like Eclipse more easy.

Benavides et.al. [2] elaborately compare the approaches sketched above, particularly with respect to
performance and expressiveness or supported operations, resp. They point out that CSP-based approaches,
in contrast to others, can allow extra functional features [1, 14] and, in addition, arithmetic and optimization.
Furthermore, they state that ”the available results suggest” that constraint-based and propositional logic-
based approaches ”provide similar performance”, except for the BDD-approach which ”seems to be an
exception as it provides much faster execution times”, but with the major drawback of BDDs having worst-
case exponential size.

Extended feature models with numerical attributes, arithmetic, and optimization are denominated as an
important challenge in interactive configuration by Benavides et.al. [2]. Our approach aims at this chal-
lenge. The main idea is to follow the constraint-based approach while using the combination of different
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constraint methods and concurrency to deal with the computational cost. At this, a major challange is to
support the user when making and withdrawing decisions in an interactive process.

3 Constraint Programming

Feature models can directly be mapped into corresponding constraint problems. We will discuss this ap-
proach more detailed in Sect. 4.1 but introduce the necessary notions from the constraint paradigm here.

Constraints are predicate logic formulae which express relations between the elements or objects of
the problem. They are classified into constraint domains (see [9, 18]), e.g. linear constraints, Boolean con-
straints and finite domain constraints. This partitioning is due to the different applicable constraint solution
algorithms implemented in so-called constraint solvers (see below).

Considering feature models as constraint problems, the domains of the involved variables are a priori fi-
nite.2 Thus, we consider a particular class of constraints: finite domain constraints. Finite domain constraint
problems are given by means of constraint satisfaction problems.

Definition 1 (CSP). A Constraint Satisfaction Problem (CSP) is a triple P = (X, D, C), where X =
{x1, . . . , xn} is a finite set of variables, D = (D1, . . . , Dn) is an n-tuple of their respective finite domains,
and C is a conjunction of constraints over X .

Definition 2 (solution). A solution of a CSP P is a valuation ς : X →
⋃

i∈{1,...,n}Di with ς(xi) ∈ Di

which satisfies the constraint conjunction C.

A CSP can have one solution or a number of solutions, or it can be unsatisfiable. Optimization functions
may also be given which specify optimal solutions.

Example 1. Consider a CSP P = (X,D, C) with the set X = {Cost, Color,Band} of variables and their
respective domains D = (DCost, DColor, DBand) with DColor = {Red,Gold, Black, Blue}, DCost =
{0, ..., 1400}, and DBand = {700, 800, 1000}.

C = (Band = 700 → Color = Blue) ∧ (Cost = Band + 500) is a conjunction of constraints over
the variables from X .

Solutions of the CSP P are e.g. ς1 with ς1(Cost) = 1200, ς1(Color) = Blue, and
ς1(Band) = 700 which is also denoted by ς1 = {Cost/1200, Color/Blue, Band/700} and
ς2 = {Cost/1300, Color/Red, Band/800}.

Constraint solvers are sets or libraries of tests and operations on constraints, which are able to check
the satisfiability of constraints and to compute solutions and implications of constraints.

CSPs are typically solved by narrowing the variable’s domains using search nested with consistency
techniques (e.g. node, arc, and path consistency). Given a CSP, in the first step consistency techniques are
applied. Such consistency checking algorithms work on n-ary constraints and try to remove values from
the variables domains which cannot be elements of solutions. Afterwards, search is initiated, e.g. using
backtracking, where we assign domain values to variables and perform consistency techniques to narrow
the other variable’s domains again. This search process is controlled by heuristics on variable and value
ordering (for the complete process, see [18]).

There are some finite domain constraint solver libraries available, for example the JAVA-libraries
CHOCO [3] as well as JACOP [10] and the C++-library GECODE [6]. We decided in favor of the freely
available CHOCO library which is under continuous development.

Additionally, we need the notions of global consistency and of valid domains.

Definition 3 (global consistency, see [18]). A CSP is i-consistent iff given any consistent instantiation
of i − 1 variables, there exists an instantiation of any ith variable such that the i values taken together
satisfy all of the constraints among the i variables. A CSP P = (X, D, C) is globally consistent, if it is
i-consistent for every i, 1 ≤ i ≤ n, where n is the number of variables of C.

2 An extension to infinite domains would be possible, in general.
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Definition 4 (valid domains). Given a CSP P , the valid domains of P is an n-tuple Dvd =
(Dvd,1, . . . , Dvd,n) such that each Dvd,i ⊆ Di contains exactly the values which are elements of solu-
tions of P .

So, if a CSP is gobally consistent, then its domains are valid domains.

Example 2. (continuation of Example 1) The valid domains of the CSP P is Dvd =
({1200, 1300}, DColor, {700, 800}).

4 The Interactive Configurator FdConfig

Our approach on interactive configuration consists of two phases: In the first phase a feature model is
analysed and then transformed into a CSP and passed to the CHOCO solver. Afterwards the interactive
configuration phase follows.

Figure 1 illustrates the analysis and transformation phase. FdConfig uses FdFeatures files as input.
FdFeatures is a textual domain specific language for extended feature models which supports integer fea-
ture attributes and arithmetic constraints. An FdFeatures parser reads the input-file and creates the feature
model which is transformed into a CHOCO CSP. Section 4.1 describes the language FdFeatures and the
transformations in greater detail. Additionally, a quick pre-calculation of the variable’s domains is per-
formed. It generates redundant constraints which, nevertheless, help to improve the solver’s performace.3

This domain analysis is covered in Sect. 4.2.

Fig. 1. Transformations performed before the user can start configuring

In the second phase, the generated CSP is passed to the CHOCO solver which reads the model and
creates an internal representation from it: the solver model. Then the solver is started to perform an initial
calculation of consequence decisions that yield from the constraints in the FdFeatures model. Afterwards,
the user can start with the interactive configuration. The implementation of this process is explained in
Sect. 4.3. Section 4.4 describes the reduction of response times by using multithreading.

3 In constraint programming, the generation of redundant constraints from a given constraint problem is a frequently
used method which helps to speed up the solver (see [18], Sect. 12.4.5). Note that the elimination of verification-
irrelevant features and constraints (i.e. ”redundant relationships”, [24]) from feature models with the aim of reducing
the problem size is a different concept.
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4.1 FdFeatures Models and CSPs

FdConfig provides FdFeatures as a language for the definition of feature models based on the approach of
[5]. FdFeatures borrows from the TEXTUAL VARIABILITY LANGUAGE (TVL, [4]) but was adapted for
our needs (e.g. including support for the realization of the user interface, certain detailed language elements
and syntactic sugar). FdFeatures has been implemented using XTEXT [23].

An FdFeatures feature model in general has a tree structure, i.e. there is a distinguished root feature
which stands for the item to be configured, but apart from this behaves like any other feature. The model
may have additional constraints between (sub-)features and their attributes which, in fact, makes the tree a
general graph. Nevertheless, the tree structure is dominant.

A feature may consist of sub-features and attributes (both in general optional), where, following the
approach of [5], the sub-features can be organized in feature groups. A feature group allows to describe
whether one, some, or all of the sub-features must be included in the configured product.

With similar effects, features can be specified to be mandatory or optional. Furthermore, features may
exclude or require other features.

Example 3. Consider the cut-out of a feature model of events organized by an event agency in Listing 4.1.4

For an event (the root feature) we can optionally order a band and a stage, but we must order a carpet
(e.g. for a film premiere or a wedding) and colored balloons. These are all modeled as sub-features (which
are not organized in a feature group here). Ordering a band makes a stage necessary, expressed by the
requires-statement in Line 11.

FdFeatures supports three kinds of feature attributes: integers, enumerations, and Boolean values.

Example 4. (continuation of Example 3) The feature Carpet is determined by several attributes, including
an enumeration attribute Color, whose domain elements must be given explicitly and a Boolean attribute
SlipResistance .5

Length and Breadth are integer attributes. While Breadth is specified by an interval, Length is un-
bounded. As we can see by the attributes of ColoredBalloons, the domain of an integer attribute can also be
specified by a finite set (Amount, Line 20) or even by an arithmetic formula (Cost, Line 25). The definition
of Boolean attributes is also possible using Boolean expressions (but is left out in our example).

The domain definition of PriceReduction .Coupon (Lines 22, 23) uses Guards to define the attribute
domain depending on the configuration state ( ifIn and ifOut correspond to selected and deleted, resp.)
of the feature (here PriceReduction). Furthermore, it is possible to define constraints on attributes and
features, also accessing the configuration state of a feature as shown in Line 15. This constraint makes sure
that the Blues-band plays in an adequate ambiance.

The transformation into a CHOCO CSP is straightforward, for details see [19]. In general, our transfor-
mation is similar to these of [15, 17]. Differences come from the fact that the transformation target of these
approaches are CLP languages and they aim at feature model analysis in contrast to interactive configura-
tion, as does FdConfig. We show an example of the generated CSP in a mathematical notation and leave
out the CHOCO constraint syntax for reasons of space limitations.

Example 5. The following CSP is generated from Listing 4.1 (where CBal stands for ColoredBalloons,
PRed for PriceReduction, and SRes for SlipResistance resp.). Note that we do not enumerate the set
of variables X explicitely and give the domains D by means of element constraints CDomains.

CSP = CDomains ∧ C with

CDomains = Event, Carpet,Band, Stage, CBal ∈ {False, True} ∧
CBal.PRed, Carpet.SRes ∈ {False, True} ∧

4 The description of certain features and attributes, which are not necessary for the understanding of this example and
the concepts behind, is left out and represented by ”...” in the program.

5 Note that the domain values of an enumeration may be assigned to integer values as e.g. done for the attribute
Band.Type in Line 12.



240 Denny Schneeweiss, Petra Hofstedt

Listing 4.1 Feature model of an event organized by an event agency (cut-out)

1 roo t f e a t u r e Even t {

2 enum D i s c o u n t in {Gold = 8 , S t a f f = 3 , None = 0} ;

3 f e a t u r e Carpe t {
4 i n t Leng th ;
5 i n t Bread th in [ 5 0 . . 3 0 0 ] ;
6 enum Color in {Red , Gold , Black , Blue } ;
7 bool S l i p R e s i s t a n c e ;
8 i n t Cost i s . . .
9 }

10 f e a t u r e Band : o p t i o n a l {
11 r e q u i r e s S t a g e ;
12 enum Type in {C l a s s i c = 1000 , B l u e s =700 , Rock =900} ;
13 }

14 f e a t u r e S t a g e : o p t i o n a l { . . . }

15 c o n s t r a i n t BluesOnBlueCarpe t
16 Band i s s e l e c t e d and Band . Type = B l u e s −>
17 Carpe t . Color = Blue
18 }

19 f e a t u r e C o l o r e d B a l l o o n s {
20 i n t Amount in {500 , 1000 , 2500 , 5000 , 10000} ;

21 f e a t u r e P r i c e R e d u c t i o n {
22 i n t Coupon i f I n : i s 1000
23 i fOut : i s 0 ;
24 }
25 i n t Cost i s Amount ∗ 3 − P r i c e R e d u c t i o n . Coupon ;
26 }

27 i n t O v e r a l l C o s t i s Carpe t . Cost + Band . Type + . . . +
28 ( C o l o r e d B a l l o o n s . Cost + . . . ) ∗ (100−D i s c o u n t ) / 1 0 0 ;
29 }
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Discount ∈ {0, 3, 8} ∧ Band.Type ∈ {700, 900, 1000} ∧
Carpet.Length ∈ [−231, 231 − 1] ∧ Carpet.Breath ∈ [50, 300] ∧
Carpet.Color ∈ [0, 3] ∧ Carpet.Cost = ... ∧
CBal.Amount ∈ {500, 1000, 2500, 5000, 10000} ∧
CBal.Cost ∈ [−231, 231 − 1] ∧
CBal.PRed.Coupon ∈ [−231, 231 − 1] ∧
OverallCost ∈ [−231, 231 − 1] and

C = (Carpet ∨Band ∨ Stage ∨ CBal → Event) ∧
(CBal.PRed → CBal) ∧ (Band → Stage) ∧
((Band ∧Band.Type = 700) → Carpet.Color = 3) ∧
(CBal.PRed → CBal.PRed.Coupon = 1000) ∧
(¬ CBal.PRed → CBal.PRed.Coupon = 0) ∧
(CBal.Cost = CBal.Amount ∗ 3− CBal.PRed.Coupon) ∧ . . .

4.2 Domain Analysis

In FdFeatures the specification of an attribute’s base domain is optional. If no domain is given by the
user, as e.g. for Carpet.Length or ColoredBalloons .Cost in Listing 4.1, it is set by default to the maximal
possible domain of the corresponding attribute type. For example, for integer attributes the maximal domain
is [−231, 231 − 1] which we denote by MAXDOM in the following.

When the CHOCO solver computes the valid domains of the CSP in the second phase of our approach
(cf. Sect. 4.3), this may become time consuming. The solver must establish global consistency. Thus, up to
4.3∗109 values must be checked for every attribute (or its corresponding variable, resp.) with MAXDOM .
Of course, we cannot require the user to specify attribute domains just big enough to contain all solutions,
in particular, because a manual estimation of the base domain can be very difficult for complex feature
models. Thus, we apply an automatic pre-analysis to the feature model which is merged with the CSP
generated from the model.

Our domain analysis aims at an approximate yet quick pre-calculation of the base domains of variables
using knowledge about the feature model’s structure. We only consider integer attributes, as enumerated
attributes will in general have small domains. The analysis is based on interval arithmetics [16] which allow
a fast approximation of the variable’s minimum and maximum values by calculating with intervals instead
of single domain values.

The domain DOM FM of an attribute in FdFeatures can be specified directly by giving a single value or
a set or interval, resp. of values. Additionally, it is possible to specify particular sub-domains depending on
the configuration state, i.e. IN FM and OUTFM in case the attribute is selected or deleted, resp. Further-
more, arithmetic expressions can be used to specify the domain or sub-domains. We determine DOM FM ,
IN FM , and OUTFM in form of intervals from the attribute expressions, where enumarations are handled
as intervals, too.

Starting from these domains, we calculate the narrowed base domain BASEDOM , and new sub-
domains IN and OUT as follows (where we take arithmetic expressions into consideration):

BASEDOM = (IN FM ∪OUTFM ) ∩DOM FM (1)
IN = BASEDOM ∩ IN FM (2)

OUT = BASEDOM ∩OUTFM (3)

The intervals for the incorporated arithmetic expressions are determined by traversing their formula
tree. The leafs are either elementary expressions or references to other attributes, in case of which the
domain of the referenced attribute must be calculated first. The analysis of cyclic formulae is interrupted
and MAXDOM is used instead, leaving domain narrowing to the CHOCO solver, which uses accurate but
time consuming consistency techniques.
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Fig. 2. Domain analysis of BASEDOM of the attribute ColoredBalloons.Cost

Example 6. Consider the pre-calculation of the base domain BASEDOM of the attribute ColoredBal-
loons.Cost (Line 25 of Listing 4.1). Figure 2 illustrates the calculation.

For the attribute under consideration, only the set DOM FM is specified by means of an arithmetic
expression, while IN FM and OUTFM both default to MAXDOM . During the analysis, the formula tree
of the arithmetic expression is traversed. Dashed arrows depict the domain analysis of a referenced attribute
which is shown in it’s own box.

In the beginning the analysis moves to the first leaf: a reference to the attribute Amount. The determi-
nation of the base sets is trivial as only DOM FM is defined as an enumeration of integers which yields an
interval [500, 10000] using Equation 1. The right operand of the multiplication is a constant value, which is
turned into the point interval [3, 3] resulting in the intermediate result [500, 10000]∗ [3, 3] = [1500, 30000].
The analysis of the attribute Coupon yields BASEDOM = [0, 1000] from IN FM = [1000, 1000],
OUTFM = [0, 0] and DOM FM = MAXDOM (again using Equation 1). Finally, the analysis re-
turns to the root attribute ColoredBalloons.Cost and performs the subtraction with result BASEDOM =
[1500, 30000]− [0, 1000] = [500, 30000].

From the BASEDOM intervals of the attributes the respective sub-domains IN and OUT can be
inferred by means of the Equations 2 and 3 (not shown in the figure).

Example 7. (continuation of Examples 5 and 6) The domain analysis yields the following domain con-
straints as an update on the generated CSP of our event feature model.

C ′
Domains = . . . ∧

CBal.Cost ∈ [500, 30000] ∧
CBal.PRed.Coupon ∈ {0, 1000} ∧ . . .

Note, that for computed intervals we finally build intersections in case the domain was initially given
by enumerations or single values. This yields the two-element set for CBal.PRed.Coupon.
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4.3 The Configuration Phase
The second phase of our approach, i.e. the configuration phase, starts with the initialization of FdConfig
before the user can start with the interactive configuration process.

Model pre-processing. The solver reads the CSP-model and performs a feasibility check (e.g. by finding
the first solution). If successful, the configurator computes the valid domains as initial model consequences
that derive from the CSP. The calculation of these model consequences is performed in the same way as the
user consequences are calculated later on in the interactive user configuration phase (see below). However,
once the model consequences have been computed, they are immutable during the interactive configuration
as they don’t depend on the user decisions.

The current, global consistent state of the solver is recorded. To this ground level state the solver can be
reset when, after a retraction of user constraints, a re-computation of the valid domains becomes necessary.

User configuration. The user starts a configuration step by executing a configuration action. This is either
a configuration decision, i.e. limiting the domain of a feature- or attribute variable which manifests as a
user constraint or the retraction of a decision made earlier. In this case the corresponding user constraint is
removed from the constraint system. User decisions are posted by FdConfig to the solver as user constraints.

Now, the solver is activated to establish global consistency and to find all solutions of the constraint
system. These are evaluated to derive the valid domains. Since the valid domains define the configuration
options available to the user in the next configuration step, the constraint system always remains feasible
after a user decision.

After the user consequences have been computed, the user interface is updated accordingly and the user
can perform the next configuration action.

In the usual modus operandi for FD solvers, a CSP is once declared and then read by the solver which
computes and returns solutions. In contrast, for interactive configuration we need to re-calculate sets of
solutions again and again because a sub-set of the constraints (the user constraints) keeps changing over
time as a result of the user making configuration decisions.

As the solver maintains a heavyweight internal representation of the constraint system and reading the
CSP-model as well as establishing consistency are time consuming, the option of re-creating the solver for
every user decision is inapplicable. Therefore we control the solver from outside by utilizing its backtrack-
ing infrastructure and reset the solver into the aformentioned ground level state in case a user decision has
been retracted.

4.4 Improving the User Experience by Multithreading
When computing the valid domains of the variables, the constraint solver must establish global consistency,
and thus, potentially find all solutions of the CSP. This calculation may be time consuming depending on
the size and complexity of the feature model (and the CSP it was transformed into, resp.). Furthermore, the
GUI would not be updated or process user input during this calculation. The program would appear to be
frozen.

Therefore we introduced multithreading with the solver running in a background thread, thus, allowing
the GUI to be updated and accept user input during a long running computation. However, as the user
would still have to wait for the calculation to complete before he can enter another configuration decision,
the multithreading structure has been extended as follows:

The elements of the valid domains are collected gradually with the computation of the set of solutions
still in progress. Whenever new elements have been found, they are immediately displayed in the GUI and
made available for configuration decisions. Elements, that did not yet occur in a solution, are greyed out
and disabled for user decisions. If the user makes a decision, the background calculation is interrupted and
restarted with the changed set of user decisions.

In the sequential model the valid domains were calculated in one go and then evaluated to generate
consequence decisions if necessary. If, for example, the valid domain of a feature A was found to be
Dvd,A = {true} this resulted in a consequence decision forcing the feature to be selected6.

6 Likewise Dvd,A = {false} results in a removed feature and Dvd = {true, false} in the undecided state, where
the user can decide.
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With multithreading we have to re-evaluate the valid domains whenever new elements are found dur-
ing the calculation process. This results in changing consequence decisions while the computation has not
finished. For example, the valid domain of feature A can become Dvd,A = {true} during the computation
process at first, creating the consequence decision that A must be selected. However, as the result of new
solutions the valid domain might later become Dvd,A = {true, false}, thus making the consequence deci-
sion disappear again. Attributes are handled similarly, as single value domains (interpreted as consequence
decisions to select this particular value) may become multi-value domains later on. The GUI flags these
consequence decisions as incomplete, so the user can see that further configuration options might become
available. On the completion of the computation process, this flag is removed.

Fig. 3. Intermediate states of valid domains for features and attributes with multithreading

Figure 3 illustrates the different states for feature and attribute domains, resulting from the multithread-
ing approach. Consequence decisions are drawn in bold typeface. Furthermore Fig. 4 shows a screenshot
of the FdConfig tool during a long running calculation of the valid domains. Incomplete consequence deci-
sions are visible, i.e. for the attribute ColoredBalloons.Cost, whose valid domain has exactly one element
(14990) at the moment. The other elements were either eliminated by the user or have not yet occurred in
a solution (displayed in grey).

First experiments show that this multithreading approach leads to a smoother, more fluent user experi-
ence when performing product configuration. Since reaching the goal of calculating the valid domains in
under 250 msec7 is currently not realistic with the underlying solvers, this enhancement is a good compro-
mise as configuration options will become available very quickly.

5 Conclusion and Future Work

In this paper we discuss an approach on interactive product configuration based on constraint techniques,
which was implemented in our configurator tool FdConfig. We gave an overview of the product configura-
tion domain, feature models, and constraint programming in this context and introduced our approach.

In FdConfig we employ a finite domain constraint solver that enables us to deal with integer attributes
and arithmetic constraints in extended feature models. These constraints are usually not supported in tra-
ditional approaches (e.g. SAT, BDDs) or only in restricted forms. However, this enhanced expressiveness
comes at the cost of performance penalties. We deal with this by applying a preliminary domain analysis
in order to relief the solver of unnecessary computation time for establishing consistency. Furthermore, we

7 A response time of about this duration is considered desirable, as this still gives the user the impression to work in
real time [7].
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Fig. 4. Screenshot of FdConfig during a CVD calculation
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use a multithreading approach to enhance the user experience. This allows the user to continue configuring
in a limited way, even if the overall computation has not yet finished.

Future work will include the further development of the multithreading approach. We plan to incor-
porate multiple solvers that might use different computation strategies. For example, the feature model
element with the current GUI focus could be taken into account. This focus-based computation strategy
could additionally improve user friendliness: Domain elements, that the user might want to configure most
likely, would become available more quickly for configuration decisions.

Also a more subtle handling of the non-chronological retraction of constraints promises improvement
but needs further investigation.

In order to improve the overall performance we consider adding support for compilation-based ap-
proaches (i.e. BDDs). These could be integrated with the solver in the form of custom constraints to speed
up the search. If a pre-compiled version of a feature model is available, the implementation of these con-
straints could access the BDD. Otherwise the regular solution methods would be applied.

Transformation-based optimizations should be investigated, too. E.g. [13] use a clustering optimiza-
tion to reduce the number of constraint-variables and constraints. Using feature models ([13] directly use
constraints) may support or even inherently realize a form of clustering.

Another optimization is presented in [17]. The authors discuss the improvement of efficiency when
solving CSPs as transformation results due to a reformulation of particular boolean constraints into arith-
metic constraints. While this representation is available in our approach too, the examination of similar
optimizations may be worth considering in the future. In the approach of [17] the structure of feature
models is not preserved. This holds optimization potential as well, but must be done sensitive to retain a
mapping to the feature model to allow an interactive configuration process as needed in our approach.
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Abstract. In this paper we explore a unifying approach — that of hypotheses assumption — as a
means to provide a semantics for all Normal Logic Programs (NLPs), the Minimal Hypotheses (MH)
semantics 1. This semantics takes a positive hypotheses assumption approach as a means to guarantee
the desirable properties of model existence, relevance and cumulativity, and of generalizing the Sta-
ble Models semantics in the process. To do so we first introduce the fundamental semantic concept
of minimality of assumed positive hypotheses, define the MH semantics, and analyze the semantics’
properties and applicability. Indeed, abductive Logic Programming can be conceptually captured by a
strategy centered on the assumption of abducibles (or hypotheses). Likewise, the Argumentation per-
spective of Logic Programs (e.g. [7]) also lends itself to an arguments (or hypotheses) assumption
approach. Previous works on Abduction (e.g. [12]) have depicted the atoms of default negated literals
in NLPs as abducibles, i.e., assumable hypotheses. We take a complementary and more general view
than these works to NLP semantics by employing positive hypotheses instead.
Keywords: Hypotheses, Semantics, NLPs, Abduction, Argumentation.

1 Background

Logic Programs have long been used in Knowledge Representation and Reasoning.

Definition 1. Normal Logic Program. By an alphabet A of a language L we mean (finite or countably
infinite) disjoint sets of constants, predicate symbols, and function symbols, with at least one constant. In
addition, any alphabet is assumed to contain a countably infinite set of distinguished variable symbols. A
term overA is defined recursively as either a variable, a constant or an expression of the form f(t1, . . . , tn)
where f is a function symbol of A, n its arity, and the ti are terms. An atom over A is an expression of the
form P (t1, . . . , tn) where P is a predicate symbol of A, and the ti are terms. A literal is either an atom A
or its default negation not A. We dub default literals (or default negated literals — DNLs, for short) those
of the form not A. A term (resp. atom, literal) is said ground if it does not contain variables. The set of all
ground terms (resp. atoms) of A is called the Herbrand universe (resp. base) of A. For short we use H to
denote the Herbrand base of A. A Normal Logic Program (NLP) is a possibly infinite set of rules (with no
infinite descending chains of syntactical dependency) of the form

H ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)

where H , the Bi and the Cj are atoms, and each rule stands for all its ground instances. In conformity
with the standard convention, we write rules of the form H ← also simply as H (known as “facts”). An
NLP P is called definite if none of its rules contain default literals. H is the head of the rule r, denoted by
head(r), and body(r) denotes the set {B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of
r.

When doing problem modelling with logic programs, rules of the form

⊥ ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)
1 This paper is a very condensed summary of some of the main contributions of the PhD Thesis [19] of the first author,

supported by FCT-MCTES grant SFRH / BD / 28761 / 2006, and supervised by the second author.
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with a non-empty body are known as a type of Integrity Constraints (ICs), specifically denials, and they are
normally used to prune out unwanted candidate solutions. We abuse the ‘not ’ default negation notation
applying it to non-empty sets of literals too: we write not S to denote {not s : s ∈ S}, and confound
not not a ≡ a. When S is an arbitrary, non-empty set of literals S = {B1, . . . , Bn, not C1, . . . , not Cm}
we use

– S+ denotes the set {B1, . . . , Bn} of positive literals in S
– S− denotes the set {not C1, . . . , not Cm} of negative literals in S
– |S| = S+ ∪ (not S−) denotes the set {B1, . . . , Bn, C1, . . . , Cm} of atoms of S

As expected, we say a set of literals S is consistent iff S+ ∩ |S−| = ∅. We also write heads(P ) to denote
the set of heads of non-IC rules of a (possibly constrained) program P , i.e., heads(P ) = {head(r) : r ∈
P}\{⊥}, and facts(P ) to denote the set of facts of P — facts(P ) = {head(r) : r ∈ P ∧ body(r) = ∅}.

Definition 2. Part of body of a rule not in loop. Let P be an NLP and r a rule of P . We write body(r)
to denote the subset of body(r) whose atoms do not depend on r. Formally, body(r) is the largest set of
literals such that

body(r) ⊆ body(r) ∧ ∀
a∈|body(r)|@ra∈P (head(ra) = a ∧ ra � r)

where ra � r means rule ra depends on rule r, i.e., either head(r) ∈ |body(ra)| or there is some other
rule r′ ∈ P such that ra � r′ and head(r) ∈ |body(r′)|.

Definition 3. Layer Supported and Classically supported interpretations. We say an interpretation I of
an NLP P is layer (classically) supported iff every atom a of I is layer (classically) supported in I . a is
layer (classically) supported in I iff there is some rule r in P with head(r) = a such that I |= body(r)
(I |= body(r)). Likewise, we say the rule r is layer (classically) supported in I iff I |= body(r) (I |=
body(r)).

Literals in body(r) are, by definition, not in loop with r. The notion of layered support requires that all
such literals be true under I in order for head(r) to be layer supported in I . Hence, if body(r) is empty,
head(r) is ipso facto layer supported.

Proposition 1. Classical Support implies Layered Support. Given a NLP P , an interpretation I , and an
atom a such that a ∈ I , if a is classically supported in I then a is also layer supported in I .

Proof. Knowing that, by definition, body(r) ⊆ body(r) for every rule r, it follows trivially that a is layer
supported in I if a is classically supported in I . ut

2 Motivation

“Why the need for another 2-valued semantics for NLPs since we already have the Stable Models one?” The
question has its merit since the Stable Models (SMs) semantics [9] is exactly what is necessary for so many
problem solving issues, but the answer to it is best understood when we ask it the other way around: “Is
there any situation where the SMs semantics does not provide all the intended models?” and “Is there any
2-valued generalization of SMs that keeps the intended models it does provide, adds the missing intended
ones, and also enjoys the useful properties of guarantee of model existence, relevance, and cumulativity?”

Example 1. A Joint Vacation Problem — Merging Logic Programs. Three friends are planning a joint
vacation. First friend says “If we don’t go to the mountains, then we should go to the beach”. The second
friend says “If we don’t go to travelling, then we should go to the mountains”. The third friend says “If we
don’t go to the beach, then we should go travelling”. We code this information as the following NLP:

beach← not mountain
mountain← not travel

travel← not beach
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Each of these individual consistent rules come from a different friend. According to the SMs, each friend
had a “solution” (a SM) for his own rule, but when we put the three rules together, because they form an
odd loop over negation (OLON), the resulting merged logic program has no SM. If we assume beach is
true then we cannot conclude travel and therefore we conclude mountain is also true — this gives rise
to the {beach,mountain, not travel} joint and multi-place vacation solution. The other (symmetric) two
are {mountain, not beach, travel} and {travel, not mountain,
beach}. This example too shows the importance of having a 2-valued semantics guaranteeing model exis-
tence, in this case for the sake of arbitrary merging of logic programs (and for the sake of existence of a
joint vacation for these three friends).

Increased Declarativity. An IC is a rule whose head is ⊥, and although such syntactical definition of
IC is generally accepted as standard, the SM semantics can employ odd loops over negation, such as
the a ← not a,X to act as ICs, thereby mixing and unnecessarily confounding two distinct Knowledge
Representation issues: the one of IC use, and the one of assigning semantics to loops. For the sake of
declarativity, rules with ⊥ head should be the only way to write ICs in a LP: no rule, or combination of
rules, with head different from ⊥ should possibly act as IC(s) under any given semantics. It is commonly
argued that answer sets (or stable models) of a program correspond to the solutions of the corresponding
problem, so no answer set means no solution. We argue against this position: “normal” logic rules (i.e.,
non-ICs) should be used to shape the candidate-solution space, whereas ICs, and ICs alone, should be
allowed to play the role of cutting down the undesired candidate-solutions. In this regard, an IC-free NLP
should always have a model; if some problem modelled as an NLP with ICs has no solution (i.e., no model)
that should be due only to the ICs, not to the “normal” rules.

Argumentation From an argumentation perspective, the author of [7], states:

“Stable extensions do not capture the intuitive semantics of every meaningful argumentation
system.”

where the “stable extensions” have a 1-to-1 correspondence to the SMs ([7]), and also

“Let P be a knowledge base represented either as a logic program, or as a nonmonotonic
theory or as an argumentation framework. Then there is not necessarily a “bug” in P if P has no
stable semantics.

This theorem defeats an often held opinion in the logic programming and nonmonotonic rea-
soning community that if a logic program or a nonmonotonic theory has no stable semantics then
there is something “wrong” in it.”

Thus, a criterion different from the stability one must be used in order to effectively model every argumen-
tation framework adequately.

Arbitrary Updates and/or Merges One of the main goals behind the conception of non-monotonic logics
was the ability to deal with the changing, evolving, updating of knowledge. There are scenarios where it is
possible and useful to combine several Knowledge Bases (possibly from different authors or sources) into
a single one, and/or to update a given KB with new knowledge. Assuming the KBs are coded as IC-free
NLPs, as well as the updates, the resulting KB is also an IC-free NLP. In such a case, the resulting (merged
and/or updated) KB should always have a semantics. This should be true particularly in the case of NLPs
where no negations are allowed in the heads of rules. In this case no contradictions can arise because there
are no conflicting rule heads. The lack of such guarantee when the underlying semantics used is the Stable
Models, for example, compromises the possibility of arbitrarily updating and/or merging KBs (coded as
IC-free NLPs). In the case of self-updating programs, the desirable “liveness” property is put into question,
even without outside intervention.

These motivational issues raise the questions “Which should be the 2-valued models of an NLP when
it has no SMs?”, “How do these relate to SMs?”, “Is there a uniform approach to characterize both such
models and the SMs?”, and “Is there any 2-valued generalization of the SMs that encompasses the intuitive
semantics of every logic program?”. Answering such questions is a paramount motivation and thrust in this
paper.
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2.1 Intuitively Desired Semantics

It is commonly accepted that the non-stratification of the default not is the fundamental ingredient which
allows for the possibility of existence of several models for a program. The non-stratified DNLs (i.e., in a
loop) of a program can thus be seen as non-deterministically assumable choices. The rules in the program,
as well as the particular semantics we wish to assign them, is what constrains which sets of those choices
we take as acceptable. Programs with OLONs (ex. 1) are said to be “contradictory” by the SMs community
because the latter takes a negative hypotheses assumption approach, consistently maximizing them, i.e.,
DNLs are seen as assumable/abducible hypotheses. In ex.1 though, assuming whichever maximal negative
hypotheses leads to a positive contradictory conclusion via the rules. On the other hand, if we take a
consistent minimal positive hypotheses assumption (where the assumed hypotheses are the atoms of the
DNLs), then it is impossible to achieve a contradiction since no negative conclusions can be drawn from
NLP rules. Minimizing positive assumptions implies the maximizing of negative ones but gaining an extra
degree of freedom.

2.2 Desirable Formal Properties

Only ICs (rules with⊥ head) should “endanger” model existence in a logic program. Therefore, a semantics
for NLPs with no ICs should guarantee model existence (which, e.g., does not occur with SMs). Relevance
is also a useful property since it allows the development of top-down query-driven proof-procedures that
allow for the sound and complete search for answers to a user’s query. This is useful in the sense that
in order to find an answer to a query only the relevant part of the program must be considered, whereas
with a non-relevant semantics the whole program must be considered, with corresponding performance
disadvantage compared to a relevant semantics.

Definition 4. Relevant part of P for atom a. The relevant part of NLP P for atom a is
RelP (a) = {ra ∈ P : head(ra) = a} ∪ {r ∈ P : ∃ra∈P∧head(ra)=ara � r}

Definition 5. Relevance (adapted from [5]). A semantics Sem for logic programs is said Relevant iff for
every program P

∀a∈HP
(∀M∈ModelsSem(P )a ∈M)⇔ (∀Ma∈ModelsSem(RelP (a))a ∈Ma)

Moreover, cumulativity also plays a role in performance enhancement in the sense that only a semantics
enjoying this property can take advantage of storing intermediate lemmas to speed up future computations.

Definition 6. Cumulativity (adapted from [4]). Let P be an NLP, and a, b two atoms of HP . A semantics
Sem is Cumulative iff the semantics of P remains unchanged when any atom true in the semantics is added
to P as a fact:

∀a,b∈HP

(
(∀M∈ModelsSem(P )a ∈M)⇒

(∀M∈ModelsSem(P )b ∈M ⇔ ∀Ma∈ModelsSem(P∪{a})b ∈Ma)
)

Finally, each individual SM of a program, by being minimal and classically supported, should be accepted
as a model according to every 2-valued semantics, and hence every 2-valued semantics should be a model
conservative extension of Stable Models.

3 Syntactic Transformations

It is commonly accepted that definite LPs (i.e., without default negation) have only one 2-valued model —
its least model which coincides with the Well-Founded Model (WFM [8]). This is also the case for locally
stratified LPs. In such cases we can use a syntactic transformation on a program to obtain that model. In [2]
the author defined the program Remainder (denoted by P̂ ) for calculating the WFM, which coincides with
the unique perfect model for locally stratified LPs. The Remainder can thus be seen as a generalization
for NLPs of the lfp(T ), the latter obtainable only from the subclass of definite LPs. We recap here the
definitions necessary for the Remainder because we will use it in the definition of our Minimal Hypotheses
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semantics. The intuitive gist of MH semantics (formally defined in section 4) is as follows: an interpretation
MH is a MH model of program P iff there is some minimal set of hypotheses H such that the truth-values
of all atoms of P become determined assuming the atoms inH as true. We resort to the program Remainder
as a deterministic (and efficient, i.e., computable in polynomial time) means to find out if the truth-values
of all literals became determined or not — we will see below how the Remainder can be used to find this
out.

3.1 Program Remainder

For self-containment, we include here the definitions of [2] upon which the Remainder relies, and adapt
them where convenient to better match the syntactic conventions used throughout this paper.

Definition 7. Program transformation (def. 4.2 of [2]). A program transformation is a relation 7→ between
ground logic programs. A semantics S allows a transformation 7→ iff ModelsS(P1) = ModelsS(P2) for
all P1 and P2 with P1 7→ P2. We write 7→∗ to denote the fixed point of the 7→ operation, i.e., P 7→∗ P ′
where @P ′′ 6=P ′P

′ 7→ P ′′. It follows that P 7→∗ P ′ ⇒ P ′ 7→ P ′.

Definition 8. Positive reduction (def. 4.6 of [2]). Let P1 and P2 be ground programs. Program P2 results
from P1 by positive reduction (P1 7→P P2) iff there is a rule r ∈ P1 and a negative literal not b ∈ body(r)
such that b /∈ heads(P1), i.e., there is no rule for b in P1, and P2 = (P1 \ {r}) ∪ {head(r)← (body(r) \
{not b})}.

Definition 9. Negative reduction (def. 4.7 of [2]). Let P1 and P2 be ground programs. Program P2 results
from P1 by negative reduction (P1 7→N P2) iff there is a rule r ∈ P1 and a negative literal not b ∈ body(r)
such that b ∈ facts(P1), i.e., b appears as a fact in P1, and P2 = P1 \ {r}.

Negative reduction is consistent with classical support, but not with the layered one. Therefore, we intro-
duce now a layered version of the negative reduction operation.

Definition 10. Layered negative reduction. Let P1 and P2 be ground programs. Program P2 results
from P1 by layered negative reduction (P1 7→LN P2) iff there is a rule r ∈ P1 and a negative literal
not b ∈ body(r) such that b ∈ facts(P1), i.e., b appears as a fact in P1, and P2 = P1 \ {r}.

The Strongly Connected Components (SCCs) of rules of a program can be calculated in polynomial time
[20]. Once the SCCs of rules have been identified, the body(r) subset of body(r), for each rule r, is
identifiable in linear time — one needs to check just once for each literal in body(r) if it is also in body(r).
Therefore, these polynomial time complexity operations are all the added complexity Layered negative
reduction adds over regular Negative reduction.

Definition 11. Success (def. 5.2 of [2]). Let P1 and P2 be ground programs. Program P2 results from P1

by success (P1 7→S P2) iff there are a rule r ∈ P1 and a fact b ∈ facts(P1) such that b ∈ body(r), and
P2 = (P1 \ {r}) ∪ {head(r)← (body(r) \ {b})}.

Definition 12. Failure (def. 5.3 of [2]). Let P1 and P2 be ground programs. Program P2 results from P1 by
failure (P1 7→F P2) iff there are a rule r ∈ P1 and a positive literal b ∈ body(r) such that b /∈ heads(P1),
i.e., there are no rules for b in P1, and P2 = P1 \ {r}.

Definition 13. Loop detection (def. 5.10 of [2]). Let P1 and P2 be ground programs. Program P2 results
from P1 by loop detection (P1 7→L P2) iff there is a set A of ground atoms such that

1. for each rule r ∈ P1, if head(r) ∈ A, then body(r) ∩ A 6= ∅,
2. P2 := {r ∈ P1|body(r) ∩ A = ∅},
3. P1 6= P2.

We are not entering here into the details of the loop detection step, but just taking note that 1) such a set
A corresponds to an unfounded set (cf. [8]); 2) loop detection is computationally equivalent to finding the
SCCs [20], and is known to be of polynomial time complexity; and 3) the atoms in the unfounded set A
have all their corresponding rules involved in SCCs where all heads of rules in loop appear positive in the
bodies of the rules in loop.
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Definition 14. Reduction (def. 5.15 of [2]).
Let 7→X denote the rewriting system: 7→X :=7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L.

Definition 15. Layered reduction.
Let 7→LX denote the rewriting system: 7→LX :=7→P ∪ 7→LN ∪ 7→S ∪ 7→F ∪ 7→L.

Definition 16. Remainder (def. 5.17 of [2]). Let P be a program. Let P̂ satisfy
ground(P ) 7→∗X P̂ . Then P̂ is called the remainder of P , and is guaranteed to exist and to be unique to
P . Moreover, the calculus of 7→∗X is known to be of polynomial time complexity [2]. When convenient, we
write Rem(P ) instead of P̂ .

An important result from [2] is that the WFM of P is such that WFM+(P ) = facts(P̂ ), WFM+u =
heads(P̂ ), andWFM−(P ) = HP \WFM+u(P ), whereWFM+(P ) denotes the set of atoms of P true
in the WFM, WFM+u(P ) denotes the set of atoms of P true or undefined in the WFM, and WFM−(P )
denotes the set of atoms of P false in the WFM.

Definition 17. Layered Remainder. Let P be a program. Let the program P̊ satisfy ground(P ) 7→∗LX P̊ .
Then P̊ is called a layered remainder of P . Since P̊ is equivalent to P̂ , apart from the difference between
7→LN and 7→N , it is trivial that P̊ is also guaranteed to exist and to be unique for P . Moreover, the calculus
of 7→∗LX is likewise of polynomial time complexity because 7→LN is also of polynomial time complexity.

The remainder’s rewrite rules are provably confluent, ie. independent of application order. The layered
remainder’s rules differ only in the negative reduction rule and the confluence proof of the former is readily
adapted to the latter.

Example 2. P̊ versus P̂ . Recall the program from example 1 but now with an additional fourth stubborn
friend who insists on going to the beach no matter what. P =

beach← not mountain
mountain← not travel

travel← not beach
beach

We can clearly see that the single fact rule does not depend on any other, and that the remaining three rules
forming the loop all depend on each other and on the fact rule beach. P̂ is the fixed point of 7→X , i.e., the
fixed point of 7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L. Since beach is a fact, the 7→N transformation deletes the
travel← not beach rule; i.e., P 7→N P ′ is such that

P ′ = {beach← not mountain mountain← not travel beach←}
Now in P ′ there are no rules for travel and hence we can apply the 7→P transformation which deletes

the not travel from the body of mountain’s rule; i.e, P ′ 7→P P ′′ where P ′′ = {beach← not mountain
mountain← beach←}

Finally, in P ′′ mountain is a fact and hence we can again apply the 7→N obtaining P ′′ 7→P P ′′′ where
P ′′′ = {mountain ← beach ←} upon which no more transformations can be applied, so P̂ = P ′′′.
Instead, P̊ = P is the fixed point of 7→LX , i.e., the fixed point of 7→P ∪ 7→LN ∪ 7→S ∪ 7→F ∪ 7→L.

4 Minimal Hypotheses Semantics

4.1 Choosing Hypotheses

The abductive perspective of [12] depicts the atoms of DNLs as abducibles, i.e., assumable hypotheses.
Atoms of DNLs can be considered as abducibles, i.e., assumable hypotheses, but not all of them. When
we have a locally stratified program we cannot really say there is any degree of freedom in assuming truth
values for the atoms of the program’s DNLs. So, we realize that only the atoms of DNLs involved in SCCs2

are eligible to be considered further assumable hypotheses.

2 Strongly Connected Components, as in Examples 1 and 2
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Both the SMs and the approach of [12], when taking the abductive perspective, adopt negative hy-
potheses only. This approach works fine for some instances of non-well-founded negation such as loops
(in particular, for even loops over negation like this one), but not for odd loops over negation like, e.g.
a ← not a: assuming not a would lead to the conclusion that a is true which contradicts the initial as-
sumption. To overcome this problem, we generalized the hypotheses assumption perspective to allow the
adoption, not only of negative hypotheses, but also of positive ones. Having taken this generalization step
we realized that positive hypotheses assumption alone is sufficient to address all situations, i.e., there is
no need for both positive and negative hypotheses assumption. Indeed, because we minimize the positive
hypotheses we are with one stroke maximizing the negative ones, which has been the traditional way of
dealing with the CWA, and also with stable models because the latter’s requirement of classical support
minimizes models.

In example 1 we saw three solutions, each assuming as true one of the DNLs in the loop. Adding a
fourth stubborn friend insisting on going to the beach, as in example 2, should still permit the two solutions
{beach,mountain, not travel} and {travel, not mountain, beach}. The only way to permit both these
solutions is by resorting to the Layered Remainder, and not to the Remainder, as a means to identify the set
of assumable hypotheses.

Thus, all the literals of P that are not determined false in P̊ are candidates for the role of hypotheses
we may consider to assume as true. Merging this perspective with the abductive perspective of [12] (where
the DNLs are the abducibles) we come to the following definition of the Hypotheses set of a program.

Definition 18. Hypotheses set of a program. Let P be an NLP. We write Hyps(P ) to denote the set
of assumable hypotheses of P : the atoms that appear as DNLs in the bodies of rules of P̊ . Formally,
Hyps(P ) = {a : ∃r∈P̊not a ∈ body(r)}.

One can define a classical support compatible version of the Hypotheses set of a program, only using to
that effect the Remainder instead of the Layered Remainder. I.e.,

Definition 19. Classical Hypotheses set of a program. Let P be an NLP. We write CHyps(P ) to denote
the set of assumable hypotheses of P consistent with the classical notion of support: the atoms that appear
as DNLs in the bodies of rules of P̂ . Formally, CHyps(P ) = {a : ∃r∈ bPnot a ∈ body(r)}.

Here we take the layered support compatible approach and, therefore, we will use the Hypotheses set as
in definition 18. Since CHyps(P ) ⊆ Hyps(P ) for every NLP P , there is no generality loss in using
Hyps(P ) instead of CHyps(P ), while using Hyps(P ) allows for some useful semantics properties ex-
amined in the sequel.

4.2 Definition

Intuitively, a Minimal Hypotheses model of a program is obtained from a minimal set of hypotheses which
is sufficiently large to determine the truth-value of all literals via Remainder.

Definition 20. Minimal Hypotheses model. Let P be an NLP. Let Hyps(P ) be the set of assumable
hypotheses of P (cf. definition 18), and H some subset of Hyps(P ).

A 2-valued model M of P is a Minimal Hypotheses model of P iff

M+ = facts(P̂ ∪H) = heads(P̂ ∪H)

where H = ∅ or H is non-empty set-inclusion minimal (the set-inclusion minimality is considered only
for non-empty Hs). I.e., the hypotheses set H is minimal but sufficient to determine (via Remainder) the
truth-value of all literals in the program.

We already know that WFM+(P ) = facts(P̂ ) and that WFM+u(P ) = heads(P̂ ). Thus, whenever
facts(P̂ ) = heads(P̂ ) we have WFM+(P ) = WFM+u(P ) which means WFMu(P ) = ∅. Moreover,
whenever WFMu(P ) = ∅ we know, by Corollary 5.6 of [8], that the 2-valued model M such that M+ =
facts(P̂ ) is the unique stable model of P . Thus, we conclude that, as an alternative equivalent definition,
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M is a Minimal Hypotheses model of P iff M is a stable model of P ∪ H where H is empty or a non-
empty set-inclusion minimal subset of Hyps(P ). Moreover, it follows immediately that every SM of P is
a Minimal Hypotheses model of P .

In example 2 we can thus see that we have the two models {beach,mountain,
not travel} and {travel, beach, not mountain}. This is the case because the addition of the fourth stub-
born friend does not change the set of Hyps(P ) which is based upon the Layered Remainder, and not on
the Remainder.

Example 3. Minimal Hypotheses models for the vacation with passport variation. Consider again the
vacation problem from example 1 with a variation including the need for valid passports for travelling P =

beach← not mountain
mountain← not travel

travel← not beach, not expired_passport

passport_ok ← not expired_passport
expired_passport← not passport_ok

We haveP = P̊ = P̂ and thusHyps(P ) = {beach,mountain, travel, passport_ok, expired_passport}.
Let us see which are the MH models for this program.
H = ∅ does not yield a MH model.
Assuming H = {beach} we have P ∪H = P ∪ {beach} =

beach← not mountain
mountain← not travel

travel← not beach, not expired_passport
beach

passport_ok ← not expired_passport
expired_passport← not passport_ok

and P̂ ∪H =
mountain

beach
passport_ok ← not expired_passport

expired_passport← not passport_ok

which means H = {beach} is not sufficient to determine the truth values of all literals of P . One can
easily see that the same happens for H = {mountain} and for H = {travel}: in either case the literals
passport_ok and expired_passport remain non-determined.
If we assume H = {expired_passport} then P ∪H is

beach← not mountain
mountain← not travel

travel← not beach, not expired_passport

passport_ok ← not expired_passport
expired_passport← not passport_ok
expired_passport

and P̂ ∪H =
mountain

expired_passport

which meansM+
expired_passport = facts(P̂ ∪H) = heads(P̂ ∪H) = {mountain, expired_passport},

i.e.,
Mexpired_passport = {not beach,mountain, not travel, not passport_ok, expired_passport}, is a MH
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model of P . Since assuming H = {expired_passport} alone is sufficient to determine all literals, there
is no other set of hypotheses H ′ of P such that H ′ ⊃ {expired_passport} (notice the strict ⊃, not ⊇),
yielding a MH model of P . E.g., H ′ = {travel, expired_passport} does not lead to a MH model of P
simply because H ′ is not minimal w.r.t. H = {expired_passport}.
If we assume H = {passport_ok} then P ∪H is

beach← not mountain
mountain← not travel

travel← not beach, not expired_passport

passport_ok ← not expired_passport
expired_passport← not passport_ok

passport_ok

and P̂ ∪H =
beach← not mountain

mountain← not travel
travel← not beach

passport_ok

which, apart from the fact passport_ok, corresponds to the original version of this example and still leaves
literals with non-determined truth-values. I.e., assuming the passports are OK allows for the three possibili-
ties of example 1 but it is not enough to entirely “solve” the vacation problem: we need some hypotheses set
containing one of beach, mountain, or travel if (in this case, and only if ) it also contains passport_ok.

Example 4. Minimality of Hypotheses does not guarantee minimality of model. Let P , with no SMs,
be

a← not b, c
b← not c, not a
c← not a, b

In this case P = P̂ = P̊ , which makes Hyps(P ) = {a, b, c}.
H = ∅ does not determine all literals of P because facts(P̂ ∪ ∅) = facts(P̂ ) = ∅ and heads(P̂ ∪ ∅) =
heads(P̂ ) = {a, b, c}.
H = {a} does determine all literals of P because facts(P̂ ∪ {a}) = {a} and heads(P̂ ∪ {a}) = {a},
thus yielding the MH model Ma such that M+

a = facts(P̂ ∪ {a}) = {a}, i.e., Ma = {a, not b, not c}.
H = {c} is also a minimal set of hypotheses determining all literals because facts(P̂ ∪ {c}) = {a, c}
and heads(P̂ ∪ {c}) = {a, c}, thus yielding the MH model Mc of P such that M+

c = facts(P̂ ∪ {c}) =
{a, c}, i.e., Mc = {a, not b, c}. However, Mc is not a minimal model of P because M+

c = {a, c} is a strict
superset of M+

a = {a}. Mc is indeed an MH model of P , but just not a minimal model thereby being a
clear example of how minimality of hypotheses does not entail minimality of consequences. Just to make
this example complete, we show that H = {b} also determines all literals of P because facts(P̂ ∪ {b}) =
{b, c} and heads(P̂ ∪ {b}) = {b, c}, thus yielding the MH model Mb such that M+

b = facts(P̂ ∪ {b}) =
{b, c}, i.e., Mb = {not a, b, c}. Any other hypotheses set is necessarily a strict superset of either H = {a},
H = {b}, or H = {c} and, therefore, not set-inclusion minimal; i.e., there are no more MH models of P .

Also, not all minimal models of a program are MH models, as the following example shows.

Example 5. Some minimal models are not Minimal Hypotheses models. Let P (with no SMs) be

a← k
k ← not t
t← a, b
a← not b
b← not a
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In this case P = P̂ = P̊ and thereforeHyps(P ) = {a, b, t}. Since facts(P̂ ) 6= heads(P̂ ), the hypotheses
set H = ∅ does not yield a MH model. Assuming H = {a} we have P̂ ∪H = P̂ ∪ {a} = {a ←

, k ←} so, P̂ ∪H is the set of facts {a, k} and, therefore, Ma such that M+
a = facts(P̂ ∪H) =

facts(P̂ ∪ {a}) = {a, k}, is a MH model of P . Assuming H = {b} we have P̂ ∪ {b} =

a← k
k ← not t
t← a
b← not a
b

thus facts(P̂ ∪ {b}) = {b} 6= heads(P̂ ∪ {b}) = {a, b, t, k}, which means the set of hypotheses H =
{b} does not yield a MH model of P . Assuming H = {t} we have P̂ ∪ {t} =

t← a, b
b← not a
a← not b
t

thus facts(P̂ ∪ {t}) = {t} 6= heads(P̂ ∪ {t}) = {a, b, t}, which means the set of hypotheses H = {t}
does not yield a MH model of P .
Since we already know that H = {a} yields an MH model Ma with M+

a = {a, k}, there is no point in
trying out any subset H ′ of Hyps(P ) = {a, b, t} such that a ∈ H ′ because any such subset would not
be minimal w.r.t. H = {a}. Let us, therefore, move on to the unique subset left: H = {b, t}. Assuming
H = {b, t} we have ̂P ∪ {b, t} = {t← , b←} thus facts( ̂P ∪ {b, t}) = {b, t} = heads( ̂P ∪ {b, t}),
which means Mb,t such that M+

b,t = facts(P̂ ∪H) = facts( ̂P ∪ {b, t}) = {b, t}, is a MH model of P .
It is important to remark that this program has other classical models, e.g, {a, k}, {b, t}, and {a, t}, but
only the first two are Minimal Hypotheses models — {a, t} is obtainable only via the set of hypotheses
{a, t} which is non-minimal w.r.t. H = {a} that yields the MH model {a, k}.

4.3 Properties

The minimality of H is not sufficient to ensure minimality of M+ = facts(P̂ ∪H) making its checking
explicitly necessary if that is so desired. Minimality of hypotheses is indeed the common practice is science,
not the minimality of their inevitable consequences. To the contrary, the more of these the better because it
signifies a greater predictive power.

In Logic Programming model minimality is a consequence of definitions: the T operator in definite
programs is conducive to defining a least fixed point, a unique minimal model semantics; in SM, though
there may be more than one model, minimality turns out to be a property because of the stability (and its
attendant classical support) requirement; in the WFS, again the existence of a least fixed point operator
affords a minimal (information) model. In abduction too, minimality of consequences is not a caveat, but
rather minimality of hypotheses is, if that even. Hence our approach to LP semantics via MHS is novel
indeed, and insisting instead on positive hypotheses establishes an improved and more general link to
abduction and argumentation [16, 17].

Theorem 1. At least one Minimal Hypotheses model of P complies with the Well-Founded Model. Let
P be an NLP. Then, there is at least one Minimal Hypotheses modelM of P such thatM+ ⊇WFM+(P )
and M+ ⊆WFM+u(P ).

Proof. If facts(P̂ ) = heads(P̂ ) or equivalently, WFMu(P ) = ∅, then MH is a MH model of P given
that H = ∅ because M+

H = facts(P̂ ∪H) = heads(P̂ ∪H) = facts(P̂ ∪ ∅) = heads(P̂ ∪ ∅) =
facts(P̂ ) = heads(P̂ ). On the other hand, if facts(P̂ ) 6= heads(P̂ ), then there is at least one non-empty
set-inclusion minimal set of hypotheses H ⊆ Hyps(P ) such that H ⊇ facts(P ). The corresponding MH

is, by definition, a MH model of P which is guaranteed to comply with M+
H ⊇ WFM+(P ) = facts(P̂ )

and M−H ⊇ not WFM−(P ) = not (HP \M+
H ). ut
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Theorem 2. Minimal Hypotheses semantics guarantees model existence. Let P be an NLP. There is
always, at least, one Minimal Hypotheses model of P .

Proof. It is trivial to see that one can always find a set H ⊆ Hyps(P ) such that M+
H′ = facts(P̂ ∪H ′) =

heads(P̂ ∪H ′) — in the extreme case, H ′ = Hyps(P ). From such H ′ one can always select a minimal
subset H ⊂ H such that M+

H = facts(P̂ ∪H) = heads(P̂ ∪H) still holds. ut

4.4 Relevance

Theorem 3. Minimal Hypotheses semantics enjoys Relevance. Let P be an NLP. Then, by definition 5,
it holds that

(∀M∈ModelsMH(P )a ∈M+)⇔ (∀Ma∈ModelsMH(RelP (a))a ∈M+
a )

Proof. ⇒: Assume ∀M∈ModelsMH(P )a ∈M+. Now we need to prove
∀Ma∈ModelsMH(RelP (a))a ∈M+

a . Assume some Ma ∈ModelsMH(RelP (a)); now we show that assum-
ing a /∈ M+

a leads to an absurdity. Since Ma is a 2-valued complete model of RelP (a) we know that
|Ma| = HRelP (a) hence, if a /∈ Ma, then necessarily not a ∈ M−a . Since P ⊇ RelP (a), by theorem 2
we know that there is some model M ′ of P such that M ′ ⊇Ma, and thus not a ∈M ′− which contradicts
the initial assumption that ∀M∈ModelsMH(P )a ∈ M+. We conclude a /∈ Ma cannot hold, i.e., a ∈ Ma

must hold. Since a ∈ M+ hold for every model M of P , then a ∈ Ma must hold for every model Ma of
RelP (a).
⇐: Assume ∀Ma∈ModelsMH(RelP (a))a ∈M+

a . Now we need to prove
∀M∈ModelsMH(P )a ∈ M+. Let us write P)a( as an abbreviation of P \ RelP (a). We have therefore P =
P)a( ∪ RelP (a). Let us now take P)a( ∪ Ma. We know that every NLP as an MH model, hence every
MH model M of P)a( ∪Ma is such that M ⊇ Ma. Let HMa

denote the Hypotheses set of Ma — i.e.,

M+
a = facts( ̂RelP (a) ∪HMa) = heads( ̂RelP (a) ∪HMa), with HMa = ∅ or non-empty set-inclusion

minimal, as per definition 20. If facts( ̂P ∪HMa
) = heads( ̂P ∪HMa

) then M+ = facts( ̂P ∪HM ) =
heads( ̂P ∪HM ) is an MH model of P with HM = HMa

and, necessarily, M ⊇Ma.
If facts( ̂P ∪HMa) 6= heads( ̂P ∪HMa) then, knowing that every program has a MH model, we can

always find an MH modelM of P)a(∪Ma, withH ′ ⊆ Hyps(P)a(∪Ma), whereM+ = facts(P̂ ∪H ′) =
heads(P̂ ∪H ′). Such M is thus M+ = facts( ̂P ∪HM ) = heads( ̂P ∪HM ) where HM = HMa

∪H ′,
which means M is a MH model of P with M ⊇ Ma. Since every model Ma of RelP (a) is such that
a ∈M+

a , then every model M of P must also be such that a ∈M . ut

4.5 Cumulativity

MH semantics enjoys Cumulativity thus allowing for lemma storing techniques to be used during compu-
tation of answers to queries.

Theorem 4. Minimal Hypotheses semantics enjoys Cumulativity. Let P be an NLP. Then
∀a,b∈HP

(
(∀M∈ModelsMH(P)a ∈M+)⇒

(∀M∈ModelsMH(P)b ∈M+ ⇔ ∀Ma∈ModelsMH(P∪{a})b ∈M+
a )
)

Proof. Assume ∀ a∈HP
M∈ModelsMH(P)

a ∈M+.

⇒: Assume ∀M∈ModelsMH(P)b ∈ M+. Since every MH model M contains a it follows that all such
M are also MH models of P ∪ {a}. Since we assumed b ∈ M as well, and we know that M is a MH
model of P ∪ {a} we conclude b is also in those MH models M of P ∪ {a}. By adding a as a fact we
have necessarily Hyps(P ∪ {a}) ⊆ Hyps(P ) which means that there cannot be more MH models for
P ∪ {a} than for P . Since we already know that for every MH model M of P , M is also a MH model
of P ∪ {a} we must conclude that ∀M∈ModelsMH(P )∃1

M ′∈ModelsMH(P∪{a}) such that M ′+ ⊇ M+. Since
∀M∈ModelsMH(P)b ∈M+ we necessarily conclude ∀Ma∈ModelsMH(P∪{a})b ∈M+

a .
⇐: Assume ∀Ma∈ModelsMH(P∪{a})b ∈M+

a . Since the MH semantics is relevant (theorem 3) if b does
not depend on a then adding a as a fact to P or not has no impact on b’s truth-value, and if b ∈ M+

a then
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b ∈M+ as well. If b does depend on a, which is true in every MH model M of P , then either 1) b depends
positively on a, and in this case since a ∈ M then b ∈ M as well; or 2) b depends negatively on a, and in
this case the lack of a as a fact in P can only contribute, if at all, to make b true in M as well. Then we
conclude ∀M∈ModelsMH(P)b ∈M+. ut

4.6 Complexity

The complexity issues usually relate to a particular set of tasks, namely: 1) knowing if the program has a
model; 2) if it has any model entailing some set of ground literals (a query); 3) if all models entail a set of
literals. In the case of MH semantics, the answer to the first question is an immediate “yes” because MH
semantics guarantees model existence for NLPs; the second and third questions correspond (respectively)
to Brave and Cautious Reasoning, which we now analyse.

Brave Reasoning The complexity of the Brave Reasoning task with MH semantics, i.e., finding an MH
model satisfying some particular set of literals is ΣP

2 -complete.

Theorem 5. Brave Reasoning with MH semantics is ΣP
2 -complete. Let P be an NLP, and Q a set of

literals, or query. Finding an MH model such that M ⊇ Q is a ΣP
2 -complete task.

Proof. To show that finding a MH model M ⊇ Q is ΣP
2 -complete, note that a nondeterministic Turing

machine with access to an NP-complete oracle can solve the problem as follows: nondeterministically guess
a set H of hypotheses (i.e., a subset ofHyps(P )). It remains to check ifH is empty or non-empty minimal
such that M+ = facts(P̂ ∪H) = heads(P̂ ∪H) and M ⊇ Q. Checking that M+ = facts(P̂ ∪H) =
heads(P̂ ∪H) can be done in polynomial time (because computing P̂ ∪H can be done in polynomial time
[2] for whichever P ∪ H), and checking H is empty or non-empty minimal requires a nondeterministic
guess of a strict subset H ′ of H and then a polynomial check if facts(P̂ ∪H ′) = heads(P̂ ∪H ′). ut

Cautious Reasoning Conversely, the Cautious Reasoning, i.e., guaranteeing that every MH model satisfies
some particular set of literals, is ΠP

2 -complete.

Theorem 6. Cautious Reasoning with MH semantics is ΠP
2 -complete. Let P be an NLP, and Q a set of

literals, or query. Guaranteeing that all MH models are such that M ⊇ Q is a ΠP
2 -complete task.

Proof. Cautious Reasoning is the complement of Brave Reasoning, and since the latter is ΣP
2 -complete

(theorem 5), the former must necessarily be ΠP
2 -complete. ut

The set of hypotheses Hyps(P ) is obtained from P̊ which identifies rules that depend on themselves.
The hypotheses are the atoms of DNLs of P̊ , i.e., the “atoms of nots in loop”. A Minimal Hypotheses model
is then obtained from a minimal set of these hypotheses sufficient to determine the 2-valued truth-value of
every literal in the program. The MH semantics imposes no ordering or preference between hypotheses —
only their set-inclusion minimality. For this reason, we can think of the choosing of a set of hypotheses
yielding a MH model as finding a minimal solution to a disjunction problem, where the disjuncts are the
hypotheses. In this sense, it is therefore understandable that the complexity of the reasoning tasks with MH
semantics is in line with that of, e.g., reasoning tasks with SM semantics with Disjunctive Logic Programs,
i.e, ΣP

2 -complete and ΠP
2 -complete.

In abductive reasoning (as well as in Belief Revision) one does not always require minimal solutions.
Likewise, taking a hypotheses assumption based semantic approach, like the one of MH, one may not
require minimality of assumed hypotheses. In such case, we would be under a non-Minimal Hypotheses
semantics, and the complexity classes of the corresponding reasoning task would be one level down in the
Polynomial Hierarchy relatively to the MH semantics, i.e., Brave Reasoning with a non-Minimal Hypothe-
ses semantics would be NP-complete, and Cautious Reasoning would be coNP-complete. We leave the
exploration of such possibilities for future work.
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4.7 Comparisons

As we have seen all stable models are MH models. Since MH models are always guaranteed to exist for
every NLP (cf. theorem 2) and SMs are not, it follows immediately that the Minimal Hypotheses semantics
is a strict model conservative generalization of the Stable Models semantics. The MH models that are stable
models are exactly those in which all rules are classically supported. With this criterion one can conclude
whether some program does not have any stable models. For Normal Logic Programs, the Stable Models
semantics coincides with the Answer-Set semantics (which is a generalization of SMs to Extended Logic
Programs), where the latter is known (cf. [10]) to correspond to Reiter’s default logic. Hence, all Reiter’s
default extensions have a corresponding Minimal Hypotheses model. Also, since Moore’s expansions of
an autoepistemic theory [13] are known to have a one-to-one correspondence with the stable models of
the NLP version of the theory, we conclude that for every such expansion there is a matching Minimal
Hypotheses model for the same NLP.

Disjunctive Logic Programs (DisjLPs — allowing for disjunctions in the heads of rules) can be syn-
tactically transformed into NLPs by applying the Shifting Rule presented in [6] in all possible ways. By
non-deterministically applying such transformation in all possible ways, several SCCs of rules may appear
in the resulting NLP that were not present in the original DisjLP — assigning a meaning to every such
SCC is a distinctive feature of MH semantics, unlike other semantics such as the SMs. This way, the MH
semantics can be defined for DisjLPs as well: the MH models of a DisjLP are the MH models of the NLP
resulting from the transformation via Shifting Rule.

There are other kinds of disjunction, like the one in logic programs with ordered disjunction (LPOD)
[3]. These employ “a new connective called ordered disjunction. The new connective allows to represent
alternative, ranked options for problem solutions in the heads of rules”. As the author of [3] says “the
semantics of logic programs with ordered disjunction is based on a preference relation on answer sets.”
This is different from the semantics assigned by MH since the latter includes no ordering, nor preferences,
in the assumed minimal sets of hypotheses. E.g., in example 1 there is no notion of preference or ordering
amongst candidate models — LPODs would not be the appropriate formalism for such cases. We leave
for future work a thorough comparison of these approaches, namely comparing the semantics of LPODs
against the MH models of LPODs transformed into NLPs (via the Shifting Rule).

The motivation for [21] is similar to our own — to assign a semantics to every NLP — however their
approach is different from ours in the sense that the methods in [21] resort to contrapositive rules allowing
any positive literal in the head to be shifted (by negating it) to the body or any negative literal in the body
to be shifted to the head (by making it positive). This approach considers each rule as a disjunction making
no distinction between such literals occurring in the rule, whether or not they are in loop with the head of
the rule. This permits the shifting operations in [21] to create support for atoms that have no rules in the
original program. E.g.

Example 6. Nearly-Stable Models vs MH models. Take the program P =

a← not b
b← not c
c← not a, not x

According to the shifting operations in [21] this program could be transformed into P ′ =

b← not a
b← not c
x← not a, not c

by shifting a and not b in the first rule, and shifting the not x to the head (becoming positive x) and c
to the body (becoming negative not c) of the third rule thus allowing for {b, x} (which is a stable model
of P ′) to be a nearly stable model of P . In this sense the approach of [21] allows for the violation of the
Closed-World Assumption. This does not happen with our approach: {b, x} is not a Minimal Hypotheses
model simply because since x has no rules in P it cannot be true in any MH model — not x is not a
member of Hyps(P ) (cf. def. 18).
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As shown in theorem 1, at least one MH model of a program complies with its well-founded model,
although not necessarily all MH models do. E.g., the program in Ex. 2 has the two MH models {beach,
mountain, not travel} and {beach, notmountain, travel}, whereas theWFM(P )imposesWFM+(P )
= {beach,mountain},WFMu(P ) = ∅, andWFM−(P ) = {travel}. This is due to the set of Hypothe-
ses Hyps(P ) of P being taken from P̊ (based on the layered support notion) instead of being taken from
P̂ (based on the classical notion of support).

Not all Minimal Hypotheses models are Minimal Models of a program. The rationale behind MH
semantics is minimality of hypotheses, but not necessarily minimality of consequences, the latter being
enforceable, if so desired, as an additional requirement, although at the expense of increased complexity.

The relation between logic programs and argumentation systems has been considered for a long time
now ([7] amongst many others) and we have also taken steps to understand and further that relationship
[16–18]. Dung’s Preferred Extensions [7] are maximal sets of negative hypotheses yielding consistent mod-
els. Preferred Extensions, however, these are not guaranteed to always yield 2-valued complete models. Our
previous approaches [16, 17] to argumentation have already addressed the issue of 2-valued model exis-
tence guarantee, and the MH semantics also solves that problem by virtue of positive, instead of negative,
hypotheses assumption.

5 Conclusions and Future Work

Taking a positive hypotheses assumption approach we defined the 2-valued Minimal Hypotheses semantics
for NLPs that guarantees model existence, enjoys relevance and cumulativity, and is also a model conser-
vative generalization of the SM semantics. Also, by adopting positive hypotheses, we not only generalized
the argumentation based approach of [7], but the resulting MH semantics lends itself naturally to abductive
reasoning, it being understood as hypothesizing plausible reasons sufficient for justifying given observa-
tions or supporting desired goals. We also defined the layered support notion which generalizes the classical
one by recognizing the special role of loops.

For query answering, the MH semantics provides mainly three advantages over the SMs: 1) by enjoy-
ing Relevance top-down query-solving is possible, thereby circumventing whole model computation (and
grounding) which is unavoidable with SMs; 2) by considering only the relevant sub-part of the program
when answering a query it is possible to enact grounding of only those rules, if grounding is really desired,
whereas with SM semantics whole program grounding is, once again, inevitable — grounding is known
to be a major source of computational time consumption; MH semantics, by enjoying Relevance, permits
curbing this task to the minimum sufficient to answer a query; 3) by enjoying Cumulativity, as soon as the
truth-value of a literal is determined in a branch for the top query it can be stored in a table and its value
used to speed up the computations of other branches within the same top query.

Goal-driven abductive reasoning is elegantly modelled by top-down abductive-query-solving. By taking
a hypotheses assumption approach, enjoying Relevance, MH semantics caters well for this convenient
problem representation and reasoning category.

Many applications have been developed using the Stable Model/Answer-set semantics as the underlying
platform. These generally tend to be focused on solving problems that require complete knowledge, such as
search problems where all the knowledge represented is relevant to the solutions. However, as Knowledge
Bases increase in size and complexity, and as merging and updating of KBs becomes more and more
common, e.g. for Semantic Web applications, [11], partial knowledge problem solving importance grows,
as the need to ensure overall consistency of the merged/updated KBs.

The Minimal Hypotheses semantics is intended to, and can be used in all the applications where the
Stable Models/Answer-Sets semantics are themselves used to model KRR and search problems, plus all
applications where query answering (both under a credulous mode of reasoning and under a skeptical one)
is intented, plus all applications where abductive reasoning is needed. The MH semantics aims to be a
sound theoretical platform for 2-valued (possibly abductive) reasoning with logic programs.

Much work still remains to be done that can be rooted in this platform contribution. The general topics
of using non-normal logic programs (allowing for negation, default and/or explicit, in the heads of rules)
for Belief Revision, Updates, Preferences, etc., are per se orthogonal to the semantics issue, and therefore,
all these subjects can now be addressed with Minimal Hypotheses semantics as the underlying platform.
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Importantly, MH can guarantee the liveness of updated and self-updating LP programs such as those of
EVOLP [1] and related applications. The Minimal Hypotheses semantics still has to be thoroughly com-
pared with Revised Stable Models [15], PStable Models [14], and other related semantics.

In summary, we have provided a fresh platform on which to re-examine ever present issues in Logic
Programming and its uses, which purports to provide a natural continuation and improvement of LP devel-
opment.
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Abstract. Every definite logic program has as its meaning a least Herbrand model with respect to
the program-independent ordering ⊆. In the case of normal logic programs there do not exist least
models in general. However, according to a recent approach by Rondogiannis and Wadge, who consider
infinite-valued models, every normal logic program does have a least model with respect to a program-
independent ordering. We show that this approach can be extended to formula-based logic programs
(i.e., finite sets of rules of the form A← φ where A is an atom and φ an arbitrary first-order formula).
We construct for a given program P an interpretation MP and show that it is the least of all models of
P .

Keywords: Logic programming, semantics of programs, negation-as-failure, infinite-valued logics,
set theory

1 Introduction

It is well-known that every definite logic program P has a Herbrand model and the intersection of all its
Herbrand models is also a model of P . We call it the least Herbrand model or the canonical model of P
and constitute that it is the intended meaning of the program. If we consider a normal logic program P it is
more complicated to state the intended meaning of the program because the intersection of all its models is
not necessarily a model. There are many approaches to overcome that problem. The existing approaches are
not purely model-theoretic (i.e., there are normal logic programs that have the same models but different
intended meanings). However, there is a recent purely model-theoretic approach of P. Rondogiannis and
W. Wadge [3]. They prove that every normal logic program has a least infinite-valued model. Their work is
based on an infinite set of truth values, ordered as follows:

F0 < F1 < ... < Fα < ... < 0 < ... < Tα < ... < T1 < T0

Intuitively, F0 and T0 are the classical truth values False and True, 0 is the truth value Undefined and α
is an arbitrary countable ordinal. The considered ordering of the interpretations is a program-independent
ordering on the infinite-valued interpretations and generalizes the classical ordering on the Herbrand inter-
pretations. The intended meaning of a normal logic program is, as in the classical case, stated as the unique
minimal infinite-valued model of P . Furthermore, they show that the 3-valued interpretation that results
from the least infinite-valued model of P by collapsing all true values to True and all false values to False
coincides with the well-founded model of P introduced in [2].
Inspired by [4] we consider in this paper formula-based logic programs. A formula-based logic program
is a finite set of rules of the form A ← φ, where A is an atomic formula and φ is an arbitrary first-order
formula. We show that the construction methods to obtain the least infinite-valued model of a normal logic
program P given in [3] can be adapted to formula-based logic programs. The initial step to carry out this
adaption is the proof of two extension theorems. Informally speaking, these theorems state that a complex
formula shows the same behavior as an atomic formula. While Rondogiannis and Wadge [3] make use of
the fact that the bodies of normal program rules are conjunctions of negative or positive atoms, we instead
make use of one of the extension theorems. The second step to achieve the adaption is the set-theoretical
fact that the least uncountable cardinal ℵ1 is regular (i.e., the limit of a countable sequence of countable
ordinals is in ℵ1). Contrary to the bodies of normal program rules, the bodies of formula-based program
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rules can refer a ground atom to a countably infinite set of ground atoms. This is the reason why we must
use in our approach ℵ1 many iteration steps in the construction of the least model of a given program P
in conjunction with the regularity of ℵ1. In [3] ω many iteration steps in conjunction with the fact that the
limit of a finite sequence of natural numbers is once again a natural number is sufficient to construct the
least model. Towards the end of the paper, we use again the regularity of ℵ1 to show that there is a countable
ordinal δmax with the property that every least model of a formula-based logic-program refers only to truth
values of the form Tα or Fα or 0, where α < δmax. This implies that we only need a very small fragment
of the truth values if we consider the meaning of a formula-based logic program. Finally, we show that
the 3-valued interpretation that results from the least infinite-valued model of a given formula-based logic
program by collapsing all true values to True and all false values to False, is a model of P in the sense
of [2]. But compared to the case of normal logic programs, the collapsed least infinite-valued model of a
formula-based logic program is not a minimal 3-valued model of P in general. However, there is a simple
restriction for the class of formula-based programs such that the collapsed model is minimal in general.
At this point we would like to mention that we did not develop the theory presented in this paper with
respect to applied logic. We have a predominantly theoretical interest in extending the notion of inductive
definition to a wider class of rules.
We make heavy use of ordinal numbers in this paper. Therefore, we included an appendix with a short
introduction to ordinal numbers for those readers who are not familiar with this part of set theory. More-
over, one can find the omitted proofs and a detailed discussion of an example within the appendix. It is
downloadable at:
http://www-ls.informatik.uni-tuebingen.de/luedecke/luedecke.html

2 Infinite-Valued Models

We are interested in logic programs based on a first-order LanguageLwith finitely many predicate symbols,
function symbols, and constants.

Definition 1. The alphabet of L consists of the following symbols, where the numbers n, m, l, s1,...,sn,
r1,...,rm are natural numbers such that n, l, ri ≥ 1 and m, si ≥ 0 hold:

1. Predicate symbols: P1, ..., Pn with assigned arity s1, ..., sn

2. Function symbols: f1, ..., fm with assigned arity r1, ..., rm
3. Constants (abbr.: Con): c1, ..., cl
4. Variables (abbr.: Var): xk provided that k ∈ N
5. Connectives: ∧,∨,¬,∀,∃,⊥,>
6. Punctuation symbols: ’(’, ’)’ and ’,’

The natural numbers n,m, l, s1, ..., sn, r1, ..., rm ∈ N are fixed and the language L only depends on these
numbers. If we consider different languages of this type, we will write Ln,m,l,(si),(ri) instead of L to
prevent confusion. The following definitions depend on L. However, to improve readability, we will not
mention this again.

Definition 2. The set of terms Term is the smallest one satisfying:

1. Constants and variables are in Term.
2. If t1, ..., tri

∈ Term, then fi(t1, ..., tri
) ∈ Term.

Definition 3. The Herbrand universe HU is the set of ground terms (i.e., terms that contain no variables).

Definition 4. The set of formulas Form is the smallest one satisfying:

1. ⊥ and > are elements of Form.
2. If t1, ..., tsk

∈ Term, then Pk(t1, ..., tsk
) ∈ Form.

3. If φ, ψ ∈ Form and v ∈ Var, then ¬(φ), (φ ∧ ψ), (φ ∨ ψ), ∀v(φ), ∃v(φ) ∈ Form.

An atom is a formula only constructed by means of 1.) or 2.) and a ground atom is an atom that contains
no variables.
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Definition 5. The Herbrand base HB is the set of all ground atoms, except ⊥ and >.

Definition 6. A (formula-based) rule is of the form A ← φ where φ is an arbitrary formula and A is an
arbitrary atom provided that A 6= > and A 6=⊥.
A (formula-based) logic program is a finite set of (formula-based) rules. Notice that we write A← instead
of A ← >. Remember A ← φ is called a normal rule (resp. definite rule) if φ is a conjunction of literals
(resp. positive literals). A finite set of normal (resp. definite) rules is a normal (resp. definite) program.

Definition 7. The set of truth values W is given by

W := {〈0, n〉 ; n ∈ ℵ1} ∪ {0} ∪ {〈1, n〉 ; n ∈ ℵ1} .

Additionally, we define a strict linear ordering < on W as follows:

1. 〈0, n〉 < 0 and 0 < 〈1, n〉 for all n ∈ ℵ1

2. 〈w, x〉 < 〈y, z〉 iff
(w = 0 = y and x ∈ z) or (w = 1 = y and z ∈ x) or (w = 0 and y = 1)

We define Fi := 〈0, i〉 and Ti := 〈1, i〉 for all i ∈ ℵ1. Fi is a false value and Ti is a true value. The value 0
is the undefined value. The following summarizes the situation (i ∈ ℵ1):

F0 < F1 < F2 < ... < Fi < ... < 0 < ... < Ti < ... < T2 < T1 < T0

Definition 8. The degree (abbr.: deg) of a truth value is given by deg(0) := ∞, deg(Fα) := α, and
deg(Tα) := α for all α ∈ ℵ1.

Definition 9. An (infinite-valued Herbrand) interpretation I is a function from the Herbrand base HB to
the set of truth values W . A variable assignment h is a mapping from Var to HU .

Definition 10. Let I be an interpretation and w ∈ W be a truth value, then I‖w is defined as the inverse
image of w under I (i.e., I‖w = {A ∈ HB ; I(A) = w}).

Definition 11. Let I and J be interpretations and α ∈ ℵ1. We write I =α J, if for all β ≤ α, I‖Fβ =
J‖Fβ and I‖Tβ = J‖Tβ .

Definition 12. Let I and J be interpretations and α ∈ ℵ1. We write I vα J , if for all β < α, I =β J and
furthermore J‖Fα ⊆ I‖Fα & I‖Tα ⊆ J‖Tα. We write I @α J , if I vα J and I 6=α J .

Now we define a partial ordering v∞ on the set of all interpretations. It is easy to see that this ordering
generalizes the classical partial ordering ⊆ on the set of 2-valued Herbrand interpretations.

Definition 13. Let I and J be interpretations. We write I @∞ J , if there exists an α ∈ ℵ1 such that
I @α J . We write I v∞ J , if I @∞ J or I = J .

Remark 1. To motivate these definitions let us briefly recall the classical 2-valued situation. Therefore let
us pick two (2-valued) Herbrand interpretations I, J ⊆ HB . Considering these, it becomes apparent that
I ⊆ J holds if and only if the set of ground atoms that are false w.r.t. J is a subset of the set of ground
atoms that are false w.r.t. I and the set of ground atoms that are true w.r.t. I is a subset of the set of ground
atoms that are true w.r.t. J .

Definition 14. Let h be a variable assignment. The semantics of terms is given by (with respect to h):

1. JcKh = c if c is a constant.
2. JvKh = h(v) if v is a variable.
3. Jfi(t1, ..., tri)Kh = fi(Jt1Kh, ..., JtriKh) if 1 ≤ i ≤ m and t1, ..., tri ∈ Term.

Before we start to talk about the semantics of formulas, we have to show that every subset of W has a least
upper bound (abbr: sup) and a greatest lower bound (abbr: inf). The proof of the following lemma is left
to the reader. The proof is using the fact that every nonempty subset of ℵ1 has a least element.
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Lemma 1. For every subset M ⊆ W the least upper bound supM and the greatest lower bound infM
exist in W . Moreover, supM ∈ {Tα; α ∈ ℵ1} implies that supM ∈ M and on the other hand infM ∈
{Fα; α ∈ ℵ1} implies that infM ∈M .

Definition 15. Let I be an interpretation and h be a variable assignment. The semantics of formulas is
given by (with respect to I and h):

1. If t1, ..., tsk
∈ Term, then JPk(t1, ..., tsk

)KIh = I (Pk(Jt1Kh, ..., Jtsk
Kh)). Additionally, the semantics

of > and ⊥ is given by J>KIh = T0 and J⊥KIh = F0.
2. If φ, ψ ∈ Form and v an arbitrary variable, then

Jφ ∧ ψKIh = min{JφKIh, JψKIh},

Jφ ∨ ψKIh = max{ JφKIh , JψKIh },

J∃v(φ)KIh = sup{JφKIh[v 7→u]; u ∈ HU},

J∀v(φ)KIh = inf{JφKIh[v 7→u]; u ∈ HU}

and

J¬(φ)KIh =


Tα+1, if JφKIh = Fα

Fα+1, if JφKIh = Tα

0, otherwise
.

Definition 16. Let A ← φ be a rule, P a program and I an interpretation. Then I satisfies A ← φ if for
all variable assignment h the property JAKIh ≥ JφKIh holds. Furthermore, I is a model of P if I satisfies all
rules of P .

Definition 17. Let A← φ be a rule and σ be a variable substitution (i.e., a function from Var to Term with
finite support). Then,Aσ ← φσ is a ground instance of the ruleA← φ ifAσ ∈ HB and all variables in φσ
are in the scope of a quantifier. It is easy to see that that JAσKIh and JφσKIh (with respect to an interpretation
I and a variable assignment h) depend only on I . That is why we write also JAσKI and JφσKI . We denote
the set of all ground instances of a program P with PG.

Example 1. Consider the formula-based program P given by the set of rules

{P (c)←, R(x)← ¬P (x), P (Sx)← ¬R(x), Q← ∀x (P (x))}.

Then it is easy to prove that the Herbrand interpretation I = {P (Snc) 7→ T2n; n ∈ N} ∪ {R(Snc) 7→
F2n+1; n ∈ N} ∪ {Q 7→ Tω} is a model of P . Moreover, using the results of this paper one can show that
it is also the least Herbrand model of P .

Remark 2. Before we proceed we want to give a short informal but intuitive description of the semantics
given above. Let us consider two rabbits named Bugs Bunny and Roger Rabbit. We know about them,
that Bugs Bunny is a grey rabbit and if Roger Rabbit is not a grey rabbit, then he is a white one. This
information can be understood as a normal logic program:

grey(Bugs Bunny)⇐

white(Roger Rabbit)⇐ not grey(Roger Rabbit)

There is no doubt that Bugs Bunny is grey is true because it is a fact. There is also no doubt that every try to
prove that Roger Rabbit is grey will fail. Hence, using the negation-as-failure rule, we can infer that Roger
Rabbit is white is also true. But everybody would agree that there is a difference of quality between the two
statements because negation-as-failure is not a sound inference rule. The approach of [3] suggests that the
ground atom grey(Bugs Bunny) receives the best possible truth value named T0 because it is a fact of the
program. The atom grey(Roger Rabbit) receives the worst possible truth value named F0 because of the
negation-as-failure approach. Hence, using the above semantics for negation, white(Roger Rabbit) receives
only the second best truth value T1.



Every Formula-Based Logic Program Has a Least Infinite-Valued Model 267

3 The Immediate Consequence Operator

Definition 18. Let P be a program, then the immediate consequence operator TP for the program P is
a mapping from and into {I; I is an interpretation}, where TP (I) maps an A ∈ HB to TP (I)(A) :=
sup{JφKI ; A← φ ∈ PG}. (Notice that PG can be infinite and hence we cannot use max instead of sup.)

Definition 19. Let α be an arbitrary countable ordinal. A function T from and into the set of interpretations
is called α-monotonic iff for all interpretations I and J the property I vα J ⇒ T (I) vα T (J) holds.

We will show that TP is α-monotonic. Before we will give the proof of this property, we have to prove the
first extension theorem.

Theorem 1 (Extension Theorem I). Let α be an arbitrary countable ordinal and I , J two interpretations
provided that I vα J . The following properties hold for every formula φ:

1. If F0 ≤ w ≤ Fα and h an assignment, then JφKJh = w ⇒ JφKIh = w.
2. If Tα ≤ w ≤ T0 and h an assignment, then JφKIh = w ⇒ JφKJh = w.
3. If deg(w) < α and h an assignment, then JφKIh = w ⇔ JφKJh = w.

Proof. We show these statements by induction on φ. Let IH(X) be an abbreviation for 1. and 2. and 3.,
where φ is replaced by X (induction hypothesis).
Case 1: φ = > or φ =⊥. In this case 1., 2., and 3. are obviously true.
Case 2: φ = Pk(t1, ..., tsk

). 1., 2., and 3. follow directly from I vα J .
Case 3: φ = ¬(A). We assume that IH(A). We show simultaneously that 1., 2. and 3. also hold. There-
fore, we choose an assignment h and a truth value w such that F0 ≤ w ≤ Fα resp. Tα ≤ w ≤ T0 resp.
deg(w) < α. Assume that JφKJh = w resp. JφKIh = w resp. JφKK1

h = w (where K1 = I and K2 = J or
K1 = J and K2 = I). Using Definition 15 we get that Tα−1 ≤ JAKJh ≤ T0 resp. F0 ≤ JAKIh ≤ Fα−1

resp. deg(JAKK1
h ) < α − 1. Then, from the third part of IH(A), JAKJh = JAKIh resp. JAKIh = JAKJh resp.

JAKK1
h = JAKK2

h . Finally, using Definition 15, we get that JφKIh = w resp. JφKJh = w resp. JφKK2
h = w.

Before we can go on with the next case, we must prove the following technical lemma.

Lemma 2. We use the same assumptions as in Theorem 1. Let I be a set of indices, Ai (i ∈ I) a formula
provided that IH(Ai) and hi (i ∈ I) an assignment. We define infK := inf{JAiKKhi

; i ∈ I} and supK :=
sup{JAiKKhi

; i ∈ I} (where K = I, J). Then the following holds:

1. infJ = Fγ ⇒ infI = Fγ (for all γ ≤ α)
2. infI = Tγ ⇒ infJ = Tγ (for all γ ≤ α)
3. infI = w ⇔ infJ = w (for all w provided that deg(w) < α)
4. supJ = Fγ ⇒ supI = Fγ (for all γ ≤ α)
5. supI = Tγ ⇒ supJ = Tγ (for all γ ≤ α)
6. supI = w ⇔ supJ = w (for all w provided that deg(w) < α)

Proof. 1.: Assume that infJ = Fγ . Using Lemma 1 we get that there exists an i0 such that JAi0KJhi0
= Fγ .

Then, from the first part of IH(Ai0), JAi0KIhi0
= Fγ . This implies that JAi0KIhi0

≤ JAiKIhi
for all i ∈ I.

(Since otherwise we had that there exists a j0 ∈ I such that JAj0KIhj0
< Fγ . Then, using the third part of

IH(Aj0), it would also be JAj0KJhj0
< Fγ . But this contradicts our assumption infJ = Fγ .) Finally, we get

that infI = Fγ .
2.: Assume now, that infI = Tγ . Then Tγ ≤ JAiKIhi

for all i ∈ I. Using part two of IH(Ai), we get that
JAiKIhi

= JAiKJhi
for all i. This implies infJ = Tγ .

3.: Due to 1. and 2., it only remains to show (infJ = Tγ ⇒ infI = Tγ) and (infI = Fγ ⇒ infJ = Fγ)
for γ < α. Assume that infJ = Tγ (where γ < α). Then Tγ ≤ JAiKJhi

for all i ∈ I and this implies, using
the third part of IH(Ai), JAiKJhi

= JAiKIhi
for all i. Finally, we get that infI = Tγ .

For the latter case assume that infI = Fγ (γ < α). Then there exists an i0 such that JAi0KIhi0
= Fγ (Lemma

1). Then, using the third part of IH(Ai0), we get that JAi0KJhi0
= Fγ . This implies that JAi0KJhi0

≤ JAiKJhi
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for all i ∈ I. (Since otherwise we had that there exists a j0 ∈ I such that JAj0KIhj0
< Fγ , see proof of

statement 1.) Finally, we get that infJ = Fγ .
We will not give the proofs of 4., 5., and 6. here, because they are similar to 1., 2., and 3.. ut

Case 4: φ = A ∧ B. Assume that IH(A) and IH(B). Let h be an arbitrary assumption. We define I :=
{1, 2}, h1 := h, h2 := h, A1 := A and A2 := B. Then IH(Ai) for i = 1, 2, JφKJh = min{JAKJh , JBKJh} =
infJ and JφKIh = min{JAKIh, JBKIh} = infI . Then, using 1., 2. and 3. of Lemma 2, we get that 1., 2. and 3.
of Theorem 1 hold.
Case 5: φ = A∨B. Replace min by max and inf by sup in the proof above and use 4., 5. and 6. of Lemma
2 instead of 1., 2. and 3..
Case 6: φ = ∀v(A). Assume that IH(A) and let h be an arbitrary assumption.
We define I := {u; u ∈ HU}, hu := h[v 7→ u] and Au := A for all u ∈ HU . Then IH(Au) for all u ∈ I,
JφKJh = inf{JAKJh[v 7→u]; u ∈ HU} = infJ , and JφKIh = inf{JAKIh[v 7→u]; u ∈ HU} = infI . Then, using 1.,
2. and 3. of Lemma 2, we get that 1., 2. and 3. of Theorem 1 hold.
Case 7: φ = ∃v(A). Replace inf by sup in the proof above and use 4., 5. and 6. of Lemma 2 instead of 1.,
2. and 3.. ut

Lemma 3. The immediate consequence operator TP of a given program P is α-monotonic for all count-
able ordinals α.

Proof. The proof is by transfinite induction on α. Assume the lemma holds for all β < α (induction
hypothesis). We demonstrate that it also holds for α. Let I, J be two interpretations such that I vα J .
Then, using the induction hypothesis, we get that

TP (I) =β TP (J) for all β < α. (1)

It remains to show that TP (I) ‖ Tα ⊆ TP (J) ‖ Tα and that TP (J) ‖ Fα ⊆ TP (I) ‖ Fα. For the
first statement assume that TP (I)(A) = Tα for some A ∈ HB . Then, using Lemma 1, there exists a
ground instance A ← φ of P such that JφKI = Tα. But then, by Theorem 1, JφKJ = Tα. This implies
Tα ≤ TP (J)(A). But this implies Tα = TP (J)(A). (Since Tα < TP (J)(A), using (1), would imply
Tα < TP (I)(A).) For the latter statement assume that TP (J)(A) = Fα for some A ∈ HB . This implies
that JφKJ ≤ Fα for every ground instance A ← φ of P . But then, using again Theorem 1, we get that
JφKI = JφKJ for every ground instance A→ φ of P . Finally, this implies also TP (I)(A) = Fα. ut

Remark 3. The immediate consequence operator TP is not monotonic with respect to v∞. Consider the
program P = {A← ¬A} and the interpretations I1 and I2 given by I1 := {A 7→ F0} and I2 := {A 7→ 0}.
Obviously, I1 @0 I2 and hence I1 v∞ I2. Using Definition 18, we get that TP (I1) = sup{J¬AKI1} = T1
and TP (I2) = sup{J¬AKI2} = 0. This implies TP (I2) @1 TP (I1) (i.e., TP (I1) v∞ TP (I2) does not
hold).

4 Construction of the Minimum Model

In this section we show how to construct the interpretation MP of a given formula-based logic program P .
We will give the proof thatMP is a model of P and that it is the least of all models of P in the next section.
In [3] the authors give a clear informal description of the following construction:
“As a first approximation to MP , we start (...) iterating the TP on ∅ until both the set of atoms that have
a F0 value and the set of atoms having T0 value, stabilize. We keep all these atoms whose values have
stabilized and reset the values of all remaining atoms to the next false value (namely F1). The procedure
is repeated until the F1 and T1 values stabilize, and we reset the remaining atoms to a value equal to F2,
and so on. Since the Herbrand Base of P is countable, there exists a countable ordinal δ for which this
process will not produce any new atoms having Fδ or Tδ values. At this point we stop iteration and reset
all remaining atoms to the value 0.”

Definition 20. Let P be a program, I an interpretation, and α ∈ ℵ1 such that I vα TP (I). We define by
recursion on the ordinal β ∈ Ω the interpretation T β

P,α(I) as follows:
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T 0
P,α(I) := I and if β is a successor ordinal, then T β

P,α := TP (T β−1
P,α ). If 0 < β is a limit ordinal and

A ∈ HB , then

T β
P,α(I)(A) :=


I(A), if deg(I(A)) < α

Tα, if A ∈
⋃

γ∈β T
γ
P,α(I)‖Tα

Fα, if A ∈
⋂

γ∈β T
γ
P,α(I)‖Fα

Fα+1, otherwise

.

Lemma 4. Let P be a program, I an interpretation and α ∈ ℵ1 such that I vα TP (I). Then the following
holds:

1. For all limit ordinals 0 < γ ∈ Ω and all interpretations M the condition ∀β < γ : T β
P,α(I) vα M

implies T γ
P,α(I) vα M .

2. For all β ≤ γ ∈ Ω the property T β
P,α(I) vα T

γ
P,α(I) holds.

Proof. 1.: The proof follows directly from the above definition.
2.: One can prove the second statement with induction, using the assumption I vα TP (I), the fact that TP

is α-monotonic, the fact that vα is transitive and at limit stage the first statement of this lemma. ut

At this point, we have to consider a theorem of Zermelo-Fraenkel axiomatic set theory with the Axiom of
Choice (ZFC). In the case of normal logic programs this theorem is not necessary, because in the bodies of
normal logic programs do not appear “∀” or “∃”. One can find the proof of the theorem in [1].

Definition 21. Let α > 0 be a limit ordinal. We say that an increasing β-sequence (αζ)ζ<β , β limit ordinal,
is cofinal in α if sup{αζ ; ζ < β} = α. Similarly, A ⊆ α is cofinal in α if supA = α. If α is an infinite limit
ordinal, the cofinality of α is cf(α) = “the least limit ordinal β such that there is an increasing β-sequence
(αζ)ζ<β with sup{αζ ; ζ < β} = α”. An infinite cardinal ℵα is regular if cf(ℵα) = ℵα.

Theorem 2. Every cardinal of the form ℵα+1 is regular. Particularly, ℵ1 is regular.

Theorem 3 (Extension Theorem II). Let P be a program, I an interpretation, and α ∈ ℵ1 such that
I vα TP (I). Then for every formula φ ∈ Form and every assignment h the following hold:

1. JφK
T
ℵ1
P,α(I)

h = JφKIh, if deg(JφKIh) < α (C1)

2. JφK
T
ℵ1
P,α(I)

h = Tα, if JφK
T i

P,α(I)

h = Tα for some i ∈ ℵ1 (C2)

3. JφK
T
ℵ1
P,α(I)

h = Fα, if JφK
T i

P,α(I)

h = Fα for all i ∈ ℵ1 (C3)

4. Fα < JφK
T
ℵ1
P,α(I)

h < Tα ⇔ not(C1) and not(C2) and not(C3)

Proof. 1. and 2.: We get this using Lemma 4 and Theorem 1.
3.: We show this by induction on φ. We define Ii := T i

P,α(I) and I∞ := Tℵ1
P,α(I). Moreover, we use

IH(X) as an abbreviation for

“for all assignments g the property ∀i ∈ ℵ1(JXKIi
g = Fα)⇒ JXKI∞g = Fα holds”.

Case 1: φ = Pk(t1, ..., tsk
) or = >,⊥. This follows directly from Definition 20 respectively from Defini-

tion 15.
Case 2: φ = ¬(A). Assuming ∀i ∈ ℵ1: JφKIi

h = Fα we conclude ∀i ∈ ℵ1 : JAKIi

h = Tα−1. Then, by
Theorem 1, we get JAKI∞h = Tα−1 and this implies JφKI∞h = Fα.
Case 3: φ = A∧B or φ = A∨B. The following cases are more general than this case. Therefore, we will
not give a proof here.
Case 4: φ = ∃v(A). We assume that IH(A) and for every i ∈ ℵ1 we assume that JφKIi

h = Fα. This implies
sup{JAKIh[v 7→u]; u ∈ HU} = Fα as well as ∀i ∈ ℵ1∀u ∈ HU : JAKIi

h[v 7→u] ≤ Fα. Now we show by case

distinction that ∀u ∈ HU : JAKI∞h[v 7→u] = JAKIh[v 7→u] and this obviously implies JφKI∞h = Fα. First we con-

sider the case JAKIh[v 7→u] < Fα. Then, using Lemma 4 and Theorem 1, we get that JAKI∞h[v 7→u] = JAKIh[v 7→u].

At least, we consider the other case JAKIh[v 7→u] = Fα. We know that ∀i ∈ ℵ1 : JAKIi

h[v 7→u] ≤ Fα.
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But this implies ∀i ∈ ℵ1 : JAKIi

h[v 7→u] = Fα, since ∃i ∈ ℵ1 : JAKIi

h[v 7→u] < Fα would imply (using
Lemma 4 and Theorem 1) JAKIh[v 7→u] < Fα, which is a contradiction. Finally, we get, by IH(A), that

JAKI∞h = Fα = JAKIh[v 7→u].

Case 5: φ = ∀v(A). We assume that IH(A) and for every i ∈ ℵ1 we assume that JφKIi

h = Fα. Then
∀i ∈ ℵ1 : inf{JAKIi

h[v 7→u]; u ∈ HU} = Fα. This implies, using Lemma 1, ∀i ∈ ℵ1∃u ∈ HU :

JAKIi

h[v 7→u] = Fα. Next we choose for every i ∈ ℵ1 an atom ui ∈ HU with JAKIi

h[v 7→ui]
= Fα (Re-

mark: We do not need the Axiom of Choice because HU is countable). Then, using Lemma 4 and Theorem
1, ∀i ∈ ℵ1∀j ≤ i ∈ ℵ1 : JAKIj

h[v 7→ui]
= Fα . This implies that the mapping

ζ : {ui; i ∈ ℵ1} → ℵ1 ∪ {ℵ1} : u 7→

{
min{j ∈ ℵ1; JAK

Ij

h[v 7→u] 6= Fα}, if min exists

ℵ1, otherwise

has the properties ∀i ∈ ℵ1 : ζ(ui) > i and sup{ζ(ui); i ∈ ℵ1} = ℵ1. We assume now that ∀u ∈ HU∃j ∈
ℵ1 : JAKIj

h[v 7→u] 6= Fα. Then ζ({ui; i ∈ ℵ1}) is a countable subset of ℵ1 and moreover cofinal in ℵ1.
But this is a contradiction to Theorem 2. Therefore we know that there exists an atom u∗ ∈ HU such that
∀i ∈ ℵ1 : JAKIi

h[v 7→u∗] = Fα. Then, using IH(A), we get that JAKI∞h[v 7→u∗] = Fα. This implies JφKI∞h ≤ Fα

and finally, using JφKIh = Fα, Lemma 4 and Theorem 1, we get that JφKI∞h = Fα.

4.:“⇒”: We prove this by the method of contrapositive. We assume that (C1) or (C2) or (C3). Then, using
1., 2., and 3., we get that not(Fα < JφKI∞h < Tα) holds.
“⇐”: We shall first consider the following Lemma.

Lemma 5. Under the same conditions as in Theorem 3 for every formula φ ∈ Form and every assignment
h the following hold:

JφKI∞h = Tα ⇒ JφKIi

h = Tα for some i ∈ ℵ1

Proof. This proof is similar to the proof of Theorem 3 statement 3. (see Appendix). ut

We prove “⇐” also by the method of contrapositive. We assume that Fα < JφKI∞h < Tα does not hold.
We consider the three possible cases deg(JφKI∞h ) < α, JφKI∞h = Fα, and JφKI∞h = Tα. Let us consider the
first case (resp. the second case). Then, using Lemma 4 and Theorem 1, (C1) (resp. (C3)) holds. Now, we
consider the latter case. Using Lemma 5 we get that (C2) holds. Finally, in every case (C1) or (C2) or (C3)
holds. ut

Definition 22. Let α be a countable ordinal and for every γ < α let Iγ be an interpretation such that
∀ζ ≤ γ : Iζ =ζ Iγ . Then the union of the interpretations Iγ (γ < α) is a well-defined interpretation and
given by the following definition:

⊔
γ<α

Iγ (A) :=


Fζ , if ζ < α & Iζ(A) = Fζ

Tζ , if ζ < α & Iζ(A) = Tζ

Fα, otherwise
(A ∈ HB)

Remark 4. Using ∀ζ ≤ γ : Iζ =ζ Iγ it is easy to prove that the union
⊔

γ<α Iγ is a well-defined interpre-
tation. Particularly if α = 0, then the union is equal to the interpretation that maps all atoms of HB to the
truth value F0. This interpretation is sometimes denoted by ∅.

Lemma 6. Let P be a program, α be a countable ordinal and for all γ < α an interpretation Iγ is given
such that ∀ζ < γ : Iζ =ζ Iγ . Then the following holds:

∀γ < α (Iγ vγ+1 TP (Iγ)) ⇒
⊔

γ<α

Iγ vα TP (
⊔

γ<α

Iγ)
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Proof. We assume that
∀γ < α (Iγ vγ+1 TP (Iγ)) . (2)

First, we prove that ∀β < α :
⊔

γ<α Iγ =β TP (
⊔

γ<α Iγ). For all β < α we know that Iβ =β

⊔
γ<α Iγ .

Then, using Lemma 3, ∀β < α : TP (Iβ) =β TP (
⊔

γ<α Iγ). This implies for all β < α the property⊔
γ<α Iγ =β Iβ =(2)

β TP (Iβ) =β TP (
⊔

γ<α Iγ). We know that
⊔

γ<α Iγ does not map to truth values w
such that Fα < w ≤ Tα. And this obviously implies

⊔
γ<α Iγ vα TP (

⊔
γ<α Iγ). ut

Lemma 7. Let P be a program, α a countable ordinal, and I an interpretation. Then the following holds:

I vα TP (I) ⇒ Tℵ1
P,α(I) vα+1 TP (Tℵ1

P,α(I))

Proof. Again, we define Ii := T i
P,α(I), I∞ := Tℵ1

P,α(I). Let us assume that I vα TP (I). First we prove
I∞ vα TP (I∞). Using Lemma 4 we get that ∀γ < ℵ1 : Iγ vα I∞. Then, using Lemma 3, γ ∈ ℵ1 :
Iγ+1 vα TP (I∞). Using again Lemma 4 and the transitivity of vα we get that ∀γ < ℵ1 : Iγ vα TP (I∞).
Then, using the first part of Lemma 4, I∞ vα TP (I∞).
Let us prove now TP (I∞) vα I∞. It remains to show

I∞ ‖ Fα ⊆ TP (I∞) ‖ Fα (3)

as well as
TP (I∞)‖Tα ⊆ I∞‖Tα. (4)

Firstly, let us prove that (3) holds and therefore we assume that I∞(A) = Fα for some A ∈ HB . Then,
using the definition of I∞, we get that for all i ∈ ℵ1 the following holds:

Ii(A) = Fα (5)

Let A ← φ be an arbitrary ground instance of P . We prove now that the property JφKI∞ = JφKI holds.
Then, using (5) and the definition of the immediate consequence operator TP , we get that Fα = I1(A) =
sup{JCKI ; A ← C ∈ PG}. This implies either JφKI < Fα or JφKI = Fα. We consider the first case.
Then, using Theorem 3, we get that JφKI∞ = JφKI . In the latter case, using again (5), we get that for
all i ∈ ℵ1 the property Fα = Ii+1(A) = sup{JCKIi ; A ← C ∈ PG} holds. This obviously implies
∀i ∈ ℵ1 : JφKIi ≤ Fα. Then, using Lemma 4 and Theorem 1, we get that ∀i ∈ ℵ1 : JφKIi = Fα. But then
the third part of Theorem 3 finally implies that JφKI∞ = Fα = JφKI .
Thus the above argumentation implies that for all A ← φ in PG the equation JφKI∞ = JφKI holds. This
implies Fα = I1(A) = sup{JφKI ; A← φ ∈ PG} = sup{JφKI∞ ; A← φ ∈ PG} = TP (I∞)(A).
Secondly, let us prove (4) and therefore we assume now that TP (I∞)(A) = Tα for some A ∈ HB . Then
sup{JφKI∞ ; A ← φ ∈ PG} = Tα. This and Lemma 1 allow us to choose a ground instance A ← φ such
that JφKI∞ = Tα. Then, using Lemma 5, we can choose an ordinal i0 ∈ ℵ1 such that JφKIi0 = Tα. This
implies JAKIi0+1 ≥ Tα. We know Ii0+1 vα TP (I∞) by Lemma 4 and Lemma 3. But then, using Theorem
1 and the assumption of this case, JAKIi0+1 = Tα must hold. Finally, using the second part of Theorem 3,
we get that I∞(A) = Tα.
The argumentation above implies that I∞ =α TP (I∞). We know that I∞ does not map to truth values w
such that Fα+1 < w ≤ Tα+1. And this obviously implies I∞ vα+1 TP (I∞). ut

Definition 23. Let P be a program. We define by recursion on the countable ordinal α the approximant
Mα of P as follows:

Mα :=

T
ℵ1
P,α(

⊔
γ<αMγ), if

∀γ < α∀ζ < γ (Mζ =ζ Mγ) &⊔
γ<αMγ vα TP (

⊔
γ<αMγ)

∅, otherwise

Theorem 4. Let P be a program, then for all α ∈ ℵ1 the following holds:

1. ∀γ < α (Mγ =γ Mα)
2.

⊔
γ<αMγ vα TP (

⊔
γ<αMγ)
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3. Mα = Tℵ1
P,α(

⊔
γ<αMγ)

4. Mα vα+1 TP (Mα)

Proof. We prove this by induction on α. We assume that the theorem holds for all β < α (induction
hypothesis). We prove that it holds also for α. Using the induction hypothesis, we get that for every β < α
the following properties hold ∀γ < β : Mγ =γ Mβ as well as Mβ vβ+1 TP (Mβ). Then, using Lemma
6, we get that

⊔
γ<αMγ vα TP (

⊔
γ<αMγ) (this is 2.). This together with the above definition imply

Mα = Tℵ1
P,α(

⊔
γ<αMγ) (this is 3.). Then, using 2. and 3. and Lemma 7, we get that Mα vα+1 TP (Mα)

(this is 4.). It remains to prove the first statement. We know that for all γ < α the property Mγ =γ⊔
γ′<αMγ′vα

(Lemma 4 & 2.)Tℵ1
P,α(

⊔
γ′<αMγ′) =3. Mα holds. Then, using that vα is stronger than =γ , we

get that 1. also holds. ut

Lemma 8. Let P be a program. Then there exists an ordinal δ ∈ ℵ1 such that

∀γ ≥ δ : Mγ‖Fγ = ∅ and Mγ‖Tγ = ∅. (6)

Proof. We define the subset H∗
B of the Herbrand base HB by H∗

B := {A ∈ HB ; ∃γ ∈ ℵ1 : Mγ(A) ∈
{Fγ , Tγ}}. Then, using part one of Theorem 4, we know that for every A ∈ H∗

B there is exactly one
γA such that MγA

(A) ∈ {FγA
, TγA

}. Now let us define the function ζ by ζ : H∗
B → ℵ1 : A 7→ γA.

We know that H∗
B is countable. This implies that ζ(H∗

B) is also countable. Then, using Theorem 2, we
know that ζ(H∗

B) is not cofinal in ℵ1. This obviously implies that there is an ordinal δ ∈ ℵ1 such that
∀A ∈ H∗

B : ζ(A) < δ. Finally, this ordinal δ satisfies the property (6). ut

Definition 24. Let P be a program. The lemma above justifies the definition δP := min{δ; ∀γ ≥ δ :
Mγ‖Fγ = ∅ and Mγ‖Tγ = ∅} ∈ ℵ1. This ordinal δP is called the depth of the program P .

Definition 25. We define the interpretation MP of a given formula-based logic program P by

MP (A) :=

{
MδP

(A), if deg(MδP
(A)) < δP

0, otherwise
.

5 Properties of the Interpretation MP

Proposition 1. Let P be a program. The interpretation MP is a fixed point of TP (i.e., TP (MP ) = MP ).

Proof. See Theorem 7.1 in [3]. ut

Theorem 5. Let P be a program. The interpretation MP is a model of P .

Proof. See Theorem 7.2 in [3]. ut

Proposition 2. Let P be a program, α a countable ordinal and M an arbitrary model of P . Then the
following holds:

∀β < α (Mβ =β M)⇒Mα vα M

Proof. We assume that ∀β < α (Mβ =β M). Definition 22 implies that⊔
β<α

Mβ vα M . (7)

Now we prove that the following holds:
TP (M) vα M (8)

Using Lemma 3 and the assumption above, we get that ∀β < α (TP (Mβ) =β TP (M)). This the assump-
tion above and the fourth part of Theorem 4 imply that ∀β < α : M =β TP (M). But this, together with
with the fact that M is a model (i.e., M(A) ≥ TP (M)(A) holds for all atoms A ∈ HU ), implies that (8)
holds.
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We finish the proof by induction on the ordinal γ ∈ Ω. Using Lemma 3 and (8), we get that T γ
P,α(

⊔
β<αMβ) vα

M implies T γ+1
P,α (

⊔
β<αMβ) vα M . Using the first part of Lemma 4, we get for every limit ordinal γ that

∀β < γ : T β
P,α(

⊔
β<αMβ) vα M implies T γ

P,α(
⊔

β<αMβ) vα M . Then, using (7) and statement 3. of
Theorem 4, Mα = Tℵ1

P,α(
⊔

β<αMβ) vα M holds. ut

Theorem 6. The interpretationMP of a given program P is the least of all models of P (i.e., for all models
M of P the property MP v∞ M holds).

Proof. Let M be an arbitrary model of P . Without loss of generality, we assume that M 6= MP . Then let
α be the least ordinal such that ∀β < α (MP =β M). This implies also ∀β < α (Mβ =β M). Then, using
Proposition 2, MP =α Mα vα M . The choice of α implies that MP 6=α M . Then we get that MP @α M
and this finally implies MP v∞ M . ut

Corollary 1. Let P be a program. The interpretation MP is the least of all fixed points of TP .

Proof. It is easy to prove that every fixed point of TP is also a model of P . This together with Proposition
1 and Theorem 6 imply Corollary 1. ut

Proposition 3. There is a countable ordinal δ ∈ ℵ1 such that for all programs P of an arbitrary language
Ln,m,l,(si),(ri) the property δP < δ holds. Let δmax be the least ordinal such that the above property holds.

Proof. We know that the set of all signatures 〈n,m, l, (si)1≤i≤n, (ri)1≤i≤m〉 is countable. Additionally,
we know that the set of all programs of a fixed signature is also countable (Remember that a program is
a finite set of rules.). This implies that the set of all programs is countable. Then we get that the image of
the function from the set of all programs to ℵ1 given by P 7→ δP is countable. Then, using Theorem 2,
the image of δ(·) is not cofinal in ℵ1 (i.e., there exists an ordinal δ ∈ ℵ1 such that for all programs P the
property δP < δ holds). ut

Proposition 4. The ordinal δmax is at least ωω .

Proof. Let n > 0 be a natural number. We consider the program Pn consisting of the following rules
(where G,H are predicate symbols, f is a function symbol and c is a constant):

G(x1, ..., xn−1, f(xn))← ¬¬G(x1, ..., xn−1, xn)
For all k provided that 1 ≤ k ≤ n− 1 the rule:
G(x1, ..., xk−1, f(xk), c, ..., c)← ∃xk+1, ..., xnG(x1, ..., xk−1, xk, xk+1, ..., xn)
H ← ∃x1, ..., xnG(x1, ..., xn)

This implies that MPn maps G
(
fk1(c), ..., fkn(c)

)
to FPn−1

m=1 kmωn−m+kn·2 and H to Fωn . ut

At the end of this paper we will prove that the 3-valued interpretation MP,3 that results from the infinite-
valued model MP by collapsing all true values to True (abbr. T ) and all false values to False (abbr. F) is
also a model in the sense of the following semantics:

Definition 26. The semantics of formulas with respect to 3-valued interpretations is defined as in Definition
15 except that J>KIh = T , J⊥KIh = F and

J¬(φ)KIh =


T , if JφKIh = F
F , if JφKIh = T
0, otherwise

.

The Definition 16 is also suitable in the case of 3-valued interpretations. The truth values are ordered as
follows: F < 0 < T
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Proposition 5. Let P be a program and let collapse(·) be the function from W to the set {F , 0, T } given
by Fi 7→ F , 0 7→ 0 and Ti 7→ T . Moreover, let I be an arbitrary interpretation then collapse(I) is the
3-valued interpretation given by collapse(I)(A) := collapse(I(A)) for all A ∈ HB . Then for all formulas
φ and all assignments h the following holds:

collapse(JφKIh) = JφKcollapse(I)
h

Proof. One can prove this by induction on the structure of φ together with Theorem 2. Due to the page
constraints, we present only the most interesting case.
Let us assume that φ = ∀x(ψ) and that the proposition holds forψ. Obviously, the equation collapse(JφKIh) =
collapse(inf{JψKIh[x 7→u]; u ∈ HU}) holds. Now we have to consider the following three possible cases,
where Ic := collapse(I) :
Case 1: inf{JψKIh[x 7→u]; u ∈ HU} = Fα. Then, using Lemma 1, there must be an u′ ∈ HU such

that JψKIh[x 7→u′] = Fα. This implies, using the assumption, that JψKIc

h[x7→u′] = F and hence JφKIc

h =

J∀x(ψ)KIc

h = inf{JψKIc

h[x 7→u]; u ∈ HU} = F = collapse(Fα) = collapse(JφKIh) holds.

Case 2: inf{JψKIh[x 7→u]; u ∈ HU} = Tα. Then, using the assumption, we get that JψKIc

h[x 7→u] = T for

all u ∈ HU and hence JφKIc

h = J∀x(ψ)KIc

h = inf{JψKIc

h[x 7→u]; u ∈ HU} = T = collapse(Tα) =
collapse(JφKIh) holds.
Case 3: inf{JψKIh[x 7→u]; u ∈ HU} = 0. We know that HU is a countable set and hence, using The-
orem 2, we get that there must be an u′ ∈ HU such that JψKIh[x 7→u′] = 0. The assumption implies

that JψKIc

h[x 7→u′] = 0 and 0 ≤ JψKIc

h[x7→u] for all u ∈ HU . Hence we get that JφKIc

h = J∀x(ψ)KIc

h =

inf{JψKIc

h[x 7→u]; u ∈ HU} = 0 = collapse(0) = collapse(JφKIh) holds. ut

Proposition 6. Let P be a formula-based logic program. Then the 3-valued interpretation MP,3 is a 3-
valued model of P .

Proof. We assume that A← φ is a rule of P . Then, for every assignment h, we get that JφKMP,3
h

Proposition 5
=

collapse(JφKMP

h )
Theorem 6
≤ collapse(JAKMP

h ) = JAKMP,3
h holds. ut

Remark 5. The 3-valued model MP,3 is not a minimal model in general. Consider the logic program P =
{P1 ← ¬¬P1}. Then the infinite-valued model MP maps P1 to 0 and this implies MP,3(P1) = 0. But the
(2-valued) interpretation {〈P1,F〉} is a model of P and it is less than MP,3. The ordering on the 3-valued
interpretations is introduced in [2] page 5.

However, Rondogiannis and Wadge prove in [3] that the 3-valued model MP,3 of a given normal program
P is equal to the 3-valued well-founded model of P and hence, using a result of Przymusinski (Theorem
3.1 of [2]), it is a minimal model of P . In the context of formula-based logic programs we can prove
Theorem 7. Before we start with the proof we have to consider the following definition and a lemma that
plays an important role in the proof of the theorem.

Definition 27. The negation degree deg¬(φ) of a formula φ is defined recursively on the structure of φ as
follows:

1. If φ is an atom, then deg¬(φ) := 0.
2. If φ = ψ1 ◦ ψ2, then deg¬(φ) := max{deg¬(ψ1), deg¬(ψ2)}. (◦ ∈ {∨,∧})
3. If φ = �x(ψ), then deg¬(φ) := deg¬(ψ). (� ∈ {∃,∀})

Lemma 9. Let I be an interpretation and γ, ζ ∈ ℵ1 such that for all A ∈ HB the following holds:

I(A) ∈ [F0,Fγ ] ∪ {0} ∪ [Tζ , T0]

Then for all formulas φ such that deg¬(φ) ≤ 1 and all variable assignments h the following holds:

JφKIh ∈

{
[F0,Fγ ] ∪ {0} ∪ [Tζ , T0], if deg¬(φ) = 0
[F0,Fmax{γ,ζ+1}] ∪ {0} ∪ [Tmax{γ+1,ζ}, T0], otherwise
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Proof. We prove this by induction on the structure of φ.
Case 1: φ is an atom. Obviously, if φ = ⊥ or φ = >, then the lemma holds. Otherwise, there is a ground
instance A ∈ HB of φ such that JφKIh = I(A) and the lemma also holds in this case.
Case 2: φ = ψ1 ∨ ψ2 and the lemma holds for ψ1 and ψ2. There is an i ∈ {1, 2} such that Jψ1KIh ≤ JψiKIh
and Jψ2KIh ≤ JψiKIh. Then, using deg¬(ψi) ≤ deg¬(φ) and JφKIh = JψiKIh, we get that the lemma also holds
for φ.
Case 3: φ = ∃x(ψ) and the lemma holds forψ. Then, using Definition 15, we get that JφKIh = sup{JψKIh[x7→u]; u ∈
HU}. Let us assume that deg¬(φ) = 0. Then, using the assumption of this case and deg¬(ψ) ≤ deg¬(φ),
we get that

JψKIh[x 7→u] ∈ [F0,Fγ ] ∪ {0} ∪ [Tζ , T0] for all u ∈ HU . (9)

This implies that the values Fα and Tβ cannot be least upper bounds (for all α > γ and for all β > ζ).
For instance, assume that β > ζ and Tβ is a least upper bound. Then, using statement (9), we get that 0
must be an upper bound, and hence this contradicts the assumption that Tβ is the least upper bound. This
implies JφKIh = sup{JψKIh[x 7→u]; u ∈ HU} ∈ [F0,Fγ ]∪{0}∪ [Tζ , T0] and the lemma holds for φ. Now let
us assume that deg¬(φ) = 1. This implies that JψKIh[x 7→u] ∈ [F0,Fmax{γ,ζ+1}] ∪ {0} ∪ [Tmax{γ+1,ζ}, T0]
for all u ∈ HU . Then, using the same argumentation as above, we get that JφKIh = sup{JψKIh[x 7→u]; u ∈
HU} ∈ [F0,Fmax{γ,ζ+1}] ∪ {0} ∪ [Tmax{γ+1,ζ}, T0] and hence the lemma holds for φ.
Case 4: φ = ¬(ψ) and the lemma holds for ψ. This implies that deg¬(ψ) = 0, and hence JψKIh ∈
[F0,Fγ ]∪{0}∪ [Tζ , T0]. If JψKIh ∈ [F0,Fγ ], then J¬ψKIh ∈ [Tγ+1, T0]. If JψKIh ∈ {0}, then J¬ψKIh ∈ {0}.
If JψKIh ∈ [Tζ , T0], then J¬ψKIh ∈ [F0,Fζ+1]. Hence, the lemma holds also for φ.
We omit the case φ = ψ1 ∧ ψ2 (resp. φ = ∀x(ψ) ), since it is similar to Case 2 (resp. Case 3). ut

Theorem 7. Let P be a formula-based program such that for every rule A ← φ in P the property
deg¬(φ) ≤ 1 holds. Then the 3-valued model MP,3 of the program P is a minimal 3-valued model.

Proof. Let N3 be an arbitrary 3-valued model of the program P , such that N3 is smaller or equal to M3.
This is equivalent to

MP,3‖F ⊆ N3‖F and N3‖T ⊆MP,3‖T . (10)

Now we have to prove thatN3 is equal toMP,3. Note that this holds if and only if both equationsMP,3‖F =
N3‖F and N3‖T = MP,3‖T hold.
Firstly, we prove that N3‖T = MP,3‖T by contradiction. We assume that

MP,3‖T \N3‖T 6= ∅. (11)

We know that MP,3‖T =
⋃

α∈ℵ1
MP ‖Tα and hence, using (11), there must be at least one ordinal α ∈ ℵ1

such that MP ‖Tα \N3‖T 6= ∅. This justifies the definition αmin := min{α ∈ ℵ1; MP ‖Tα \N3‖T 6= ∅}.
Using Theorem 4 we get that Mαmin = Tℵ1

P,αmin
(
⊔

β<αmin
Mβ). To improve readability we define J :=⊔

β<αmin
Mβ . It is obviously that αmin < δP , and hence Definition 25, Theorem 4, and Definition 20 imply

MP ‖Tαmin = MδP
‖Tαmin = Mαmin‖Tαmin =

⋃
γ∈ℵ1

T γ
P,αmin

(J)‖Tαmin . This and the definition of αmin justify
the definition γmin := min{γ ∈ ℵ1; T

γ
P,αmin

(J)‖Tαmin \N3‖T 6= ∅}. From Definition 22 and Definition 20
we infer that 0 < γmin and γmin is not an infinite limit ordinal, hence γmin is a successor ordinal. We assume
that γmin = γ−min + 1. Then, using the definition of αmin and γmin, we get that T γmin−1

P,αmin
(J)‖Tζ ⊆ N3‖T for

all ζ ≤ αmin. Using statement (10) we infer that T γmin−1
P,αmin

(J)‖Fζ ⊆ N3‖F for all ζ < αmin. Hence, the
following definition of the infinite-valued interpretation N is well-defined.

N(A) :=



Fζ , if ζ < αmin & A ∈ T γmin−1
P,αmin

(J)‖Fζ

Fαmin , if A ∈ T γmin−1
P,αmin

(J)‖Fαmin ∩N3‖F
Fαmin+1, if A ∈ N3‖F \

⋃
ζ≤αmin

T γmin−1
P,αmin

(J)‖Fζ

Tζ , if ζ ≤ αmin & A ∈ T γmin−1
P,αmin

(J)‖Tζ

Tαmin+1, if A ∈ N3‖T \
⋃

ζ≤αmin
T γmin−1

P,αmin
(J)‖Tζ

0, otherwise

(for all A ∈ HB)
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It is easy to see that
T γmin−1

P,αmin
(J) vαmin N and that N3 = collapse(N). (12)

Since T γmin
P,αmin

(J)‖Tαmin \N3‖T is not empty, we can pick an A that is contained in this set. Then, together
with Definition 18, we get that Tαmin = T γmin

P,αmin
(J)(A) = TP (T γmin−1

P,αmin
(J))(A) = sup{JφKI ; A ← φ ∈

PG}, where I := T γmin−1
P,αmin

(J). Hence, using Lemma 1, we can pick a rule A ← φ ∈ PG such that
JφKI = Tαmin . Then, using statement (12), Theorem 1, and Proposition 5, we get that JφKN = Tαmin and
JφKN3 = JφKcollapse(N) = collapse(JφKN ) = T . Lastly, the fact that N3 is a model and A ← φ is a ground
instance of P imply that N3(A) = T . But this is a contradiction because we have chosen A to be not
contained in N3‖T . Hence, statement (11) must be wrong (i.e., MP,3‖T = N3‖T ).
Secondly, we show that MP,3‖F = N3‖F . Definition 25 implies that MP,3‖F =

⋃
ζ<δP

MδP
‖Fζ and

MP,3‖T =
⋃

ζ<δP
MδP
‖Tζ . Then, using (10) and the result of the first part of this proof, we get that⋃

ζ<δP
MδP
‖Fζ ⊆ N3‖F and

⋃
ζ<δP

MδP
‖Tζ = N3‖T . Hence, the following definition of the infinite-

valued interpretation N is well-defined and N3 = collapse(N).

N(A) :=


Fζ , if ζ < δP & A ∈MδP

‖Fζ

FδP +1, if A ∈ N3‖F \MP,3‖F
Tζ , if ζ < δP & A ∈MδP

‖Tζ

0, otherwise

(for all A ∈ HB)

Now we are going to prove by transfinite induction on ζ ∈ ℵ1 that T ζ
P,δP +1(MδP

) vδP +1 N . Obvi-
ously, T ζ

P,δP +1(MδP
) =δP

N for all ζ ∈ ℵ1. The Definition of N , Definition 24, and Theorem 4 im-
ply N‖TδP +1 = ∅ = MδP +1‖Tδp+1 = Tℵ1

P,δP +1(MδP
)‖TδP +1 =

⋃
γ<ℵ1

T γ
P,δP +1(MδP

)‖TδP +1. Hence,
T ζ

P,δP +1(MδP
)‖TδP +1 ⊆ N‖TδP +1 for all ζ ∈ ℵ1. It remains to show thatN‖FδP +1 ⊆ T ζ

P,δP +1(MδP
)‖FδP +1

for all ζ ∈ ℵ1.
Case 1: ζ = 0. It is easy to prove (using Theorem 4, the result of the first part of this proof, and
N3‖F ∩N3‖T = ∅) that MδP

‖FδP +1 = HB \ (MP,3‖F ∪MP,3‖T ) ⊇ N3‖F \MP,3‖F = N‖FδP +1.
Case 2: ζ is a successor ordinal and T ζ−1

P,δP +1(MδP
) vδP +1 N . Then, using Definition 20 and Lemma 4,

we get that
TP (T ζ−1

P,δP +1(MδP
)) = T ζ

P,δP +1(MδP
) (13)

and
T ζ

P,δP +1(MδP
)‖Fδp+1 ⊆ T ζ−1

P,δP +1(MδP
)‖FδP +1. (14)

We will prove that T ζ−1
P,δP +1(MδP

)‖FδP +1 \ T ζ
P,δP +1(MδP

)‖Fδp+1 and N‖FδP +1 are disjoint. This, us-
ing T ζ−1

P,δP +1(MδP
) vδP +1 N and statement (14), implies thatN‖FδP +1 ⊆ T ζ

P,δP +1(MδP
)‖FδP +1 and we

have proved this case. Therefore, we choose an arbitraryA ∈ T ζ−1
P,δP +1(MδP

)‖FδP +1\T ζ
P,δP +1(MδP

)‖Fδp+1.
Hence, using Lemma 4, we get that FδP +1 < T ζ

P,δP +1(MδP
)(A). This, together with (13) and Defini-

tion 18, implies that there must be a rule A ← φ ∈ PG such that FδP +1 < JφKI , where I is given by
I := T ζ−1

P,δP +1(MδP
). Then, using the assumption I vδP +1 N and Theorem 1, we get that FδP +1 < JφKN .

We know that for all atoms C ∈ HB the image N(C) is an element of [F0, FδP +1]∪{0}∪ [TδP
, T0]. Then

Lemma 9 and the fact that deg¬(φ) ≤ 1 imply 0 ≤ JφKN . Hence, using Proposition 5, N3 = collapse(N)
and N3 is a model of P , we get that 0 ≤ JφKN3 ≤ N3(A). Finally, this implies A /∈ N3‖F ⊇ N3‖F \
MP,3‖F = N‖Fδp+1.
Case 3: ζ > 0 is a limit ordinal and T γ

P,δP +1(MδP
) vδP +1 N for all γ < ζ. This implies N‖FδP +1 ⊆

T γ
P,δP +1(MδP

)‖FδP +1 for all γ < ζ. Hence, using Definition 20, we get that T ζ
P,δP +1(MδP

)‖FδP +1 =⋂
γ∈ζ T

γ
P,δP +1(MδP

)‖FδP +1 ⊇ N‖FδP +1.
The above transfinite induction shows that N‖FδP +1 ⊆

⋂
ζ∈ℵ1

T ζ
P,δP +1(MδP

)‖FδP +1. Then, using that
MδP +1‖FδP +1 = ∅ and MδP +1‖FδP +1 =

⋂
ζ∈ℵ1

T ζ
P,δP +1(MδP

)‖FδP +1, we get that ∅ = N‖FδP +1 =
N3‖F \MP,3‖F (see definition ofN above). Last of all, using the assumption (10), we get thatMP,3‖F =
N3‖F . ut
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6 Summary and Future Work

We have shown that every formula-based logic program P has a least infinite-valued model MP with re-
spect to the ordering v∞ given on the set of all infinite-valued interpretations. We have presented how to
construct the model MP with the help of the immediate consequence operator TP and have shown that
MP is also the least of all fixed points of the operator TP . Moreover, we have considered the 3-valued
interpretation MP,3 and have proven that it is a 3-valued model of the program P . Furthermore, we have
observed a restricted class of formula-based programs such that the associated 3-valued models are even
minimal models.
There are some aspects of this paper that we feel should be further investigated. Firstly, we believe that
the main results of this work also hold in Zermelo-Fraenkel axiomatic set theory without the Axiom of
Choice (ZF). For instance, we could use the class of all ordinals Ω instead of the cardinal ℵ1 in Theorem
3. Secondly, we have proven that the ordinal δmax is at least ωω , but on the other hand we do not know a
program P such that ωω < δP . So, one could assume that δmax = ωω . Thirdly, the negation-as-failure rule
is sound for MP (respectively, MP,3) when we are dealing with a normal program P . Within the context
of formula-based programs we think it would be fruitful to investigate the rule of definitional reflection
presented in [4] instead of negation-as-failure. Lastly, we believe that the presented theory can be useful
in the areas of databases and data mining. We are looking forward to collaborate with research groups
specializing in these areas.
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Abstract. A grounding of a formula φ over a given finite domain is a ground formula which is equiva-
lent to φ on that domain. Very effective propositional solvers have made grounding-based methods for
problem solving increasingly important, however for realistic problem domains and instances, the size
of groundings is often problematic. A key technique in ground (e.g., SAT) solvers is unit propagation,
which often significantly reduces ground formula size even before search begins. We define a “lifted”
version of unit propagation which may be carried out prior to grounding, and describe integration of
the resulting technique into grounding algorithms. We describe an implementation of the method in a
bottom-up grounder, and an experimental study of its performance.

1 Introduction

Grounding is central in many systems for solving combinatorial problems based on declarative specifica-
tions. In grounding-based systems, a “grounder” combines a problem specification with a problem instance
to produce a ground formula which represents the solutions for the instance. A solution (if there is one) is
obtained by sending this formula to a “ground solver”, such as a SAT solver or propositional answer set
programming (ASP) solver. Many systems have specifications given in extensions or restrictions of clas-
sical first order logic (FO), including: IDP [WMD08c], MXG [Moh04], Enfragmo [ATÜ+10,AWTM11],
ASPPS [ET06], and Kodkod [TJ07]. Specifications for ASP systems, such as DLV [LPF+06] and clingo
[GKK+08], are (extended) normal logic programs under stable model semantics.

Here our focus is grounding specifications in the form of FO formulas. In this setting, formula φ con-
stitutes a specification of a problem (e.g., graph 3-colouring), and a problem instance is a finite structureA
(e.g., a graph). The grounder, roughly, must produce a ground formula ψ which is logically equivalent to φ
over the domain of A. Then ψ can be transformed into a propositional CNF formula, and given as input to
a SAT solver. If a satisfying assignment is found, a solution to A can be constructed from it. ASP systems
use an analogous process.

A “naive” grounding of φ over a finite domain A can be obtained by replacing each sub-formula of
the form ∃xψ(x) with

∨
a∈A ψ(ã), where ã is a constant symbol which denotes domain element a, and

similarly replacing each subformula ∀xψ(x) with a conjunction. For a fixed FO formula φ, this can be
done in time polynomial in |A|. Most grounders use refinements of this method, implemented top-down or
bottom-up, and perform well on simple benchmark problems and small instances. However, as we tackle
more realistic problems with complex specifications and instances having large domains, the groundings
produced can become prohibitively large. This can be the case even when the formulas are “not too hard”.
That is, the system performance is poor because of time spent generating and manipulating this large ground
formula, yet an essentially equivalent but smaller formula can be solved in reasonable time. This work
represents one direction in our group’s efforts to develop techniques which scale effectively to complex
specifications and large instances.

Most SAT solvers begin by executing unit propagation (UP) on the input formula (perhaps with other
“pre-processing”). This initial application of UP often eliminates a large number of variables and clauses,
and is done very fast. However, it may be too late: the system has already spent a good deal of time
generating large but rather uninteresting (parts of) ground formulas, transforming them to CNF, moving
them from the grounder to the SAT solver, building the SAT solver’s data structures, etc. This suggests
trying to execute a process similar to UP before or during grounding.

One version of this idea was introduced in [WMD08b,WMD10]. The method presented there involves
computing a symbolic and incomplete representation of the information that UP could derive, obtained
? This author’s contributions to this paper were made while he was a post-doctoral fellow at SFU.
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from φ alone without reference to a particular instance structure. For brevity, we refer to that method as
GWB, for “Grounding with Bounds”. In [WMD08b,WMD10], the top-down grounder GIDL [WMD08a]
is modified to use this information, and experiments indicate it significantly reduces the size of groundings
without taking unreasonable time.

An alternate approach is to construct a concrete and complete representation of the information that UP
can derive about a grounding of φ over A, and use this information during grounding to reduce grounding
size. This paper presents such a method, which we call lifted unit propagation (LUP). (The authors of the
GWB papers considered this approach also [DW08], but to our knowledge did not implement it or report on
it. The relationship between GWB and LUP is discussed further in Section 7.) The LUP method is roughly
as follows.

1. Modify instance structureA to produce a new (partial) structure which contains information equivalent
to that derived by executing UP on the CNF formula obtained from a grounding of φ over A. We call
this new partial structure the LUP structure for φ and A, denoted LUP(φ,A).

2. Run a modified (top-down or bottom-up) grounding algorithm which takes as input, φ and LUP(φ,A),
and produces a grounding of φ over A.

The modification in step 2 relies on the idea that a tuple in LUP(φ,A) indicates that a particular sub-
formula has the same (known) truth value in every model. Thus, that subformula may be replaced with its
truth value. The CNF formula obtained by grounding over LUP(φ,A) is at most as large as the formula
that results from producing the naive grounding and then executing UP on it. Sometimes it is much smaller
than this, because the grounding method naturally eliminates some autark sub-formulas which UP does not
eliminate, as explained in Sections 3 and 6.

We compute the LUP structure by constructing, from φ, an inductive definition of the relations of
the LUP structure for φ and A (see Section 4). We implemented a semi-naive method for evaluating this
inductive definition, based on relational algebra, within our grounder Enfragmo. (We also computed these
definitions using the ASP grounders gringo and DLV, but these were not faster. )

For top-down grounding (see Section 3), we modify the naive recursive algorithm to check the derived
information in LUP(φ,A) at the time of instantiating each sub-formula of φ. This algorithm is presented
primarily for expository purposes, and is similar to the modified top-down algorithm used for GWB in
GIDL.

For bottom-up grounding (see Section 5), we revise the bottom-up grounding method based on extended
relational algebra described in [MTHM06,PLTG07], which is the basis of grounders our group has been
developing. The change required to ground using LUP(φ,A) is a simple revision to the base case.

In Section 6 we present an experimental evaluation of the performance of our grounder Enfragmo with
LUP. This evaluation is limited by the fact that our LUP implementation does not support specifications
with arithmetic or aggregates, and a shortage of interesting benchmarks which have natural specifications
without these features. Within the limited domains we have tested to date, we found:

1. CNF formulas produced by Enfragmo with LUP are always smaller than the result of running UP on
the CNF formula produced by Enfragmo without LUP, and in some cases much smaller.

2. CNF formulas produced by Enfragmo with LUP are always smaller than the ground formulas produced
by GIDL, with or without GWB turned on.

3. Grounding over LUP(φ,A) is always slower than grounding without, but CNF transformation with
LUP is almost always faster than without.

4. Total solving time for Enfragmo with LUP is sometimes significantly less than that of Enfragmo with-
out LUP, but in other cases is somewhat greater.

5. Enfragmo with LUP and the SAT solver MiniSat always runs faster than the IDP system (GIDL with
ground solver MINISAT(ID)), with or without the GWB method turned on in GIDL.

Determining the extent to which these observations generalize is future work.

2 FO Model Expansion and Grounding

A natural formalization of combinatorial search problems and their specifications is as the logical task of
model expansion (MX) [MT11]. Here, we define MX for the special case of FO. Recall that a structure B
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for vocabulary σ ∪ ε is an expansion of σ-structure A iff A and B have the same domain (A = B), and
interpret their common vocabulary identically, i.e., for each symbol R of σ, RB = RA. Also, if B is an
expansion of σ-structure A, then A is the reduct of B defined by σ.

Definition 1 (Model Expansion for FO).

Given: A FO formula φ on vocabulary σ ∪ ε and a σ-structure A,
Find: an expansion B of A that satisfies φ.

In the present context, the formula φ constitutes a problem specification, the structure A a problem
instance, and expansions of A which satisfy φ are solutions for A. Thus, we call the vocabulary of A, the
instance vocabulary, denoted by σ, and ε the expansion vocabulary. We sometimes say φ is A-satisfiable if
there exists an expansion B of A that satisfies φ.

Example 1. Consider the following formula φ:

∀x[(R(x)∨B(x)∨G(x)) ∧ ¬(R(x)∧B(x)) ∧ ¬(R(x)∧G(x)) ∧ ¬(B(x)∧G(x))]

∧ ∀x∀y[E(x, y) ⊃ (¬(R(x)∧R(y)) ∧ ¬(B(x)∧B(y)) ∧ ¬(G(x)∧G(y)))].

A finite structure A over vocabulary σ = {E}, where E is a binary relation symbol, is a graph. Given
graphA = G = (V ;E), there is an expansion B ofA that satisfies φ, iff G is 3-colourable. So φ constitutes
a specification of the problem of graph 3-colouring. To illustrate:

A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ

An interpretation for the expansion vocabulary ε := {R,B,G} given by structure B is a colouring of G,
and the proper 3-colourings of G are the interpretations of ε in structures B that satisfy φ.

2.1 Grounding for Model Expansion

Given φ and A, we want to produce a CNF formula (for input to a SAT solver), which represents the
solutions to A. We do this in two steps: grounding, followed by transformation to CNF. The grounding
step produces a ground formula ψ which is equivalent to φ over expansions of A. To produce ψ, we bring
domain elements into the syntax by expanding the vocabulary with a new constant symbol for each domain
element. For A, the domain of A, we denote this set of constants by Ã. For each a ∈ A, we write ã for the
corresponding symbol in Ã. We also write ˜̄a, where ā is a tuple.

Definition 2 (Grounding of φ over A). Let φ be a formula of vocabulary σ ∪ ε, A be a finite σ-structure,
and ψ be a ground formula of vocabulary µ, where µ ⊇ σ ∪ ε ∪ Ã. Then ψ is a grounding of φ over A if
and only if:

1. if φ is A-satisfiable then ψ is A-satisfiable;
2. if B is a µ-structure which is an expansion of A and gives Ã the intended interpretation, and B |= ψ,

then B |= φ.

We call ψ a reduced grounding if it contains no symbols of the instance vocabulary σ.

Definition 2 is a slight generalization of that used in [MTHM06,PLTG07], in that it allows ψ to have
vocabulary symbols not in σ∪ε∪Ã. This generalization allows us to apply a Tseitin-style CNF transforma-
tion in such a way that the resulting CNF formula is still a grounding of φ overA. If B is an expansion ofA
satisfying ψ, then the reduct of B defined by σ ∪ ε is an expansion of A that satisfies φ. For the remainder
of the paper, we assume that φ is in negation normal form (NNF), i.e., negations are applied only to atoms.
Any formula may be transformed in linear time to an equivalent formula in NNF.

Algorithm 1 produces the “naive grounding” of φ over A mentioned in the introduction. A substitution
is a set of pairs (x/a), where x is a variable and a a constant symbol. If θ is a substitution, then φ[θ] denotes
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Algorithm 1 Top-Down Naive Grounding of NNF formula φ over A

NaiveGndA(φ, θ)=

8>>>>>>>><>>>>>>>>:

P (x̄)[θ] if φ is an atom P (x̄)

¬P (x̄)[θ] if φ is a negated atom ¬P (x̄)V
i NaiveGndA(ψi, θ) if φ =

V
i ψiW

i NaiveGndA(ψi, θ) if φ =
W
i ψiV

a∈A NaiveGndA(ψ, [θ ∪ (x/ã)]) if φ = ∀x ψW
a∈A NaiveGndA(ψ, [θ ∪ (x/ã)]) if φ = ∃x ψ

the result of substituting constant symbol a for each free occurrence of variable x in φ, for every (x/a)
in θ. We allow conjunction and disjunction to be connectives of arbitrary arity. That is (∧ φ1 φ2 φ3) is a
formula, not just an abbreviation for some parenthesization of (φ1 ∧φ2 ∧φ3). The initial call to Algorithm
1 is NaiveGndA(φ, ∅), where ∅ is the empty substitution.

The ground formula produced by Algorithm 1 is not a grounding of φ over A (according to Definition
2), because it does not take into account the interpretations of σ given by A. To produce a grounding of
φ over A, we may conjoin a set of atoms giving that information. In the remainder of the paper, we write
NaiveGndA(φ) for the result of calling NaiveGndA(φ, ∅) and conjoining ground atoms to it to produce a
grounding of φ over A. We may also produce a reduced grounding from NaiveGndA(φ, ∅) by “evaluating
out” all atoms of the instance vocabulary. The groundings produced by algorithms described later in this
paper can be obtained by simplifying out certain sub-formulas of NaiveGndA(φ).

2.2 Transformation to CNF and Unit Propagation

To transform a ground formula to CNF, we employ the method of Tseitin [Tse68] with two modifications.
The method, usually presented for propositional formulas, involves adding a new atom corresponding to
each sub-formula. Here, we use a version for ground FO formulas, so the resulting CNF formula is also a
ground FO formula, over vocabulary τ = σ∪ε∪ Ã∪ω, where ω is a set of new relation symbols which we
call “Tseitin symbols”. To be precise, ω consists of a new k-ary relation symbol dψe for each subformula
ψ of φ with k free variables. We also formulate the transformation for formulas in which conjunction and
disjunction may have arbitrary arity.

Let γ = NaiveGndA(φ, ∅). Each subformula α of γ is a grounding over A of a substitution instance
ψ(x̄)[θ], of some subformula ψ of φ with free variables x̄. To describe the CNF transformation, it is useful
to think of labelling the subformulas of γ during grounding as follows. If α is a grounding of formula
ψ(x̄)[θ], label α with the ground atom dψe(x̄)[θ]. To minimize notation, we will denote this atom by α̂,
setting α̂ to α if α is an atom. Now, we have for each sub-formula α of the ground formula ψ, a unique
ground atom α̂, and we carry out the Tseitin transformation to CNF using these atoms.

Definition 3. For ground formula ψ, we denote by CNF(ψ) the following set of ground clauses. For each
sub-formula α of ψ of form (∧i αi), include in CNF(ψ) the set of clauses {(¬α̂ ∨ α̂i)} ∪ {(∨i¬α̂i ∨ α̂)},
and similarly for the other connectives.

If ψ is a grounding of φ over A, then CNF(ψ) is also. The models of ψ are exactly the reducts of the
models of CNF(ψ) defined by σ ∪ ε∪ Ã. CNF(ψ) can trivially be viewed as a propositional CNF formula.
This propositional formula can be sent to a SAT solver, and if a satisfying assignment is found, a model of
φ which is an expansion of A can be constructed from it.

Definition 4 (UP(γ)). Let γ be a ground FO formula in CNF. Define UP(γ), the result of applying unit
propagation to γ, to be the fixed point of the following operation:

If γ contains a unit clause (l), delete from each clause of γ every occurrence of ¬l, and delete from
γ every clause containing l.

Now, CNF(NaiveGNDA(φ)) is the result of producing the naive grounding of φ over A, and trans-
forming it to CNF in the standard way, and UP(CNF(NaiveGNDA(φ))) is the formula obtained after
simplifying it by executing unit propagation. These two formulas provide reference points for measuring
the reduction in ground formula size obtained by LUP.
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3 Bound Structures and Top-down Grounding

We present grounding algorithms, in this section and in Section 4, which produce groundings of φ over
a class of partial structures, which we call bound structures, related to A. The structure LUP(φ,A) is
a particular bound structure. In this section, we define partial structures and bound structures, and then
present a top-down grounding algorithm. The formalization of bound structures here, and of LUP(φ,A) in
Section 4, are ours, although a similar formalization was implicit in [DW08].

3.1 Partial Structures and Bound Structures

A relational τ -structure A consists of a domain A together with a relation RA⊂Ak for each k-ary relation
symbol of τ . To talk about partial structures, in which the interpretation of a relation symbol may be only
partially defined, it is convenient to view a structure in terms of the characteristic functions of the relations.
Partial τ -structure A consists of a domain A together with a k-ary function χAR : Ak → {>,⊥,∞}, for
each k-ary relation symbol R of τ . Here, as elsewhere, > denotes true, ⊥ denotes false, and ∞ denotes
undefined. If each of these characteristic functions is total, then A is total. We may sometimes abuse
terminology and call a relation partial, meaning the characteristic function interpreting the relation symbol
in question is partial.

Assume the natural adaptation of standard FO semantics the to the case of partial relations, e.g. with
Kleene’s 3-valued semantics [Kle52]. For any (total) τ -structure B, each τ -sentence φ is either true or false
in B (B |= φ or B 6|= φ), and each τ -formula φ(x̄) with free variables x̄, defines a relation

φB = {ā ∈ A|x̄| : B |= φ(x̄)[x̄/ā]}. (1)

Similarly, for any partial τ -structure, each τ -sentence is either true, false or undetermined in B, and each
τ -formula φ(x̄) with free variables x̄ defines a partial function

χAφ : Ak → {>,⊥,∞}. (2)

In the case χAφ is total, it is the characteristic function of the relation (1).
There is a natural partial order on partial structures for any vocabulary τ , which we may denote by ≤,

where A ≤ B iff A and B agree at all points where they are both defined, and B is defined at every point
A is. If A ≤ B, we may say that B is a strengthening of A. When convenient, if the vocabulary of A is
a proper subset of that of B, we may still call B a strengthening of A, taking A to leave all symbols not
in its vocabulary, completely undefined. We will call B a conservative strengthening of A with respect to
formula φ if B is a strengthening of A and in addition every total structure which is a strengthening of A
and a model of φ is also a strengthening of B. (Intuitively, we could ground φ over B instead of A, and not
lose any intended models.)

The specific structures of interest are over a vocabulary expanding the vocabulary of φ in a certain way.
We will call a vocabulary τ a Tseitin vocabulary for φ if it contains, in addition to the symbols of φ, the set ω
of Tseitin symbols for φ. We call a τ -structure a “Tseitin structure for φ” if the interpretations of the Tseitin
symbols respect the special role of those symbols in the Tseitin transformation. For example, if α is α1∧α2,
then α̂A must be true iff α̂1

A = α̂2
A = true. The vocabulary of the formula CNF(NaiveGndA(φ)) is a

Tseitin vocabulary for φ, and every model of that formula is a Tseitin structure for φ.

Definition 5 (Bound Structures). Let φ be a formula, andA be a structure for a sub-set of the vocabulary
of φ. A bound structure for φ and A is a partial Tseitin structure for φ that is a conservative strengthening
of A with respect to φ.

Intuitively, a bound structure provides a way to represent the information from the instance together
with additional information, including information about the Tseitin symbols in a grounding of φ, that we
may derive (by any means), provided that information does not eliminate any intended models.

Let τ be the minimum vocabulary for bound structures for φ and A. The bound structures for φ and A
with vocabulary τ form a lattice under the partial order ≤, with A the minimum element. The maximum
element is defined exactly for the atoms of CNF(NaiveGndA(φ)) which have the same truth value in
every Tseitin τ -structure that satisfies φ. This is the structure produced by “Most Optimum Propagator” in
[WMD10]).
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Definition 6 (Grounding over a bound structure). Let Â be a bound structure for φ and A. A formula
ψ, over a Tseitin vocabulary for φ which includes Ã, is a grounding of φ over Â iff

1. if there is a total strengthening of Â that satisfies φ, then there is a one that satisfies ψ;
2. if B is a total Tseitin structure for φ which strengthens Â, gives Ã the intended interpretation and

satisfies ψ, then it satisfies φ.

A grounding ψ of φ over Â need not be a grounding of φ over A. If we conjoin with ψ ground atoms
representing the information contained in Â, then we do obtain a grounding of φ over A . In practice, we
send just CNF(ψ) to the SAT solver, and if a satisfying assignment is found, add the missing information
back in at the time we construct a model for φ.

3.2 Top-down Grounding over a Bound Structure

Algorithm 2 produces a grounding of φ over a bound structure Â for A. Gnd and Simpl are defined by
mutual recursion. Gnd performs expansions and substitutions, while Simpl performs lookups in Â to see
if the grounding of a sub-formula may be left out. Eval provides the base cases, evaluating ground atoms
over σ ∪ ε ∪ Ã ∪ ω in Â.

Algorithm 2 Top-Down Grounding over Bound Structure Â for φ and A

GndÂ(φ, θ) =

8>>>>>>>><>>>>>>>>:

EvalÂ(P, θ) φ is an atom P (x̄)

¬EvalÂ(P, θ) φ is a negated atom ¬P (x̄)V
i SimplÂ(ψi, θ) φ =

V
i ψiW

i SimplÂ(ψi, θ) φ =
W
i ψiV

a∈A SimplÂ(ψ, θ ∪ (x/ã)) φ = ∀x ψW
a∈A SimplÂ(ψ, θ ∪ (x/ã)) φ = ∃x ψ

EvalÂ(P, θ) =

8><>:
> Â |= P [θ]

⊥ Â |= ¬P [θ]

P (x̄)[θ] o.w

SimplÂ(ψ, θ) =

8><>:
> Â |= dψe[θ]
⊥ Â |= ¬dψe[θ]
GndÂ(ψ, θ) o.w

The stronger Â is, the smaller the ground formula produced by Algorithm 2. If we set Â to be undefined
everywhere (i.e., to just give the domain), then Algorithm 2 produces NaiveGndA(φ, ∅). If Â is set to A,
we get the reduced grounding obtained by evaluating instance symbols out of NaiveGndA(φ).

Proposition 1. Algorithm 2 produces a grounding of φ over Â.

3.3 Autarkies and Autark Subformulas

In the literature, an autarky [MS85] is informally a “self-sufficient“ model for some clauses which does not
affect the remaining clauses of the formula. An autark subformula is a subformula which is satisfied by an
autarky. To see how an autark subformula may be produced during grounding, let λ = γ1∨γ2 and imagine
that the value of subformula γ1 is true according to our bound structure. Then λ will be true, regardless
of the value of γ2, and the grounder will replace its subformula with its truth value, whereas in the case
of naive grounding, the grounder does not have that information during the grounding. So it generates the
set of clauses for this subformula as: {(¬λ ∨ γ1 ∨ γ2), (¬γ1 ∨ λ), (¬γ2 ∨ λ)}. Now the propagation of the
truth value of λ1 and subsequently λ, results in elimination of all the three clauses, but the set of clauses
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generated for γ2 will remain in the CNF formula. We call γ2 and the clauses made from that subformula
autarkies.

The example suggests that this is a common phenomena and that the number of autarkies might be
quite large in many groundings, as will be seen in Section 6.

4 Lifted Unit Propagation Structures

In this section we define LUP(φ,A), and a method for constructing it.

Definition 7 (LUP(φ,A)). Let Units denote the set of unit clauses that appears during the execution of
UP on CNF(NaiveGndA(φ)). The LUP structure for φ and A is the unique bound structure for φ and A
for which:

χAdψe(ā) =


> dψe(˜̄a) ∈ Units
⊥ ¬dψe(˜̄a) ∈ Units
∞ o.w

(3)

Since Algorithm 2 produces a grounding, according to Definition 6, for any bound structure, it produces
a grounding for φ over LUP(φ,A).

To construct LUP(φ,A), we use an inductive definition obtained from φ. In this inductive definition,
we use distinct vocabulary symbols for the sets of tuples which Â sets to true and false. The algorithm
works based on the notion of True (False) bounds:

Definition 8 (Formula-Bound). A True (resp. False) bound for a subformula ψ(x̄) according to bound
structure Â is the relation denoted by Tψ (resp. Fψ) such that:

1. ā ∈ Tψ ⇔ dψeÂ(ā) = >
2. ā ∈ Fψ ⇔ dψeÂ(ā) = ⊥

Naturally, when dψeÂ(ā) =∞, ā is not contained in either Tψ or Fψ .
The rules of the inductive definition are given in Table 1. These rules rules may be read as rules

of FO(ID), the extension of classical logic with inductive definitions under the well-founded semantics
[VGRS91,DT08], with free variables implicitly universally quantified. The type column indicates the type
of the subformula, and the rules columns identify the rule for this subformula. Given a σ-structure A,
we may evaluate the definitions on A, thus obtaining a set of concrete bounds for the subformulas of
φ. The rules reflect the reasoning that UP can do. For example consider rule (∨iψi) of ↓t for γ(x̄) =
ψ1(x̄1) ∨ · · · ∨ ψN (x̄N ), and for some i ∈ {1, . . . , N}:

Tψi
(x̄i)← Tγ(x̄) ∧

∧
j 6=i

Fψj
(x̄j).

This states that when a tuple ā satisfies γ but falsifies all disjuncts, ψj , of γ except for one, namely ψi, then
it must satisfy ψi. As a starting point, we know the value of the instance predicates, and we also assume
that φ is A-satisfiable.

Example 2. Let φ = ∀x ¬I1(x) ∨ E1(x), σ = {I1, I2}, and A =
(
{1, 2, 3, 4}; IA1 = {1}

)
. The relevant

rules from Table (1) are:

T¬I1(x)∨E1(x)(x)← Tφ

TI1(x)← I1(x)
F¬I1(x)(x)← TI1(x)
TE1(x)(x)← T¬I1(x)∨E1(x)(x) ∧ F¬I1(x)(x)
TE1(x)← TE1(x)(x)

We find that TE1 = {1}; in other words: E1(1) is true in each model of φ expanding A.

Note that this inductive definition is monotone, because φ is in Negation Normal Form (NNF).
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type ↓t rules
(∨iψi) Tψi(x̄i) ← Tγ(x̄) ∧

V
j 6=i Fψj (x̄j), for each i

(∧iψi) Tψi(x̄i) ← Tγ(x̄), for each i
∃y ψ(x̄, y) Tψ(x̄, y) ← Tγ(x̄) ∧ ∀y′ 6=y Fψ(x̄, y′)
∀y ψ(x̄, y) Tψ(x̄, y) ← Tγ(x̄)
P (x̄) TP (x̄) ← Tγ(x̄)
¬P (x̄) FP (x̄) ← Tγ(x̄)

type ↑t rules
(∨iψi) Tγ(x̄) ←

W
i Tψi(x̄i), for each i

(∧iψi) Tγ(x̄) ←
V
i Tψi(x̄i), for each i

∃y ψ(x̄, y) Tγ(x̄) ← ∃y Tψ(x̄, y)
∀y ψ(x̄, y) Tγ(x̄) ← ∀y Tψ(x̄, y)
P (x̄) Tγ(x̄) ← TP (x̄)
¬P (x̄) Tγ(x̄) ← FP (x̄)

type ↓f rules
(∨iψi) Fψi(x̄i) ← Fγ(x̄), for each i
(∧iψi) Fψi(x̄i) ← Fγ(x̄) ∧

V
j 6=i Tψj (x̄j), for each i

∃y ψ(x̄, y) Fψ(x̄, y) ← Fγ(x̄)
∀y ψ(x̄, y) Fψ(x̄, y) ← Fγ(x̄) ∧ ∀y′ 6=y Tψ(x̄, y′)
P (x̄) FP (x̄) ← Fγ(x̄)
¬P (x̄) TP (x̄) ← Fγ(x̄)

type ↑f rules
(∨iψi) Fγ(x̄) ←

V
i Fψi(x̄i), for each i

(∧iψi) Fγ(x̄) ←
W
i Fψi(x̄i), for each i

∃y ψ(x̄, y) Fγ(x̄) ← ∀y Fψ(x̄, y)
∀y ψ(x̄, y) Fγ(x̄) ← ∃y Fψ(x̄, y)
P (x̄) Fγ(x̄) ← FP (x̄)
¬P (x̄) Fγ(x̄) ← TP (x̄)

Table 1: Rules for Bounds Computation

4.1 LUP Structure Computation

Our method for constructing LUP(φ,A) is given in Algorithm 3. Several lines in the algorithm require
explanation. In line 1, the ↓f rules are omitted from the set of constructed rules. Because φ is in NNF, the
↓f rules do not contribute any information to the set of bounds. To see this, observe that every ↓f rule has
an atom of the form Fγ(x̄) in its body. Intuitively, for one of these rules to contribute a defined bound,
certain information must have previously been obtained regarding bounds for its parent. It can be shown,
by induction, that, in every case, the information about a bound inferred by an application of a ↓f rule
must have previously been inferred by a ↑f rule. In line 2 of the algorithm we compute bounds using only
the two sets of rules, ↓t and ↑f . This is justified by the fact that applying {↑t, ↓t, ↑f} to a fixpoint has the
same effect as applying {↓t, ↑f} to a fixpoint and then applying the ↑t rules afterwards. So we postpone
the execution of the ↑t rules to line 7.

Line 3 checks for the case that the definition has no model, which is to say that the rules allow us to
derive that some atom is both in the true bound and the false bound for some subformula. This happens
exactly when UP applied to the naive grounding would detect inconsistency.

Finally, in lines 6 and 7 we throw away the true bounds for all non-atomic subformulas, and then
compute new bounds by evaluating the ↑t rules, taking already computed bounds (with true bounds for
non-atoms set to empty) as the initial bounds in the computation. To see why, observe that the true bounds
computed in line 2 are based on the assumption that φ isA-satisfiable. So dφe is set to true which stops the
top-down bounded grounding algorithm of Section 3.2 from producing a grounding for φ. That is because
the Simpl function, considering the true bound for the φ, simply returns > instead of calling GndÂ(., .)
on subformulas of the φ. This also holds for all the formulas with true-bounds, calculated this way, except
for the atomic formulas. So, we delete these true bounds based on the initial unjustified assumption, and

Algorithm 3 Computation of LUP(φ,A)

1: Construct the rules {↑t, ↓t, ↑f}
2: Compute bounds by evaluating the inductive definition {↓t, ↑f}
3: if Bounds are inconsistent then
4: return “A has no solution”
5: end if
6: Throw away Tψ(x̄) for all non-atomic subformulas ψ(x̄)
7: Compute new bounds by evaluating the inductive definition {↑t}
8: return LUP structure constructed from the computed bounds, according to Definition 8 .
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then construct the correct true bounds by application of the ↑t rules, in line 7. This is the main reason for
postponing the execution of ↑t rules.

5 Bottom-up Grounding over Bound Structures

The grounding algorithm we use in Enfragmo constructs a grounding by a bottom-up process that parallels
database query evaluation, based on an extension of the relational algebra. We give a rough sketch of the
method here: further details can be found in, e.g., [Moh04,PLTG07]. Given a structure (database) A, a
boolean query is a formula φ over the vocabulary of A, and query answering is evaluating whether φ is
true, i.e., A |= φ. In the context of grounding, φ has some additional vocabulary beyond that of A, and
producing a reduced grounding involves evaluating out the instance vocabulary, and producing a ground
formula representing the expansions of A for which φ is true.

For each sub-formula α(x̄) with free variables x̄, we call the set of reduced groundings for α under
all possible ground instantiations of x̄ an answer to α(x̄). We represent answers with tables on which the
extended algebra operates. An X-relation, in databases, is a k-ary relation associated with a k-tuple of
variables X, representing a set of instantiations of the variables of X. Our grounding method uses extended
X-relations, in which each tuple ā is associated with a formula. In particular, if R is the answer to α(x̄),
then R consists of the pairs (ā, α(˜̄a)). Since a sentence has no free variables, the answer to a sentence φ is
a zero-ary extended X-relation, containing a single pair (〈〉, ψ), associating the empty tuple with formula
ψ, which is a reduced grounding of φ.

The relational algebra has operations corresponding to each connective and quantifier in FO: comple-
ment (negation); join (conjunction); union (disjunction), projection (existential quantification); division or
quotient (universal quantification). Each generalizes to extended X-relations. If (ā, α(˜̄a)) ∈ R then we
write δR(ā) = α(˜̄a). For example, the join of extended X-relation R and extended Y -relation S (both
over domain A), denoted R on S, is the extended X ∪ Y -relation {(ā, ψ) | ā : X ∪ Y → A, ā|X ∈
R, ā|Y ∈ S, and ψ = δR(ā|X) ∧ δS(ā|Y )}; It is easy to show that, ifR is an answer to α1(x̄) and S is an
answer to α2(ȳ) (both wrt A), then R on S is an answer to α1(x̄) ∧ α2(ȳ). The analogous property holds
for the other operators.

To ground with this algebra, we define the answer to atomic formula P (x̄) as follows. If P is an instance
predicate, the answer is the set of tuples (ā,>), for ā ∈ PA. If P is an expansion predicate, the answer is
the set of all tuples (ā, P (ā)), for ā a tuple of elements from the domain of A. Then we apply the algebra
inductively, bottom-up, on the structure of the formula. At the top, we obtain the answer to φ, which is a
relation containing only the pair (〈〉, ψ), where ψ is a reduced grounding of φ wrt A.

Example 3. Let σ = {P} and ε = {E}, and let A be a σ-structure with PA = {(1, 2, 3), (3, 4, 5)}. The
following extended relationR is an answer to φ1 ≡ P (x, y, z) ∧ E(x, y) ∧ E(y, z):

x y z ψ

1 2 3 E(1, 2) ∧ E(2, 3)

3 4 5 E(3, 4) ∧ E(4, 5)

Observe that δR(1, 2, 3) = E(1, 2)∧E(2, 3) is a reduced grounding of φ1[(1, 2, 3)] = P (1, 2, 3)∧E(1, 2)∧
E(2, 3), and δR(1, 1, 1) = ⊥ is a reduced grounding of φ1[(1, 1, 1)].

The following extended relation is an answer to φ2 ≡ ∃zφ1:

x y ψ

1 2 E(1, 2) ∧ E(2, 3)

3 4 E(3, 4) ∧ E(4, 5)

Here, E(1, 2)∧E(2, 3) is a reduced grounding of φ2[(1, 2)]. Finally, the following represents an answer to
φ3 ≡ ∃x∃yφ2, where the single formula is a reduced grounding of φ3.

ψ

[E(1, 2) ∧ E(2, 3)] ∨ [E(3, 4) ∧ E(4, 5)]
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To modify the algorithm to ground using LUP(φ,A) we need only change the base case for expansion
predicates. To be precise, if P is an expansion predicate we set the answer to P (x̄) to the set of pairs (ā, ψ)
such that:

ψ =


P (˜̄a) if PLUP(φ,A)(ā) =∞
> if PLUP(φ,A)(ā) = >
⊥ if PLUP(φ,A)(ā) = ⊥.

Observe that bottom-up grounding mimics the second phase of Algorithm 3, i.e., a bottom-up truth
propagation, except that it also propagates the falses. So, for bottom up grounding, we can omit line 7 from
Algorithm 3.

Proposition 2. Let (〈〉, ψ) be the answer to sentence φ wrt A after LUP initialization, then:

GndLUP(φ,A)(φ, ∅) ≡ ψ

where GndLUP(φ,A)(φ, ∅) is the result of top-down grounding Algorithm 2 of φ over LUP structure
LUP(φ,A).

This bottom-up method uses only the reduct of LUP(φ,A) defined by σ ∪ ε ∪ Ã, not the entire LUP
structure.

6 Experimental Evaluation of LUP

In this section we present an empirical study of the effect of LUP on grounding size and on grounding and
solving times. We also compare LUP with GWB in terms of these same measures. The implementation of
LUP is within our bottom-up grounder Enfragmo, as described in this paper, and the implementation of
GWB is in the top-down grounder GIDL, which is described in [WMD08b,WMD10]. GIDL has several
parameters to control the precision of the bounds computation. In our experiments we use the default
settings. We used MINISAT as the ground solver for Enfragmo. GIDL produces an output specifically for
the ground solver MINISAT(ID), and together they form the IDP system [WMD08d].

We report data for instances of three problems: Latin Square Completion, Bounded Spanning Tree
and Sudoku. The instances are latin square.17068* instances of Normal Latin Square Completion, the
104 rand 45 250 * and 104 rand 35 250 * instances of BST, and the ASP contest 2009 instances of Su-
doku from the Asparagus repository3. All experiments were run on a Dell Precision T3400 computer with
a quad-core 2.66GHz Intel Core 2 processor having 4MB cache and 8GB of RAM, running CentOS 5.5
with Linux kernel 2.6.18.

In Tables 2 and 4, columns headed “Literals” or “Clauses” give the number of literals or clauses in
the CNF formula produced by Enfragmo without LUP (our baseline), or these values for other grounding
methods expressed as a percentage of the baseline value. In Tables 3 and 5, all values are times seconds.
All values give are means for the entire collection of instances. Variances are not given, because they are
very small. We split the instances of BST, into two sets, based on the number of nodes (35 or 45), because
these two groups exhibit somewhat different behaviour, but within the groups variances are also small. In
all tables, the minimum (best) values for each row are in bold face type, to highlight the conditions which
gave best performance.

Table 2 compares the sizes of CNF formulas produced by Enfragmo without LUP (the base line) with
the formulas obtained by running UP on the baseline formulas and by running Enfragmo with LUP. Clearly
LUP reduces the size at least as much as UP, and usually reduces the size much more, due to the removal
of autarkies.

Total time for solving a problem instance is composed of grounding time and SAT solving time. Table 3
compares the grounding and SAT solving time with and without LUP bounds. It is evident that the SAT
solving time is always reduced with LUP. This reduction is due to the elimination of the unit clauses and
autark subformulas from the grounding. Autark subformula elimination also affects the time required to
convert the ground formula to CNF which reduces the grounding time, but in some cases the overhead

3 http://asparagus.cs.uni-potsdam.de
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Enfragmo Enfragmo+UP (%) Enfragmo+LUP (%)
Problem Literals Clauses Literals Clauses Literals Clauses

Latin Square 7452400 2514100 0.07 0.07 0.07 0.07
BST 45 22924989 9061818 0.96 0.96 0.24 0.24
BST 35 8662215 3415697 0.95 0.96 0.37 0.37
Sudoku 2875122 981668 0.17 0.18 0.07 0.08

Table 2: Impact of LUP on the size of the grounding. The first two columns give the numbers of literals and
clauses in groundings produced by Enfragmo without LUP (the baseline). The other columns give these
measures for formulas produced by executing UP on the baseline groundings (Enfragmo+UP), and for
groundings produced by Enfragmo with LUP (Enfragmo+LUP), expressed as a fraction baseline values.

Enfragmo Enfragmo with LUP Speed Up Factor
Problem Gnd Solving Total Gnd Solving Total Gnd Solving Total

Latin Square 0.89 1.39 2.28 3.27 0.34 3.61 -2.38 1.05 -1.33
BST 45 6.08 7.56 13.64 2 1.74 3.74 4.07 5.82 9.9
BST 35 2.13 2.14 4.27 1.07 0.46 1.53 1.06 1.68 2.74
Sudoku 0.46 1.12 1.59 2.08 0.26 2.34 -1.62 0.86 -0.76

Table 3: Impact of LUP on reduction in both grounding and (SAT) solving time. Grounding time here
includes LUP computations and CNF generation.

imposed by LUP computation may not be made up for by this reduction. As the table shows, when LUP
outperforms the normal grounding we get factor of 3 speed-ups, whereas when it loses to normal grounding
the slowdown is by a factor of 1.5.

Table 4 compares the size reductions obtained by LUP and by GWB in GIDL. The output of GIDL
contains clauses and rules. The rules are transformed to clauses in (MINISAT(ID)). The measures reported
here are after that transformation. LUP reduces the size much more than GWB, in most of the cases. This
stems from the fact that GIDL’s bound computation does not aim for completeness wrt unit propagation.
This also affects the solving time because the CNF formulas are much smaller with LUP as shown in Ta-
ble 5. Table 5 shows that Enfragmo with LUP and MINISAT is always faster than GIDL with MINISAT(ID)
with or without bounds, and it is in some cases faster than Enfragmo without LUP.

7 Discussion

In the context of grounding-based problem solving, we have described a method we call lifted unit propaga-
tion (LUP) for carrying out a process essentially equivalent to unit propagation before and during ground-
ing. Our experiments indicate that the method can substantially reduce grounding size – even more than
unit propagation itself, and sometimes reduce total solving time as well.

Enfragmo (no LUP) GIDL (no bounds) Enfragmo with LUP GIDL with bounds
Problem Literals Clauses Literals Clauses Literals Clauses Literals Clauses

Latin Square 7452400 2514100 0.74 0.84 0.07 0.07 0.59 0.61
BST 45 22924989 9061818 0.99 1.02 0.24 0.24 0.25 0.24
BST 35 8662215 3415697 1.01 1.04 0.37 0.37 0.39 0.39
Sudoku 2875122 981668 0.56 0.6 0.07 0.08 0.38 0.39

Table 4: Comparison between the effectiveness of LUP and GIDL Bounds on reduction in grounding size.
The columns under Enfragmo show the actual grounding size whereas the other columns show the ratio of
the grounding size relative to that of Enfragmo (without LUP).
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Enfragmo IDP Enfragmo+LUP IDP (Bounds)
Problem Gnd Solving Total Gnd Solving Total Gnd Solving Total Gnd Solving Total

Latin Square 0.89 1.39 2.28 3 4.63 7.63 3.27 0.34 3.61 2.4 3.81 6.21
BST 45 6.08 7.56 13.64 7.25 20.84 28.09 2 1.74 3.74 1.14 4.45 5.59
BST 35 2.13 2.14 4.27 2.63 6.31 8.94 1.07 0.46 1.53 0.67 2.73 3.4
Sudoku 0.46 1.12 1.59 1.81 1.3 3.11 2.08 0.26 2.34 2.85 0.51 2.37

Table 5: Comparison of solving time for Enfragmo and IDP, with and without LUP/bounds.

Our work was motivated by the results of [WMD08b,WMD10], which presented the method we have
referred to as GWB. In GWB, bounds on sub-formulas of the specification formula are computed without
reference to an instance structure, and represented with FO formulas. The grounding algorithm evaluates
instantiations of these bound formulas on the instance structure to determine that certain parts of the naive
grounding may be left out. If the bound formulas exactly represent the information unit propagation can
derive, then LUP and GWB are equivalent (though implemented differently). However, generally the GWB
bounds are weaker than the LUP bounds, for two reasons. First, they must be weaker, because no FO
formula can define the bounds obtainable with respect to an arbitrary instance structure. Second, to make
the implementation in GIDL efficient, the computation of the bounds is heuristically truncated. This led us
to ask how much additional reduction in formula size might be obtained by the complete LUP method, and
whether the LUP computation could be done fast enough for this extra reduction to be useful in practice.

Our experiments with the Enfragmo and GIDL grounders show that, at least for some kinds of problems
and instances, using LUP can produce much smaller groundings than the GWB implementation in GIDL. In
our experiments, the total solving times for Enfragmo with ground solver MINISAT were always less than
those of GIDL with ground solver MINISAT(ID). However, LUP reduced total solving time of Enfragmo
with MINISAT significantly in some cases, and increased it — albeit less significantly — in others. Since
there are many possible improvements of the LUP implementation, the question of whether LUP can be
implemented efficiently enough to be used all the time remains unanswered.

Investigating more efficient ways to do LUP, such as by using better data structures, is a subject for
future work, as is consideration of other approximate methods such, as placing a heuristic time-out on the
LUP structure computation, or dovetailing of the LUP computation with grounding. We also observed that
the much of the reduction in grounding size obtained by LUP is due to identification of autark sub-formulas.
These cannot be eliminated from the naive grounding by unit propagation. Further investigation of the
importance of these in practice is another direction we are pursuing. One more direction we are pursuing
is the study of methods for deriving even stronger information that represented by the LUP structure, to
further reduce ground formula size, and possibly grounding time as well.
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