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Preface

This volume consists of the contributions presented at@tie lhternational Conference on Applications of Declasati
Programming and Knowledge Management (INAP 2011) and ttte\®brkshop on Logic Programming (WLP 2011),
which were held at Hotel Castle Wilheminenberg, Vienna,tAasfrom September 28 to 30, 2011.

INAP is a communicative and dense conference for intensaaidsion of applications of important technologies
around logic programming, constraint problem solving, eladely related computing paradigms. It comprehensively
covers the impact of programmable logic solvers in the ingesociety, its underlying technologies, and leading edge
applications in industry, commerce, government, and salciervices.

The series of workshops on (constraint) logic programmiriggs together researchers interested in logic pro-
gramming, constraint programming, and related areas Biteldises and artificial intelligence. Previous workshops
have been held in Germany, Austria, Switzerland, and Eggrtiing as the annual meeting of the Society of Logic
Programming (GLP, GesellschaitrfLogische Programmierung e.V.).

Following the success of previous occasions, INAP and WLRewles year again jointly organised in order to
promote the cross-fertilisation of ideas and experienoesg researches and students from the different commsinitie
interested in the foundations, applications, and comlanatof high-level, declarative programming languages and
related areas.

Both events received a total of 35 submissions from authbiaountries (Austria, Belgium, Canada, Czech
Republic, Egypt, Finland, France, Germany, India, Itadyah, Lebanon, Portugal, Slovakia, Tunisia, and the United
States). Each submission was assigned to three membeesREtfor reviewing and 27 submissions were accepted for
presentation. Besides technical contributions, the mrogncludes also system descriptions and application paper
More specifically, for INAP, the program comprises nine teéchl contributions, two application papers, and four
system descriptions, whilst the contributions for WLP ciugt six research papers and five system descriptions.
Additionally, the program includes also two invited talkgven by Stefan Szeider and Michael Fink (both from the
Vienna University of Technology, Austria).

In concluding, | would like to thank all authors for their saissions and all members of the program committee,
as well as all additional referees, for the time and effoergpn the careful reviewing of the papers. Furthermore,
special thanks go to the members of the organising committdeannes Oetschjrdy Fihrer, and Eva Nedoma, who
were indispensable towards the realisation of the evest. tua not least, | am grateful to the Kurid@el-Society for
financially supporting the event. Excelsior!

Vienna, September 2011

Hans Tompits, Conference Chair
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The Parameterized Complexity of
Constraint Satisfaction and Reasoning*

Stefan Szeider!

Institute of Information Systems, Vienna University of Technology, A-1040 Vienna, Austria
stefan@szeider.net

Abstract. Parameterized Complexity is a new and increasingly popular theoretical framework for the
analysis and algorithmic solution of NP-hard problems. The framework allows to take structural prop-
erties of problem instances into account and supports a more fine-grained analysis than the traditional
complexity framework. We outline some of the basic concepts of Parameterized Complexity and indi-
cate some recent results on problems arising in Constraint Satisfaction and Reasoning.

1 Introduction

Computer science has been quite successful in devising fast algorithms for important computational tasks,
for instance, to sort a list of items or to match workers to machines. By means of a theoretical analysis
one can guarantee that the algorithm will always find a solution quickly. Such a worst-case performance
guarantee is the ultimate aim of algorithm design. The traditional theory of algorithms and complexity
as developed in the 1960s and 1970s aims at performance guarantees in terms of one dimension only, the
input size of the problem. However, for many important computational problems that arise from real-world
applications the traditional theory cannot give reasonable (i.e., polynomial) performance guarantees. The
traditional theory considers such problems as intractable. Nevertheless, heuristics-based algorithms and
solvers work surprisingly well on real-world instances of such problems. Take for example the satisfiability
problem (SAT) of propositional reasoning. No algorithm is known that can solve a SAT instance on n
variables in 2°(") steps (the widely believed Exponential Time Hypothesis states that such an algorithm is
impossible [23]). On the other hand, state-of-the-art SAT solvers solve routinely instances with hundreds
of thousands of variables in a reasonable amount of time (see e.g., [17]). Hence there is an enormous gap
between theoretical performance guarantees and the empirically observed performance of solvers. This
gap separates theory-oriented and applications-oriented research communities.

Parameterized Complexity is a new theoretical framework for the analysis and algorithmic solution
of NP-hard problems. It offers a great potential for reducing the theory-practice gap. The key idea is to
consider—in addition to the input size—a secondary dimension, the parameter, and to design and analyse
algorithms in this two-dimensional setting. Virtually in every conceivable context we know more about the
input data than just its size in bytes. The second dimension (the parameter) can represent this additional in-
formation. This two-dimensional setting gives raise to a foundational theory of algorithms and complexity
that can be closer to the problems as they appear in the real world.

Parameterized Complexity has been introduced and pioneered by R. Downey and M. R. Fellows [6]
and is receiving growing interest as reflected by the recent publication of two further monographs [10, 30]
and hundreds of research papers (see the references in [6, 10, 30]). In more and more research areas such
as Computational Biology or Computational Geometry the merits of Parameterized Complexity become
apparent (see, e.g., [16,20]).

* Invited talk at INAP 2011/WLP 2011 (The 19th International Conference on Applications of Declarative Program-
ming and Knowledge Management, and The 25th Workshop on Logic Programming). Research supported by the
European Research Council, grant reference 239962 (COMPLEX REASON).



2 Stefan Szeider

2 Parameterized Complexity: Basic Concepts and Definitions

In the following we outline the central concepts of Parameterized Complexity.

An instance of a parameterized problem is a pair (I, k) where I is the main part and k is the parameter;
the latter is usually a non-negative integer. The central notion of the field is fixed-parameter tractability
(FPT) which refers to solvability in time f(k)n¢, where f is some (possibly exponential) function of
the parameter k, c is a constant, and n denotes the size of the instance with respect to some reasonable
encoding. A fixed-parameter tractable problem can therefore be solved in polynomial time for any fixed
value of the parameter, and, importantly, the order of the polynomial does not depend on the parameter. This
is significantly different from problems that can be solved in, say, time n*, which also gives polynomial-
time solvability for each fixed value of k, but since the order of the polynomial depends on & it does not
scale well in k£ and quickly becomes inefficient for small values of k.

Take for example the VERTEX COVER problem: Given a graph and an integer &, the question is whether
there is a set of k vertices such that each edge of the graph has at least one of its ends in this set. The problem
is NP-complete, but fixed-parameter tractable for parameter k. Currently the best known fixed-parameter
algorithm for this problem runs in time of order 1.2738"% + kn [4]. This algorithm is practical for huge
instances as long as the parameter k is below 100. The situation is dramatically different for the INDEPEN-
DENT SET problem, where for a given graph and an integer k it is asked whether there is a set of k vertices
such that no edge joints two vertices in the set. Also this problem is NP-complete, and indeed for traditional
complexity the problems VERTEX COVER and INDEPENDENT SET are essentially the same, as there is a
trivial polynomial-time transformation from one problem to the other (the complement set of a vertex cover
is an independent set and vice versa). However, no fixed-parameter algorithm for INDEPENDENT SET is
known and the Parameterized Complexity of this problem appears to be very different from the complexity
of VERTEX COVER. Theoretical evidence suggests that INDEPENDENT SET cannot be solved significantly
faster than by trying all subsets of size k, which gives a running time of order n*.

The subject of Parameterized Complexity splits into two complementary questions, each with its own
mathematical toolkit and methods:

1. How to design and improve fixed-parameter algorithms for parameterized problems. For this ques-
tion there exists a rich toolkit of algorithmic techniques (see, e.g., [41]).

2. How to gather evidence that a parameterized problem is not fixed-parameter tractable. For this
question a completeness theory has been developed which is similar to the theory of NP-completeness (see,
e.g., [5]) and allows the accumulation of strong theoretical evidence that a parameterized problem is not
fixed-parameter tractable.

3 How to Parameterize?

Most research in Parameterized Complexity considers optimization problems, where the parameter is a
bound on the objective function, also called solution size. For instance, the standard parameter for VERTEX
COVER is the size of the vertex cover we are looking for. However, many problems that arise in Constraint
Satisfaction and Reasoning are not optimization problems, and it seems more natural to consider parameters
that indicate the presence of a “hidden structure” in the problem instance. It is a widely accepted view that
the hidden structure of real-world problem instances is of high significance for empirical problem-hardness.

3.1 Backdoors

If a computational problem is intractable in general, it is a natural question to ask for subproblems for which
the problem is solvable in polynomial-time, and indeed much research has been devoted to this question.
Such tractable subproblems are sometimes called “islands of tractability” or “tractable fragments.” It seems
unlikely that a problem instance originating from a real-world application belongs to one of the known
tractable fragments, but it might be “close” to one. The concept of backdoor sets offers a generic way
to gradually enlarge and extend a tractable subproblem and thus to solve problem instances efficiently if
they are close to a tractable fragment. The size of a smallest backdoor set indicates the distance between
an instance and a tractable fragment. Backdoor sets were introduced in the context of propositional and
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constraint-based reasoning [45] but similar notions can be defined for other reasoning problems. Roughly
speaking, after eliminating the variables of a backdoor set one is left with an instance that belongs to the
tractable subproblem under consideration. The “backdoor approach” to reasoning problems involves two
tasks. The first task is to detect a small backdoor set by a fixed-parameter algorithm, parameterized by the
size of the backdoor set. The second task is to solve the reasoning problem efficiently using the information
provided by the backdoor set.

There are several Parameterized Complexity results on backdoor sets for the SAT problem, including
[31,42,36], but also for problems beyond NP such as Model Counting and QBF-Satisfiability [32,37].
Very recently a backdoor approach has been developed for Answer Set Programming and Abstract Argu-
mentation [9, 34].

3.2 Decompositions

A key technique for coping with hard computational problems is to decompose the problem instance into
small tractable parts, and to reassemble the solutions of the parts to a solution of the entire instance. One
aims at decompositions for which the overall complexity depends on how much the parts overlap, the
“width” of the decomposition. The most popular and widest studied decomposition method is tree de-
composition with the associated parameter treewidth. A recent survey by Hlineny et al. covers several
decomposition methods with particular focus on fixed-parameter tractability [22].

Recent results on the Parameterized Complexity of reasoning problems with respect to decomposi-
tion width include results on Disjunctive Logic Programming and Answer-Set Programming with weight
constraints [18,35], Abductive Reasoning [19], Satisfiability and Propositional Model Counting [39, 33],
Constraint Satisfaction and Global Constraints [40, 38], and Abstract and Value-Based Argumentation [7,
24].

3.3 Locality

Practical algorithms for hard reasoning problems are often based on local search techniques. The basic idea
is to start with an arbitrary candidate solution and to try to improve it step by step, at each step moving from
one candidate solution to a better “neighbor” candidate solution. It would provide an enormous speed-up if
one could perform k elementary steps of local search efficiently in one “giant” k-step. Such a giant k-step
also decreases the probability of getting stuck at a poor local optimum. However, the obvious strategy for
performing one giant k-step requires time of order N* (assuming a candidate solution has N neighbour
solutions), which is impractical already for very small values of & since typically N is related to the input
size. A challenging objective is the design of fixed-parameter algorithms (with respect to parameter k) that
compute a giant k-step. Recent work on parameterized local search includes the problem of minimizing
the Hamming weight of satisfying assignments for Boolean CSP [25], and for the MAX SAT problem [44].

Local consistency is a further form of locality that plays an important role in constraint satisfaction and
is one of the oldest and most fundamental concepts of in this area. It can be traced back to Montanari’s fa-
mous 1974 paper [29]. If a constraint network is locally consistent, then consistent instantiations to a small
number of variables can be consistently extended to any further variable. Hence local consistency avoids
certain dead-ends in the search tree, in some cases it even guarantees backtrack-free search [1, 13]. The
simplest and most widely used form of local consistency is arc-consistency, introduced by Mackworth [26],
and later generalized to k-consistency by Freuder [12]. A constraint network is k-consistent if each consis-
tent assignment to k£ — 1 variables can be consistently extended to any further k-th variable. It is a natural
question to ask for the Parameterized Complexity of checking whether a constraint network is k-consistent,
taking k as the parameter. This question has been subject to a recent study [15].

3.4 Above or Below Guaranteed Bounds

For some optimization problems that arise in constraint satisfaction and reasoning, the standard parameter
(solution size) is not a very useful one. Take for instance the problem MAX SAT. The standard parameter
is the number of satisfied clauses. However, it is well-known that one can always satisfy at least half of the
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clauses. Hence, if we are given m clauses, and if we want to satisfy at least k of them, then the answer is
clearly yes if & < m/2. On the other hand, if & > m/2 then m < 2k, hence the size of the given formula
is bounded in terms of the parameter k, and thus can be trivially solved by brute force in time that only
depends on k. Less trivial is the question of whether we can satisfy at least m/2 + k clauses, where k
is the parameter. Such a problem is called parameterized above a guaranteed value [27,28]. Over the
last few years, several variants of MAX SAT but also optimization problems regarding ordering constraints
have been studied, parameterized above a guaranteed value. A recent survey by Gutin and Yeo covers these
results [21].

4 Kernelization: Preprocessing with Guarantee

Preprocessing and data reduction are powerful ingredients of virtually every practical solver. Before per-
forming a computationally expensive case distinction, it seems always better to seek for a “safe step” that
simplifies the instance, and to preprocess. Indeed, the success of practical solvers relies often on powerful
preprocessing techniques. However, preprocessing has been neglected by traditional complexity theory:
if we measure the complexity of a problem just in terms of the input size n, then reducing the size from
n to n — 1 in polynomial time yields a polynomial-time algorithm for the problem as we can iterate the
reduction [8]. Hence it does not make much sense to study preprocessing for NP-hard problems in the
traditional one-dimensional framework. However, the notion of “kernelization”, a key concept of Parame-
terized Complexity provides the means for studying preprocessing, since the impact of preprocessing can
measured in terms of the parameter, not the size of the input. When a problem is fixed-parameter tractable
then each instance (I, k) can be reduced in polynomial time to an equivalent instance (I’ k), the problem
kernel, where k' < k and the size of I’ is bounded by a function of k. The smaller the kernel, the more
efficient the fixed-parameter algorithm. For a parameterized problem it is therefore interesting to know
whether it admits a polynomial kernel or not.

Several optimization problems, such as VERTEX COVER and FEEDBACK VERTEX SET admit polyno-
mial kernels with respect to the standard parameter [4, 3]. However, it turns out that many fixed-parameter
tractable problems in the areas of Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic
and Bayesian Reasoning do not have polynomial kernels unless the Polynomial Hierarchy collapses to its
third level [43]. Such super-polynomial kernel lower bounds can be obtained by means of recent tools [2,
11]. A positive exception is the consistency problem for certain global constraint, parameterized by the
number of gaps in the domains of variables, which admits a polynomial kernel [14].

5 Conclusion

Over the last decade, Parameterized Complexity has become an important field of research in Algorithms
and Complexity. It allows a more fine-grained complexity analysis than the traditional theory as it allows
to take structural aspects of problem instances into account. In this extended abstract we have outlined
the basic concepts of Parameterized Complexity and indicated some recent results on the Parameterized
Complexity of problems arising in Constraint Satisfaction an Reasoning.
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Multi-Context Systems (MCS) evolved from seminal work by John McCarthy on contextual reasoning [22],
who proposed to consider contexts as abstract objects and formulas to be asserted wrt. such a context.
Taking a slightly different point of view, called ‘compose-and-conquer’, Fausto Giunchiglia and colleagues
started to formalize contextual reasoning considering ‘context’ as a local theory of the world within a
network of relations with other local theories [19]. The resulting MCS framework [18] allows to model the
information exchange between individual knowledge bases, termed contexts, via so-called bridge rules,
i.e., rules that represent specific relations between local theories.

The initial MCS formalism, however, required local theories to be represented homogeneously in a
monotonic logic, which soon deemed a too restrictive setting. Further developments [20, 24, 6] surpassed
these limitations allowing, for instance, for heterogenous but monotonic MCS [20], or for nonmonotonic
MCS over knowledge bases represented in Default Logic [6]. In its most recent form, nonmonotonic MCS
by Brewka and Eiter [7] generalize in both aspects, interlinking heterogeneous, possibly nonmonotonic
knowledge bases through (nonmonotonic) bridge rules. As they provide a principled means to integrate
bodies of knowledge formalized by different groups of people without sharing a ‘universal’ knowledge
representation language, nonmonotonic MCS have become a versatile framework in addressing challenges
of modern knowledge representation and reasoning [9].

This talk will give a brief overview of Nonomonotonic Multi-Context Systems, before more recent
developments are addressed. Syntactically, an MCS is of a collection of contexts, each consisting of a
‘logic’, a knowledge base, and a set of bridge rules. The notion of logic used here is an abstract way to
specify a context formalism in terms of a set of well-formed knowledge bases, a set of possible belief sets,
and a so-called acceptability function which assigns to every knowledge base a set of acceptable belief sets.
Semantics is given to an MCS by means of belief states, i.e., a sequence of belief sets, one for each context.
Intuitively, such a belief state is considered a ‘model’ of the system if it is in equilibrium. For this, each
belief set must be acceptable for the respective context, given its knowledge base and the bridge rules that
“fire’ wrt. the belief state under consideration.

An important aspect for the realization of MCS is the availability of a solver to compute equilibria. In
contrast to most traditional KR systems, for many practically relevant scenarios, the evaluation of an MCS
has to deal with distributed sources of knowledge. We will sketch the principles of a distributed evaluation
algorithm [11, 3], computing so-called partial equilibria, which has been developed and implemented [4]
at TU Wien. A further enhancement of the formalism and its evaluation algorithm are relational MCS [16],
i.e., an extension towards variables and aggregates in bridge rules.

An MCS which does not have an equilibrium is inconsistent—an undesirable state of affairs for most
application scenarios. The goal of inconsistency management techniques for MCS [15, 5] is to provide
means, like for instance, diagnoses and explanations, in order to analyze and eventually resolve such sit-
uations. Investigations on making MCS more robust towards inconsistency recently lead to an innovative,
more general advancement of the formalism: while originally bridge rules can only add information to a
context, managed MCS [10] allow arbitrary operations to be defined (e.g., deletion or revision operators).

The aim of this research, and other ongoing and future work that will be pointed to during this talk, is to
underpin and enhance the MCS formalism as to provide the basis of an efficient platform for (distributed)
nonmonotonic problem solving on top of heterogeneous distributed knowledge sources.

* This research is partially supported by Austrian Science Fund (FWF) grant P20841, Vienna Science and Technology
Fund (WWTF) grant ICT08-020, and the FP7 ICT Project Ontorule (FP7 231875).
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Abstract. In order to give appropriate semantics to qualitative conditionals of the form if A then nor-
mally B, ordinal conditional functions (OCFs) ranking the possible worlds according to their degree of
plausibility can be used. An OCF accepting all conditionals of a knowledge base R can be characterized
as the solution of a constraint satisfaction problem. We present a high-level, declarative approach using
constraint logic programming techniques for solving this constraint satisfaction problem. In particular,
the approach developed here supports the generation of all minimal solutions; these minimal solutions
are of special interest as they provide a basis for model-based inference from R.

1 Introduction

In knowledge representation, rules play a prominent role. Default rules of the form If A then normally B are
being investigated in nonmonotonic reasoning, and various semantical approaches have been proposed for
such rules. Since it is not possible to assign a simple Boolean truth value to such default rules, a semantical
approach is to define when a rational agent accepts such a rule. We could say that an agent accepts the
rule Birds normally fly if she considers a world with a flying bird to be less surprising than a world with a
nonflying bird. At the same time, the agent can also accept the rule Penguin birds normally do not fly; this
is the case if she considers a world with a nonflying penguin bird to be less surprising than a world with a
flying penguin bird.

The informal notions just used can be made precise by formalizing the underlying concepts like default
rules, epistemic state of an agent, and the acceptance relation between epistemic states and default rules. In
the following, we deal with qualitative default rules and a corresponding semantics modelling the epistemic
state of an agent. While a full epistemic state could compare possible worlds according to their possibility,
their probability, their degree of plausibility, etc. (cf. [18,9, 10]), we will use ordinal conditional functions
(OCFs), which are also called ranking functions [18]. To each possible world w, an OCF & assigns a natural
number x(w) indicating its degree of surprise: The higher x(w), the greater is the surprise for observing w.

In [12, 13] a criterion when a ranking function respects the conditional structure of a set R of condition-
als is defined, leading to the notion of c-representation for R, and it is argued that ranking functions defined
by c-representations are of particular interest for model-based inference. In [3] a system that computes a
c-representation for any such R that is consistent is described, but this c-representation may not be mini-
mal. An algorithm for computing a minimal ranking function is given in [5], but this algorithm fails to find
all minimal ranking functions if there is more than one minimal one. In [15] an extension of that algorithm
being able to compute all minimal c-representations for R is presented. The algorithm developed in [15]
uses a non-declarative approach and is implemented in an imperative programming language. While the
problem of specifying all c-representations for R is formalized as an abstract, problem-oriented constraint
satisfaction problem CR(R) in [2], no solving method is given there.

In this paper, we present a high-level, declarative approach using constraint logic programming tech-
niques for solving the constraint satisfaction problem CR(R) for any consistent R. In particular, the ap-
proach developed here supports the generation of all minimal solutions; these minimal solutions are of
special interest as they provide a preferred basis for model-based inference from R.

The rest of this paper is organized as follows: After recalling the formal background of conditional
logics as itis given in [1] and as far as it is needed here (Section 2), we elaborate the birds-penguins scenario

The research reported here was partially supported by the Deutsche Forschungsgemeinschaft — DFG (grants BE
1700/7-2 and KE 1413/2-2).
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sketched above as an illustration for a conditional knowledge base and its semantics in Section 3. The
definition of the constraint satisfaction problem CR(R) and its solution set denoting all c-representations
for R is given in Sec. 4. In Section 5, a declarative, high-level CLP program solving CR(R) is developed,
observing the objective of being as close as possible to CR(R), and its realization in Prolog is described
in detail; in Section 6, it is evaluated with respect to a series of some first example applications. Section 7
concludes the paper and points out further work.

2 Background

We start with a propositional language £, generated by a finite set X of atoms a, b, ¢, . . .. The formulas of
L will be denoted by uppercase Roman letters A, B, C, .. .. For conciseness of notation, we will omit the
logical and-connective, writing AB instead of A A B, and overlining formulas will indicate negation, i.e.
A means —A. Let §2 denote the set of possible worlds over £; §2 will be taken here simply as the set of all
propositional interpretations over £ and can be identified with the set of all complete conjunctions over 2.
For w € 2, w = A means that the propositional formula A € £ holds in the possible world w.

By introducing a new binary operator |, we obtain the set (£ | £) = {(B|A) | A, B € L} of condi-
tionals over L. (B|A) formalizes “if A then (normally) B” and establishes a plausible, probable, possible
etc connection between the antecedent A and the consequence B. Here, conditionals are supposed not to
be nested, that is, antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the set of worlds 2 in three parts:
those worlds satisfying AB, thus verifying the conditional, those worlds satisfying AB, thus falsifying the
conditional, and those worlds not fulfilling the premise A and so which the conditional may not be applied
to at all. This allows us to represent (B|A) as a generalized indicator function going back to [7] (where u
stands for unknown or indeterminate):

1 if wkE=AB
(Bl|A)(w) =<0 if wi=AB (1)
u if wEA

To give appropriate semantics to conditionals, they are usually considered within richer structures such
as epistemic states. Besides certain (logical) knowledge, epistemic states also allow the representation of
preferences, beliefs, assumptions of an intelligent agent. Basically, an epistemic state allows one to compare
formulas or worlds with respect to plausibility, possibility, necessity, probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are Spohn’s ordinal condi-
tional functions, OCFs, (also called ranking functions) [18], and possibility distributions [4], assigning
degrees of plausibility, or of possibility, respectively, to formulas and possible worlds. In such qualitative
frameworks, a conditional ( B|A) is valid (or accepted), if its confirmation, A B, is more plausible, possible,
etc. than its refutation, AB; a suitable degree of acceptance is calculated from the degrees associated with
AB and AB.

In this paper, we consider Spohn’s OCFs [18]. An OCF is a function

k: 2—N

expressing degrees of plausibility of propositional formulas where a higher degree denotes “less plausible”
or “more suprising”. At least one world must be regarded as being normal; therefore, x(w) = 0 for at
least one w € 2. Each such ranking function can be taken as the representation of a full epistemic state of
an agent. Each such « uniquely extends to a function (also denoted by ) mapping sentences and rules to
N U {oo} and being defined by

min{r(w) |wE A if A is satisfiable
H(A):{ {r(w) |w k= 4) ’ o
00 otherwise
for sentences A € L and by
k(AB) — k(A if k(A 00
K((BA)) = { (AB) = nld)  ifld) # )
00 otherwise
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for conditionals (B|A) € (L | £). Note that x((B|A)) > 0 since any w satisfying AB also satisfies A and
therefore k(AB) > k(A).

The belief of an agent being in epistemic state x with respect to a default rule (B|A) is determined by
the satisfaction relation =, defined by:

kEq (BJA) iff k(AB) < k(AB) 4)

Thus, (B|A) is believed in  iff the rank of AB (verifying the conditional) is strictly smaller than the rank
of AB (falsifying the conditional). We say that « accepts the conditional (B|A) iff x |=, (B|A).

3 Example

In order to illustrate the concepts presented in the previous section we will use a scenario involving a set of
some default rules representing common-sense knowledge.

Example 1. Suppose we have the propositional atoms f - flying, b - birds, p - penguins, w - winged animals,
k - kiwis.
Let the set R consist of the following conditionals:
R ri: (f|b)  birds fly
ro: (blp)  penguins are birds
r3: (flp) penguins do not fly
rqa: (w|b)  birds have wings
r5: (blk)  kiwis are birds

Figure 1 shows a ranking function s that accepts all conditionals given in R. Thus, for any i €
{1,2,3,4,5} it holds that k =, R;.

w  kKw) w  Kw) w  K(w) w  Kw)
pbfwk 2 pbfwk 5 pbfwk 0O pbfwk 1
pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0
pbfwk 3 pbfwk 5 pbfwk 1 pofwk 1
pbfwk 3 pbfwk 4 pbfwk 1 pbfwk 0O
pbfwk 1 pbfwk 3 pbfwk 1 pbfwk 1
pbfwk 1 pbfwk 2 pbfwk 1 pbfwk 0
pbfwk 2 pbfwk 3 pbfwk 2 pbfwk 1
pbfwk 2 pbfwk 2 pbfwk 2 pbfwk 0O

Fig. 1. Ranking function x accepting the rule set R given in Example 1

For the conditional (f[p) (“Do penguins fly?”) that is not contained in R, we get x(pf) = 2 and
k(pf) = 1 and therefore
ko (fp)

so that the conditional (f|p) is not accepted by «. This is in accordance with the behaviour of a rational
agent believing R since the knowledge base R used for building up  explicitly contains the opposite rule
(flp)-

On the other hand, for the conditional (w|k) (“Do kiwis have wings?”) that is also not contained in R,
we get k(kw) = 0 and k(kw) = 1 and therefore

Ko (wlk)

i.e., the conditional (w|k) is accepted by k. Thus, from their superclass birds, kiwis inherit the property of
having wings.
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4 Specification of Ranking Functions as Solutions of a Constraint Satisfaction
Problem

Given a set R = {Ry,..., R,} of conditionals, a ranking function & that accepts every R; repesents an
epistemic state of an agent accepting R. If there is no « that accepts every R; then R is inconsistent. For
the rest of this paper, we assume that R is consistent.

For any consistent R there may be many different x accepting R, each representing a complete set
of beliefs with respect to every possible formula A and every conditional (B|A). Thus, every such &
inductively completes the knowledge given by R, and it is a vital question whether some «’ is to be pre-
ferred to some other k", or whether there is a unique “best” «. Different ways of determining a ranking
function are given by system Z [9, 10] or its more sophisticated extension system Z* [9], see also [6];
for an approach using rational world rankings see [19]. For quantitative knowledge bases of the form
Rz = {(B1]41)[x1],...,(Bn|An)[zn]} with probability values x; and with models being probability dis-
tributions P satisfying a probabilistic conditional (B;|A4;)[x;] iff P(B;|A;) = z;, a unique model can be
choosen by employing the principle of maximum entropy [16, 17, 11]; the maximum entropy model is a
best model in the sense that it is the most unbiased one among all models satisfying R.;..

Using the maximum entropy idea, in [13] a generalization of system Z* is suggested. Based on an
algebraic treatment of conditionals, the notion of conditional indifference of k with respect to R is defined
and the following criterion for conditional indifference is given: An OCF « is indifferent with respect to
R = {(Bi1|A1),...,(Bp|An)} iff K(A;) < oo forall i € {1,...,n} and there are rational numbers
mo,mj,ni_ € Q, 1 < i< n,such that forall w € {2,

k(w) = ko + Z Klzr-i- Z K . 5)

1<i<n 1<i<n
wi=A; B; wi=A; By

When starting with an epistemic state of complete ignorance (i.e., each world w has rank 0), for each rule
(B;|A;) the values /{j‘, k; determine how the rank of each satisfying world and of each falsifying world,

respectively, should be changed:

— If the world w verifies the conditional (B;|4;), — i.e.,w |= A;B; —, then & is used in the summation
to obtain the value x(w).

— Likewise, if w falsifies the conditional (B;|A;), — i.e,w |= A;B; —, then r; is used in the summation
instead.

— If the conditional (B;|A;) is not applicable in w, — i.e.,w |= A; -, then this conditional does not
influence the value x(w).

ko 1s a normalization constant ensuring that there is a smallest world rank 0. Employing the postulate
that the ranks of a satisfying world should not be changed and requiring that changing the rank of a falsify-
ing world may not result in an increase of the world’s plausibility leads to the concept of a c-representation
[13,12]:

Definition 1. Let R = {(B1]A1), ..., (Bn|An)}. Any ranking function k satisfying the conditional indif-
ference condition (5) and H?_ =0, k; = 0 (and thus also ko = 0 since R is assumed to be consistent) as
well as

foralli e {1,...,n} is called a (special) c-representation of R.

Note that for i € {1,...,n}, condition (6) expresses that ~ accepts the conditional R; = (B;|4;) € R (cf.
the definition of the satisfaction relation in (4)) and that this also implies x(4;) < co.

Thus, finding a c-representation for R amounts to choosing appropriate values K, ..., K, . In [2]
this situation is formulated as a constraint satisfaction problem CR(R) whose solutions are vectors of the
form (k1 ,...,k, ) determining c-representations of R. The development of CR(R) exploits (2) and (5)
to reformulate (6) and requires that the x; are natural numbers (and not just rational numbers). In the
following, we set min()) = oc.
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Definition 2. [CR(R)] Let R = {(Bi1|A1),...,(Bn|An)}. The constraint satisfaction problem for c-
representations of R, denoted by CR(R), is given by the conjunction of the constraints

k; 20 @)
G D DR D ®
i#i FAibL
wi=A;B; wi=A;B;

forallie {1,...,n}.

A solution of CR(R) is an n-tupel (k7 , ..., K, ) of natural numbers, and with Solcr(R) we denote the
set of all solutions of CR(R).

Proposition 1. For R = {(B1|A1),...,(Bn|An)} let (k1 ,...,&,) € Solcr(R). Then the function &

defined by
K(w) = Z K; 9)

1<i<n
wl=A;B;

accepts R.

All c-representations built from (7), (8), and (9) provide an excellent basis for model-based inference
[13, 12]. However, from the point of view of minimal specificity (see e.g. [4]), those c-representations with
minimal x; yielding minimal degrees of implausibility are most interesting.

While different orderings on Sol cr(R) can be defined, leading to different minimality notions, in the
following we will focus on the ordering on Solcr(R) induced by taking the sum of the &; , i.e.

(Kiveekin) S (67, 0/ly) dfE > k<> K (10)
1<ign 1<ign

As we are interested in minimal x; -vectors, an important question is whether there is always a unique
minimal solution. This is not the case; the following example that is also discussed in [15] illustrates that
Sol cr(R) may have more than one minimal element.

Example 2. Let Ryirgs = {R1, Ra, R3} be the following set of conditionals:

Ry : (f|b) birds fly
Ry : (alb) birds are animals
Rs : (alfb) flying birds are animals
From (8) we get
ky >0

Ky >0—min{k], k3 }
kg >0— Ky
and since x; > 0 according to (7), the two vectors
soly = (K1 , kg k3 ) = (1,1,0)
soly = (K] , kg, k3 ) = (1,0,1)

are two different solutions of CR(Rpirds) With 3 ;. k; = 2 that are both minimal in Solcr(Rpiras)
with respect to <.

5 A Declarative CLP Program for CR(R)

In this section, we will develop a CLP program GenOCF solving CR(R). Our main objective to obtain
a declarative program that is as close as possible to the abstract formulation of CR(R) while exploiting
the concepts of constraint logic programming. We will employ finite domain constraints, and from (7) we
immediately get a lower bound for x; . Considering that we are interested mainly in minimal solutions, due
to (8) we can safely restrict ourselves to n as an upper bound for «;, yielding

0<k; <n (11)

forall ¢ € {1,...,n} with n being the number of conditionals in R.
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5.1 Input Format and Preliminaries

Since we want to focus on the constraint solving part, we do not consider reading and parsing a knowledge
base R = {(B1|A1),...,(Bn|As)}. Instead, we assume that R is already given as a Prolog code file
providing the following predicates variables/1, conditional/3 and indices/1:

variables([a1, ...,a,]) % listof atoms in Y

conditional (i, (A;), (B;)) % representation of ith conditional (B;|A;)

indices ([1,...,n]) % list of indices {1,...,n}
If ¥ ={a,...,an} is the set of atoms, we assume a fixed ordering a1 < ag < ... < a,, on X given by
the predicate variables ([G1, .« ., Gm]) .

In the representation of a conditional, a propositional formula A, constituting the antecedent or the
consequence of the conditional, is represented by (A) where (A) is a Prolog list [{D1), . . ., (D;)]. Each
(D;) represents a conjunction of literals such that Dy V ...V Dj is a disjunctive normal form of A.

Each (D), representing a conjunction of literals, is a Prolog list [b1, ..., by, ] of fixed length m
where m is the number of atoms in X and with b, € {0, 1, _}. Suchalist [by, ...,b,] represents
the conjunctions of atoms obtained from a1 A a2 A ... A Gy, by eliminating all occurrences of T, where

ar  ifby =1
ar = ap ifby =0
T ifby=_

Example 3. The internal representation of the knowledge base presented in Example 1 is shown in Figure 2.

variables ([p,b, f,w,k]).

% pbfwk p b fwk

conditional (1, [[_,21,_,_,_11,[0[_,_,1,_,_11) S (f | b) birds fly
conditional (2, [[1,_,_,_,_ 11,00 _,1,_,_,_11). $ (b | p) penguins are birds
conditional (3, [[1,_,_,_,_11,[0[_,_,0,_,_11). % (-f | p) penguins do not fly
conditional (4, [[_,1,_,_,_11,00_,_,_,1,_11) % (w | b) Dbirds habe wings
conditional (5, [[_,_,_,_,111,00(_,1,_,_,_11) % (b | k) kiwis are birds

indices([1,2,3,4,5]).

Fig. 2. Internal representation of the knowledge base from Example 1

As further preliminaries, using conditional/3 and indices/1, we have implemented the pred-
icates verifying.worlds/2, falsifying.worlds/2, and falsify/2, realising the evaluation
of the indicator function (1) given in Sec. 2:

verifying.worlds (i, Ws) % Ws list of worlds verifying ith conditional
falsifyingworlds (i, Ws) % Ws list of worlds falsifying sth conditional
falsify (i, W) % world W falsifies ith conditional

where worlds are represented as complete conjunctions of literals over X', using the representation de-
scribed above.

Using these predicates, in the following subsections we will present the complete source code of the
constraint logic program GenOCF solving CR(R).
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5.2 Generation of Constraints

The particular program code given here uses the SICStus Prolog system! and its clp(fd) library implement-
ing constraint logic programming over finite domains [14].

The main predicate kappa /2 expecting a knowledge base KB of conditionals and yielding a vector K
of x; values as specified by (8) is presented in Fig. 3.

K is kappa vector of c-representation for KB

o\

kappa (KB, K) :-—
consult (KB),
indices (Is),
length(Is, N),
length (K, N),
domain (K, 0, N),
constrain_K(Is, K),
labeling ([], K).

get list of indices [1,2,...,N]

N number of conditionals in KB

generate K = [Kappa_l,...,Kappa_N] of free var.
0 <= kappa_I <= N for all I according to (11)
generate constraints according to (8)

generate solution

o° o° o o° oo o

Fig. 3. Main predicate kappa/2

After reading in the knowledge base and getting the list of indices, a list K of free constraint vari-
ables, one for each conditional, is generated. In the two subsequent subgoals, the constraints corre-
sponding to the formulas (11) and (8) are generated, constraining the elements of K accordingly. Finally,
labeling ([1, K) yields alist of x; values. Upon backtracking, this will enumerate all possible so-
lutions with an upper bound of n as in (11) for each ~; . Later on, we will demonstrate how to modify
kappa/2 in order to take minimality into account (Sec. 5.3).

How the subgoal constrain K (Is, K) in kappa/2 generates a constraint for each index ¢ €
{1,...,n} according to (8) is defined in Fig. 4.

constrain_K([],_). % generate constraints for
constrain_K([I|Is],K) :-— % all kappa_I as in (8)
constrain_Ki(I,K), constrain_K(Is,K).

constrain_Ki (I,K) :- % generate constraint for kappa_I as in (8)
all worlds verifying I-th conditional
all worlds falsifying I-th conditional
VS list of sums for verifying worlds
FS list of sums for falsifying worlds
Vmin minium for verifying worlds

Fmin minium for falsifying worlds

Ki constraint variable for kappa_I
constraint for kappa_I as in (8)

verifying_worlds (I, VWorlds),
falsifying _worlds (I, FWorlds),
list_of_sums (I, K, VWorlds, VS),
list_of_sums (I, K, FWorlds, FS),
minimum (Vmin, VS),

minimum (Fmin, FS),

element (I, K, Ki),

Ki #> Vmin - Fmin.

A° o° d° o° o° o o° oP

Fig. 4. Constraining the vector K representing 1 , ..., K,, asin (8)

Given an index I, constrain_Ki (I,K) determines all worlds verifying and falsifying the I-th
conditional; over these two sets of worlds the two min expressions in (8) are defined. Two lists VS and F'S
of sums corresponding exactly to the first and the second sum, repectively, in (8) are generated (how this
is done is defined in Fig. 5 and will be explained below). With the constraint variables Vmin and Fmin
denoting the minimum of these two lists, the constraint

Ki #> Vmin - Fmin

! http://www.sics.sefisl/sicstuswww/site/index.htm]
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given in the last line of Fig. 4 reflects precisely the restriction on x; given by (8).

For an index I, a kappa vector K, and a list of worlds Ws, the goal 1ist_of_sums (I, K, Ws, Ss)
(cf. Fig. 5) yields a list Ss of sums such that for each world W in Ws, there is a sum S in Ss that is
generated by sum_kappa_-j (Js, I, K, W, S) where Js is the list of indices {1,...,n}. In the goal
sum_kappa-j(Js, I, K, W, S),S corresponds exactly to the respective sum expression in (8), i.e.,
it is the sum of all K such that J # I and W falsifies the j-th conditional.

list_of_sums (I, K, Ws, Ss) generates list of sums as in (8):
index from 1,...,N
kappa vector
list of worlds
Ss list of sums:
for each world W in Ws there is S in Ss s.t.
S is sum of all kappa_J with
J \=1I and W falsifies J-th conditional

= X H |
)]

o0 o° o o° d° o° o° o

list_of_sums(_, _, [1, [1).
list_of_sums (I, K, [W|Ws], [S]|Ss]) :-—
indices (Js),
sum_kappa_j(Jds, I, K, W, S),
list_of_sums (I, K, Ws, Ss).

% sum_kappa_3j(Js, I, K, W, S) generates a sum as in (8):
% Js 1list of indices [1,...,N]

% I index from 1,...,N

% K kappa vector

% W world

% S sum of all kappa_J s.t.

J \=1I and W falsifies J-th conditional

sum_kappa_Jj([], _, _, _, 0).
sum_kappa_j([J|Js], I, K, W, S) :-—
sum_kappa_j(Jds, I, K, W, S1),
element (J, K, Kj),
((J \= 1, falsify(J, W)) -> S #= S1 + Kj; S #= S1).

Fig. 5. Generating list of sums of x; as in (8)

Example 4. Suppose that kb _birds.pl is afile containing the conditionals of the knowledge base R ;s
given in Ex. 2. Then the first five solutions generated by the program given in Figures 3 — 5 are:

?- kappa ('kb_birds.pl’, K).
2 .

4
4
4

4

NN R R R —
|
BUREN R RPN

Note that the first and the fourth solution are the minimal solutions.

Example 5. If kb_penguins.pl is a file containing the conditionals of the knowledge base R given in
Ex. 1, the first six solutions generated by kappa/2 are:
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?— kappa (' kb_penguins.pl’, K).
1,2,2,1,1

14

4

’ 4 4 14

14 4 4 4 14

14 4 4 4 14

14 4 4 4 4

|

K [ ]
K [ ]
K =1 ]
K [ ]
K [ ]
K [ ]

[ e R =
NN NN
NN NN
N R
B W N
LS S N A ]

4 4 4 4

5.3 Generation of Minimal Solutions

The enumeration predicate 1abeling/2 of SICStus Prolog allows for an option that minimizes the value
of a cost variable. Since we are aiming at minimizing the sum of all x; , the constraint sum (K, #=, S)
introduces such a cost variable S. Thus, exploiting the SICStus Prolog minimization feature, we can
easily modify kappa/2 to generate a minimal solution: We just have to replace the last subgoal
labeling ([], K) inFig.3 by the two subgoals:

introduce constraint variable S
for sum of kappa_I
generate single minimal solution

sum (K, #=, 3),

o o oP

minimize (labeling([],K), S).

With this modification, we obtain a predicate kappa_min/2 that returns a single minimal solution (and
fails on backtracking). Hence calling ?— kappa-min (’kbbirds.pl’, K). similar as in Ex. 4
yields the minimal solutionX = [1,0,1].

However, as pointed out in Sec. 4, there are good reasons for considering not just a single minimal
solution, but all minimal solutions. We can achieve the computation of all minimal solutions by another
slight modification of kappa/2. This time, the enumeration subgoal labeling ([], K) in Fig. 3 is
preceded by two new subgoals as in kappa-min_all/2 in Fig. 6.

kappa_min_all (KB, K) :- % K is minimal vector for KB, all solutions
consult (KB),
indices (Is),
length(Is, N),
length (K, N),
domain (K, 0, N),
constrain_K(Is, K),
sum (K, #=, S),
min_sum_kappas (K, S),
labeling([], K).

oe

get list of indices [1,2,...,N]

N number of conditionals in KB

generate K = [Kappa_l,...,Kappa_N] of free var.
0 <= kappa_I <= N for all I according to (11)
generate constraints according to (8)
constraint variable S for sum of kappa_ I
determine minimal value for S

generate all minimal solutions

o° o o° o° o o

o\

o)

min_sum_kappas (K, Min) :- % Min is sum of a minimal solution for K
once ( (labeling([up], [Min]),
\+ \+ labeling([],K))).

Fig. 6. Predicate kappa_min_all/2 generating exactly all minimal solutions

The first new subgoal sum (K, #=, S) introduces a constraint variable S just as in kappa-min/2.
In the subgoal min_sum_kappas (K, S), this variable S is constrained to the sum of a minimal solution
as determined by min_sum_kappas (K, Min). These two new subgoals ensure that in the generation
caused by the final subgoal 1abeling ([], K), exactly all minimal solutions are enumerated.

Example 6. Continuing Example 4, calling

| ?- kappa_min_all ('kb_birds.pl’, K).
K= [1,0,11 2 ;

K (1,1,01 2 ;

no
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yields the two minimal solutions for Rp;yq4s-

Example 7. For the situation in Ex. 5, kappa-min_all/2 reveals that there is a unique minimal solution:

| ?- kappa_min_all (’'kb_penguins.pl’, K).
K=11,2,2,1,11 2 ;
no

Determining the OCF « induced by the vector (ki , kK5 ,K3, Ky ,k5) = (1,2,2,1,1) according to (9)
yields the ranking function given in Fig. 1.

6 Example Applications and First Evaluation

Although the objective in developing GenOCF was on being as close as possible to the abstract formulation
of the constraint satisfaction problem CR(R), we will present the results of some first example applications
we have carried out.

For n > 1, we generated synthetic knowledge bases kb_synth<n>_c<2n—1>.pl according to the
following schema: Using the variables {f} U {a1,...,a,}, kb_synth<n>_c<2n—1>.pl contains the
2 *n — 1 conditionals given by::

(flas) ifiisodd,i € {1,...,n}
(flai) ifiiseven,i € {1,...,n}
(ai|ai+1) ifi € {1,...,71— 1}

For instance, kb_synth4_c7.pl uses the five variables { f, a1, as, as, a4} and contains the seven condi-
tionals:

The Dbasic idea wunderlying the construction of these synthetic knowledge bases
kb_synth<n>_c<2n—1>.pl is to establish a kind of subclass relationship between a;;; and a;
foreach ¢ € {1,...,n — 1} on the one hand, and to state that every a;1 is exceptional to a; with respect
to its behaviour regarding f, again for each ¢ € {1,...,n — 1}. This sequence of pairwise exceptional
elements will force any minimal solution of CR(kb_synth<n>_c<2n—1>.pl) to have at least one x;
value of size greater or equal to n.

From kb_synth<n>_c<m>.pl, the knowledge bases kb_synth<n>_c<m—j>.pl are generated
forj € {1,...,m — 1} by removing the last j conditionals. For instance, kb_synth4_c5.pl is obtained
from kb_synth4_c7.pl by removing the two conditionals {(az|as), (az|as)}.

Figure 7 shows the time needed by GenOCF for computing all minimal solutions for various know-
ledge bases. The execution time is given in seconds where the value O stands for any value less than 0.5
seconds. Measurements were taken for the following environment: SICStus 4.0.8 (x86-linux-glibc2.3),
Intel Core 2 Duo E6850 3.00GHz. While the number of variables determines the set of possible worlds,
the number of conditionals induces the number of contraints. The values in the table in Fig. 7 give some
indication on the influence of both values, the number of variables and the number of conditionals in a
knowledge base. For instance, comparing the knowledge base kb_synth7_c10.p1, having 8 variables
and 10 conditionals, to the knowledge base kb_synth8_c10.pl, having 9 variables and also 10 condi-
tionals, we see an increase of the computation time by a factor 2.3. Increasing the number of conditionals,
leads to no time increase from kb_synth7_c10.pl to kb_synth7_cl1.pl, and to a time increase
factor of about 1.6 when moving from kb_synth8_c10.pl to kb_synth8_c11l.pl, while for moving
from kb_synth8_c10.pl to kb_synth9.c10.pl and kb_synth10.c10.pl, we get time increase
factors of 3.3 and 11.0, respectively.
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Of course, these knowledge bases are by no means representative, and further evaluation is needed.
In particular, investigating the complexity depending on the number of variables and conditionals and
determining an upper bound for worst-case complexity has still to be done. Furthermore, while the code for
GenOCF given above uses SICStus Prolog, we also have a variant of GenOCF for the SWI Prolog system?
[20]. In our further investigations, we want to evaluate GenOCF also using SWI Prolog, to elaborate the
changes required and the options provided when moving between SICStus and SWI Prolog, and to study
whether there are any significant differences in execution that might depend on the two different Prolog
systems and their options.

7 Conclusions and Further Work

While for a set of probabilistic conditionals (B;|A;)[z;] the principle of maximum entropy yields a unique
model, for a set R of qualitative default rules (B;|A;) there may be several minimal ranking functions. In
this paper, we developed a CLP approach for solving CR(R), realized in the Prolog program GenOCF. The
solutions of the constraint satisfaction problem CR(R) are vectors of natural numbers ¥ = (k7 , ..., K, )
that uniquely determine an OCF k3 accepting all conditionals in R. The program GenOCF is also able to
generate exactly all minimal solutions of CR(R); the minimal solutions of CR(R) are of special interest
for model-based inference.

Among the extentions of the approach described here we are currently working on, is the investiga-
tion and evaluation of alternative minimality criteria. Instead of ordering the vectors ¥ by the sum of

their components, we could define a componentwise order on Solcr(R) by defining (k7 ,...,K,) =
(K'1,..., k) iff k; <r&'; forie{l,...,n}, yielding a partial order < on Solcr(R).
Still another alternative is to compare the full OCFs k% induced by ¥ = (k7 ,...,k, ) according to

(9), yielding the ordering < on Solcr(R) defined by Kz < Kk iff kg (w) < Kz (w) forallw € (2.

In general, it is an open problem how to strengthen the requirements defining a c-representation so that
a unique solution is guaranteed to exist. The declarative nature of constraint logic programming supports
easy constraint modification, enabling the experimentation and practical evaluation of different notions
of minimality for Solcr(R) and of additional requirements that might be imposed on a ranking function.
Furthermore, in [8] the framework of default rules concidered here is extended by allowing not only default
rules in the knowledge base R, but also strict knowledge, rendering some worlds completely impossibe.
This can yield a reduction of the problem’s complexity, and it will be interesting to see which effects the
incorporation of strict knowledge will have on the CLP approach presented here.
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knowledge base variables conditionals minimal solutions time
kb_birds.pl 3 3 [[1,0,1],[1,1,0]] 0
kb_penguins.pl 5 5 [[1.2,2,1,1]] 0
kb_synth7_c1.pl 7 1 1 0
kb_synth7_c2.pl 7 2 [[1,11] 0
kb_synth7_c3.pl 7 3 [[1,1,11] 0
kb_synth7_c4.pl 7 4 [[1.1,1,1]] 0
kb_synth7_c5.pl 7 5 [[1,1,1,1,1]] 0
kb_synth7_c6.pl 7 6 [1,1,1,1,1,1]] 1
kb_synth7_c7.pl 7 7 [[1.1,1,1,1,1,1]] 0
kb_synth7_c8.pl 7 8 [1,2,1,1,1,1,1,2]] 1
kb_synth7_c9.pl 7 9 [1.2.2,1,1,1,1,2,3]] 2
kb_synth7_c10.pl 7 10 [[1,2,2,2,1,1,1,2,3,4]] 3
kb_synth7_c11.pl 7 1 [[1,2,2,2,2,1,1,2,3,4,5]] 3
kb_synth7_c12.pl 7 12 [[1.2.2,2,2,2,1,2,3,4,5,6]] 6
kb_synth7_c13.pl 7 13 [[1,2,2,2,2,2,2,2,3,4,5,6,7]] 8
kb_synth8_c1.pl 8 1 [ 0
kb_synth8_c2.pl 8 2 1,111 0
kb_synth8_c3.pl 8 3 [[1,1,1]] 1
kb_synth8_c4.pl 8 4 [[1,1,1,1]] 0
kb_synth8_c5.pl 8 5 [[1,1,1,1,1]] 1
kb_synth8_c6.pl 8 6 [[1,1,1,1,1,11] 1
kb_synth8_c7.pl 8 7 [[1,1,1,1,1,1,1]] 2
kb_synth8_c8.pl 8 8 [1.1.1,1.1,1,1,1]] 3
kb_synth8_c9.pl 8 9 [[1,2,1,1,1,1,1,1,2]] 4
kb_synth8_c10.pl 8 10 [[1.2.2,1,1,1,1,1,2,3]] 8
kb_synth8_c11.pl 8 i [[1.2,2,2,1,1,1,1,2,3,4]] 11
kb_synth8_c12.pl 8 12 [[1.2,.2,2,2,1,1,1,2,3,4,5]] 17
kb_synth8_c13.pl 8 13 [[1,2,2,2,2,2,1,1,2,3,4,5,6]] 27
kb_synth8_c14.pl 8 14 [[1.2.2.2.2,2,2,1,2,3,4,5,6.7]] 38
kb_synth8_c15.pl 8 15 [[1,2,2,2,2,2,2,2,2,3,4,5,6,7,8]] 60
kb_synth9_c1.pl 9 1 [ 0
kb_synth9_c2.pl 9 2 1,111 0
kb_synth9_c3.pl 9 3 [[1,1,1]] 0
kb_synth9_c4.pl 9 4 [[1,1,1,1]] 2
kb_synth9_c5.pl 9 5 [[1,1,1,1,1]] 2
kb_synth9_c6.pl 9 6 [[1,1,1,1,1,1]] 4
kb_synth9_c7.pl 9 7 [[1,1,1,1,1,1,1]] 6
kb_synth9_c8.pl 9 8 [[1,1,1,1,1,1,1,1]] 9
kb_synth9_c9.pl 9 9 [(1.1,1,1,1,1,1,1,1]] 14
kb_synth9_c10.pl 9 10 [[1.2,1,1,1,1,1,1,1,2]] 26
kb_synth9_c11.pl 9 11 [1,2,2,1,1,1,1,1,1,2,3]] 41
kb_synth9_c12.pl 9 12 [1,2,2,2,1,1,1,1,1,2,3,4]] 61
kb_synthd_c13.pl 9 13 [1.2.2.2,2,1,1,1,1,2,3,4,5]] 88
kb_synth9_c14.pl 9 14 [[1.2,2,2,2,2,1,1,1,2,3,4,5,6]] 127
kb_synth9_c15.pl 9 15 1.2.2.2,2,2,2,1,1,2,3,4,5,6,7]] 173
kb_synth9_c16.pl 9 16 [[1.2,2,2,2,2,2,2,1,2,3,4,5,6,7,8]] 256
kb_synth9_c17.pl 9 17 [[1.2.2,2,2,2,2,2,2,2,3,4,5,6,7,8,9]] 361
kb_synth10_c1.pl 10 1 [ 0
kb_synth10_c2.pl 10 2 1,11 1
kb_synth10_c3.pl 10 3 [[1,1,1]] 1
kb_synth10_c4.pl 10 4 [[1,1,1,1]] 4
kb_synth10_c5.pl 10 5 [[1,1,1,1,1]] 8
kb_synth10_c6.pl 10 6 [[1.1,1,1,1.,1]] 15
kb_synth10_c7.pl 10 7 [[1,1,1,1,1,1,1]] 25
kb_synth10_c8.pl 10 8 [[1,1,1,1,1,1,1,1]] 40
kb_synth10_c9.pl 10 9 [[1,1,1,1,1,1,1,1,1]] 61
kb_synth10_c10.pl 10 10 [,1,1,1,1,1,1,1,1,1]] 88
kb_synth10_c11.pl 10 A m.2,1,1,1,1,1,1,1,1,2]] 155
kb_synth10_c12.pl 10 12 1,2,2,1,1,1,1,1,1,1,2,3]] 232
kb_synth10_c13.pl 10 13 [1,2,2,2,1,1,1,1,1,1,2,3,4]] 333
kb_synth10_c14.pl 10 14 [1.2.2.2,2,1,1,1,1,1,2,3,4,5]] 465
kb_synth10_c15.pl 10 15 [[1,2,2,2,2,2,1,1,1,1,2,3,4,5,6]] 644
kb_synth10_c16.pl 10 16 [[1.2,2,2,2,2,2,1,1,1,2,3,4,5,6,7]] 929
kb_synth10_c17.pl 10 17 [[1.2,2,2,2,2,2,2,1,1,2,3,4,5,6,7,8]] 1.174
kb_synth10_c18.pl 10 18 [[1.2,2,2,2,2,2,2,2,1,2,3,4,5,6,7,8,9]] 1.642
kb_synth10_c19.pl 10 19 [[1,2,2,2,2,2,2,2,2,2,2,3,4,5,6,7,8,9,10]] 2.248

Fig. 7. Execution times of GenOCF under SICStus Prolog for various knowledge bases
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Abstract. KiCS2 is a new system to compile functional logic programs of the source language Curry
into purely functional Haskell programs. The implementation is based on the idea to represent the
search space as a data structure and logic variables as operations that generate their values. This has the
advantage that one can apply various, and in particular, complete search strategies to compute solutions.
However, the generation of all values for logic variables might be inefficient for applications that exploit
constraints on partially known values. To overcome this drawback, we propose new techniques to
implement equational constraints in this framework. In particular, we show how unification modulo
function evaluation and functional patterns can be added without sacrificing the efficiency of the kernel
implementation.

1 Introduction

Functional logic languages combine the most important features of functional and logic programming in
a single language (see [SU17] for recent surveys). In particular, they provide higher-order functions and
demand-driven evaluation from functional programming together with logic programming features like
non-deterministic search and computing with partial information (logic variables). This combination has
led to new design patterns [2/6] and better abstractions for application programming, but it also gave rise
to new implementation challenges.

Previous implementations of functional logic languages can be classified into three categories:

1. designing new abstract machines appropriately supporting these operational features and implementing
them in some (typically, imperative) language, like C [24] or Java [7120],

2. compilation into logic languages like Prolog and reusing the existing backtracking implementation for
non-deterministic search as well as logic variables and unification for computing with partial informa-
tion [[1423]], or

3. compilation into non-strict functional languages like Haskell and reusing the implementation of lazy
evaluation and higher-order functions [13}14].

The latter approach requires the implementation of non-deterministic computations in a deterministic lan-
guage but has the advantage that the explicit handling of non-determinism allows for various search strate-
gies like depth-first, breadth-first, parallel, or iterative deepening instead of committing to a fixed (incom-
plete) strategy like backtracking [13]].

In this paper we consider KiCS2 [12], a new system that compiles functional logic programs of the
source language Curry [21] into purely functional Haskell programs. We have shown in [[12] that this im-
plementation can compete with or outperform other existing implementations of Curry. KiCS2 is based on
the idea to represent the search space, i.e., all non-deterministic results of a computation, as a data structure
that can be traversed by operations implementing various strategies. Furthermore, logic variables are re-
placed by generators, i.e., operations that non-deterministically evaluate to all possible ground values of the
type of the logic variable. It has been shown [4]] that computing with logic variables by narrowing [27/30]]
and computing with generators by rewriting are equivalent, i.e., compute the same values. Although this
implementation technique is correct [9], the generation of all values for logic variables might be inefficient
for applications that exploit constraints on partial values. For instance, in Prolog the equality constraint
“X=c (a)” is solved by instantiating the variable X to c (a), but the equality constraint “x=Y” is solved by
binding X to Y without enumerating any values for x or Y. Therefore, we propose in this paper new tech-
niques to implement equational constraints in the framework of KiCS2 (note that, in contrast to Prolog,
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unification is performed modulo function evaluation). Furthermore, we also show how functional patterns
[3]], i.e., patterns containing evaluable operations for more powerful pattern matching than in logic or func-
tional languages, can be implemented in this framework. We show that both extensions lead to efficiency
improvements without sacrificing the efficiency of the kernel implementation.

In the next section, we review the source language Curry and the features considered in this paper. Sec-
tion 3] sketches the implementation scheme of KiCS2. Sections @] and[5|discuss the extensions to implement
unification modulo functional evaluation and functional patterns, respectively. Benchmarks demonstrating
the usefulness of this scheme are presented in Sect. [6|before we conclude in Sect.

2 Curry Programs

The syntax of the functional logic language Curry [21] is close to Haskell [26]], i.e., type variables and
names of defined operations usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. The application of f to e is denoted by juxtaposition (“f €”). In addition to
Haskell, Curry allows free (logic) variables in conditions and right-hand sides of defining rules. Hence, an
operation is defined by conditional rewrite rules of the form:

fti...t, | ¢ = e where vs free e

where the condition c is optional and vs is the list of variables occurring in ¢ or e but not in the left-hand
side ft1...t,.

In contrast to functional programming and similarly to logic programming, operations can be defined
by overlapping rules so that they might yield more than one result on the same input. Such operations
are also called non-deterministic. For instance, Curry offers a choice operation that is predefined by the
following rules:

Thus, we can define a non-deterministic operation aBool by
aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a semantical ambiguity might
occur. Consider the operations

not True = False
not False = True

xor True x = not x
xor False x = x

xorSelf x = xor x X

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting system, we could
have the reduction

xorSelf aBool —  xor aBool aBool —  xor True aBool
—  xor True False — not False —  True

leading to the unintended result True. Note that this result cannot be obtained if we use a strict strategy
where arguments are evaluated prior to the function calls. In order to avoid dependencies on the evaluation
strategies and exclude such unintended results, Gonzdlez-Moreno et al. [16] proposed the rewriting logic
CRWL as a logical (execution- and strategy-independent) foundation for declarative programming with
non-strict and non-deterministic operations. This logic specifies the call-time choice semantics [22]] , where
values of the arguments of an operation are determined before the operation is evaluated. This can be
enforced in a lazy strategy by sharing actual arguments. For instance, the expression above can be lazily
evaluated provided that all occurrences of aBoo1l are shared so that all of them reduce either to True or to
False consistently.
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The condition c¢ in rule (I)) typically is a conjunction of equational constraints of the form e; =:=es.
Such a constraint is satisfiable if both sides e; and e5 are reducible to unifiable data terms. For instance,
if the symbol “++” denotes the usual list concatenation operation, we can define an operation last that
computes the last element e of a non-empty list xs as follows:

last xs | ystt[e] =:=xs = e where ys, e free

Like in Haskell, most rules defining functions are constructor-based 23], i.e., in t1,...,t, consist of
variables and/or data constructor symbols only. However, Curry also allows functional patterns 3], i.e., t;
might additionally contain calls to defined operations. For instance, we can also define the last element of
a list by:

last’ (xstt+[e]) = e

Here, the functional pattern (xs++[e]) statesthat (last’ t) isreducible to e provided that the argument
t can be matched against some value of (xs++[e]) where xs and e are free variables. By instantiating xs
to arbitrary lists, the value of (xs++[e]) is any list having e as its last element. Functional patterns are a
powerful feature to express arbitrary selections in term structures. For instance, they support a straightfor-
ward processing of XML data with incompletely specified or evolving formats [18].

3 The Compilation Scheme of KiCS2

To understand the extensions described in the subsequent sections, we sketch the translation of Curry
programs into Haskell programs as performed by KiCS2. More details about this translation scheme can
be found in [[10/12].

As mentioned in the introduction, the KiCS2 implementation is based on the explicit representation of
non-deterministic results in a data structure. This is achieved by extending each data type of the source
program by constructors to represent a choice between two values and a failure, respectively. For instance,
the data type for Boolean values defined in a Curry program by

data Bool = False | True
is translated into the Haskell data typeﬂ
data Bool = False | True | Choice ID Bool Bool | Fail

The first argument of type 1D of each Choice constructor is used to implement the call-time choice se-
mantics discussed in Sect. |2} Since the evaluation of xorself aBool duplicates the argument operation
aBool, we have to ensure that both duplicates, which later evaluate to a non-deterministic choice between
two values, yield either True or False. This is obtained by assigning a unique identifier (of type ID) to
each choice. The difficulty is to get a unique identifier on demand, i.e., when some operation evaluates to
a Choice. Since we want to compile into purely functional programs (in order to enable powerful program
optimizations), we cannot use unsafe features with side effects to generate such identifiers. Hence, we pass
a (conceptually infinite) set of identifiers, also called identifier supply, to each operation so that a Choice
can pick its unique identifier from this set. For this purpose, we assume a type IDSupply, representing an
infinite set of identifiers, with operations

initSupply :: IO IDSupply
thisID :: IDSupply — ID
leftSupply :: IDSupply — IDSupply

rightSupply :: IDSupply — IDSupply
The operation initSupply creates such a set (at the beginning of an execution), the operation thisID
takes some identifier from this set, and leftSupply and rightSupply split this set into two disjoint sub-
sets without the identifier obtained by thisID. There are different implementations available [8]] (see below
for a simple implementation) and our system is parametric over concrete implementations of IDSupply.
When translating Curry to Haskell, KiCS2 adds to each operation an additional argument of type
IDSsupply. For instance, the operation aBool defined in Sect. [2]is translated into:

! Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell entities and introduces
type classes to resolve overloaded symbols like Choice and Fail.
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aBool :: IDSupply — Bool
aBool s = Choice (thisID s) True False

Similarly, the operation

main :: Bool
main = xorSelf aBool

is translated into

main :: IDSupply — Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is splitinto a set (leftSupply s) containing identifiers for the evaluation of aBool and
aset (rightSupply s) containing identifiers for the evaluation of the operation xorSelf.

Since all data types are extended by additional constructors, we must also extend the definition of
operations performing pattern matchingE] For instance, consider the definition of polymorphic lists

data List a = Nil | Cons a (List a)
and an operation to extract the first element of a non-empty list:

head :: List a — a
head (Cons x xs) = x

The type definition is then extended as follows:
data List a = Nil | Cons a (List a) | Choice ID (List a) (List a) | Fail
The operation head is extended by an identifier supply and further matching rules:

head :: List a — IDSupply — a

head (Cons x xs) s =X
head (Choice i1 x1 x2) s = Choice i1 (head x1 s) (head x2 s)
head _ s = Fail

The second rule transforms a non-deterministic argument into a non-deterministic result and the final rule
returns Fail in all other cases, i.e., if head is applied to the empty list as well as if the matching argument
is already a failed computation (failure propagation).

To show a concrete example, we use the following implementation of IDSupply based on unbounded
integers:

type IDSupply = Integer
initSupply = return 1
thisID n=n
leftSupply n =2 % n

rightSupply n = 2 * n + 1

If we apply the same transformation to the rules defining xor and evaluate the main expression (main 1),
we obtain the result

Choice 2 (Choice 2 False True) (Choice 2 True False)

Thus, the result is non-deterministic and contains three choices, whereby all of them have the same iden-
tifier. To extract all values from such a Choice structure, we have to traverse it and compute all possible
choices but consider the choice identifiers to make consistent (left/right) decisions. Thus, if we select the
left branch as the value of the outermost Choice, we also have to select the left branch in the selected
argument (Choice 2 False True) so that False is the only value possible for this branch. Similarly,
if we select the right branch as the value of the outermost Choice, we also have to select the right branch
in its selected argument (Choice 2 True False), which again yields False as the only possible value.
In consequence, the unintended value True is not produced.

The requirement to make consistent decisions can be implemented by storing the decisions already
made for some choices during the traversal. For this purpose, we introduce the type

data Decision = NoDecision | ChooseLeft | ChooseRight

% To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform programs [12]] where
pattern matching is restricted to a single argument. This is always possible by introducing auxiliary operations.
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where NoDecision represents the fact that the value of a choice has not been decided yet. Furthermore,
we assume operations to lookup the current decision for a given identifier or change it (depending on the
implementation of IDSupply, KiCS2 supports several implementations based on memory cells or finite
maps):

lookupDecision :: ID — IO Decision

setDecision :: ID — Decision — IO ()
Now we can print all values contained in a choice structure in a depth-first manner by the following I/O
operation:E]

printvalsDFS :: a — IO ()

printvValsDFS Fail = return ()

printValsDFS (Choice i x1 x2)
where
follow Chooseleft printvValsDFS x1
follow ChooseRight = printValsDFS x2
follow NoDecision = do newDecision Chooseleft x1
newDecision ChooseRight x2

lookupDecision i >>= follow

newDecision d x = do setDecision i d
printValsDFS x
setDecision i NoDecision

printValsDFS v = print v

This operation ignores failures and prints values that are not rooted by a Choice constructor. For a Choice
constructor, it checks whether a decision for this identifier has already been made (note that the initial value
for all identifiers is NoDecision). If a decision has been made for this choice, it follows this decision.
Otherwise, the left alternative is used and this decision is stored. After printing all values w.r.t. this decision,
the decision is undone (like in backtracking) and the right alternative is used and stored.

In general, this operation is applied to the normal form of the main expression (where initSupply
is used to compute an initial identifier supply passed to this expression). The normal form computation is
necessary for structured data like lists, so that a failure or choice in some part of the data is moved to the
root.

Other search strategies, like breadth-first search, iterative deepening, or parallel search, can be obtained
by different implementations of this main operation to print all values. Furthermore, one can also collect
all values in a tree-like data structure so that the programmer can implement his own search strategies
(this corresponds to encapsulating search [11]]). Finally, instead of printing all values, one can easily define
operations to print either the first solution only or one by one upon user request. Due to the lazy evaluation
strategy of Haskell, such operations can also be applied to infinite choice structures.

To avoid an unnecessary growth of the search space represented by Choice constructors, our compiler
performs an optimization for deterministic operations. If an operation is defined by non-overlapping rules
and does not call, neither directly nor indirectly through other operations, a function defined by overlapping
rules, the evaluation of such an operation (like xor or not) cannot introduce non-deterministic values.
Thus, it is not necessary to pass an identifier supply to the operation. In consequence, only the matching
rules are extended by additional cases for handling Choice and Fail so that the generated code is nearly
identical to a corresponding functional program. Actually, the benchmarks presented in [12]] show that for
deterministic operations this implementation outperforms all other Curry implementations, and, for non-
deterministic operations, outperforms Prolog-based implementations of Curry and can compete with MCC
[24], a Curry implementation that compiles to C.

As mentioned in the introduction, occurrences of logic variables are translated into generators. For in-
stance, the expression “not x”, where x is a logic variable, is translated into “not (aBool s)”, where s
is an IDSupply provided by the context of the expression. The latter expression is evaluated by reducing
the argument aBool s to a choice between True or False followed by applying not to this choice. This is
similar to a narrowing step on “not x” that instantiates the variable x to True or False. Since such gener-

3 Note that this code has been simplified for readability since the type system of Haskell does not allow this direct
definition.
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ators are standard non-deterministic operations, they are translated like any other operation and, therefore,
do not require any additional run-time support. However, in the presence of equational constraints, there
are methods which are more efficient than generating all values. These methods and their implementation
are discussed in the next section.

4 Equational Constraints and Unification

As known from logic programming, predicates or constraints are important to restrict the set of intended
values in a non-deterministic computation. Apart from user-defined predicates, equational constraints of
the form e; =:=e, are the most important kind of constraints. We have already seen a typical application
of an equational constraint in the operation last in Sect.[2]

Due to the presence of non-terminating operations and infinite data structures, “=:="is interpreted
as the strict equality on terms [15], i.e., the equation e; =:=e is satisfied iff e; and ey are reducible to
unifiable constructor terms. In particular, expressions that do not have a value are not equal w.r.t. “=:=",
e.g., the equational constraint “head [] =:= head []”isnot satisﬁableE]

Due to this constructive definition, “=:=" can be considered as a binary function defined by the fol-
lowing rules (we only present the rules for the Boolean and list types, where Success denotes the only
constructor of the type Success of constraints):

True =:= True = Success

False =:= False = Success

[] =3= [l = Success

(x:xs) =:= (y:ys) = X =:=y & XS =:=ys
Success & ¢ = C

If we translate these operations into Haskell by the scheme presented in Sect. [3] the following rules are
added to these rules in order to propagate choices and failures:

Fail == _ = Fail
_ =:= Fail = Fail
Choice i 1 r =:=y = Choice i (1 =:=y) (r =:=Yy)
X =:=Choice i 1 r = Choice i (x =:=1) (x =:= 1)
_ == _ = Fail
Fail & _ = Fail
Choice 1 1 r & ¢ = Choice 1 (1 & ¢) (r & c)
& = Fail

Although this is a correct implementation of equational constraints, it might lead to an unnecessarily large
search space when it is applied to generators representing logic variables. For instance, consider the fol-
lowing generator for Boolean lists:

aBoolList = [] ? (aBool : aBoolList)
This is translated into Haskell as follows:

aBoolList :: IDSupply — [Bool]

aBoolList s = Choice (thisID s) [] (aBool (leftSupply s)

: aBoolList (rightSupply s))

13

Now consider the equational constraint “x =:= [True]”. If the logic variable x is replaced by
aBoolList, the translated expression “aBoolList s =:= [True]” creates a search space when evalu-
ating its first argument, although there is no search required since there is only one binding for x satisfying
the constraint. Furthermore and even worse, unifying two logic variables introduces an infinite search
space. For instance, the expression “xs =:= ys & xs++ys =:= [True]” results in an infinite search
space when the logic variables xs and ys are replaced by generators.

i)

* From now on, we use the standard notation for lists, i.e., [] denotes the empty list and (x:xs) denotes a list with
head element x and tail xs.
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To avoid these problems, we have to implement the idea of the well-known unification principle [28]].
Instead of enumerating all values for logic variables occurring in an equational constraint, we bind the
variables to another variable or term. Since we compile into a purely functional language, the binding
cannot be performed by some side effect. Instead, we add binding constraints to the computed results to be
processed by a search strategy that extracts values from choice structures.

To implement unification, we have to distinguish free variables from “standard choices” (introduced by
overlapping rules) in the target code. For this purpose, we refine the definition of the type ID as followsf]

data ID = ChoiceID Integer | FreeID Integer

The new constructor FreeID identifies a choice corresponding to a free variable, e.g., the generator for
Boolean variables is redefined as
aBool s = Choice (FreeID (thisID s)) True False

If an operation is applied to a free variable and requires its value, the free variable is transformed into a
standard choice. For this purpose, we define a simple operation to perform this transformation:

narrow :: ID — 1ID
narrow (FreeID i) = ChoicelID 1
narrow x = x

Furthermore, we use this operation in narrowing steps, i.e., in all rules operating on Choice constructors.
For instance, in the implementation of the operation not we replace the rule

not (Choice 1 x1 x2) s = Choice 1 (not x1 s) (not x2 s)
by the rule
not (Choice i x1 x2) s = Choice (narrow 1) (not x1 s) (not x2 s)

As mentioned above, the consideration of free variables is relevant in equational constraints where binding
constraints are generated. For this purpose, we introduce a type to represent a binding constraint as a pair
of a choice identifier and a decision for this identifier:

data Constraint = ID :=: Decision
Furthermore, we extend each data type by the possibility to add constraints:

data Bool = ... | Guard [Constraint] Bool
data List a = ... | Guard [Constraint] (List a)

A single Constraint provides the decision for one constructor. In order to support constraints for struc-
tured data, a list of Constraints provides the decision for the outermost constructor and the decisions for
all its arguments. Thus, (Guard cs v) represents a constrained value, i.e., the value v is only valid if the
constraints cs are consistent with the decisions previously made during search. These binding constraints
are created by the equational constraint operation “=:=": if a free variable should be bound to a construc-
tor, we make the same decisions as it would be done in the successful branch of the generator. In case of
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Boolean values, this can be implemented by the following additional rules for “=:="":

Choice (FreelD i) _ _ =:= True = Guard [i :=: Chooseleft ] Success
Choice (FreeID i) _ _ =:= False = Guard [i :=: ChooseRight] Success

Hence, the binding of a variable to some known value is implemented as a binding constraint for the choice
identifier for this variable. However, if we want to bind a variable to another variable, we cannot store a
concrete decision. Instead, we store the information that the decisions for both variables, when they are
made to extract values, must be identical. For this purpose, we extend the Decision type to cover this
information:

data Decision = ... | BindTo ID

Furthermore, we add the rule that an equational constraint between two variables yields a binding for these
variables:

Choice (FreeID i) _ _ =:= Choice (FreeID j) _ _
= Guard [i :=: BindTo j] Success

5 For the sake of simplicity, in the following, we consider the implementation of IDSupp 1y to be unbounded integers.
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The consistency of constraints is checked when values are extracted from a choice structure, e.g., by the
operation printValsDFS. For this purpose, we extend the definition of the corresponding search opera-
tions by calling a constraint solver for the constraints. For instance, the definition of printvalsDFS is
extended by a rule handling constrained values:

printValsDFS (Guard cs x) = do consistent <- add cs
if consistent then do printValsDFS x
remove Ccs
else return ()

The operation add checks the consistency of the constraints cs with the decisions made so far and, in case
of consistency, stores the decisions made by the constraints. In this case, the constrained value is evaluated
before the constraints are removed to allow backtracking. Furthermore, the operations lookupDecision
and setDecision are extended to deal with bindings between two variables, i.e., they follow variable
chains in case of BindTo constructors.

Finally, with the ability to distinguish free variables (choices with an identifier of the form
(FreeID ...)) from other values during search, values containing logic variables can also be printed
in a specific form rather than enumerating all values, similarly to logic programming systems. For instance,
KiCS2 evaluates the application of head to an unknown list as follows:

Prelude> head xs where xs free
{xs = (xX2:_x3)} _x2

Here, free variables are marked by the prefix _x.

5 Functional Patterns

A well-known disadvantage of equational constraints is the fact that “=:=""is interpreted as strict equality.
Thus, if one uses equational constraints to express requirements on arguments, the resulting operations
might be too strict. For instance, the equational constraint in the condition defining 1ast (see Sect.[2) re-
quires that ys++[e] as well as xs must be reducible to unifiable terms so that in consequence the input list
xs is completely evaluated. Hence, if failed denotes an operation whose evaluation fails, the evaluation
of last [failed, True] has no result. On the other hand, the evaluation of last’ [failed, True]
yields the value True, i.e., the definition of 1ast’ is less strict thanks to the use of functional patterns.
As another example for the advantage of the reduced strictness implied by functional patterns, consider

an operation that returns the first duplicate element in a list. Using equational constraints, we can define it
as follows:

fstDup xs | xs =:= yst+t+[e]++zs & elem e ys =:= True & nub ys =:= ys

= e where ys, zs, e free

The first equational constraint is used to split the input list xs into three sublists. The last equational
constraint ensures that the first sublist ys does not contain duplicated elements (the library operation nub
removes all duplicates from a list) and the second equational constraint ensures that the first element after
ys occurs in ys. Although this implementation is concise, it cannot be applied to infinite lists due to the
strict interpretation of “=:=". This is not the case if we define this operation by a functional pattern:

fstDup’ (yst+[e]l++tzs) | elem e ys =:= True & nub ys =:= ys

= @

Because of the reduced strictness, the logic variable zs (matching the tail list after the first duplicate) is
never evaluated. This is due to the fact that a functional pattern like (xs++[e]) abbreviates all values
to which it can be evaluated (by narrowing), like [e], [x1,e], [x1,x2,e] etc. Conceptually, the rule
defining 1ast’ abbreviates the following (infinite) set of rules:

last’ [e] = e

last’ [x1,e] = e

last’ [x1,x2,e] = e
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Obviously, one cannot implement functional patterns by a transformation into an infinite set of rules. In-
stead, they are implemented by a specific lazy unification procedure “=: <=" [3]]. For instance, the definition
of last’ is transformed into

last’ ys | (xst+[e]) =:<=ys = e where xs, e free

The behavior of “=:<="is similar to “=:=", except for the case that a variable in the left argument should
be bound to some expression: instead of evaluating the expression to some value and binding the variable
to the value, the variable is bound to the unevaluated expression (see [3] for more details). Due to this
slight change, failures or infinite structures in actual arguments do not cause problems in the matching of
functional patterns.

The general structure of the implementation of functional patterns in KiCS2 is quite similar to that of
equational constraints, with the exception that variables could be also bound to unevaluated expressions.
Only if such variables are later accessed, the expressions they are bound to are evaluated. This can be
achieved by adding a further alternative to the type of decisions:

data Decision = ... | LazyBind [Constraint]
The implementation of the lazy unification operation “=:<=" is almost identical to the strict unification

operation “=:="as shown in Sect.[d The only difference is in the rules where a free variable occurs in the
left argument. All these rules are replaced by the single rule

Choice (FreeID 1) _ _ =:<=x
= Guard [i :=: LazyBind (lazyBind i x)] Success
where the auxiliary operation 1azyBind implements the demand-driven evaluation of the right argument
x:

lazyBind :: ID — a — [Constraint]
lazyBind i True = [1 :=: Chooseleft]
lazyBind 1 False [1 :=: ChooseRight]

The use of the additional LazyBind constructor allows the argument x to be stored in a binding constraint
without evaluation (due to the lazy evaluation strategy of the target language Haskell). However, it is
evaluated by lazyBind when its binding is required by another part of the computation. Similarly to
equational constraints, lazy bindings are processed by a solver when values are extracted. In particular, if
a variable has more than one lazy binding constraint (which is possible if a functional pattern evaluates to
a non-linear term), the corresponding expressions are evaluated and unified according to the semantics of
functional patterns [3].

In order to demonstrate the operational behavior of our implementation, we sketch the evaluation
of the lazy unification constraint xs++[e] =:<= [failed, True] that occurs when the expression
last’ [failed, True] isevaluated (we omit failed branches and some other details; note that logic vari-
ables are replaced by generators, i.e., we assume that xs is replaced by aBoolList 2 and e is replaced by
aBool 3):

aBoolList 2 ++ [aBool 3] =:<= [failed, True]
~» [aBool 4, aBool 3] =:<= [failed, True]
~» aBool 4 =:<= failed & aBool 3 =:<= True & [] =:<= []
~» Guard [ 4 :=: LazyBind (lazyBind 4 failed)
: LazyBind (lazyBind 3 True)] Success

w
I

’

If the value of the expression last’ [failed, True] is later required, the value of the variable e (with
the identifier 3) is in turn required. Thus, (lazyBind 3 True) is evaluated to [3 :=: ChooseLeft]
which corresponds to the value True of the generator (aBool 3). Note that the variable with identifier
4 does not occur anywhere else, so that the binding (lazyBind 4 failed) will never be evaluated, as
intended.

6 Benchmarks

In this section we evaluate our implementation of equational constraints and functional patterns by some
benchmarks. The benchmarks were executed on a Linux machine running Debian 5.0.7 with an Intel Core
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Expression == | =:=|=:<=
last (map (inc 0) [1..100001) 2.91| 0.05| 0.01
simplify 10.30| 6.77| 7.07
varInExp 2.34| 0.24| 0.21
fromPeano (half (toPeano 10000))(26.67| 5.95|11.19
palindrome 30.86|14.05|20.26
horseman 3.24| 331| n/a
grep 1.06| 0.10| n/a

Fig. 1. Benchmarks: comparing different representations for equations

Expression KiCS2[PAKCSMCC
last (map (inc 0) [1..100001) 0.05 0.40| 0.01
simplify 6.77  0.15| 0.00
varInExp 0.24| 0.89] 0.07
fromPeano (half (toPeano 10000))| 5.95| 108.88| 3.22
palindrome 14.05| 32.56| 1.07
horseman 3.31 8.70| 0.42
grep 0.10 2.88| 0.14

Fig. 2. Benchmarks: strict unification in different Curry implementations

2 Duo (3.0GHz) processor. KiCS2 has been used with the Glasgow Haskell Compiler (GHC 7.0.4, option
-02) as its backend and an efficient IDSupply implementation that makes use of TOrRefs. For a compar-
ison with other mature implementations of Curry, we considered PAKCS [19] (version 1.9.2, based on a
SICStus-Prolog 4.1.2) and MCC [24] (version 0.9.10). The timings were performed with the time command
measuring the execution time (in seconds) of a compiled executable for each benchmark as a mean of three
runs. The programs used for the benchmarks, partially taken from [3]], are 1ast (compute the last element
ofa ]ist)E] simplify (simplify a symbolic arithmetic expression), var InExp (non-deterministically return
a variable occuring in a symbolic arithmetic expression), half (compute the half of a Peano number using
logic variables), palindrome (check whether a list is a palindrome), horseman (solving an equation re-
lating heads and feet of horses and men based on Peano numbers), and grep (string matching based on a
non-deterministic specification of regular expressions [5]]).

In Sect. 4] we mentioned that equational constraints could also be solved by generators without variable
bindings, but this technique might increase the search space due to the possibly superfluous generation
of all values. To show the beneficial effects of our implementation of equational constraints with variable
bindings, in Fig. [I| we compare the results of using equational constraints (=:=) to the results where the
Boolean equality operator (==) is used (which does not perform bindings but enumerate all values). As
expected, in most cases the creation and traversal of a large search space introduced by == is much slower
than our presented approach with variable bindings. In addition, the example last shows that the lazy
unification operator (“=:<=") improves the performance when unifying an expression which has to be
evaluted only partially. Using strict unification, all elements of the list are (unnecessarily) evaluated.

In contrast to the Curry implementations PAKCS and MCC, our implementation of strict unification is
based on an explicit representation of the search space instead of backtracking and manipulating a global
state containing bindings for logic variables. Nevertheless, the benchmarks in Fig. 2] using equational con-
straints only, show that it can compete with or even outperform the other implementations. The results
show that the implementation of unification of MCC performs best. However, in most cases our imple-
mentation outperforms the Prolog-based PAKCS implementation, except for some examples. In particular,
simplify does not perform well due to expensive bindings of free variables to large arithmetic expres-
sions in unsuccessful branches of the search. Further investigation and optimization will hopefully lead to
a better performance in such cases.

6“inc x n”is anaive addition that n times increases its argument x by 1.
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Expression KiCS2|PAKCS
last (map (inc 0) [1..100007) 0.01 0.33
simplify 7.07 0.27
varInExp 0.21 1.87
fromPeano (half (toPeano 10000))| 11.19 o)
palindrome 20.26 o0

Fig. 3. Benchmarks: functional patterns in different Curry implementations

As MCC does not support functional patterns, the performance of lazy unification is compared with
PAKCS only (Fig.[3). Again, our compiler performs well against PAKCS and outperforms it in most cases
(“oc0” denotes a run time of more than 30 minutes).

7 Conclusions and Related Work

We have presented an implementation of equational constraints and functional patterns in KiCS2, a purely
functional implementation of Curry. Our implementation is based on adding binding constraints to com-
puted values and processing them when values are extracted at the top level of a computation. Since we
only have added new constructors and pattern matching rules for them in our implementation, no over-
head is introduced for programs without equational constraints, i.e., our implementation does not sacrifice
the high efficiency of the kernel implementation shown in [12]]. However, if these features are used, they
usually lead to a comparably efficient execution, as demonstrated by our benchmarks.

Other implementations of equational constraints in functional logic languages use side effects for their
implementation. For instance, PAKCS [19]] exploits the implementation of logic variables in Prolog, which
are implemented on the primitive level by side effects. MCC [24] compiles into C where a specific abstract
machine implements the handling of logic variables. We have shown that our implementation is competitive
to those. In contrast to those systems, our implementation supports a variety of search strategies, like
breadth-first or parallel search, where the avoidance of side effects is important.

For future work it might be interesting to add further constraint structures to our implementation, like
real arithmetic or finite domain constraints. This might be possible by extending the kinds of constraints of
our implementation and solving them by functional approaches like [29].
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Abstract. There are various interesting semantics’ (extensions) designed for argumentation frame-
works. They enable to assign a meaning, e.g., to odd-length cycles. Our main motivation is to transfer
semantics’ proposed by Baroni, Giacomin and Guida for argumentation frameworks with odd-length
cycles to logic programs with odd-length cycles through default negation. The developed construction
is even stronger. For a given logic program an argumentation framework is defined. The construction
enables to transfer each semantics of the resulting argumentation framework to a semantics of the
given logic program. Weak points of the construction are discussed and some future continuations of
this approach are outlined.
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1 Introduction

Relations between (extensions of) abstract argumentation frameworks and (semantics of) logic programs
were studied since the fundamental paper by Dung [3] and since the times of other seminal paper [10]. We
can mention also, e.g., [7,18,2,8,9, 11-17].

Among typical research problems are, e..g.,

— acharacterization of extensions of abstract argumentation framework in terms of answer sets or other
semantics’ of logic programs,

— a construction of new semantics of logic programs, based or inspired by extensions of argumentation
frameworks,

— encoding extensions in answer set programming.

Our main motivation is to transfer semantics’ proposed in [5] for argumentation frameworks with odd-
length cycles to logic programs with odd-length cycles through default negation. According to our knowl-
edge, only CF2 extensions of [5], were studied from different logic programming points of view, see, e.g.,
[11,17]. In [11] an ASP-encoding of (modified) CF2 is presented and in [17] a characterization of CF2 in
terms of answer set models is proposed.

Our goal is to propose some new semantics’ of logic programs (we are primarily interested in a semantic
handling of odd cycles through default negation) via transferring semantics’ of argumentation frameworks
(AD1, AD2, CF1, CF2). We propose a uniform method, which for a given logic program transfers arbitrary
argumentation semantics to a semantics of the logic program. The method enables to define for a given
logic program a corresponding argumentation framework. As next step, each semantics of the resulting
argumentation framework is transferred to a semantics of the given logic program.

This paper is structured as follows. Basics of SCC-recursive semantics of [5] is sketched after technical
preliminaries. Then, in Section 4, the core of the paper, a transfer of argumentation framework semantics’
to logic program is described. A special attention is devoted to the problem of odd cycles in the Section 5. A
representation of an argumentation framework A by a logic program P is described in Section 6. It is shown
that for an arbitrary argumentation semantics holds that extensions of the original argumentation framework
A coincide with extensions of the argumentation framework constructed for P using the method of Section
4. Weak points of the construction are discussed in the paper. Some future continuations of this research
are outlined in Section 7. Finally, related work is overviewed and main contributions, open problems and
future goals are summarized in Conclusions.
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2 Preliminaries
Some basic notions of argumentation frameworks and logic programs are introduced in this section.

Argumentation frameworks An argumentation framework [3] is a pair AF = (AR, atatcks), where AR
is a set (of arguments) and attacks C AR x AR is a binary relation. Let be a, b € AR; if (a,b) € atatcks,
it is said that a attacks b. We assume below an argumentation framework AF = (AR, attacks).

Letbe S C AR. Itis said that S is conflict-free if for no a,b € S holds (a,b) € attacks.

A set of arguments S C AR attacks a € AR iff there is b € S s.t. (b, a) € attacks.

A conflict-free set of arguments S is admissible in AF iff for each a € S holds: if there is b € AR
s.t. (b,a) € attacks, then S attacks b, i.e. an admissible set of arguments counterattacks each attack on its
members.

Dung defined some semantic characterizations (extensions) of argumentation frameworks as sets of
conflict-free and admissible arguments, which satisfy also some other conditions.

A preferred extension of AF is a maximal admissible set in AF. A conflict-free S C AR is a stable
extension of AF iff S attacks eacha € AR\ S.

The characteristic function F 4 of an argumentation framework AF' assigns sets of arguments to sets
of arguments, where F4r(S) = {a € AR | Vb € AR (b attacks a = S attacks b}.

The grounded extension of an argumentation framework AF is the least fixed point of Fap (Fap is
monotonic).

A complete extension is an admissible set S of arguments s.t. each argument, which is acceptable with
respect to .S, belongs to .S.

We will use a precise notion of a semantics of an argumentation framework. A semantics of AF is a
mapping o, which assigns a set of extensions to AF. Different indices in the place of * specify different
semantics’, e.g. preferred semantics, stable semantics etc. A set of extensions assigned by a semantics S to
an argumentation framework AF' is denoted by Es(AF).

Logic programs Only propositional normal logic programs are considered in this paper. Let £ be a set of
atoms. The set of default literals is not £ = {not A | A € L}. A literal is an atom or a default literal. A
rule (let us denote it by r) is an expression of the form

A— Aq,..., Ag,not By,...,not B,,; where k > 0,m >0 (1)

A is called the head of the rule and denoted by head(r).

The set of literals {A1, ..., A, not Bi,...,not B} is called the body of r and denoted by body(r).
{Ay,..., Ag}, called the positive part of the body, is denoted by body™ (1) and {By, ..., B,,} is denoted
by body~ (r). Notice that body ™~ (r) differs from the negative part {not By, ..., not B,,} of the body.

A (normal) program is a finite set of rules. We will often use only the term program.

We will specify a transfer of an argumentation semantics to a logic program semantics in terms of sets
of atoms derivable in the corresponding logic program. We follow the approach of Dimopoulos and Torres
[6] in order to specify a notion of derivation in a normal logic program. The derivation should be dependent
on a set of default literals. In the next paragraphs we will adapt some basic definitions from [6].

An assumption is a default literal. A set of assumptions A is called a hypothesis. A" isaset of atoms,
dependent on (derivable from) A w.r.t. a program (set of rules) P; here is a precise definition:

Let A, a hypothesis be given. P, is the set of all rules from P, where elements from A are deleted
from the bodies of the rules and PZ is obtained from P by deleting all rules r with bodies containing
assumptions. Then AT = {Ae L] PZ E A}.

It is said that an atom A is derived from A using rules of P iff A € A"

Stable model semantics of logic programs play a background role in our paper, so, we introduce a
definition of stable model. An interpretation S' = AUA™" is a stable model of P iff S is total interpretation
[6], where an interpretation is understood as a consistent set of literals.
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3 SCC-recursive semantics

An analysis of asymmetries in handling of even and odd cycles in argumentation semantics’ is presented
in [5]. We present only a sketchy view of their approach, for details see [5].

An argumentation framework may be conceived as an oriented graph with arguments as vertices and
the attack relation as the set of edges.

Example 1 Consider AF = ({a, b, c}, {(a,b), (b, ), (c,a)}). The graph representation of AF contains an
odd-length cycle.

This example is often presented as a case o three witnesses and the attack relation is interpreted as
Jollows: a questions reliability of b, b questions reliability of c, ¢ questions reliability of a.

Stable semantics does not assign an extension to such argumentation framework. However, there are
two stable extensions for the case of four witnesses.

This asymmetry in semantic treatment of odd and even cycles motivated the research and solutions of
[5]. The same problem is present in a form also in other “classical” argumentation semantics proposed in
[3].0

A general recursive schema for argumentation semantics is proposed in [5]. Recursive semantics’ are
defined in a constructive way — an incremental process of adding arguments into an extension is specified.
A symmetric handling of odd and even cycles is based on distinguishing components of graphs.

Definition 1 Ler an argumentation framework AF = (AR, attacks) be given. A binary relation of path
equivalence, denoted by PE o C (AR x AR), is defined as follows.

— Va € AR, (a,a) € PEap,
- Va#be€ AR, (a,b) € PEr iff there is a path from a to b and a path from b to a.

The strongly connected components of AF are the equivalence classes of arguments (vertices) un-
der the relation of path-equivalence. The set of the strongly connected components of AF' is denoted by
SCCSap.

We now can consider the set of strongly connected components as the set of vertices of a new graph.
Consider components C; and C5. Let an argument a be a member of C; and b be a member of Cs. If a
attacks b (in AF), then (C1, C2) is an edge of the graph of strongly connected components (SCC-graphs).
It is clear that this graph is an acyclic one.

Notions of parents and ancestors for SCC-graphs are defined in an obvious way. Initial components
(components without parents) provide a basis for a construction of an extension. We start at the initial
component and proceed via oriented edges to next components. If we construct an extension £ and a
component C' is currently processed, the process consists in a choice of a subset of C, i.e. a choice of
E N C (according to the given semantics — the semantics specifies how choices depend on choices made in
ancestors of C'). A base function is assumed, which is applied to argumentation frameworks with exactly
one component and it characterizes a particular argumentation semantics.

A notion of SCC-recursive argumentation semantics formalizes the intuitions presented above. SCC-
recursive characterization of traditional semantics’ is provided. Finally, some new semantics’, AD1, AD2,
CF1 and CF2, are defined in [5].

ADI and AD?2 extensions preserve the property of admissibility. However, the requirement of maxi-
mality is relaxed, so this solution is different as compared to the preferred semantics. An alternative is not
to require admissibility of sets of arguments and and insist only on conflict-freeness. Maximal conflict-free
sets of arguments are selected as extensions in semantics CF1 and CF2. For details and differences see [5].
ASP-encodings of AD1, AD2, CF1 and CF2 are presented in [1].

4 Transfer of argumentation framework semantics’ to logic program

We will build an argumentation framework over the rules of a logic program. Rules will play the role of
arguments. An attack relation over such arguments will be introduced. After that some arguments (rules)
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are accepted/rejected on the basis of a given argumentation semantics. A corresponding semantics for logic
program is introduced as a set of literals derivable from accepted rules (considered as arguments). Note
that this method enables a transfer of an arbitrary argumentation semantics to the given logic program.

Definition 2 Let a program P be given. Then an argumentation framework over P is AFp = (AR, attacks),
where
AR = {r € P} and attacks = {(r1,72) | A = head(r1),body™ (r1) =0, A € body~ (r2)}. O

Example 2 Let be P = {ry : a <—; 2 : b < not a.}. Then attacks = {(r1,72)} in AFp.
IfP={ry:a+« notb.ry:b— nota.}, then attacks = {(r1,72), (r2,71)}. O

Let us discuss the condition that the attacking rules do not contain positive literals in its body. A deriva-
tion of the head of a rule  with non-empty body™ (1) from a hypothesis A is conditional: it depends on
a derivation of positive literals in body ™ (). We constrain the attacking argument in the attack relation
to the rules with non-empty body+(r) — it is recognizable on syntactic level and it is appropriate for the
representation of argumentation frameworks in logic programs presented in Section 6.

But this design decision leads to some counterintuitive consequences in a general case. We will return
to the problem below, after formal definitions.

We have defined an argumentation framework over the rules of a program P. Let’s proceed towards
derivations in P, based on an argumentation semantics.

Let a program P be given, AFp be an argumentation framework over P. Consider a set of rules R C
P, where R is a conflict-free set of arguments of AFp. It is obvious that R could serve as a basis of a
reasonable derivation in the corresponding logic program. Only literals which do not occur as negated in
the bodies of rules are in the heads of rules.

Notice that extensions of an argumentation framework over a program P are sets of rules. That is
expressed by a notion of rules enabled in a program P by an argumentation semantics according to the
following definition.

Definition 3 A set of rules R C P is enabled in a program P by an argumentation semantics S iff R €
Es(AFp). If R satisfies this condition, it is denoted by Rule_ink (or by a shorthand Rule_in, if a given
semantics and a given program are clear from the context). O

A set of rules R (Rule_ink) is enabled by S according to Definition 3, if R is an S-extension of AFp.
The following definition of a set of atoms consistent with a set of rules is important. It partially prevents
some negative consequences of the decision that attacking rules have empty positive part of the body.
Inconsistent sets of rules cannot be derived because of checking consistency, see Definition 6.

Definition 4 Let M be an arbitrary set of atoms and R C P be an arbitrary subset of a programP.
It is said that M is consistent with R jff VA € M —3r € R A € body~ (r). O

Now, a fundamental task is to point out a way from Rule,ing , rules enabled by an argumentation
semantics to a corresponding set of atoms, i.e., to a semantics of the given logic program P. The set is
denoted by In_ASs, see the following definition.

Definition 5 Let AFp be an argumentation framework over a program P, S be an argumentation seman-
tics of AFp and Rule_ing is a set of rules of P enabled by the semantics S.

Then In_ASs is the least set of atoms A satisfying the following condition:

Jr € Rule_ing, head(r) = A,Vb € body™ (r) : b € In_ASs. O

Definition 5 specifies how to compute In_AS. First, for each r € Rule_ing s.t. body™ (r) = () and
head(r) = A, Ais included into In_AS. After that is In_AS iteratively recomputed for all » € Rule_ing
with non-empty body™ (r). Notice that this is a process of Tryic_in < -iteration.

Finally, it is necessary to use consistent /n_ASs in order to define a sound semantic characterization
of the given logic program P. This characterization is called the set of atoms derived in P according to
semantics S according to the following definition.
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Definition 6 If In_ASgs is consistent with Rule_ing, then it is said that In_ASs is the set of atoms derived
in P according to semantics S. O

Example 3 Let a program P = {ry : a <, ry : b — not a,r3 : ¢ < not b,ry : d — not c} be given.

We get AFp = (r1,72,7r3,74},{(r1,72), (r2,73), (r3,74)}). Consider only the preferred semantics.
The only preferred extension of AFp is the set of rules {ri,r3}.! We get {{r1,m3}} = Es(AFp), where
S is the preferred semantics. It means, {r1,rs} is the only set of rules, enabled by the preferred semantics
according to Definition 3.

In_AS = {a,c} according to Definition 5. The set of atoms {a, c} is consistent with the set of rules
{r1, 73} according to the Definition 4. Finally, according to Definition 6 is {a, c} derived in P according
to the preferred semantics.

Notice that this set is the stable model of P. O

Example 4 Consider now a less straightforward example.

Let Pbe {ry :a < not b, r9 : b« c,not d.}, r3 : ¢ < .}, then attacks = 0. If S is the preferred
semantics, then {{ry,r2,73}} = Es(AFp), P = Rule_ing is enabled by the preferred semantics.

Further, it holds that In_ASs = {a, b, ¢} according to Definition 5. But In_ASs is not consistent with
P = Rule_ing, hence no atom is derived in P according to the preferred semantics.

Consistency checks are intended as a guard against hidden attacks, as our example demonstrates. This
is why the set In_ASgs is not derivable in P according to the preferred semantics. Hence, our construction
prevent to accept inconsistent sets of atoms as semantic characterizations of logic programs.

On the other hand, {r2,r3} (may be, also {r1, r3}) could be an intuitive preferred extension of an argu-
mentation framework assigned to P. It means that our construction do not generate all intuitive semantic
characterizations of a logic program corresponding to an argumentation semantics. 0

Remark 1 May be, a way out of this bug could be built over subsets of Rule_ins and/or of In_AS.
Definition 6 can be modified accordingly as follows: Let M be a maximal subset of In_ASs and R be a
maximal subset of Rule_ing s.t. M is consistent with R. Then it is said that M is the set of atoms derived
in P according to semantics S.

If we consider Example 4, we get sets {a, c} and {b, c} as derived atoms corresponding to the preferred
extension. However, this is not appropriate for stable semantics. A nice uniform transfer of an argumen-
tation semantics to a logic program semantics would be lost, if a special handling of inconsistency for
different argumentation semantics’ is specified.

More comments about some possible ways how to fix this bug are included into Section 7. O

We repeat that the given construction of an argumentation framework over a logic program is useful
for goals of Section 6. Possibilities of more general constructions aiming at a transfer of an argumentation
semantics to a logic program semantics are presented in Section 7.

Derivation of atoms according to Definition 6 coincides with the derivation of derivation in Section 2.

Proposition 1 Let an argumentation semantics S be given. Let be R = Rule_ing. A set of atoms derived
in P according to the semantics S is A™F for some A.

Proof:
Let be R = Rule_ing and In_AS be the corresponding derived set of atoms.

Suppose that A = {not A | 3r € R A € body™ (r)}. It holds that A € A" iff R} = A. Obviously,
R = Aholdsiff A € In_AS. O

An open problem is, how semantics’ transferred from argumentation frameworks are related to known
semantics of logic programs (stable model semantics, partial stable model semantics, well founded seman-
tics etc.)

Note that stable extensions of AFp are not in general stable models of P.

Ut is also a stable, grounded and complete extension.
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Example 5 Consider the program P = {ry : a < p,not b,ro : b« g, not a,r3 : p <}
The stable model of P is {p,a}, but the stable extension of AFp does not exist, rules 1,129,173 are
mutually conflict-free, but In_AS = {a, b, p} is not consistent with Rule_in = {ry,ra,r3}, O

This observation is a consequence of the given design decision concerning the attack relation — attacking
rules are only rules with empty positive part of the body.

5 0Odd cycles

In this section some examples are presented in order to show that a transfer of an argumentation semantics
to a logic program (without a suitable “classic” semantic characterization) enables a reasonable semantic
characterization of the program.

Some logic programs without stable models have a clear intuitive meaning. A transfer of argumentation
semantics from the corresponding argumentation framework enables to catch a meaning of such programs.
Of course, a more detailed analysis is needed, in order to understand the relations of those semantics to
partial stable models semantics and well founded semantics (or other semantics’ of logic programs).’

Example 6 Remind Example 3. Let P’ be P U {r5 : e <— not e}. P’ has no stable model.

The graph of the argumentation framework AFp: contains an isolated vertex r5 which attacks itself.
If we transfer preferred and grounded semantics from AFp: to logic program P', we obtain a semantic
characterization by an intuitive set of rules {r1,r3} and, consequently, of atoms {a, c} as in Example 3. O

However, a special interest deserves the problem of odd cycles. In this case a transfer from argumenta-
tion semantics’ to logic program semantics’ provides a new perspective on logic programs.>

Example 7 Consider program Py = {ry : a < not b,rs : b < not a} with an even (negative) cycle and
Py ={ry:a <+« not b,ry : b < not ¢,r3 : ¢ « not a} with an odd (negative) cycle. There is no stable
model of Ps.

Preferred, stable and complete argumentation semantics’ assign two extensions to AFp,. On the other
hand, they assign one (empty) or no extension to AFp,.

Recursive semantics’ proposed in [5] overcome this asymmetry. Note that AFp consists of the only
component, the odd cycle (r1,73), (r2,73), (rs3,r1). CF1 assigns three extensions {{a}, {b},{c}} to this
framework. Our construction enables to transfer this semantics to the logic program P. O

Consider also other example.

Example 8 Let be P = {ry : a «— not a,rs : b — not a}. The argumentation framework AFp has
according to the semantics C F2 extension r, consequently {b} is transferred to P. O

6 Representation of argumentation framework by logic program

In this section we apply a changed view. An argumentation framework AF' is assumed and its representation
by a simple logic program P, is constructed. Then we can construct an argumentation framework .4 over
the rules of that program using the method of Section 4. Suppose that an argumentation semantics S’ is
applied to the argumentation framework A over the rules of the program P4r. We will show that an
application of transferred argumentation semantics to the logic program P4 produces the same result as
the application of the semantics to the original argumentation framework AF.

Definition 7 Let an argumentation framework AF = (AR, attacks) be given. We represent AF by a logic
program Pap as follows

— for each a € AR there is exactly one rule r € Pap s.t. head(r) = {a}

2 Some results are presented in the literature, see Section 8.
3 We realize that this is a complex problem and diverse intuitions should be analyzed.
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- body~ (r) = {b| b€ AR, (b,a) € attacks}, body™ (r) = 0.
a

A remark: if body of a rule is empty, then the corresponding argument is not attacked in AF'.

Example 9 Let be AF = (AR, attacks), where AR = {a,b,c,d, e}
and attacks = {(a,b), (¢, b), (c,d), (d,c), (d,e),(e,e)}. Pap, the logic program representing AF is as
follows:

r1: b« not a,not c
Ty Q<

r3: ¢+« notd

ry: d < notc

75 1 €« not e, not d

Programs representing an argumentation framework look like lists: to each argument in the head of a
rule is assigned a list of arguments attacking the argument in the head of the rule.

Notice that there are logic programs, which cannot represent an argumentation framework. On the
other hand, if a logic program represents an argumentation framework, it is done in a unique way — there is
exactly one argumentation framework represented by the program.

Example 10 P, = {a <« not b,b «— not a} is a logic program, which represents the argumentation
Sframework AF = ({a,b},{(a,b), (b,a)}).

P, = {a < not b} cannot be a representation of any argumentation framework. There is no rule in Py
with b in its head (and each argument must be in the head of a rule).

Theorem 2 Let AF be an argumentation framework, AF = (AR, attacks), Par be the logic program
representing AF. Let In_AS be a set of atoms, derivable in Py according to a semantics S.
Then In_AS is an extension of AF' according to the semantics S.

Proof:

For each argument a € AR, there is exactly one rule r € Psp s.t. head(r) = a. A function ¥ : R — AR,
where R C P, assigns to each rule » € R the argument a € AR, which occurs in the head of 7. {1/2nb
AR — R is an inverse function which assigns to an argument the rule with the argument in the head.

In_AS = {a | 3r € Rule_in, head(r) = a} follows from the fact that body ™ (r) = 0 for each rule r.
Hence, In_AS = ¥(Rule_in).

It follows from the definition that for each (a, b) € attacks there is a pair (r1,r2) € attacksp, where
AFp = (ARp, attacksp). Notice that a € head(r1) and in head(rz) is b. (AFp is a framework over the
rules of the program P). If (a,b) € attacks then not a occurs in the body of a rule with b in the head.
Similarly, for all (11, 72) € attacksp thereis (z,y) € AF s.t. head(r1) = x,y € body~ (rz). Therefore,
the only difference between the frameworks AF and AFp is that the vertices of both frameworks are
renamed according to the function V.

Therefore, In_AS = W(Rule_in) = Es(AF).

7 Future goals

In this section three possible alternative transfers of argumentation semantics’ to logic program semantics’
are sketched. Only very preliminary remarks are presented.
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Canonical program. The first possibility, which we will investigate is as follows. Suppose, that an argu-
mentation framework is given. We can represent the argumentation framework by a logic program Py g
defined in Section 6 or by its more limpid, straightforward copy P“%" defined below.

Definition 8 Let AF = (AR, attacks) be an argumentation framework. The logic program PAY assigned
to AF is the least set of rules satisfying the conditions:

— AR is the set of atoms of PAT,
— if (a,b) € attacks, then (a < not b) € PAF,
- ifa € AR and neither (a,b) € attacks, nor (b,a) € atacks for some b, then (a «) € PAF,

d

It can be said, that P4 is the canonical logic program w.r.t. AF. An argumentation semantics of AF
can be transferred to a semantics of the canonical program in a rather straightforward way (in terms of
dependencies on hypotheses). The planned next step is a transfer of those dependencies to arbitrary logic
programs (for some argumentation semantics’ a similar work is done by [10]).

Hypotheses as arguments. Dung in his seminal paper [3] proposed a representation of a logic program
in an argumentation framework. Pairs of the form (A, A), where A is a hypothesis and A € A™? are
arguments in [314

While Dung was focused on expressing a logic program as an argumentation framework, our goal is
to transfer argumentation semantics “back” to the logic program. An interesting contribution could be a
transfer of AD1, AD2, CF1, CF2 and other new semantics specified for AF' P back to P. We will use some
notions of [6] in order to present a similar idea how to consider hypotheses as arguments.

Definition 9 ([6]) A hypothesis A attacks another hypothesis A’ in a program P if there is A € A™P s.t.
not A e A,
A hypothesis A is self-consistent in P, if it does not attack itself O

Definition 10 Ler a program P be given. Let H be the set of all hypothesis over the language of P.

Then an associated argumentation framework AFY = (AR, attacks) is defined as follows. AR is the
set of all self-consistent hypotheses of H and attacks is defined as in Definition 9.

If E € Es(AFT) for a semantics S, then for each A € E the set of atoms A™F provides a semantic
characterization of P according to S O

Notice that this construction is computationally more demanding — AF'T cannot be constructed by an
inspection of the syntactic form of P.

Moreover, it is possible that to an extension E of Es(AFT) is assigned a set of sets of atoms of P.
It seems that only maximal (w.r.t set-theoretic inclusion) hypotheses of E should be considered if e.g.
preferred semantics is transferred.

If we consider Example 4, which illustrates a counterintuitive properties of AF'p, constructed in Section
4, we get an intuitive solution.

Example 11 Let P be as in Example 4. Then AR of AFT| the set of self-consistent hypotheses in P is
{0, {not a}, {not b}, {not d},{not a, not d}}
and attacks = {({not d}, {not b}), (not a, not d}, {not b}).

We get that E = {0,{not a},{not d},{not a,not d}} is a preferred extension. If only maximal
hypotheses are considered, the set of atoms {b, c} is the transferred semantic characterization of P. Oth-
erwise, both {c} and {b, c} correspond to E. O

We have to study the details and consequences of the presented proposal.

4 But in [4] arguments are hypotheses, too.
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Derivation of arguments A bug caused by assumption body™ () = ) in Definition 2 can be fixed using
the approach of [19]. Basic argumentation structures and basic attacks are assumed. Basic argumentation
structures contain also conditional arguments. A kind of unfolding of conditional arguments is possible
thanks to derivation rules, which enable to derive (non-basic) argumentation structures. Similarly, other
derivation rules enable derivation of attacks between general argumentation structures. This machinery
enables to leave out the condition body™ (1) = ) of Definition 2.

8 Related work

This section contains only some sketchy remarks, a more detailed analysis and comparison is planned.

We are familiar with the following types of results: a correspondence of an argumentation semantics
and a logic program semantics is described, particularly, a characterization of extensions of abstract argu-
mentation framework in terms of answer sets or other semantics’ of logic programs. Encoding extensions
of argumentation frameworks in answer set programming is another type of research. Some researchers
construct a new semantics of logic programs, inspired by extensions of argumentation frameworks. This
goal is close to ours. However, every result about relations between an argumentation semantics and logic
program semantics is helpful for our future research.

Some remarks concerning Dung’s approach were presented in previous section.

Relations between the “classic” argumentation semantics’ and corresponding semantic views on logic
programs is studied in [10]. Of course, the problem of odd cycles is not tackled in the paper. Our future
goal is a detailed comparison of constructions of [10] and ours.

Argumentation framework is constructed and studied in terms of logic programs in [18]. Arguments
are expressed in a logic programming language, conflicts between arguments are decided with the help of
priorities on rules.

A theory of argumentation that can deal with contradiction within an argumentation framework was
presented in [7]. The results was applied to logic programming semantics. A new semantics of logic pro-
grams was proposed. The goal is similar as ours, we will devote an attention to this result.

The correspondence between complete extensions in abstract argumentation and 3-valued stable models
in logic programming was studied in [2].

The project "New Methods for Analyzing, Comparing, and Solving Argumentation Problems”, see,
e.g., [9,8, 11], is focused on implementations of argumentation frameworks in Answer-Set Programming,
but also other fundamental theoretical questions are solved. CF2 semantics is studied, too. An Answer Set
Programming Argumentation Reasoning Tool (ASPARTIX) is evolved.

The Mexican group [12—-17] contributes to research on relations of logic programing and argumentation
frameworks, too. Their attention is devoted to characterizations of argumentation semantics’ in terms of
logic programming semantics’. Also a characterization of CF2 is provided in terms of answer set models
or stratified argumentation semantics, which is based on stratified minimal models of logic programs.

Our main goal, in the context of presented remarks, is to “import” semantics’ from argumentation
frameworks to logic programs. However, results about relations of both areas are relevant for us.

9 Conclusions

A method for transferring an arbitrary argumentation semantics to a logic program semantics was devel-
oped. The method consists in defining an argumentation framework over the rules of a program. Extensions
of the argumentation framework are sets of rules. A set of consequences of those rules is an interpretation,
which provides the corresponding semantic characterization of the program.

This method allows a semantic characterization of programs with odd-length (negative) cycles. If a
simple program is assigned to an argumentation framework, extensions of the original framework and the
framework over the rules of that program coincide.

The presented method prevents generation of inconsistent sets of atoms. On the other hand, it does not
create sometimes a semantic characterization of the original program, even if there is an intuitive possibility
to specify the semantics. Some ways of solving this bug are sketched in the paper.

Open problems, future goals and connections to related work are discussed in previous sections.
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Abstract. Knowledge-based systems are suitable for realizing agbfumctions that require domain-
specific expert knowledge, while knowledge representdaoguages and their supporting environ-
ments are essential for realizing such systems. Althougho®ris useful and effective in realizing
such a supporting environment, the language interopésakilth other implementation languages,
such as Java, is often an important issue in practical agifwit development. This paper describes
the techniques for translating a knowledge representdginguage that is a nondeterministic func-
tional language based on attribute grammars into Java. réhslation is based on binarization and
the techniques proposed for Prolog to Java translatioowdth the semantics are different from those
of Prolog. A continuation unit is introduced to handle conttion efficiently, while the variable and
register management on backtracking is simplified by udiegsingle and unidirectional assignment
features of variables. An experimental translator wriftethe language itself successfully generates
Java code, while experimental results show that the gesteiide is over 25 times faster than that
of Prolog Cafe for nondeterministic programs, and over 2fifaster for deterministic programs. The
generated code is also over 2 times faster than B-Prologfudeterministic programs.

1 Introduction

There is high demand for advanced information services liioua application domains such as medical
services and supply-chain management, as information amdncinication technology penetrates deeply
into our society. Clinical decision support [1, 2] to preteredical errors and order placement support for
optimal inventory management [3] are typical examples, liowever, not prudent to implement such func-
tions as a normal part of the traditional information systesing conventional programming languages.
This is because expert knowledge is often large scale anglamated, and each application domain typi-
cally has its own specific structures and semantics. Thexgfiot only the analysis, but also the description,
audit, and maintenance of such knowledge are often difficitiitout expertise in the application domain. It
is thus, essential to realize such advanced functionsdwalbmain experts themselves to describe, audit,
and maintain their knowledge. A knowledge-based systemoagp is suitable for such purposes because
a suitable framework for representing and managing expenviedge is supplied.

Previously, Nagasawa et al. proposed the knowledge remsgm language DSP [4, 5] and its sup-
porting environment. DSP is a nondeterministic functidaagjuage based on attribute grammars [6, 7] and
is suitable for representing complex search problems withelying on any side effects. The supporting
environment has been developed on top of an integratedajeweint environment called Inside Prolog
[8]. Inside Prolog provides standard Prolog functionalitgnforming to ISO/IEC 13211-1 [9], and also
a large variety of Application Programming Interfaces (8)Pthat are essential for practical application
development and multi-thread capability for enterprise [d9].

These features allow the consistent development of knayeldrhsed systems from prototypes to prac-
tical systems for both stand-alone and enterprise use Hiigh systems have been applied to several
practical applications, and the effectiveness thereoflees clarified. However, several issues have also
been perceived from these experiences. One is the comptExibmbining a Prolog-based system with
a system written in a normal procedural language, such as Jée other is the adaptability to a new
computer environment such as mobile devices.

This paper describes the implementation techniques redjtartranslate a nondeterministic functional
language based on attribute grammars into a procedurakdgegsuch as Java. The proposed techniques
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are based on the techniques for Prolog to Java translatemio 2 gives an overview of the knowledge
representation language DSP, and clarifies how it diffemfProlog. In Section 3, the translation tech-
nigues for logic programming languages are briefly revievaed basic ideas useful for the translation of
DSP identified. Section 4 discusses the program repregergatf DSP in Java, while Section 5 evaluates
the performance using an experimental translator.

2 Overview of Knowledge Representation Language DSP

2.1 Background

It is essential to formally analyze, systematize, and diesdhe knowledge of an application domain in
the development of a knowledge-based system. The descriptiknowledge is conceptually possible in
any conventional programming language. Nevertheless, diifficult to describe, audit, and maintain a
knowledge base using a procedural language such as Jasas Bleicause the knowledge of an application
domain is often large scale and complicated, and each apiplicdomain has its own specific structures
and semantics. In particular, the audit and maintenanceittew knowledge is a major issue in an infor-
mation system involving expert knowledge, because suclst@syis very often stiffened and the transfer
of expert knowledge to succeeding generations is diffid#}.[ Therefore, it is very important to provide a
framework to enable domain experts themselves to deseuilnit, and maintain their knowledge included
in an information system [13]. It is perceived that a des@iplanguage that is specific to an application
domain and is designed so as to be described by domain eigsugserior in terms of the minimality, con-
structibility, comprehensibility, extensibility, andrfmality of the language [14]. For this reason, Prolog
cannot be considered as a candidate for a knowledge repatisaanguage.

DSP is a knowledge representation language based on nomé@gtic attribute grammars. It is a
functional language with a search capability using the geieeand test method. Because the language
is capable of representing trial and error without any sffeets or loop constructs, and the knowledge
descriptions can be declaratively read and understoadsititable for representing domain-specific expert
knowledge involving search problems.

2.2 Syntax and Semantics of DSP

A program unit to represent knowledge in DSP is called a “ngand it represents a nondeterministic
function involving no side-effects. Inherited attributegnthesized attributes, and tentative variables for
the convenience of program description, all of which ar&edalariables, follow the single assignment rule
and the assignment is unidirectional. Therefore, the caatjon process of a module can be represented
as non-cyclic dependencies between variables.

Table 1. Typical statements in the DSP language

Type Statement Function
generatoffor(B,E,S) Assume a numeric value from B to E with step S
generatorselect(L) Assume one of the elements of a list L
generatorcall(M,l,0) Call a module M nondeterministically with inputs | and oufpu
@)
calculatordcall(M,I,0) Call a module M deterministically with inputs | and outputs O
calculatorfind(M,1,0L) Get a list OL of all outputs of a module M with inputs |
tester |when(C) Specify the domain C of a method
tester |test(C) Specify the constraint C of a method
tester |verify(C) Specify the verification condition C

Table 1 shows some typical statements in the language. $ntabie, the types, generator, calcula-
tor, and tester, are functional classifications in the gateeand test method. Generatéos(B,E,S)
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andselect(L) are provided as primitives for the convenience of knowledggresentation although
they can be defined as modules using the nondeterministiaéssof the language. Bottall(M,1,0)

anddcall(M,1,0) are used for module decomposition, with the latter regtigcthe first solution of
a module call likeonce/1 in Prolog?3, while the former calls a module nondeterministically. cdé-
tor find(M,1,0L) collects all outputs of a module and returns a list thereeft@rswhen(C) and

test(C) are used to represent decomposition conditions. Both leshavthe same way in normal exe-
cution mode, although the former is intended to describe a guard of amdetihile the latter describes

a constraint. Testererify(C) does not affect the execution of a module although it is dlagsas the
tester. Solutions in which a verification condition is ndisféed are indicated as such, and these verification
statuses are used to evaluate the inference results.

pointinQuarterCircle({R : real}, --(a)
{X :real, Y : real}) --(b)
method
X : real = for(0.0, R, 1.0); --(c)
Y : real = for(0.0, R, 1.0); --(d)
D : real = sqrt(X"2 + Y"2); --(e)
test(D =< R); --(f)
end method,;
end module;
Fig. 1. Module pointinQuarterCircle , which enumerates all points in a quarter circle
R
pointInQuarterCircle v
I I
| (©) for(0.0,R,1.0) | | (d) for(0.0,R.1.0) |

—

(e) sqri(X"2+Y"2)

| D

calculator < tester >

Fig. 2. Data flow diagram of modulpointinQuarterCircle

3dcall stands for deterministic call.
4 Failures ofwhen(C) andtest(C) are treated differently in debugging mode because of themirasitic differ-
ences.
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Figure 1 gives the code for modupmintinQuarterCircle , which enumerates all points in a
guarter circle with radiuR. Statements (a) and (b) in Fig. 1 define the input and outpidbies of mod-
ule pointinQuarterCircle , respectively. Statements (c) and (d) assume the valuésofariables
X andY from 1 to R with an incremental stefr. Statement (e) calculates the distafitbetween point
(0,0) and point(X,Y) . Statement (f) checks if poirfX,Y) is within the circle of radiu®R. Mod-
ule pointinQuarterCircle runs nondeterministically for a giveR and returns one of all possible
{X,Y } values®. Therefore, this module also behaves as a generator. Statei(t) to (f) can be listed in
any order, and they are executed according to the depemrddmefween variables. Therefore, the compu-
tation process can be described as a non-cyclic data flomré-yshows the data flow diagram for module
pointinQuarterCircle . Because no module includes any side-effects, the set nfpaturned by
the module for the same input is always the same.

Figure 3 shows an example of modfe , which implements the generator primitiigg . If multiple
methods are defined in a module with some overlap in their dwspecified byvhen, the module works
nondeterministically, and thus a module can also be a gemeha this example, there is overlap between
the domains specified by statemefaty and(c) .

for{B : real, E : real, S : real},{N : real})

method --The fist method
when(B =< E); --(a)
N : real = B; --(b)

end method;

method --The second method
when(B+S =< E); --(c)
Bl : real = B+S; --(d)
call(for, {B1, E, S}, {N}); --(e)

end method;

end;

Fig. 3. Modulefor , which implements the generator primitife

2.3 Execution Model for DSP

Since the variables follow the single assignment rule ardaisignment is unidirectional, the statements
are partially ordered according to the dependencies betwa@bles. In the execution, the statements must
be totally reordered and evaluated in this order. Althodghrhethod used to order the partially ordered
statements totally does not affect the set of solutionsptler of the generators affects the order of the
solutions returned from a nondeterministic module.

The execution model for DSP can be represented in Prologré&#illustrates an example of a sim-
plified DSP interpreter in Prolog. In this interpreter, etaents are represented as terms concatenated by
“”and it is assumed that the statements are totally ordéfadables are represented using logical vari-
ables in Prolog. Actually, the development environmentD&P provides a compiler that translates into
Prolog code, with the generated Prolog code translateditecode by the Prolog compiler in the runtime
environment.

3 Trandation Techniques for Logic Programming L anguages

Prolog is a logic programming language that offers bothafative features and practical applicability to
various application domains. Many implementation techagfor Prolog and its family have been pro-
posed, while abstract machines represented by the WAM @NarAbstract Machine) [15] have proven

® {X,Y } represents a vector of two elemeMtand.
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solve((A ; B)) :-
solve(A),
solve(B).

solve(call(M, In, Out)) :-
reduce(call(M, In, Out), Body),
solve(Body).

solve(dcall(M, In, Out)) :-
reduce(call(M, In, Out), Body),
solve(Body),!.

solve(find(M, In, OutList)) :-
findall(Out, solve(M, In, Out), OutList).

solve(when(Exp)) :-
call(Exp),!.

solve(test(Exp)) :-
call(Exp),!.

solve(V := for(B, E, S)) :- |,
for(B, E, S, V).

solve(V := select(L)) :- !,
member(V, L).

solve(V := Exp) :-
V is Exp.

Fig. 4. Simplified DSP interpreter in Prolog

effective practical implementation techniques. On theepthand, few Prolog implementations provide
practical functionality applicable to both stand-alonsteyns and enterprise-mission-critical information
systems without using other languages. Practically, Brisloften combined with a conventional procedu-
ral language, such as Java, C, and C#, for use in practicitatpns. In such cases, language interoper-
ability is an important issue.

Language translation is one possible solution for imprguime interoperability between Prolog and
other combined languages. jProlog [16] and Prolog Cafegt&Prolog to Java translators based on bina-
rization [18], while P# [19] is a Prolog to C# translator béie® Prolog Cafe with concurrent extensions.
The binarization with continuation passing is a useful iftgghandling nondeterminism simply in proce-
dural languages. For example, the following clauses

pP(X) - a(X, Y), r(Y).
aiX, X).
r(X).

can be represented by semantically equivalent clausesatk@t continuation go&@ont as the last pa-
rameter:

p(X, Cont) - g(X, Y, r(Y, Cont)).
a(X, X, Cont) :- call(Cont).
r(X, Cont) :- call(Cont).

Once clauses have been transformed into this form, clawsepasing a predicate can be translated into
Java classes. Figure 5 gives an example of code generatedlbg Eafe. Predicate/2 after binarization
is represented as a Java class cal®&EDp_1, which is a subclass of clafsedicate . The parameters
of a predicate call are passed as the arguments of the cotastadf a class, while the right hand side of a
clause is expanded as methsdkc .

If a predicate consists of multiple clauses as in the follaypredicatg/1 , it may have choice points.

P(X) - a(X, Y), r(Y).
p(X) :- r(X).
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public class PRED_p_1 extends Predicate {
public Term argl;

public PRED_p_1(Term al, Predicate cont) {
argl = al;
this.cont = cont; / x this.cont is inherited. * [

}

public Predicate exec(Prolog engine) {
engine.setB0O();
Term al, az;
Predicate p1;
al = argl;
a2 new VariableTerm(engine);
pl = new PRED_r_1(a2, cont);
return new PRED_q_2(al, a2, pl);

Fig.5. Java code generated by Prolog Cafe

In such a case, the generated code becomes more complexetioaa because the choice pointspét
must be handled for backtracking. Figure 6 gives an exanfple@enerated code for predicatd in the
previous example. Each clause of a predicate is mapped toctass of a class representing the predicate.
In this example, class€BREDp_1_1 andPREDp-1_2 correspond to the two clauses of predicpte .
Methodsjtry  andtrust of the Prolog engine correspond to WAM instructions that ipalate stacks
and choice points for backtracking. The key ideas in Prolafg@re that continuation is represented as an
instance of a Java class representing a predicate, andehat@n control including backtracking follows
the WAM. The translation is straightforward through the WAMNhile the interoperability with Java-based
systems is somewhat improved. On the other hand, the distayais the performance of the generated
code.

4 Program Representation in Java and I nference Engine

This section describes the translation techniques for treleterministic functional language DSP into
Java based on the translation techniques for Prolog. Ciim@fementations of the compiler and inference
engine for DSP have been developed on top of Inside Proldyté& compiler generating Prolog code.
Therefore, itis possible to translate this generated Brodale into Java using Prolog Cafe. However, there
are several differences between DSP and Prolog in termgaitimantics of variables and the determinism
of statements. These differences allow several optintiratin performance, and the generated code can
run faster than the code generated by Prolog Cafe for cobipd®irolog programs. Fundamental ideas
of our translation techniques utilize the single and ueictional assignment features of variables and the
deterministic features of some statements.

The overall structure of the Java code translated from D$W®iges for one module being mapped to a
single Java class, and each method in a module mapped tol@isingr class of the class. Figure 7 shows
an example of Java code for modplgintinQuarterCircle givenin Fig. 1. Inner classes are used to
represent an execution context of a predicate as an intgatelof a class instance. Therefore, the instances
of an inner class are not declared as static unlike clasdeg.i.

An overview of the translation process follows. First, treadflow of a module is analyzed for each
method based on the dependencies between variables, asththents are reordered according to the
analysis results. Next, the statements are grouped imsl&@on units called continuation units, and Java
code is generated for each method according to the conitmuanits.
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public class PRED_p_1 extends Predicate {
static Predicate _p_1_sub_1 = new PRED_p_1_sub_1();
static Predicate p 1 1 = new PRED_p_1 1();
static Predicate _p_1_2 = new PRED_p_1_ 2();
public Term argl;

public Predicate exec(Prolog engine) {
engine.aregs[1] = argl;
engine.cont = cont;
engine.setB0O();
return engine.jtry(_p_1_ 1, p_1 sub_1);

}

class PRED_p_1_sub_1 extends PRED_p_1 {
public Predicate exec(Prolog engine) {
return engine.trust(_p_1_2);
}

}

class PRED_p_1_1 extends PRED_p_1 {
public Predicate exec(Prolog engine) {

Term al, az2;
Predicate p1;
Predicate cont;
al = engine.aregs[1];
cont = engine.cont;
a2 = new VariableTerm(engine);
pl = new PRED_r_1(a2, cont);
return new PRED_q_2(al, a2, pl);

}

class PRED_p_1 2 extends PRED _p_1 {
public Predicate exec(Prolog engine) {
Term al;
Predicate cont;
al = engine.aregs[1];
cont = engine.cont;
return new PRED_r_1(al, cont);

Fig. 6. Java code with choice points generated by Prolog Cafe
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4.1 DataFlow Analysis

As described in Sect. 2, it is necessary to reorder and eesdtetements so as to fulfill variable dependen-
cies since statements can be listed in any order. Thergfargéally ordered statements must first be totally
reordered. In the reordering process, the order of the gasrshould be kept as long as the variable de-
pendencies are satisfied, because the order of generdtmtsdhe order of the solutions as described in
Sec. 2. On the other hand, calculators or testers can be nfiaweard for the least commitment as long as
partial orders are kept.

4.2 Continuation Unit

If statements of a method are totally ordered, they can bidetivinto several groups of statements. Each
group is called a continuation unit and consists of a sefieiet@rministic statements, such as calculators
and testers, followed by a single generator. It should bedtiat a continuation unit may not contain
a generator if it is the last one in a method. In the trangtatéocontinuation unit is treated as a unit to
translate, and is mapped to a Java class representing aatiin.

In the example in Fig. 7, moduleointinQuarterCircle has one method, and there are three
continuation units in the method. Inner cladethod _1 corresponds to this method of the module, and
classMethod _1_cul corresponds to the continuation unit for statement (cysidethod _1_cu2 to one
for statement (d), and clasgethod _1_cu3 to one for statements (e) and (f), respectively.

4.3 Variableand Parameter Passing

Although variables follow the single assignment rule likelBg, the binding of a variable is unidirectional
unlike Prolog. Therefore, it is not necessary to introdwggdal variables and unification, unlike in Prolog
Cafe. This also implies that the trail stack and variableinibg using the stack are unnecessary on
backtracking. Therefore, a class representing the vasablonly necessary as a place holder for the output
values of a module. Claséariable is introduced to represent such variables.

Prolog Cafe uses the registers of the Prolog VM to managertheeents of a goal. This approach
is consistent with the WAM, but is sometimes inefficient gificrequires arguments to be copied from/to
registers to/from the stack on calls and backtracking. @mother hand, because the direction of variable
binding is clearly defined in DSP, it is unnecessary to restariable bindings on backtracking as described
before. Instead, variables can always be overwritten whgmahis re-executed after backtracking. There-
fore, input and output parameters can be passed as arguaientdass constructor. This simplifies the
management of variables and arguments. In addition, asrsimoiig. 7, basic Java types, suchiats and
double , can be passed directly as inputs in some cases. This ageito the performance improvement.

4.4 Inference Engine

An inference engine for the translated code is very simptabse management of variables and registers
on backtracking is unnecessary. Figure 8 shows an examie @fference engine callédV] which uses

a stack represented as an array of interfagecutable to store choice points. Methazall()  is an
entry point to call the module to find an initial solution, Wehimethodredo() is used to find the next
solution. A typical call procedure of a client program indas given below.

VM vm = new VM();
Double r = new Double(10.0);
Variable x = new Variable();
Variable y = new Variable();
Executable m = new PointinQuarterCircle(r, x, Vv,
Executable.success);
for (boolean s = vm.calllm); s == true; s = vm.redo()) {
System.out.printin("X=" + x.doubleValue() +
", Y=" + y.doubleValue());



52 Masanobu Umeda, Ryoto Naruse, Hiroaki Sone, and Keiiekaine

public class PointinQuarterCircle implements Executable {

private Double r;

private Variable x;

private Variable y;

private Executable cont;

public PointinQuarterCircle(Double r,

Variable x, Variable y, Executable cont)

{
this.r = r;
this.x = x;
this,y = vy;
this.cont = cont;

}

public Executable exec(VM vm) {
return (new Method_1()).exec(vm);

}

public class Method_1 implements Executable {
private Variable d = new Variable();
private Executable method_1_cul = new Method_1_cul();
private Executable method_1_cu2 = new Method_1_cu2();
private Executable method_1_cu3 = new Method_1_cu3();

public Executable exec(VM vm) {
return method_1_cul.exec(vm);

}

class Method_1_cul implements Executable {
public Executable exec(VM vm) {
return new ForDouble(0.0, r.doubleValue(), 1.0, x, method _1 cu2);
}
}

class Method_1_cu2 implements Executable {
public Executable exec(VM vm) {
return new ForDouble(0.0, r.doubleValue(), 1.0, y, method _1 cu3);
}
}

class Method_1_cu3 implements Executable {
public Executable exec(VM vm) {
d.setValue(Math.sqgrt(x.doubleValue() *x.doubleValue() +
y.doubleValue() +y.doubleValue()));
if(!(d.doubleValue() <= r.doubleValue())){
return Executable.failure;

}

return cont;

Fig. 7. Java code generated for modpleintinQuarterCircle
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This client program creates an inference engine, prepatpsovariables to receive the values of a solution,
creates an instance of claBsintinQuarterCircle with inputs and outputs, and caltall() to
find an initial solution. It then calleedo() to find the next one until there are no more solutions.

Because the implementation of the inference engine is simpdl multi-thread safe, and the generated
classes of a module are also multi-thread safe, it is easgptod instances of the engine in a multi-thread
environment.

public class VM {
private Executable[] choicepoint;
private int ccp = -1; // Current choice point.

public VM(int initSize) {
choicepoint = new Executable[initSize];

}

public boolean call(Executable goal) {
while (goal != null) {
goal = goal.exec(this);
if (goal == Executable.success) {
return true;
} else if (goal == Executable.failure) {
goal = getChoicePoint();

}
}

return false;

}

public boolean redo() {
return call(getChoicePoint());

}
}

Fig. 8. Inference engine for DSP

5 Implementation and Performance Evaluation

We have implemented the translator for DSP into Java basedleotechniques proposed in Sec. 4. The
translator is written in DSP itself and generates Java code.

Table 2 shows the performance results of 6 sample prograemuted under Windows Vista on an
Intel Core2Duo 2.53 GHz processor with 3.0 GB memory. Ja@aHrolog Cafe 1.2.5, and B-Prolog 7.4
[20] were used in the experiments. Because the Java garb#igetor affects the performance, 512 MB
memory was statically allocated for the heap in all casesgxor oné’.

Programplan is a simple architecture design program for a parking stirgctlt can enumerate all
possible column layouts for the given design conditionshsas free land space and the number of stories.
Programsqueens , ack , andtarai  are well-known benchmarks, witlick andtarai  using green
cuts for guards in Prolog, whileck w/o cuts andtarai w/o cuts do not use cuts for guards. In
the case of DSRck andtarai usedcall for self-recursive calls not to leave choice points, wiaité
w/o cuts andtarai w/o cuts usecall . The programs written in DSP are compiled into Prolog
and then compiled into bytecode. The programs are forcedd&ttack in each iteration to enumerate all
solutions, and the execution times in milliseconds areayes over 10 trials.

& About 1000 MB was allocated for the generated codddoai w/o cuts
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These results show that the proposed translator genense2% times faster code than Prolog Cafe,
over 2 times faster code than B-Prolog, and over 5 timesrfastie than DSP on top of Inside Prolog for
plan andnqueens . On the other hand, fack andtarai the translator generates about 2 to 3 times
faster code than Prolog Cafe, but about 5 to 15 times slowd® titan B-Prolog. The translator also gener-
ates about 8 to 13 times faster code than Prolog Cafe, but 4bod 0 times slower code than B-Prolog for
ack w/o cuts andtarai w/o cuts . Here,plan andnqueens are nondeterministic, whilack
andtarai are deterministicack w/o cuts andtarai w/o cuts are also deterministic, but they
involve backtracking because of the lack of green cuts.

These experiments indicate that the proposed translaaimiques can generate faster code than Pro-
log Cafe and DSP on top of Inside Prolog for all 6 programs, faster code than B-Prolog for non-
deterministic programs. In the case of deterministic protg, the advantage of the proposed translation
techniques is obvious against Prolog Cafe if green cutsatrased in Prolog. The reason why these dis-
tinctive differences are observed seems to be that thei§icagibn of the variable and register management
for backtracking contributes to the performance improveneé nondeterministic programs, but it is not
effective for deterministic programs with green cuts.

In the case of B-Prolog, the execution timetafai is almost the same as that trai w/o
cuts . This is because B-Prolog compiler reduces choice poiritgusatching trees for bottarai  and
tarai w/o cuts [21]. Although the DSP language has no explicit cut operatd?rolog, improving
the performance by inserting cut instructions automadyidalthe case of exclusivevhen conditions is a
future issue.

The number of instances created during an execution hasagiveegnpact on performance because of
the garbage collection. Obviously, the number of instacceated by the generated code for the proposed
translation techniques is greater than that for Prolog Gathe case ofarai w/o cuts , the generated
code requires more memory than others to prevent the gadmdigetion. In the example in Fig. 7, it is
clear that the number of instances can be reduced by merngisgMethod _1_cul with classMethod _1.
Improving the performance by the reduction of instancetaaas an important future issue.

Table 2. Experimental results (in milliseconds)

Program |DSP on PrologB-PrologProlog Café¢Translator
plan 685.0 295.1 2519.4 90.5
nqueens 594.9 296.2 3279.2 120.3
ack 1568.2 52.9 990.7 265.0
tarai 1302.7 49.4 1680.1 740.8
ack w/o cuts 2035.1 104.7 3421.3 403.9
tarai w/o cuts 1307.9 49.2 6282.4 489.5

6 Conclusions

This paper described the techniques for translating thdetenministic functional language DSP based on
attribute grammars into Java. The DSP is designed for krdya@epresentation of large scale and com-
plicated expert knowledge in application domains. It isatdp of representing trial and error without any
side-effects or loop constructs using nondeterministitufies. Current development and runtime environ-
ments are built on top of Inside Prolog, while the runtimeiemmment can be embedded in a Java-based
application server. However, issues regarding languageaperability and adaptability to new computer
environments are envisaged when applied to practical @gfwn development. The language translation
is intended to improve the interoperability and adaptbbif DSP.

The proposed translation techniques are based on birarizand the techniques proposed for the
translation of Prolog. The performance, however, is imptbly introducing the continuation unit and
simplifying the management of variables and registersgusiire semantic differences of variables and
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explicit determinism of some statements. An experimemngidiator written in DSP itself generates Java
code from DSP descriptions, and the experimental resulisare that the generated code is over 25 times
faster than that of Prolog Cafe for nondeterministic praggaand over 2 times faster for deterministic
programs. The generated code is also over 2 times fasteBtRuolog for nondeterministic programs.
However, the generated code is about 3 to 15 times slower BhRrolog for deterministic programs.
Improving the performance of deterministic programs israpadrtant future issue.
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Abstract. We present sensitivity analysis for results of query executions in a relational model of data
extended by ordinal ranks. The underlying model of data results from the ordinary Codd’s model of
data in which we consider ordinal ranks of tuples in data tables expressing degrees to which tuples
match queries. In this setting, we show that ranks assigned to tuples are insensitive to small changes,
i.e., small changes in the input data do not yield large changes in the results of queries.

Keywords: declarative query languages, ordinal ranks, relational databases, residuated lattices

1 Introduction

Since its inception, the relational model of data introduced by E. Codd [10] has been extensively studied
by both computer scientists and database systems developers. The model has become the standard theo-
retical model of relational data and the formal foundation for relational database management systems.
Various reasons for the success and strong position of Codd’s model are analyzed in [14], where the au-
thor emphasizes that the main virtues of the model like logical and physical data independence, declarative
style of data retrieval (database querying), access flexibility and data integrity are consequences of a close
connection between the model and the first-order predicate logic.

This paper is a continuation of our previous work [4,5] where we have introduced an extension of
Codd’s model in which tuples are assigned ordinal ranks. The motivation for the model is that in many
situations, it is natural to consider not only the exact matches of queries in which a tuple of values either
does or does not match a query () but also approximate matches where tuples match queries to degrees. The
degrees of approximate matches can usually be described verbally using linguistic modifiers like “not at all
(matches)” “almost (matches)”, “more or less (matches)”, “fully (matches)”, etc. From the user’s point of
view, each data table in our extended relational model consists of (i) an ordinary data table whose meaning
is the same as in the Codd’s model and (ii) ranks assigned to all tuples in the original data table. This way,
we come up with a notion of a ranked data table (shortly, an RDT). The ranks in RDTs are interpreted as
“goodness of match” and the interpretation of RDTs is the same as in the Codd’s model—they represent
answers to queries which are, in addition, equipped with priorities expressed by the ranks. A user who
looks at an answer to a query in our model is typically looking for the best match possible represented by
a tuple or tuples in the resulting RDT with the highest ranks (i.e., highest priorities).

In order to have a suitable formalization of ranks and to perform operations with ranked data tables, we
have to choose a suitable structure for ranks. Since ranks are meant to be compared by users, the set L of
all considered ranks should be equipped with a partial order <, i.e. (L, <) should be a poset. Moreover, it
is convenient to postulate that (L, <) is a complete lattice [7], i.e., for each subset A C L, its least upper
bound (a supremum) and greatest lower bound (an infimum) exist. This way, for any A C L, one can take
the least rank in L which represents a higher priority (a better match) than all ranks from A. Such a rank is
then the supremum of A (dually for the infimum). Since (L, <) is a complete lattice, it contains the least
element denoted 0 (no match at all) and the greatest element denoted 1 (full match).

The set L of all ranks should also be equipped with additional operations for aggregation of ranks.
Indeed, if tuple ¢ with rank «a is obtained as one of the results of subquery (7 and the same ¢ with another

* Supported by grant no. P103/11/1456 of the Czech Science Foundation.
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rank b is obtained from answers to subquery Q2 then we might want to express the rank to which ¢ matches
a compound conjunctive query “Q1 and (Q2”. A natural way to do so is to take a suitable binary operation
®: L x L — L which acts as a conjunctor and take a ® b for the resulting rank. Obviously, not every binary
operation on L represents a (reasonable) conjunctor, i.e. we may restrict the choices only to particular
binary operations that make “good conjunctors”. There are various ways to impose such restrictions. In
our model, we follow the approach of using residuated conjunctions that has proved to be useful in logics
based on residuated lattices [2, 18, 19]. Namely, we assume that (L, ®, 1) is a commutative monoid (i.e., ®
is associative, commutative, and neutral with respect to 1) and there is a binary operation — on L such that
forall a,b,c € L:

a®b<c ifandonlyif a<b— c @)

Operations ® (a multiplication) and — (a residuum) satisfying (1) are called adjoint operations. Alto-
gether, the structure for ranks we use is a complete residuated lattice L = (L,\,V,®,—,0,1), ie., a
complete lattice in which ® and — are adjoint operations, and A and V denote the operations of infimum
and supremum, respectively. Considering L as a basic structure of ranks brings several benefits. First, in
multiple-valued logics and in particular fuzzy logics [18, 19], residuated lattices are interpreted as struc-
tures of truth degrees and the relationship (1) between ® (a fuzzy conjunction) and — (a fuzzy implication)
is derived from requirements on graded counterpart of the modus ponens deduction rule (currently, there
are many strong-complete logics based on residuated lattices).

Remark 1. The graded counterpart of modus ponens [19,26] can be seen as a generalized deduction rule
saying “from ¢ valid (at least) to degree a € L and ¢ = 1 valid (at least) to degre b € L, infer 1) valid (at
least) to degree a ® b”. If if-part of (1) ensures that the rule is sound while the only-if part ensures that it is
as powerful as possible, i.e., a ® b is the highest degree to which we infer 1 valid provided that ¢ valid at
least to degree a and ¢ = 1 valid at least to degre b € L. This relationship between — (a truth function
for logical connective imlication =-) and ® has been discovered in [17] and later used, e.g., in [16,26].
Interestingly, (1) together with the lattice ordering ensure enough properties of — and ®. For instance, —
is antitone in the first argument and is monotone in the second one, condition @ < b iff @ — b = 1 holds
foralla,b € L,a — (b — ¢) equals (a ® b) — cforall a,b, c € L, etc. Since complete residuated lattices
are in general weaker structures than Boolean algebras, not all laws satisfied by truth functions of the
classic conjunction and implication are preserved by all complete residuated lattices. For instance, neither
a®a = a (idempotency of ®) nor (a — 0) — 0 = a (the law of double negation) nor aV (a — 0) = 1 (the
law of the excluded middle) hold in general. Nevertheless, complete residuated lattices are strong enough
to provide a formal framework for relational analysis and similarity-based reasoning as it has been shown
by previous results.

Second, our extension of the Codd’s model results from the model by replacing the two-element
Boolean algebra, which is the classic structure of truth values, by a more general structure of truth val-
ues represented by a residuated lattice, i.e. we make the following shift in (the semantics of) the underlying
logic:

two-element Boolean algebra ==  a complete residuated lattice.

Third, the original Codd’s model is a special case of our model for L being the two-element Boolean
algebra (only two borderline ranks 1 and O are available). As a practical consequence, data tables in the
Codd’s model can be seen as RDTs where all ranks are either equal to 1 (full match) or 0 (no match; tuples
with 0 rank are considered as not present in the result of a query). Using residuated lattices as structures
of truth degrees, we obtain a generalization of Codd’s model which is based on solid logical foundations
and has desirable properties. In addition, its relationship to residuated first-order logics is the same as the
relationship of the original Codd’s model to the classic first-order logic. The formalization we offer can
further be used to provide insight into several isolated approaches that have been provided in the past, see
e.g. [8], [15], [23], [27], [28], [30], and a comparison paper [6].

A typical choice of L is a structure with L = [0, 1] (ranks are taken from the real unit interval), A and V
being minimum and maximum, ® being a left-continuous (or a continuous) t-norm with the corresponding
—, see [2, 18, 19]. For example, an RDT with ranks coming from such L is in Table 1. It can be seen as a
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Table 1. Houses for sale at $200, 000 with square footage 1200

agent id sqgft age location price

0.93 || Brown 138 1185 48 Vestal $228,500
0.89 || Clark 140 1120 30 Endicott $235,800
0.86 || Brown 142 950 50 Binghamton $189,000
0.85 || Brown 156 1300 85 Binghamton $248,600

0.81 || Clark 158 1200 25 Vestal $293,500
0.81 || bavis 189 1250 25 Binghamton $287,300
0.75 || bavis 166 1040 50 Vestal $286,200

0.37 || bavis 112 1890 30 Endicott $345,000

result of similarity-based query “show all houses which are sold for (approximately) $200, 000 and have
(approximately) 1200 square feet”. The left-most column contains ranks. The remaining part of the table
is a data table in the usual sense containing tuples of values. At this point, we do not explain in detail how
the particular ranks in Table 1 have been obtained (this will be outlined in further sections). One way is by
executing a similarity-based query that uses additional information about similarity (proximity) of domain
values which is also described using degrees from L. Note that the concept of a similarity-based query
appears when human perception is involved in rating or comparing close values from domains where not
only the exact equalities (matches) are interesting. For instance, a person searching in a database of houses
is usually not interested in houses sold for a particular exact price. Instead, the person wishes to look at
houses sold approximately at that price, including those which are sold for other prices that are sufficiently
close. While the ranks constitute a “visible” part of any RDT, the similarities are not a direct part of RDT
and have to be specified for each domain independently. They can be seen as an additional (background)
information about domains which is supplied by users of the database system.

Let us stress the meaning of ranks as priorities. As it is usual in fuzzy logics in narrow sense, their
meaning is primarily comparative, cf. [19, p. 2] and the comments on comparative meaning of truth degrees
therein. In our example, it means that tuple (Clark,140,1120,30,Endicott, $235, 800) with rank
0.89 is a better match than tuple (Brown, 142,950,50,Binghamton, $189, 000) whose rank 0.86
is strictly smaller. Thus, for end-users, the numerical values of ranks (if L is a unit interval) are not so
important, the important thing is the relative ordering of tuples given by the ranks.

Note that our model which provides theoretical foundations for similarity-based databases [4, 5] should
not be confused with models for probabilistic databases [29] which have recently been studied, e.g. in [9,
12, 13,20, 22, 25], see also [11] for a survey. In particular, numerical ranks used in our model (if L = [0, 1])
cannot be interpreted as probabilities, confidence degrees of belief degrees as in case of probabilistic
databases where ranks play such roles. In probabilistic databases, the tuples (i.e., the data itself) are un-
certain and the ranks express probabilities that tuples appear in data tables. Consequently, a probabilistic
database is formalized by a discrete probability space over the possible contents of the database [11].
Nevertheless, the underlying logic of the models is the classical two-valued first-order logic—only yes/no
matches are allowed (with uncertain outcome). In our case, the situation is quite different. The data (repre-
sented by tuples) is absolutely certain but the tuples are allowed to match queries to degrees. This, translated
in terms of logic, means that formulas (encoding queries) are allowed to be evaluated to truth degrees other
than 0 and 1. Therefore, the underlying logic in our model is not the classic two-element Boolean logic as
we have argued hereinbefore.

In [1], a report written by leading authorities in database systems, the authors say that the current
database management systems have no facilities for either approximate data or imprecise queries. Accord-
ing to this report, the management of uncertainty and imprecision is one of the six currently most important
research directions in database systems. Nowadays, probabilistic databases (dealing with approximate data)
are extensively studied. On the contrary, it seems that similarity-based databases (dealing with imprecise
queries) have not yet been paid full attention. This paper is a contribution to theoretical foundations of
similarity-based databases.
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2 Problem Setting

The issue we address in this paper is the following. In our model, we can get two or more RDTs (as results
of queries) which are not exactly the same but which are perceived (by users) as being similar. For instance,
one can obtain two RDTs containing the same tuples with numerical values of ranks that are almost the
same. A question is whether such similar RDTs, when used in subsequent queries, yield similar results. In
this paper, we present a preliminary study of the phenomenon of similarity of RDTs and its relationship to
the similarity of query results obtained by applying queries to similar input data tables. We present basic
notions and results providing formulas for computing estimations of similarity degrees. The observations
we present provide a formal justification for the phenomenon discussed in the previous section—slight
changes in ranks do not have a large impact on the results of (complex) queries. The results are obtained
for any complete residuated lattice taken as the structure of ranks (truth degrees). Note that the basic query
systems in our model are (extensions of) domain relational calculus [5,24] and relational algebra [4, 24].
We formulate the results in terms of operations of the relational algebra but due to its equivalence with the
domain relational calculus [5], the results pertain to both the query systems. Thus, based on the domain
relational calculus, one may design a declarative query language preserving similarity in which execution
of queries is based on transformations to expressions of relational algebra in a similar way as in the classic
case [24].

The rest of the paper is organized as follows. Section 3 presents a short survey of notions. Section 4 con-
tains results on sensitivity analysis, an illustrative example, and a short outline of future research. Because
of the limited scope of the paper, proofs are sketched or omitted.

3 Preliminaries

In this section, we recall basic notions of RDTs and relational operations we need to provide insight into
the sensitivity issues of RDTs in Section 4. Details can be found in [2, 4, 6]. In the rest of the paper, L
always refers to a complete residuated lattice L = (L, A, V, ®, —, 0, 1), see Section 1.

3.1 Basic Structures

Given L, we make use of the following notions: An L-set A in universe U isamap A: U — L, A(u)
being interpreted as “the degree to which wu belongs to A”. If LL is the two-element Boolean algebra, then
A: U — L is an indicator function of a classic subset of U, A(u) = 1 (A(u) = 0) meaning that u belongs
(does not belong) to that subset. In our approach, we tacitly identify sets with their indicator functions. In
a similar way, a binary L-relation B on U isamap B: U x U — L, B(u1,us) interpreted as “the degree
to which w1 and us are related according to B”. Hence, B is an L-set in universe U x U.

3.2 Ranked Data Tables over Domains with Similarities

We denote by Y a set of attributes, any subset R C Y is called a relation scheme. For each attribute y € Y
we consider its domain D,,. In addition, each D, is equipped with a binary L-relation ~, on D, satisfying
reflexivity (u ~, v = 1) and symmetry u =, v = v =, u (for all u,v € D). Each binary L-relation ~,,
on D, satisfying (i) and (ii) shall be called a similarity. Pair (D,, =,) is called a domain with similarity.

Tuples contained in data tables will be considered as usual, i.e., as elements of Cartesian products of
domains. Recall that a Cartesian product [ [, ; D; of an I-indexed system {D; |i € I} of sets D; (i € I)
is a set of all maps ¢: I — |J;,; D; such that ¢(i) € D; holds for each 4 € I. Under this notation, a tuple
over R C Y is any element from [, . p D, For brevity, [], . g Dy is denoted by Tupl(R). Following the
example in Table 1, tuple (Brown, 142,950, 50, Binghamton, $189, 000) is a map r € Tupl(R) for
R = {agent, id,...,price} suchthat r(agent) = Brown, r(id) = 142, etc.

A ranked data table on R C Y over {(D,,~,)|y € R} (shortly, an RDT) is any (finite) L-set D
in Tupl(R). The degree D(r) to which r belongs to D is called a rank of tuple r in D. According to its
definition, if D is an RDT on R over {(D,,~,) |y € R} then D is a map D: Tupl(R) — L. Note that D
is an n-ary L-relation between domains D,, (y € Y) since D is a map from [ | yer Dy to L. In our example,
D(r) = 0.86 for r being the tuple with r(id) = 142.
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3.3 Relational Operations with RDTs

Relational operations we consider in this paper are the following: For RDTs D; and D, on T', we put
(Dl U Dg)(t) = Dl (t) vV Dg(t) and (Dl n Dg)(t) = Dl (t) A\ Dg(t) for each t € Tupl(T), Dl @] D2
and D; N Dy are called the union and the A-intersection of D; and Dy, respectively. Analogously, one can
define an ®-intersection D1 ® D,y. Hence, U, N, and ® are defined componentwise based on the operations
of the complete residuated lattice L.

Moreover, our model admits new operations that are trivial in the classic model. For instance, fora € L,
we introduce an a-shift a—D of D by (a—D)(t) = a — D(t) for all t € Tupl(T).

Remark 2. Note that if L is the two-element Boolean algebra then a-shift is a trivial operation since 1 —
D = D and 0 — D produces a possibly infinite table containing all tuples from Tupl(7’). In our model,
an a-shift has the following meaning: If D is a result of query @ then (a—D)(t) is a “degree to which
t matches query () at least to degree a”. This follows from properties of residuum, see [2, 19]. Hence,
a-shifts allow us to emphasize results that match queries at least to a prescribed degree a.

The remaining relational operations we consider represent counterparts of projection, selection, and
join in our model. If D is an RDT on 7', the projection mr(D) of D onto R C T is defined by

(Tr(D)(r) = Vietupiir\ ) P(75),

for each r € Tupl(R). In our example, the result of 7{;,car 00} (D) is a ranked data table with single
column such that 7(;,c.¢ 500 (D)((Binghamton)) = 0.86, T{iocaeion}(D)((Vestal)) = 0.93, and
T{1ocationt(D)((Endicott)) = 0.89.

A similarity-based selection is a counterpart to ordinary selection which selects from a data table all
tuples which approximately match a given condition: Let D be an RDT on T" and let y € T and d € D,,.
Then, a similarity-based selection o,~q(D) of tuples in D matching y ~ d is defined by

(oy~a(D))(t) = D(t) ® t(y) =y d.

Considering D as a result of query @, the rank of ¢ in oy~4(D) can be interpreted as a degree to which
“t matches the query () and the y-value of ¢ is similar to d”. In particular, an interesting case is opaq(D)
where p and q are both attributes with a common domain with similarity.

Similarity-based joins are considered as derived operations based on Cartrsian products and similarity-
based selections. For r € Tupl(R) and s € Tupl(.S) such that RN S = (), we define a concatenation rs €
Tupl(R U S) of tuples r and s so that (rs)(y) = r(y) fory € R and (rs)(y) = s(y) fory € S. For RDTs
D1 and D5 on disjoint relation schemes S and T" we define a RDT D; x Dy on S U T, called a Cartesian
product of Dy and D, by (D; x D3)(st) = Di(s) ® Da(t). Using Cartesian products and similarity-based
selections, we can introduce similarity-based 0-joins such as Dy X~y Do = 0pay(D1 x D2). Various
other types of similarity-based joins can be introduced in our model, see [5].

4 Estimations of Sensitivity of Query Results

4.1 Rank-Based Similarity of Query Results

We now introduce the notion of similarity of RDTs which is based on the idea that RDTs D; and D, (on the
same relation scheme) are similar iff for each tuple ¢, ranks D1 (¢) and D(t) are similar (degrees from L).
Similarity of ranks can be expressed by biresiduum « (a fuzzy equivalence [2, 18, 19]) which is a derived
operation of L such that a «<» b = (a — b) A (b — a). Since we are interested in similarity of D; (t) and
D4 (t) for all possible tuples ¢, it is straightforward to define the similarity £(D;,Ds) of D and D by an
infimum which goes over all tuples:

E(D1,D2) = Nietupi(r) (D1(t) < Da(1)). )

An alternative (but equivalent) way is the following: we first formalize a degree S(D;, Ds) to which Dy
is included in Dy. We can say that D; is fully included in Dy iff, for each tuple ¢, the rank Dy (t) is at
least as high as the rank D; (¢). Notice that in the classic (two-values) case, this is exactly how one defines
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the ordinary subsethood relation “C”. Considering general degrees of inclusion (subsethood), a degree
S (D1, D2) to which D; is included in D can be defined as follows:

S(D1,D2) = Nvepupicry (D1 (t) — Da(t)). 3)
It is easy to prove [2] that (2) and (3) satisfy:
E(D;y,Dy) = S(D1,D2) A S(D2, D). “4)

Note that F and S defined by (2) and (3) are known as degrees of similarity and subsethood from general
fuzzy relational systems [2] (in this case, the fuzzy relations are RDTs).

The following assertion shows that U, N, ®, and a-shifts preserve subsethood degrees given by (3). In
words, the degree to which D; U D; is included in D} U DY is at least as high as the degree to which Dy is
included in D} and D; is included in D). A similar verbal description can be made for the other operations.

Theorem 1. For any D1, D}, Da, and D}, on relation scheme T,

S(D1,Dy) A S(Do,Dh) < S(Dy UDy, Dy UDS), (&)
S(Dy1, D)) A S(Da, D) < S(D1N Dy, Dy NDY), (6)
S(D13D1)®S(D27Dé) SS(D1®D27D/1®D/2)a (7)

S(D1,Ds) < S(a — Dy,a — Do). (8)

Proof (sketch). (5): Using adjointness, it suffices to check that (S(D1, D}) AS(D2, Dh)) @ (D1 UDs)(t) <
(D} U D4)(t) holds true for any ¢ € Tupl(T'). Using (3), the monotony of ® and A yields (S(D1, D) A
S(D2,Dy)) @ (Dy UD)() < ((Dr(t) — Dj(t)) A (Dat) — Dh(1))) & (Dr(t) v Da(t)). Applying
a®(bVe)=(a®b)V (a® c) to the latter expression, we get ((D1(t) — D (t)) A (Da(t) — D5(t))) ®
(Dy(t) V Da(t)) < ((Di(t) — D}()) @ D (1)) V ((Da(t) — Dy(t)) @ Da(#)). Using a @ (a — b) < b
twice, it follows that ((D1(t) — D{(t)) @ D1(t)) V ((D2(t) — D4(t)) @ D(t)) < Di(t)V Dh(t). Putting
previous inequalities together, (S(Dy,D}) A S(D2,Dh)) ® (D1 U Dy)(t) < (D) U Dj)(t) which proves
(5). (6) can be proved analogously as (5); (7) can be proved analogously as (6) using monotony of ®; (8)
follows from the fact thata — b < (¢ — a) — (¢ — b). O

Using (4), we have the following consequence of Theorem 1:

Corollary 1. For { being N and U, we have:

E(Dy,D}) A E(D2, D)) < E(D1 O D2, Dy O Dj). ®
E(D1,D}) ® E(D2,D3) < E(D1 ® D2, D} ® Dj). (10)
E(Dl,Dg) SE(G—>D1,G—>D2). (11)

Proof (sketch). For { being N, (6) applied twice yields: S(Dy, D) A S(D2,Dh) < S(D1N Do, Dy NDY)
and S(D},D1) A S(D4, D) < S(D) N DL, Dy N Dy). Hence, (9) for N follows using (2). The rest is
analogous. a

Using the idea in the proof of Corollary 1, in order to prove that operation O preserves similarity,
it suffices to check that O preserves (graded) subsethood. Thus, from now on, we shall only investigate
whether operations preserve subsethood. In case of Cartesian products, we have:

Theorem 2. Let Dy and D) be RDTs on relation scheme S and let Dy and D}, be RDTs on relation scheme
T such that SNT = (. Then,

S(D1, D) ® S(D2,D3) < S(D1 x Dy, D x Dy), (12)
Proof (sketch). The proof is analogous to that of (7). a

The following assertion shows that projection and similarity-based selection preserve subsethood de-
grees (and therefore similarities) of RDTs:
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Table 2. Alternative ranks for houses for sale from Table 1

agent 1id sqft age location price

0.93 || Brown 138 1185 48 Vestal $228,500
0.91 || Clark 140 1120 30 Endicott $235,800
0.87 || Brown 156 1300 85 Binghamton $248,600
0.85 || Brown 142 950 50 Binghamton $189,000
0.82 || Davis 189 1250 25 Binghamton $287,300
0.79 || Clark 158 1200 25 Vestal $293,500
0.75 || bavis 166 1040 50 Vestal $286,200
0.37 || Davis 112 1890 30 Endicott $345,000

Theorem 3. Let D and D' be RDTs on relation scheme T and lety € T, d € Dy, and R C T. Then,

S(D,D') < S(mr(D),7r(D")), (13)
S(D, D) < S(0yma(D), o ymal(D)). (14)

Proof (sketch). In oder to prove (13), we check S(D,D’) ® (wr(D))(r) < (wr(D'))(r) for any r €
Tupl(R). It means showing that

S(D7D/> ® \/sETupl (T\R) D(rs) < (mr(D"))(r).

Thus, is suffices to prove S(D,D’) ® D(rs) < (mgr(D’))(r) for all s € Tupl(T \ R). Using monotony of
®,we get S(D,D')@D(rs) < (D(rs) — D'(rs)) @D(rs) < D'(rs), because rs € Tupl(T). Therefore,
S(D,D")@D(rs) < D'(rs) < Vserupir\r) P'(rs) = (wr(D’))(r), which proves the first claim of (13).
In case of (14), we proceed analogously. a

Theorem 2 and Theorem 3 used together yield

Corollary 2. Let Dy and D} be RDTs on relation scheme S and let Dy and DY be RDTs on relation scheme
T such that S N'T = (). Then,

S(D1,D}) @ S(D2,Dy) < S(Dy Xpay D2, Dy Mpasg D5). (15)
forany p € S and q € T having the same domain with similarity. a

As aresult, we have shown that important relational operations in our model (including similarity-based
joins) preserve similarity defined by (2). Thus, we have provided a formal justification for the (intuitively
expected but nontrivial) fact that similar input data yield similar results of queries.

Remark 3. In this paper, we have restricted ourselves only to a fragment of relational operations in our
model. In [5], we have shown that in order to have a relational algebra whose expressive power is the same
as the expressive power of the domain relational calculus, we have to consider additional operations of
residuum (defined componentwise using —) and division. Nevertheless, these two additional operations
preserve E as well—it can be shown using similar arguments as in the proof of Theorem 1. As a conse-
quence, the similarity is preserved by all queries that can be formulated in DRC [5].

4.2 Illustrative Example

Consider again the RDT from Table 1. The RDT can be seen as a result of querying a database of houses
for sale where one wants to find a house which is sold for (approximately) $200, 000 and has (approxi-
mately) 1200 square feet. The attributes in the RDT are: real estate agent name (agent), house ID (id),
square footage (sgft), house age (age), house location (Location), and house price (price). In this
example, the complete residuated lattice L = (L, A, V, ®, —, 0, 1) serving as the structure of ranks will be
the so-called Fukasiewicz algebra [2,18,19]. That is, L = [0, 1], A and V are minimum and maximum,
respectively, and the multiplication and residuum are defined as follows: a ® b = max(a + b — 1,0) and
a—b=min(l —a+b,1)foralla,be L.

Intuitively, it is natural to consider similarity of values in domains of sqft, age, location, and
price. For instance, similarity of prices can be defined by p1 ~p.;ce p2 = s(|p2 — p1|) using an antitone
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scaling function s: [0,00) — [0, 1] with s(0) = 1 (i.e., identical prices are fully similar). Analogously, a
similarity of locations can be defined based on their geographical distance and/or based on their evaluation
(safety, school districts,...) by an expert. In contrast, there is no need to have similarities for id and
agents because end-users do not look for houses based on (similarity of) their (internal) IDs which are
kept as keys merely because of performance reasons. Obviously, there may be various reasonable similarity
relations defined for the above-mentioned domains and their careful choice is an important task. In this
paper, we neither explain nor recommend particular ways to do so because (i) we try to keep a general view
of the problem and (ii) similarities on domains are purpose and user dependent.

Consider now the RDT in Table 2 defined over the same relation scheme as the RDT in Table 1.
These two RDTs can be seen as two (slightly different) answers to the same query (when e.g., the domain
similarities have been slightly changed) or answers to a modified query (e.g., “show all houses which are
sold for (approximately) $210, 000 and...”). The similarity of both the RDTs given by (2) is 0.98 (very
high). The results in the previous section say that if we perform any (arbitrarily complex) query (using the
relational operations we consider in this paper) with Table 2 instead of Table 1, the results will be similar
at least to degree 0.98.

Table 3. Join of Table 1 and the table of customers

agent id price name budget

0.91 || Brown 138 $228,500 Grant $240,000
0.89 || Brown 138 $228,500 Evans $250,000
0.89 || Brown 138 $228,500 Finch $210,000
0.88 || Clark 140 $235,800 Grant $240,000
0.86 || Clark 140 $235,800 Evans $250,000
0.84 || Brown 156 $248,600 Evans $250,000

0.16 || Davis 112 $345,000 Grant $240,000
0.10 || Davis 112 $345,000 Finch $210,000

For illustration, consider an additional RDT of customers over relation scheme containing two at-
tributes: name (customer name) and budget (price the customer is willing to pay for a house). In particu-
lar, let (Evans, $250, 000), (Finch, $210, 000), and (Grant, $240, 000) be the only tuples in the
RDT (all with ranks 1). The answer to the following query

ﬂ-{agent,id,price,name,budget}(Dl l><]pricezbudget Dc)a

where D, stands for Table 1 and D, stands for the RDT of customers is in Table 3 (for brevity, some records
are omitted). The RDT thus represents an answer to query “show deals for houses sold for (approximately)
$200, 000 with (approximately) 1200 square feet and customers so that their budget is similar to the
house price”. Furthermore, we can obtain an RDT of best agent-customer matching is we project the join
onto agent and name:

T{agent,name} (Dl >Mpricexbudget Dc)

The result of matching is in Table 4 (left). Due to our results, if we perform the same query with Table 2
instead of Table 1, the new result is guaranteed to be similar with the obtained result at least to degree 0.98.
The result for Table 2 is shown in Table 4 (right).

4.3 Tuple-Based Similarity and Further Topics

While the rank-based similarity from Section 4.1 can be sufficient in many cases, there are situations
where one wants to consider a similarity of RDTs based on ranks and (pairwise) similarity of tuples. For
instance, if we take the RDT from Table 1 and make a new one by taking all tuples (keeping their ranks)
and increasing the prices by one dollar, we will come up with an RDT which is, according to rank-based
similarity, very different from the original one. Intuitively, one would expect to have a high degree of
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Table 4. Results of agent-customer matching for Table 1 and Table 2

agent name agent name
0.91 || Brown Grant 0.91 || Brown Grant
0.89 || Brown Evans 0.90 || Clark Grant
0.89 || Brown Finch 0.89 || Brown Evans
0.88 || Clark Grant 0.89 || Brown Finch
0.86 || Clark Evans 0.88 || Clark Evans
0.84 || Clark Finch 0.86 || Clark Finch
0.74 || Davis Evans 0.75 || Davis Evans
0.72 || Davis Grant 0.73 || Davis Grant
0.66 || Davis Finch 0.67 || Davis Finch

similarity of the RDTs because they differ only by a slight change in price. This issue can be solved by
considering the following tuple-based degree of inclusion:

S~ (Dl’ Dz) = /\tGTupl(T) (Dl (t) - \/t’GTupl(T) (D2 (tl> @t~ t,))’ (16)

where t ~ t' = A\ . t(y) =y t'(y) is a similarity of tuples ¢ and ¢’ over 7', cf. [6]. In a similar way as
in (4), we may define E~ using S7 instead of S.

Remark 4. By an easy inspection, S(D1, Da) < S¥(Dy,Ds), i.e. (16) yields an estimate which is at least
as high as (3) and analogously for F and E”~. Note that (16) has a natural meaning. Indeed, S™(D;, D3)
can be understood as a degree to which the following statement is true: “If ¢ belongs to Dj, then there is
t’ which is similar to ¢ and which belongs to Ds”. Hence, E~(D;, D2) is a degree to which for each tuple
from D, there is a similar tuple in Dy and vice versa. If L is a two-element Boolean algebra and each =,
is an identity, then E~(D;,Dy) = 1 iff D; and Ds are identical (in the usual sense).

For tuple-based inclusion (similarity) and for certain relational operations, we can prove analogous
preservation formulas as in Section 4.1. For instance,

S¥(Dy1,D}) A S(Da, Dy) < S¥(Dy UDy, Dy UDy), (17)
Sz(Dl,Dll)®S(D2,D/2) SSz(Dl XDQ,Dll XD/Q), (18)
S¥(D,D') < S¥(wr(D), mr(D")). (19)

On the other hand, similarity-based selection oy~q (and, as a consequence, similarity-based join ><pxq)
does not preserve S™ in general which can be seen as a technical complication. This issue can be overcome
by introducing a new type of selection afw 4 Which is compatible with S¥. Namely, we can define

(05%a(D)) () = Vyerupicr) (D) @ ' = t @ t(y) =, d). (20)

~

For this notion, we can prove that S~(D,D’) < 5¥(o,7 (D), 0.7, 4(D")). Similar extension can be done
for any relational operation which does not preserve S~ directly. Detailed description of the extension is

postponed to a full version of the paper because of the limited scope.

4.4 Unifying Approach to Similarity of RDTs

In this section, we outline a general approach to similarity of RDTs that includes both the approaches from
the previous sections. Interestingly, both (3) and (16) have a common generalization using truth-stressing
hedges [19, 21]. Truth-stressing hedges represent unary operations on complete residuated lattices (denoted
by * ) that serve as interpretations of logical connectives like “very true”, see [19]. Two boundary cases
of hedges are (i) identity, i.e. a* = a (a € L); (ii) globalization: 1* = 1, and ¢* = 0 if a < 1. The
globalization [31] is a hedge which can be interpreted as “fully true”.

Let * be truth-stressing hedge on L. For RDTs D;, D2 on T, we define the degree SZ°(D;,Ds) of
inclusion of Dy in Dy (with respect to *) by

Sf (Div Dj) = /\teTupl(T) (Di(t) - \/t’eTupl(T) (Dj (t/) ® (t ~ t/)*»' 2n
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Now, it is easily seen that for * being the identity, (21) coincides with (16); if ~ is separating (i.e., t; ~
to = 1iff ¢; is identical to t2) and x* is the globalization, (21) coincides with (3). Thus, both (3) and (16)
are particular instances of (21) resulting by a choice of the hedge. Note that identity and globalization are
two borderline cases of hedges. In general, complete residuated lattices admit other nontrivial hedges that
can be used in (21). Therefore, the hedge in (21) serves as a parameter that has an influence on how much
emphasis we put on the fact that two tuples are similar. In case of globalization, we put full emphasis, i.e.,
the tuples are required to be equal to degree 1 (exactly the same if ~ is separating).

If we consider properties needed to prove analogous estimation formulas for general S as we did in
case of .S and S¥, we come up with the following important property:

(ras) ® (s~ ) < (r~i)F 22)

for every r, s,t € Tupl(7T') which can be seen as transitivity of ~ with respect to ® and *. Consider the
following two cases in which (22) is satisfied:

Case 1: xis globalization and = is separating. If the left hand side of (22) is nonzero, then r ~ s = 1 and
s & t = 1. Separability implies r = s = t, i.e. (r & ¢)* = 1* = 1, verifying (22).

Case 2: ~ is transitive. In this case, since a* ® b* < (a ® b)* (follows from properties of hedges by
standard arguments), transitivity of &~ and monotony of * yield (r = s)* ® (s = t)* < ((r =
S)®(s~t)* < (r=t)

The following lemma shows that SZ° and consequently EZ have properties that are considered natural
for (degrees of) inclusion and similarity:

Lemma 1. If = satisfies (22) with respect to * then

(i) SZ is a reflexive and transitive L-relation, i.e. an L-quasiorder.
(i) EZ defined by EZ(D1,D2) = SZ(D1,D3) A ST (Do, Dy) is a reflexive, symmetric, and transitive
L-relation, i.e. an L-equivalence.

Proof. The assertion follows from results in [2, Section 4.2] by taking into account that ~* is reflexive,
symmetric, and transitive with respect to . a

5 Conclusion and Future Research

We have shown that an important fragment of relational operation in similarity-based databases preserves
various types of similarity. As a result, similarity of query results based on these relational operations can
be estimated based on similarity of input data tables before the queries are executed. Furthermore, the
results of this paper have shown a desirable important property of the underlying similarity-based model of
data: slight changes in input data do not produce huge changes in query results. Future research will focus
on the role of particular relational operations called similarity-based closures that play an important role in
tuple-based similarities of RDTs. An outline of results in this direction is presented in [3].
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Abstract. Within the research area of deductive databases three different database tasks have been
deeply investigated: query evaluation, update propagation and view updating. Over the last thirty years
various inference mechanisms have been proposed for realizing these main functionalities of a rule-
based system. However, these inference mechanisms have been rarely used in commercial DB systems
until now. One important reason for this is the lack of a uniform approach well-suited for implemen-
tation in an SQL-based system. In this paper, we present such a uniform approach in form of a new
version of the soft consequence operator. Additionally, we present improved transformation-based ap-
proaches to query optimization and update propagation and view updating which are all using this
operator as underlying evaluation mechanism.

1 Introduction

The notion deductive database refers to systems capable of inferring new knowledge using rules. Within this
research area, three main database tasks have been intensively studied: (recursive) query evaluation, update
propagation and view updating. Despite of many proposals for efficiently performing these tasks, however,
the corresponding methods have been implemented in commercial products (such as, e.g., Oracle or DB2)
in a very limited way, so far. One important reason is that many proposals employ inference methods
which are not directly suited for being transferred into the SQL world. For example, proof-based methods
or instance-oriented model generation techniques (e.g. based on SLDNF) have been proposed as inference
methods for view updating which are hardly compatible with the set-oriented bottom-up evaluation strategy
of SQL.

In this paper, we present transformation-based methods to query optimization, update propagation and
view updating which are well-suited for being transferred to SQL. Transformation-based approaches like
Magic Sets [1] automatically transform a given database schema into a new one such that the evaluation
of rules over the rewritten schema performs a certain database task more efficiently than with respect to
the original schema. These approaches are well-suited for extending database systems, as new algorith-
mic ideas are solely incorporated into the transformation process, leaving the actual database engine with
its own optimization techniques unchanged. In fact, rewriting techniques allow for implementing vari-
ous database functionalities on the basis of one common inference engine. However, the application of
transformation-based approaches with respect to stratifiable views [17] may lead to unstratifiable recur-
sion within the rewritten schemata. Consequently, an elaborate and very expensive inference mechanism is
generally required for their evaluation such as the alternating fixpoint computation or the residual program
approach proposed by van Gelder [20] resp. Bry [10]. This is also the case for the kind of recursive views
proposed by the SQL:1999 standard, as they cover the class of stratifiable views.

As an alternative, the soft consequence operator together with the soft stratification concept has been
proposed by the author in [2] which allows for the efficient evaluation of Magic Sets transformed rules. This
efficient inference method is applicable to query-driven as well as update-driven derivations. Query-driven
inference is typically a top-down process whereas update-driven approaches are usually designed bottom-
up. During the last 6 years, the idea of combining the advantages of top-down and bottom-up oriented
inference has been consequently employed to enhance existing methods to query optimization [3] as well
as update propagation [6] and to develop a new approach to view updating. In order to handle alternative
derivations that may occur in view updating methods, an extended version of the original soft consequence
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operator has to be developed. In this paper, this new version is presented, which is well-suited for efficiently
determining the semantics of definite and indefinite databases but remains compatible with the set-oriented,
bottom-up evaluation of SQL.

2 Basic concepts

A Datalog rule is a function-free clause of the form Hy < Ly A--- A L, withm > 1 where H; is an atom
denoting the rule’s head, and L4, ..., L,, are literals, i.e. positive or negative atoms, representing its body.
We assume all deductive rules to be safe, i.e., all variables occurring in the head or in any negated literal of
a rule must be also present in a positive literal in its body. If A = p(t1,...,t,) with n > 0 is a literal, we
use vars(A) to denote the set of variables occurring in A and pred(A) to refer to the predicate symbol p
of A. If A is the head of a given rule R, we use pred(R) to refer to the predicate symbol of A. For a set of
rules R, pred(R) is defined as U,cr {pred(r)}. A fact is a ground atom in which every ¢; is a constant.

A deductive database D is a triple (F,R,Z) where F is a finite set of facts (called base facts), T
is a finite set of integrity constraints (i.e.,positive ground atoms) and R a finite set of rules such that
pred(F) Npred(R) = O and pred(Z) C pred(F U R). Within a deductive database D, a predicate
symbol p is called derived (view predicate), if p € pred(R). The predicate p is called extensional (or base
predicate), if p € pred(F). Let Hp be the Herbrand base of D = (F, R, Z). The set of all derivable literals
from D is defined as the well-founded model [21] for (F UR): Mp :=ITU~-1~ where [T, I~ C Hp
are sets of ground atoms and — - I~ includes all negations of atoms in I~. The set I represents the
positive portion of the well-founded model while —- I~ comprises all negative conclusions. The semantics
of a database D = (F,R,Z) is defined as the well-founded model Mp := I U= -1~ for F UR if all
integrity constraints are satisfied in Mp, i.e., Z C IT. Otherwise, the semantics of D is undefined. For the
sake of simplicity of exposition, and without loss of generality, we assume that a predicate is either base or
derived, but not both, which can be easily achieved by rewriting a given database.

Disjunctive Datalog extends Datalog by disjunctions of literals in facts as well as rule heads. A disjunc-
tive Datalog rule is a function-free clause of the form A; V...V A,, < By A---AB,, withm,n > 1 where
the rule’s head A; V...V A,, is a disjunction of positive atoms, and the rule’s body By, ..., B, consists
of literals, i.e. positive or negative atoms. A disjunctive fact f = f1 V...V fi is a disjunction of ground
atoms f; with ¢ > 1. f is called definite if ¢ = 1. We solely consider stratifiable disjunctive rules only,
that is, recursion through negative predicate occurrences is not permitted [17]. A stratification partitions
a given rule set such that all positive derivations of relations can be determined before a negative literal
with respect to one of those relations is evaluated. The semantics of a stratifiable disjunctive databases D
is defined as the perfect model state P Mp of D iff D is consistent [4, 11].

3 Transformation-Based Approaches

The need for a uniform inference mechanism in deductive databases is motivated by the fact that transfor-
mation-based approaches to query optimization, update propagation and view updating are still based on
very different model generators. In this section, we briefly recall the state-of-the-art with respect to these
transformation-based techniques by means of Magic Sets, Magic Updates and Magic View Updates. The
last two approaches have been already proposed by the author in [6] and [7]. Note that we solely con-
sider stratifiable rules for the given (external) schema. The transformed internal schema, however, may not
always be stratifiable such that more general inference engines are required.

3.1 Query Optimization

Various methods for efficient bottom-up evaluation of queries against the intensional part of a database
have been proposed, e.g. Magic Sets [1], Counting [9], Alexander method [19]). All these approaches are
rewriting techniques for deductive rules with respect to a given query such that bottom-up materialization is
performed in a goal-directed manner cutting down the number of irrelevant facts generated. In the following
we will focus on Magic Sets as this approach has been accepted as a kind of standard in the field.
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Magic Sets rewriting is a two-step transformation in which the first phase consists of constructing an
adorned rule set, while the second phase consists of the actual Magic Sets rewriting. Within an adorned rule
set, the predicate symbol of a literal is associated with an adornment which is a string consisting of letters
b and £. While b represents a bound argument at the time when the literal is to be evaluated, £ denotes a
free argument. The adorned version of the deductive rules is constructed with respect to an adorned query
and a selected sip strategy [18] which basically determines for each rule the order in which the body literals
are to be evaluated and which bindings are passed on to the next literal. During the second phase of Magic
Sets the adorned rules are rewritten such that bottom-up materialization of the resulting database simulates
a top-down evaluation of the original query on the original database. For this purpose, each adorned rule
is extended with a magic literal restricting the evaluation of the rule to the given binding in the adornment
of the rule’s head. The magic predicates themselves are defined by rules which define the set of relevant
selection constants. The initial values corresponding to the query are given by the so-called magic seed. As
an example, consider the following stratifiable rules R

O(X’ Y) <——\p(Y, X) A p(X, Y)
p(X, Y) «— e(X, Y)
P(X,Y) — e(X,Z) Ap(Z,Y)

and the query ?-o (1, 2) asking whether a path from node 1 to 2 exists but not vice versa. Assuming a
full left-to-right sip strategy, Magic Sets yields the following deductive rules R, s

oub (X, Y) = m_opp (X, Y) A =puu (Y, X) A peo(X,Y)  pon(X,Y)— m_prp(X,Y) Ae(X,Y)
Pob(X, Y)— m ppp(X, Y) A e(X,Z) A pwn(Z, Y) m_ppb (Y, X) < m_opp(X,Y)
m,pbb(X, Y) <— M_Opp (X, Y) A “Pvb (Y, X) m_Opp (X, Y) — m,s,obb(X, Y)
m_ppy(Z,Y) «— mpu(X,Y) Ae(X, Z)

as well as the magic seed fact m_s_oy,(1,2). The Magic Sets transformation is sound for stratifiable
databases. However, the resulting rule set may be no more stratifiable (as is the case in the above ex-
ample) and more general approaches than iterated fixpoint computation are needed. For determining the
well-founded model of general logic programs, the alternating fixpoint computation by Van Gelder [20]
or the conditional fixpoint by Bry [10] could be used. The application of these methods, however, is not
really efficient because the specific reason for the unstratifiability of the transformed rule sets is not taken
into account. As an efficient alternative, the soft stratification concept together with the soft consequence
operator [2] could be used for determining the positive part of the well-founded model (cf. Section 4).

3.2 Update Propagation

Determining the consequences of base relation changes is essential for maintaining materialized views as
well as for efficiently checking integrity. Update propagation (UP) methods have been proposed aiming
at the efficient computation of implicit changes of derived relations resulting from explicitly performed
updates of extensional facts [13, 14, 16, 17]. We present a specific method for update propagation which
fits well with the semantics of deductive databases and is based on the soft consequence operator again.
We will use the notion update to denote the ’true’ changes caused by a transaction only; that is, we solely
consider sets of updates where compensation effects (i.e., given by an insertion and deletion of the same
fact or the insertion of facts which already existed, for example) have already been taken into account.
The task of update propagation is to systematically compute the set of all induced modifications starting
from the physical changes of base data. Technically, this is a set of delta facts for any affected relation
which may be stored in corresponding delta relations. For each predicate symbol p € pred(D), we will
use a pair of delta relations (A;r , A; ) representing the insertions and deletions induced on p by an update
on D. The initial set of delta facts directly results from the given update and represents the so-called UP
seeds. They form the starting point from which induced updates, represented by derived delta relations, are
computed. In our transformation-based approach, so-called propagation rules are employed for computing
delta relations. A propagation rule refers to at least one delta relation in its body in order to provide a focus
on the underlying changes when computing induced updates. For showing the effectiveness of an induced
update, however, references to the state of a relation before and after the base update has been performed
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are necessary. As an example of this propagation approach, consider again the rules for relation p from
Subsection 3.1. The UP rules R4 with respect to insertions into e are as follows :

(X,Y) —AF (X, Y)A—p°L4(X,Y)
(X,Y) —AF(X,Z) Ap™¥(Z,Y)A-p°(X, Y)

A
A
A (X,Y) AL (Z,Y) A e™¥(X,Z)A-p°(X, Y)

Je R

For each relation p we use p°“ to refer to its old state before the changes given in the delta relations have
been applied whereas p™“* is used to refer to the new state of p. These state relations are never completely
computed but are queried with bindings from the delta relation in the propagation rule body and thus
act as a test of effectiveness. In the following, we assume the old database state to be present such that
the adornment old can be omitted. For simulating the new database state from a given update so called
transition rules [16] are used. The transition rules R4 for simulating the required new states of e and p
are:

e™(X,Y) — e(X,Y)A-AZ (X,Y) P (X,Y) « e™¥(X,Y)
e™"(X,Y) —AF(X,Y) P*Y(X,Y) « e™¥(X,Z) Ap™¥(Z,Y)

Note that the new state definition of intensional predicates only indirectly refers to the given update in
contrast to extensional predicates. If R is stratifiable, the rule set R \J RAY ’RTA will be stratifiable, too
(cf. [6]). As RURA WURA remains to be stratifiable, iterated fixpoint computation could be employed
for determining the semantics of these rules and the induced updates defined by them. However, all state
relations are completely determined which leads to a very inefficient propagation process. The reason is that
the supposed evaluation over the two consecutive database states is performed using deductive rules which
are not specialized with respect to the particular updates that are propagated. This weakness of propagation
rules in view of a bottom-up materialization will be cured by incorporating Magic Sets.

Magic Updates

The aim is to develop an UP approach which is automatically limited to the affected delta relations. The
evaluation of side literals and effectiveness tests is restricted to the updates currently propagated. We use
the Magic Sets approach for incorporating a top-down evaluation strategy by considering the currently
propagated updates in the dynamic body literals as abstract queries on the remainder of the respective
propagation rule bodies. Evaluating these propagation queries has the advantage that the respective state
relations will only be partially materialized. As an example, let us consider the specific deductive database
D = (F,R,T) with R consisting of the well-known rules for the transitive closure p of relation e:

R: p(XY) —e(XY)
p(X,Y) «— e(X,2),p(Z,Y)

F:. edge(l,2), edge(l,4), edge(3,4)
edge (10,11), edge(11,12), ..., edge(98,99), edge(99,100)

Note that the derived relation p consists of 4098 tuples. Suppose a given update contains the new tuple
e(2,3) to be inserted into D and we are interested in finding the resulting consequences for p. Com-
puting the induced update by evaluating the stratifiable propagation and transition rules would lead to
the generation of 94 new state facts for relation e, 4098 old state facts for p and 4098 + 3 new state
facts for p. The entire number of generated facts is 8296 for computing the three induced insertions
AF(1,3),A5(2,3), Af(2,4)} with respect to p.

However, the application of the Magic Updates rewriting with respect to the propagation queries
{AL(Z,Y), A (X,Y), Af(X,Z)} provides a much better focus on the changes to e. Within its application,
the following subquery rules

mpps”(2) —AJ(X,2) mpes(X, Y) —AL(X,Y)
mef*(2) —47(2,Y) m_pen (X, Y) <AL (X, 2) A pie*(2,Y)
M_Pyb (Xv Y) HA; (Za Y) A eggw(x, Z)
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are generated. The respective queries ) = {m,e’f‘gw, m-py, .. .} allow to specialize the employed tran-
sition rules, e.g.

el¥(X,Y) — mel"(Y) Ae(X,Y)AA (X,Y)
e} (X,Y) — m el (Y)AAL (X, Y)

such that only relevant state tuples are generated. We denote the Magic Updates transformed rules R J R4
WRA by RZ,,. Despite of the large number of rules in RZ,,, the number of derived results remains
relatively small. Quite similar to the Magic sets approach, the Magic Updates rewriting may result in an
unstratifiable rule set. This is also the case for our example where the following negative cycle occurs in

the respective dependency graph:

A; 2 m_Povb e Pob e A;
In [6] it has been shown, however, that the resulting rules must be at least softly stratifiable such that the
soft consequence operator could be used for efficiently computing their well-founded model. Computing
the induced update by evaluating the Magic Updates transformed rules leads to the generation of two new
state facts for e, one old state fact and one new state fact for p. The entire number of generated facts is 19
in contrast to 8296 for computing the three induced insertions with respect to p.

3.3 View Updates

Bearing in mind the numerous benefits of the afore mentioned methods to query optimization and update
propagation, it seemed worthwhile to develop a similar, i.e., incremental and transformation-based, ap-
proach to the dual problem of view updating. In contrast to update propagation, view updating aims at
determining one or more base relation updates such that all given update requests with respect to derived
relations are satisfied after the base updates have been successfully applied. In the following, we recall
a transformation-based approach to incrementally compute such base updates for stratifiable databases
proposed by the author in [7]. The approach extends and integrates standard techniques for efficient query
answering, integrity checking and update propagation. The analysis of view updating requests usually leads
to alternative view update realizations which are represented in disjunctive form.

Magic View Updates

In our transformation-based approach, true view updates (VU) are considered only, i.e., ground atoms
which are presently not derivable for atoms to be inserted, or are derivable for atoms to be deleted, respec-
tively. A method for view updating determines sets of alternative updates (called VU realization) satisfying
a given request. There may be infinitely many realizations and even realizations of infinite size which
satisfy a given VU request. In our approach, a breadth-first search is employed for determining a set of
minimal realizations. A realization is minimal in the sense that none of its updates can be removed without
losing the property of being a realization. As each level of the search tree is completely explored, the result
usually consists of more than one realization. If only VU realizations of infinite size exist, our method will
not terminate.

Given a VU request, view updating methods usually determine subsequent VU requests in order to find
relevant base updates. Similar to delta relations for UP we will use the notion VU relation to access individ-
ual view updates with respect to the relations of our system. For each relation p € pred(R U F) we use the
VU relation V() for tuples to be inserted into D and V() for tuples to be deleted from D. The initial
set of delta facts resulting from a given VU request is again represented by so-called VU seeds. Starting
from the seeds, so-called VU rules are employed for finding subsequent VU requests systematically. These
rules perform a top-down analysis in a similar way as the bottom-up analysis implemented by the UP rules.
As an example, consider the following database D = (F,R,Z) with F = {r2(2),s(2)}, T = {ic(2)} and
the rules R:

p(X) — q:(X) a1 (%) — 71(X) A 5(X)
p(X) — z(X) %2(X) — T5(X)A-s(X)
ic(2) ——au(2) 2u(X) — qa(X)A—q (X)
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The corresponding set of VU rules RV with respect to V;r (2) is given by:

ViEVVE(X)Vi(X)
VLX) Vi (X)A-r(X) VE(X) Vi (X)A-ra(X)
Vi(X) <V (X)A-s(X) Vs (X) <V (X) As(X)

S

In contrast to the UP rules from Section 3.2, no explicit references to the new database state are included in
the above VU rules. The reason is that these rules are applied iteratively over several intermediate database
states before the minimal set of realizations has been found. Hence, the apparent references to the old state
really refer to the current state which is continuously modified while computing VU realizations. These
predicates solely act as tests again queried with respect to bindings from VU relations and thus will never
be completely evaluated.

Evaluating these rules using model generation with disjunctive facts leads to two alternative updates,
insertion {r(2)} and deletion {s(2)}, induced by the derived disjunction V} (2) V V_ (2). Obviously,
the second update represented by V (2) would lead to an undesired side effect by means of an integrity
violation. In order to provide a complete method, however, such erroneous/incomplete paths must be also
explored and side effects repaired if possible. Determining whether a computed update will lead to a con-
sistent database state or not can be done by applying a bottom-up UP process at the end of the top-down
phase leading to an irreparable constraint violation with respect to V (2):

Vi (2) = AL(2) = AF(2), AL(2) = AL(2) ~ false

In order to see whether the violated constraint can be repaired, the subsequent view update request V' (2)
with respect to D ought to be answered. The application of RV yields

= Vg, (2), VL (2) ~ false
Vie(2) = V(2 §
= Vi(2) = VI(2),V,(2) ~ false

showing that this request cannot be satisfied as inconsistent subsequent view update requests are generated
on this path. Such erroneous derivation paths will be indicated by the keyword false. The reduced set of
updates - each of them leading to a consistent database state only - represents the set of realizations A (2).

An induced deletion of an integrity constraint predicate can be seen as a side effect of an ’erro-
neous’ VU. Similar side effects, however, can be also found when induced changes to the database caused
by a VU request may include derived facts which had been actually used for deriving this view up-
date. This effect is shown in the following example for a deductive database D = (R, F,T) with R =
{h(X)— p(X) Aq(X) A i,ie— p(X)A=q(X)}, F = {p(1)}, and Z = @. Given the VU request V; (1), the
overall evaluation scheme for determining the only realization { A} (1), Al (c"“**)} would be as follows:

= T (cro)
Vi(1)= Vi) = A1) = A =V
=V (1),Vi(1) ~ false

The example shows the necessity of compensating side effects, i.e., the compensation of the ’deletion’
A7 (that prevents the ’insertion” A} (1)) caused by the tuple V(‘;(l). In general the compensation of
side effects, however, may in turn cause additional side effects which have to be ’repaired’. Thus, the
view updating method must alternate between top-down and bottom-up phases until all possibilities for
compensating side effects (including integrity constraint violations) have been considered, or a solution
has been found. To this end, so-called VU transition rules RY are used for restarting the VU analysis. For
example, the compensation of violated integrity constraints can be realized by using the following kind
of transition rule A;_(¢) — V(&) for each ground literal ic(¢) € Z. VU transition rules make sure that
erroneous solutions are evaluated to false and side effects are repaired.

Having the rules for the direct and indirect consequences of a given VU request, a general applica-
tion scheme for systematically determining VU realizations can be defined (see[7] for details). Instead
of using simple propagation rules R R4 RTA, however, it is much more efficient to employ the cor-
responding Magic Update rules. The top-down analysis rules R JRY and the bottom-up consequence
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analysis rules R4, WRY are alternating applied. Note that the disjunctive rules R URY are stratifiable
while R4, URY is softly stratifiable such that a perfect model state [4,11] and a well-founded model
generation must alternately be applied. The iteration stops as soon as a realization for the given VU request
has been found. The correctness of this approach has been already shown in [7].

4 Consequence Operators and Fixpoint Computations

In the following, we summarize the most important fixpoint-based approaches for definite as well as indef-
inite rules. All these methods employ so-called consequence operators which formalize the application of
deductive rules for deriving new data. Based on their properties, a new uniform consequence operator is
developed subsequently.

4.1 Definite Rules

First, we recall the iterated fixpoint method for constructing the well-founded model of a stratifiable
database which coincides with its perfect model [17].

Definition 1. Let D = (F, R) be a deductive database, X a stratification on D, R1 Y ... UR,, the parti-
tion of R induced by \, I C Hp a set of ground atoms, and [[R]]; the set of all ground instances of rules
in R with respect to the set I. Then we define

1. the immediate consequence operator Tr (1) as

Tr(I)={H| HelVvire[R],:r=H—LiAN...NL,
such that L; € I for all positive literals L;
and L ¢ I for all negative literals L; = —L},

2. the iterated fixpoint M,, as the last Herbrand model of the sequence
Ml = lfp (T’Rl 5 .7:), MQ = lfp (7772,27 Ml), ey Mn J= lfp (TRn,yMn—l)r

where 1fp (Tr,F) denotes the least fixpoint of operator Tr containing F.

3. and the iterated fixpoint model M, as
i = M, U= T

This constructive definition of the iterated fixpoint model is based on the immediate consequence operator
introduced by van Emden and Kowalski. In [17] it has been shown that the perfect model of a stratifiable
database D is identical with the iterated fixpoint model MY, of D.

Stratifiable rules represent the most important class of deductive rules as they cover the expressiveness
of recursion in SQL:1999. Our transformation-based approaches, however, may internally lead to unstrati-
fiable rules for which a more general inference method is necessary. In case that unstratifiability is caused
by the application of Magic Sets, the so-called soft stratification approach proposed by the author in [2]
could be used.

Definition 2. Let D = (F,R) be a deductive database, \* a soft stratificationon D, P = P, J ... U P,
the partition of R induced by \°, and I C Hrp a set of ground atoms. Then we define

1. the soft consequence operator T} (1) as

Ts(I) = I if Tp,(I) =1 forall j € {1,...,n}
P\ Te (I) withi = min{j | Tp,(I) 2 I}, otherwise.

where Tp, denotes the immediate consequence operator.
2. and the soft fixpoint model M£, as

M3 = 1fp (T3, F)U~—- (1fp (T, F)).
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Note that the soft consequence operator is based upon the immediate consequence operator and can even
be used to determine the iterated fixpoint model of a stratifiable database [6]. As an even more general
alternative, the alternating fixpoint model for arbitrary unstratifiable rules has been proposed in [12] on the
basis of the eventual consequence operator.

Definition 3. Ler D = (F, R) be a deductive database, I, I~ C Hp sets of ground atoms, and [[R]]+
the set of all ground instances of rules in R with respect to the set I'". Then we define

1. the eventual consequence operator T (1) as

TrRUIYIT):={H| HeET"V3Ire[R],s :r=H—Li A...AL,
such that L; € I for all positive literals L;
and L ¢ I~ for all negative literals L; = —L},

2. the eventual consequence transformation §D as
Sp(I7) := 1£p(Tr(I7), F),

3. and the alternating fixpoint model M$, as

b :=1£p (53, 0) U - 53 (1£p (53, 0)) ,

where S, denotes the nested application of the eventual consequence transformation, i.e., S3(17) =
Sp(Sp(I7)).

In [12] it has been shown that the alternating fixpoint model M$, coincides with the well-founded model
of a given database D. The induced fixpoint computation may indeed serve as a universal model generator
for arbitrary classes of deductive rules. However, the eventual consequence operator is computationally
expensive due to the intermediate determination of supersets of sets of true atoms. With respect to the
discussed transformation-based approaches, the iterated fixpoint model could be used for determining the
semantics of the stratifiable subset of rules in R,,,, for query optimization, R4, for update propagation,
and R4, URY for view updating. If these rule sets contain unstratifiable rules, the soft or alternating
fixpoint model generator ought be used while the first has proven to be more efficient than the latter [2].
None of the above mentioned consequence operators, however, can deal with indefinite rules necessary for
evaluating the view updating rules R URY .

4.2 Indefinite Rules

In [4], the author proposed a consequence operator for the efficient bottom-up state generation of stratifiable
disjunctive deductive databases. To this end, a new version of the immediate consequence operator based
on hyperresolution has been introduced which extends Minker’s operator for positive disjunctive Datalog
rules [15]. In contrast to already existing model generation methods our approach for efficiently computing
perfect models is based on state generation. Within this disjunctive consequence operator, the mapping
red on indefinite facts is employed which returns non-redundant and subsumption-free representations of
disjunctive facts. Additionally, the mapping min models(F’) is used for determining the set of minimal
Herbrand models from a given set of disjunctive facts F. We identify a disjunctive fact with a set of
atoms such that the occurrence of a ground atom A within a fact f can also be written as A € f. The set
difference operator can then be used to remove certain atoms from a disjunction while the empty set as
result is interpreted as false.

Definition 4. Let D = (F,R) be a stratifiable disjunctive database rules,\ a stratificationon D, R4 U . ..
U R, the partition of R induced by )\, I an arbitrary subset of indefinite facts from the disjunctive Her-
brand base [11] of D, and [[R]]; the set of all ground instances of rules in R with respect to the set I Then
we define.

1. the disjunctive consequence operator T as
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Tgote(I):=red{H |HeIVIre[R]];:r=AV...VA —LiAN...NL,
with H= (A V- VAV fi\LiV---V fo\ L, VC)
such that f; € I \ L; € f; for all positive literals L;
and L; ¢ I for all negative literals L; = —L
and (L; € C < 3M € min models(]) :
L; € M for at least one negative literal L
and Ly, € M for all positive literals Ly,
and A; ¢ M for all head literals of r)})

2. the iterated fixpoint state Sy, as the last minimal model state of the sequence

Sy o= 1fp (T, F), So := Lfp (T, S1), ..., Sn := Lfp (T, Sp1),
3. and the iterated fixpoint state model MSp as

MSp :=8,U—- S,

In [4] it has been shown that the iterated fixpoint state model MSp of a disjunctive database D coincides
with the perfect model state of D. It induces a constructive method for determining the semantics of strat-
ifiable disjunctive databases. The only remaining question is how integrity constraints are handled in the
context of disjunctive databases. We consider again definite facts as integrity constraints, only, which must
be derivable in every model of the disjunctive database. Thus, only those models from the iterated fixpoint
state are selected in which the respective definite facts are derivable. To this end, the already introduced
keyword false can be used for indicating and removing inconsistent model states. The database is called
consistent iff at least one consistent model state exists.

This proposed inference method is well-suited for determining the semantics of stratifiable disjunctive
databases with integrity constraints. And thus, it seems to be suited as the basic inference mechanism for
evaluating view updating rules. The problem is, however, that the respective rules contain unstratifiable
definite rules which cannot be evaluated using the inference method proposed above. Hence, the evaluation
techniques for definite (Section 4.1) and indefinite rules (Section 4.2) do not really fit together and a new
uniform approach is needed.

5 A Uniform Fixpoint Approach

In this section, a new version of the soft consequence operator is proposed which is suited as efficient
state generator for softly stratifiable definite as well as stratifiable indefinite databases. The original version
of the soft consequence operator T2 is based on the immediate consequence operator by van Emden and
Kowalski and can be applied to an arbitrary partition P of a given set of definite rules. Consequently, its
application does not always lead to correct derivations. In fact, this operator has been designed for the
application to softly stratified rules resulting from the application of Magic Sets. However, this operator is
also suited for determining the perfect model of a stratifiable database.

Lemma 1. Let D = (F,R) be a stratifiable database and X a stratification of R inducing the partition P
of R. The perfect model Mp of (F,R) is identical with the soft fixpoint model of D, i.e.,

Mp = 1£p(T5, F) U~ - 1£p(T, F).

Proof. This property follows from the fact that for every partition P = P, U ... P, induced by a stratifica-
tion, the condition pred(P;) Npred(F;) = @ with ¢ # j must necessarily hold. As soon as the application
of the immediate consequence operator 7'p, with respect to a certain layer P; generates no new facts any-
more, the rules in P; can never fire again. The application of the incorporated min function then induces
the same sequence of Herbrand models as in the case of the iterated fixpoint computation. U

Another property we need for extending the original soft consequence operator is about the application of
Tstate to definite rules and facts.
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Lemma 2. Let r be an arbitrary definite rule and f be a set of arbitrary definite facts. The single applica-
tion of r to f using the immediate consequence operator or the disjunctive consequence operator, always
vields the same result, i.e.,

T.(f) = T(f).

Proof. The proof follows from the fact that all non-minimal conclusions of T¢!4*¢ are immediately elimi-
nated by the subsumption operator red. O

The above proposition establishes the relationship between the definite and indefinite case showing that the
disjunctive consequence operator represents a generalization of the immediate one. Thus, its application to
definite rules and facts can be used to realize the same derivation process as the one performed by using
the immediate consequence operator. Based on the two properties from above, we can now consistently
extend the definition of the soft consequence operator which allows its application to indefinite rules and
facts, too.

Definition 5. Let D = (F,R) be an arbitrary disjunctive database, I an arbitrary subset of indefinite
facts from the disjunctive Herbrand base of D, and P = P J ... U P, a partition of R. The general soft
consequence operator T3 (1) is defined as

(D) e 1 if Tp,(I) =1 forall j € {1,...,n}
Pl = Tpiete(I)  withi = min{j | Tf;.:ate(f) 2 I}, otherwise.

where Tﬁf“te denotes the disjunctive consequence operator.

In contrast to the original definition, the general soft consequence operator is based on the disjunctive
operator Tf;f“te instead of the immediate consequence operator. The least fixpoint of Tfé can be used to
determine the perfect model of definite as well as indefinite stratifiable databases and the well-founded
model of softly stratifiable definite databases.

Theorem 1 Let D = (F,R) be a stratifiable disjunctive database and X a stratification of R inducing the
partition P of R. The perfect model state PSp of (F,R) is identical with the least fixpoint model of T3,
ie.,

PSp = 1fp(T3, F)U— - 1fp(Th, F).

Proof. The proof directly follows from the correctness of the fixpoint computations for each stratum as
shown in [4] and the same structural argument already used in Lemma 1. O

The definition of 1£p(7%, F) induces a constructive method for determining the perfect model state as well
as the well-founded model of a given database. Thus, it forms a suitable basis for the evaluation of the rules
Rons for query optimization, R4, for update propagation, and R4, URY as well as R URY for view
updating. This general approach to defining the semantics of different classes of deductive rules is surpris-
ingly simple and induces a rather efficient inference mechanism in contrast to general well-founded model
generators. The soft stratification concept, however, is not yet applicable to indefinite databases because
ordinary Magic Sets can not be used for indefinite clauses. Nevertheless, the resulting extended version of
the soft consequence operator can be used as a uniform basis for the evaluation of all transformation-based
techniques mentioned in this paper.

6 Conclusion

In this paper, we have presented an extended version of the soft consequence operator for the efficient top-
down and bottom-up reasoning in deductive databases. This operator allows for the efficient evaluation of
softly stratifiable incremental expressions and stratifiable disjunctive rules. It solely represents a theoretical
approach but provides insights into design decisions for extending the inference component of commercial
database systems. The relevance and quality of the transformation-based approaches, however, has been
already shown in various practical research projects (e.g. [5, 8]) at the University of Bonn.
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Abstract. The aim of this paper is to announce the release of a novel system for abstract argumentation
which is based on decomposition and dynamic programming. We provide first experimental evaluations
to show the feasibility of this approach.

1 Introduction

Argumentation has evolved as an important field in Al, with abstract argumentation frameworks (AFs, for
short) as introduced by Dung [4] being its most popular formalization. Several semantics for AFs have
been proposed (see e.g. [2] for an overview), but here we shall focus on the so-called preferred semantics.
Reasoning under this semantics is known to be intractable [5]. An interesting approach to dealing with
intractable problems comes from parameterized complexity theory which suggests to focus on parameters
that allow for fast evaluations as long as these parameters are kept small. One important parameter for
graphs (and thus for argumentation frameworks) is tree-width, which measures the “tree-likeness” of a
graph. To be more specific, tree-width is defined via a certain decomposition of graphs, the so-called tree
decomposition. Recent work [6] describes novel algorithms for reasoning in the preferred semantics, such
that the performance mainly depends on the tree-width of the given AF, but the running times remain
linear in the size of the AF. To put this approach to practice, we shall use the SHARP framework', a C++
environment which includes heuristic methods to obtain tree decompositions [3], provides an interface to
run algorithms on these decompositions, and offers further useful features, for instance for parsing the
input. For a description of the SHARP framework, see [8].

The main purpose of our work here is to support the theoretical results from [6] with experimental ones.
Therefore we use different classes of AFs and analyze the performance of our approach compared to an
implementation based on answer-set programming (see [7]). Our prototype system together with the used
benchmark instances is available as a ready-to-use tool from http://www.dbai.tuwien.ac.at/
research/project/argumentation/dynpartix/.

2 Background

Argumentation Frameworks. An argumentation framework (AF) is a pair F' = (A, R) where A is a set of
arguments and R C A x A is the attack relation. If (a,b) € R we say a attacks b. An a € A is defended
by aset S C Aiff for each (b,a) € R, there exists a ¢ € S such that (¢,b) € R. An AF can naturally be
represented as a digraph.

Example 1. Consider the AF F' = (A, R), with A = {a,b,c,d,e, f,g} and R = {(a,b), (¢,b), (¢,d),
(d,c), (d,e), (e,9), (f,e).(g, f)}. The graph representation of F' is given as follows:

O—D— O D—F (DD
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Fig. 1. Architecture of the SHARP framework.

We require the following semantical concepts: Let ' = (A, R) be an AF. A set S C A is (i) conflict-
free in F, if there are no a,b € S, such that (a,b) € R; (ii) admissible in F, if S is conflict-free in F' and
each a € S is defended by S; (iii) a preferred extension of F', if S is a C-maximal admissible set in F'.
For the AF in Example 1, we get the admissible sets {}, {a}, {c},{d}, {d, g}, {a, c},{a,d}, and {a,d, g}.
Consequently, the preferred extensions of this framework are {a, ¢}, {a, d, g}

The typical reasoning problems associated with AFs are the following: (1) Credulous acceptance asks
whether a given argument is contained in at least one preferred extension of a given AF; (2) skeptical
acceptance asks whether a given argument is contained in all preferred extensions of a given AF. Credulous
acceptance is NP-complete, while skeptical acceptance is even harder, namely I1Z’-complete [5].

Tree Decompositions and Tree-width. As already outlined, tree decompositions will underlie our imple-
mented algorithms. We briefly recall this concept (which is easily adapted to AFs). A tree decomposition
of an undirected graph G = (V, E) is a pair (7, X) where T = (Vr, Er)isatree and X = (X¢)ieyy 18
a set of so-called bags, which has to satisfy the following conditions: (a) UteVT Xy =V,ie X isacover
of V; (b) for each v € V, T|4jyex,} is connected; (c) for each {v;,v;} € E, {v;,v;} € X; for some
t € Vr. The width of a tree decomposition is given by max{|X;| | t € V7 } — 1. The tree-width of G is the
minimum width over all tree decompositions of G.

It can be shown that our example AF has tree-width 2 and next we illustrate a tree decomposition of
width 2:

Dynamic programming algorithms traverse such tree decompositions (for our purposes we shall use
so-called normalized decompositions, however) and compute local solutions for each node in the decom-
position. Thus the combinatorial explosion is now limited to the size of the bags, that is, to the width of the
given tree decomposition. For the formal definition of the algorithms, we refer to [6].

3 Implementation and SHARP Framework

dynPARTIX implements these algorithms using the SHARP framework [8], which is a purpose-built frame-
work for implementing algorithms that are based on tree decompositions. Figure 1 shows the typical ar-
chitecture, that systems working with the SHARP framework follow. In fact, SHARP provides interfaces
and helper methods for the Preprocessing and Dynamic Algorithm steps as well as ready-to-use imple-
mentations of various tree decomposition heuristics, i.e. Minimum-Fill, Maximum-Cardinality-Search and
Minimum-Degree heuristics (cf. [3]).

dynPARTIX builds on normalized tree decompositions provided by SHARP, which contain four types
of nodes: Leaf-, Branch-, Introduction- and Removal-nodes. To implement our algorithms we just have to
provide the methods and data structures for each of these node types (see [6] for the formal details). In
short, the tree decomposition is traversed in a bottom-up manner, where at each node a table of all possible
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partial solutions is computed. Depending on the node type, it is then modified accordingly and passed on
to the respective parent node. Finally one can obtain the complete solutions from the root node’s table.
SHARP handles data-flow management and provides data structures where the calculated (partial) so-
lutions to the problem under consideration can be stored. The amount of dedicated code for dynPARTIX
comes to around 2700 lines in C++. Together with the SHARP framework (and the used libraries for the
tree-decomposition heuristics), our system roughly comprises of 13 000 lines of C++ code.

4 System Specifics

Currently the implementation is able to calculate the admissible and preferred extensions of the given
argumentation framework and to check if credulous or skeptical acceptance holds for a specified argument.
The basic usage of dynPARTIX is as follows:

> ./dynpartix [-f <file>] [-s <semantics>]
[-—enum | —--count | —--cred <arg> | —-skept <arg>]

The argument —f <file> specifies the input file, the argument —s <semant ics> selects the semantics
to reason with, i.e. either admissible or preferred, and the remaining arguments choose one of the reasoning
modes.

Input file conventions: We borrow the input format from the ASPARTIX system [7]. dynPARTIX thus han-
dles text files where an argument a is encoded as arg (a) and an attack (a,b) is encoded as att (a, b).
For instance, consider the following encoding of our running example and let us assume that it is stored in
afile inputAF.

arg(a). arg(b). arg(c). arg(d). arg(e). arg(f). arg(qg).
att (a,b). att(c,b). att(c,d). att(d,c).
att(d,e). att(e,g). att(f,e). att(g,f).

Enumerating extensions: First of all, dynPARTIX can be used to compute extensions, i.e. admissible sets
and preferred extensions. For instance to compute the admissible sets of our running example one can use
the following command:

> ./dynpartix —-f inputAF -s admissible

Credulous Reasoning: dynPARTIX decides credulous acceptance using proof procedures for admissible
sets (even if one reasons with preferred semantics) to avoid unnecessary computational costs. The following
statement decides if the argument d is credulously accepted in our running example.

> ./dynpartix —-f inputAF -s preferred —--cred d

Indeed the answer would be YES as {a, d, g} is a preferred extension.

Skeptical Reasoning: To decide skeptical acceptance, dynPARTIX uses proof procedures for preferred ex-
tensions which usually results in higher computational costs (but is unavoidable due to complexity results).
To decide if the argument d is skeptically accepted, the following command is used:

> ./dynpartix —-f inputAF -s preferred --skept d

Here the answer would be NO as {a, c} is a preferred extension not containing d.

Counting Extensions: Recently the problem of counting extensions has gained some interest [1]. We note
that our algorithms allow counting without an explicit enumeration of all extensions (thanks to the particular
nature of dynamic programming; see also [9]). Counting preferred extensions with dynPARTIX is done by

> ./dynpartix —-f inputAF -s preferred --count
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Fig. 2. Runtime behaviour of dynPARTIX for graphs of different tree-width compared with the ASPARTIX system.

5 Benchmark Tests

In this section we compare dynPARTIX with ASPARTIX [7], one of the most efficient reasoning tools for
abstract argumentation (for an overview of existing argumentation systems see [7]). For our benchmarks
we used randomly generated AFs of low tree-width. To ensure that AFs are of a certain tree-width we
considered random grid-structured AFs. In such a grid-structured AF each argument is arranged in an
n x m grid and attacks are only allowed between neighbours in the grid (we used a 8-neighborhood here to
allow odd-length cycles). When generating the instances we varied the following parameters: the number
of arguments; the tree-width; and the probability that an possible attack is actually in the AF.

The benchmark tests were executed on an Intel®Core™?2 CPU 6300@ 1.86GHz machine running
SUSE Linux version 2.6.27.48. We generated a total of 4800 argumentation frameworks with varying
parameters as mentioned above. The corresponding runtimes are illustrated in Figure 2. The two graphs
on the left-hand side compare the running times of dynPARTIX and ASPARTIX (using dlv) on instances
of small treewidth (viz. 3 and 5). For the graphs on the right-hand side, we have used instances of higher
width. Results for credulous acceptance are given in the upper graphs and those for skeptical acceptance
in the lower graphs. The y-axis gives the runtimes in logarithmic scale; the x-axis shows the number of
arguments. Note that the upper-left picture has different ranges on the axes compared to the three other
graphs. We remark that the test script stopped a calculation if it was not finished after 300 seconds. For
these cases we stored the value of 300 seconds in the database.

Interpretation of the Benchmark Results: We observe that, independent of the reasoning mode, the runtime
of ASPARTIX is only minorly affected by the tree-width while dynPARTIX strongly benefits from a low
tree-width, as expected by theoretical results [6].

For the credulous acceptance problem we have that our current implementation is competitive only up
to tree-width 5. This is basically because ASPARTIX is quite good at this task. Considering Figures 2(a)
and 2(b), there is to note that for credulous acceptance ASPARTIX decided every instance in less than 300
seconds, while dynPARTIX exceeded this value in 4% of the cases.
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Now let us consider the skeptical acceptance problem. As mentioned before, skeptical acceptance is
much harder computationally than credulous acceptance, which is reflected by the bad runtime behaviour
of ASPARTIX. Indeed we have that for tree-width < 5, dynPARTIX has a significantly better runtime
behaviour, and that it is competitive on the whole set of test instances. As an additional comment to Figures
2(c) and 2(d), we note that for skeptical acceptance, dynPARTIX was able to decide about 71% of the test
cases within the time limit, while ASPARTIX only finished 41%.

Finally let us briefly mention the problem of Counting preferred extensions. On the one side we have
that ASPARTIX has no option for explicit counting extensions, so the best thing one can do is enumerating
extensions and then counting them. It can easily be seen that this can be quite inefficient, which is reflected
by the fact that ASPARTIX only finished 21% of the test instances in time. On the other hand we have that
the dynamic algorithms for counting preferred extensions and deciding skeptical acceptance are essentially
the same and thus have the same runtime behaviour.

6 Future work

We identify several directions for future work. First, a more comprehensive empirical evaluation would
be of high value. For instance, it would be interesting to explore how our algorithms perform on real
world instances. To this end, we need more knowledge about the tree-width typical argumentation instances
comprise, i.e. whether it is the case that such instances have low tree-width. Due to the unavailability of
benchmark libraries for argumentation, so far we had to omit such considerations.

Second, we see the following directions for further development of dynPARTIX : Enriching the frame-
work with additional argumentation semantics mentioned in [2]; implementing further reasoning modes,
which can be efficiently computed on tree decompositions, e.g. ideal reasoning; and optimizing the algo-
rithms to benefit from recent developments in the SHARP framework.
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Abstract. Answer-Set Programming (ASP) is an established declarative programming paradigm. How-
ever, classical ASP lacks subprogram calls as in procedural programming, and access to external
computations (like remote procedure calls) in general. The feature is desired for increasing modularity
and—assuming proper access in place—(meta-)reasoning over subprogram results. While HEX-programs
extend classical ASP with external source access, they do not support calls of (sub-)programs upfront.
We present nested HEX-programs, which extend HEX-programs to serve the desired feature, in a user-
friendly manner. Notably, the answer sets of called sub-programs can be individually accessed. This
is particularly useful for applications that need to reason over answer sets like belief set merging,
user-defined aggregate functions, or preferences of answer sets.

1 Introduction

Answer-Set Programming, based on [8], has been established as an important declarative programming
formalism [3]. However, a shortcoming of classical ASP is the lack of means for modular programming, i.e.,
dividing programs into several interacting components. Even though reasoners such as DLV, CLASP, and
DLVHEX allow to partition programs into several files, they are still viewed as a single monolithic sets of
rules. On top of that, passing input to selected (sub-)programs is not possible upfront.

In procedural programming, the idea of calling subprograms and processing their output is in permanent
use. Also in functional programming such modularity is popular. This helps reducing development time
(e.g., by using third-party libraries), the length of source code, and, last but not least, makes code human-
readable. Reading, understanding, and debugging a typical size application written in a monolithic program
is cumbersome. Modular extensions of ASP have been considered [9, 5] with the aim of building an overall
answer set from program modules; however, multiple results of subprograms (as typical for ASP) are
respected, and no reasoning about such results is supported. XASP [11] is an SMODELS interface for
XSB-Prolog. This system is related to our work, but in this scenario the meta-reasoner is Prolog and thus
different from the semantics of its subprograms, which are under stable model semantics. The subprograms
are monolithic programs and cannot make further calls. This is insufficient for some applications, e.g., for
the MELD belief set merging system, which require hierarchical nesting of arbitrary depth. Adding such
nesting to available approaches is not easily possible and requires to adapt systems similar to our approach.

HEX-programs [6] extend ASP with higher-order atoms, which allow the use of predicate variables, and
external atoms, through which external sources of computation can be accessed. But HEX-programs do not
support modularity and meta-reasoning directly. In this context, modularity means the encapsulation of
subprograms which interact through well-defined interfaces only, and meta-reasoning requires reasoning
over sets of answer sets. Moreover, in HEX-programs external sources are realized as procedural C++
functions. Therefore, as soon as external sources are queried, we leave the declarative formalism. However,
the generic notion of external atom, which facilitates a bidirectional data flow between the logic program
and an external source (viewed as abstract Boolean function), can be utilized to provide these features.

To this end, we present nested HEX-programs, which support (possibly parameterized) subprogram
calls. It is the nature of nested hex-programs to have multiple HEX-programs which reason over the answer
sets of each individual subprogram. This can be done in a user-friendly way and enables the user to write
purely declarative applications consisting of multiple interacting modules. Notably, call results and answer

* This research has been supported by the Austrian Science Fund (FWF) project P20840 and P20841, and by the
Vienna Science and Technology Fund (WWTF) project ICT 08-020.
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sets are objects that can be accessed by identifiers and processed in the calling program. Thus, different
from [9, 5] and related formalisms, this enables (meta)-reasoning about the set of answer sets of a program.
In contrast to [11], both the calling and the called program are in the same formalism. In particular, the
calling program has also a multi-model semantics. As an important difference to [1], nested HEX-programs
do not require extending the syntax and semantics of the underlying formalism, which is the HEX-semantics.
The integration is, instead, by defining some external atoms (which is already possible in ordinary HEX-
programs), making the approach simple and user-friendly for many applications. Furthermore, as nested
HEX-programs are based on HEX-programs, they additionally provide access to external sources other than
logic programs. This makes nested HEX-programs a powerful formalism, which has been implemented using
the DLVHEX reasoner for HEX-programs; applications like belief set merging [10] show its potential and
usefulness.

2 HEX-Programs

We briefly recall HEX-programs, which have been introduced in [6] as a generalization of (disjunctive)
extended logic programs under the answer set semantics [8]; for more details and background, we refer
to [6]. A HEX-program consists of rules of the form

a1 V---Vay < by,...,bp,n0t byi1,...,00t b, ,

where each a; is a classical literal, i.e., an atom p(¢1, . .., ;) or a negated atom —p(t1, ..., %;), and each b,
is either a classical literal or an external atom, and not is negation by failure (under stable semantics). An
external atom is of the form

&glary - qrl(ti, ... 1),

where g is an external predicate name, the g; are predicate names or constants, and the ¢; are terms. Informally,
the semantics of an external g is given by a k + [ + 1-ary Boolean oracle function fg,. The external atom
is true relative to an interpretation I and a grounding substitution 6 iff fg, (I, q1,...,qx, t10,...,t0) = 1.
Via such atoms, arbitrary (computable) functions can be included. E.g., built-in functions can be realized via
external atoms, or library functions such as string manipulations, sorting routines, etc. As external sources
need not be on the same machine, knowledge access across the Web is possible, e.g., belief set import.
Strictly, [6] omits classical negation — but the extension is routine; furthermore, [6] also allows terms for
the ¢; and variables for predicate names, which we do not consider.

Example 1. Suppose an external knowledge base consists of an RDF file located on the web at http:/.../
data.rdf. Using an external atom &rdf [< url >](X,Y, Z), we may access all RDF triples (s, p,0) at the
URL specified with <wurl>. To form belief sets of pairs that drop the third argument from RDF triples, we
may use the rule

bel(X,Y) « &rdf [nttp:/.../data.rdf](X,Y, Z) .

The semantics of HEX-program is given via answer sets, which are sets of ground literals closed under
the rules that satisfy a stability condition as in [8]; we refer to [6] for technical details. The above program
has a single answer set which consists of all literal bel(cy, c2) such some RDF triple (c1, ¢a, ¢3) occurs at
the respective URL.

We use the DLVHEX system from http:/www.kr.tuwien.ac.atresearch/systems/divhex/ as a backend. DLVHEX
implements (a fragment of) HEX-programs. It provides a plugin mechanism for external atoms. Besides
library atoms, the user can defined her own atoms, where for evaluation a C++ routine must be provided.

3 Nested HEX-Programs

Limitations of ASP. As a simple example demonstrating the limits of ordinary ASP, assume a program
computing the shortest paths between two (fixed) nodes in a connected graph. The answer sets of this
program then correspond to the shortest paths. Suppose we are just interested in the number of such paths.
In a procedural setting, this is easily computed: if a function returns all these paths in an array, linked list, or
similar data structure, then counting its elements is trivial.
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In ASP, the solution is non-trivial if the given program must not be modified (e.g., if it is provided by a
third party); above, we must count the answer sets. Thus, we need to reason on sets of answer sets, which is
infeasible inside the program. Means to call the program at hand and reason about the results of this “callee”
(subprogram) in the “calling program” (host program) would be useful. Aiming at a logical counterpart to
procedural function calls, we define a framework which allows to input facts to the subprogram prior to its
execution. Host and subprograms are decoupled and interact merely by relational input and output values.
To realize this mechanism, we exploit external atoms, leading to nested HEX-programs.

Architecture. Nested HEX-programs are realized as a plugin for the reasoner DLVHEX,! which consists of
a set of external atoms and an answer cache for the results of subprograms (see Fig. 1). Technically, the
implementation is part of the belief set merging system MELD, which is an application on top of a nested
HEX-programs core. This core can be used independently from the rest of the system.

When a subprogram call (corresponding to the evaluation of a special external atom) is encountered in
the host program, the plugin creates another instance of the reasoner to evaluate the subprogram. Its result is
then stored in the answer cache and identified with a unique handle, which can later be used to reference the
result and access its components (e.g., predicate names, literals, arguments) via other special external atoms.

There are two possible sources for the called subprogram: (1) either it is directly embedded in the host
program, or (2) it is stored in a separate file. In (1), the rules of the subprogram must be represented within
the host program. To this end, they are encoded as string constants. An embedded program must not be
confused with a subset of the rules of the host program. Even though it is syntactically part of it, it is
logically separated to allow independent evaluation. In (2) merely the path to the location of the external
program in the file system is given. Compared to embedded subprograms, code can be reused without
the need to copy, which is clearly advantageous when the subprogram changes. We now present concrete
external atoms &callhex,,, &callhexfile,, &answersets, &predicates, and &arguments.

External Atoms for Subprogram Handling. We start with two families of external atoms
&callhex,|P,p1,...,pu|(H) and  &callhexfile, [FN, p1,. .., pn|(H)

that allow to execute a subprogram given by a string P respectively in a file FN; here n is an integer specifying
the number of predicate names p;, 1 < ¢ < n, used to define the input facts. When evaluating such an
external atom relative to an interpretation I, the system adds all facts p; (a1, . .., G, ) < over p; (with arity
my;) that are true in [ to the specified program, creates another instance of the reasoner to evaluate it, and
returns a symbolic handle H as result. For convenience, we do not write n in &callhex, and &callhezfile,
as it is understood from the usage.

Example 2. In the following program, we use two predicates p; and p» to define the input to the subpro-
gram sub.hex (n = 2), i.e., all atoms over these predicates are added to the subprogram prior to evaluation.
The call derives a handle H as result.

pi(,y) = pafa) = pa(b) <
handle(H) <« &callhezfile[sub.hex, p1, pa] (H)

A handle is a unique integer representing a certain cache entry. In the implementation, handles are con-
secutive numbers starting with 0. Hence in the example the unique answer set of the program is { handle(0)}
(neglecting facts).

! http:/Avww.kr.tuwien.ac.atresearch/systems/divhex/meld.html
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Formally, given an interpretation I, f&m”hexﬁle“ (I, file,p1,...,pn, h) = 1iff h is the handle to the
result of the program in file file, extended by the facts over predicates p1, ..., p, that are true in /. The
formal notion and use of &callhex,, to call embedded subprograms is analogous to &callhezfile,.

Example 3. Consider the following program:

hi(H) «— &callhexfile[sub.hex|(H)
ho(H) «— &callhezfile[sub.hex]|(H)
hs(H) « &callhex[a — .b «— J(H)

The rules execute the program sub.hex and the embedded program P, = {a <, b < }. No facts will be
added in this example. The single answer set is {h1(0), h2(0), h3(1)} resp. {h1(1), h2(1), h3(0)} depending
on the order in which the subprograms are executed (which is irrelevant). While h1 (X) and ho(X) will have
the same value for X, hg(Y") will be such that Y # X. Our implementation realizes that the result of the
program in sub.hex is referred to twice but executes it only once; P, is (possibly) different from sub.hex
and thus evaluated separately.

Now we want to determine how many (and subsequently which) answer sets it has. For this purpose, we
define external atom &answersets| PH|(AH) which maps handles PH to call results to sets of respective
answer set handles. Formally, for an interpretation I, fganswersets(I, hp, ha) = 1iff hy is a handle to an
answer set of the program with program handle h p.

Example 4. The program
ash(PH, AH) «— &callhex[a Vb — .|(PH), &answersets| PH|(AH)

calls the embedded subprogram P, = {a V b < .} and retrieves pairs (PH, PA) of handles to its answer
sets. &callhex returns a handle PH = 0 to the result of P., which is passed to &answersets. This atom
returns a set of answer set handles (0 and 1, as P, has two answer sets, viz. {a} and {b}). The overall
program has thus the single answer set {ash(0,0), ash(0,1)}. As for each program the answer set handles
start with 0, only a pair of program and answer set handles uniquely identifies an answer set.

We now are ready to solve our example of counting shortest paths from above.

Example 5. Suppose paths.hex is the search program and encodes each shortest path in a separate answer
set. Consider the following program:

as(AH) «— &callhezfile[paths.hex|(PH), &answersets| PH|(AH)
number(D) «— as(C),D = C + 1,notas(D)

The second rule computes the first free handle D; the latter coincides with the number of answer sets
of paths.hex (assuming that some path between the nodes exists).

At this point we still treat answer sets of subprograms as black boxes. We now define an external atom
to investigate them. Given an interpretation I, fepredicates({, hp, ha,p,a) = 1 iff p occurs as an a-ary
predicate in the answer set identified by hp and h 4. Intuitively, the external atom maps pairs of program
and answer set handles to the predicates names with their associated arities occurring in the accourding
answer set.

Example 6. We illustrate the usage of &predicates with the following program:

preds(P, A) « &callhez|node(a). node(b). edge(a,b).](PH),
&answersets|[PH|(AH), &predicates| PH, AH|(P, A)

It extracts all predicates (and their arities) occurring in the answer of the embedded program P., which
specifies a graph. The single answer set is { preds(node, 1), preds(edge, 2)} as the single answer set of P,
has atoms with predicate node (unary) and edge (binary).
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The final step to gather all information from the answer of a subprogram is to extract the /iterals and
their parameters occurring in a certain answer set. This can be done with external atom &arguments, which
is best demonstrated with an example.

Example 7. Consider the following program:

h(PH,AH) < &callhez[node(a). node(b). node(c). edge(a,b).edge(c,a).](PH),
&answersets|PH|(AH)
edge(W, V) «— h(PH,AH), &arguments|PH, AH,edge|(I1,0, V),
&arguments[PH, AH ,edge](I,1, W)
node(V) «— h(PH, AH), &arguments|PH, AH ,node|(I,0, V)

It extracts the directed graph given by the embedded subprogram P, and reverses all edges; the single
answer set is {h(0,0), node(a), node(b), node(c), edge(b, a), edge(a, c)}. Indeed, P, has a single answer
set, identified by PH = 0, AH = 0; via &arguments we can access in the second resp. third rule the
facts over edge resp. node in it, which are identified by a unique literal id I; the second output term
of &arguments is the argument position, and the third the actual value at this position. If the predicates of a
subprogram were unknown, we can determine them using &predicates.

To check the sign of a literal, the external atom &arguments|[PH, AH, Pred)(I,s, Sign) supports
argument s. When s = 0, &arguments will match the sign of the I-th positive literal over predicate Pred
into Sign, and when s = 1 it will match the corresponding classically negated atom.

4 Applications

MELD. The MELD system [10] deals with merging multiple collections of belief sets. Roughly, a belief
set is a set of classical ground literals. Practical examples of belief sets include explanations in abduction
problems, encodings of decision diagrams, and relational data. The merging strategy is defined by tree-
shaped merging plans, whose leaves are the collections of belief sets to be merged, and whose inner nodes
are merging operators (provided by the user). The structure is akin to syntax trees of terms.

The automatic evaluation of tree-shaped merging plans is based on nested HEX-programs; it proceeds
bottom-up, where every step requires inspection of the subresults, i.e., accessing the answer sets of subpro-
grams. Note that for nesting of ASP-programs with arbitrary (finite) depth, XASP [11] is not appropriate.

Aggregate Functions. Nested programs can also emulate aggregate functions [7] (e.g., sum, count, max)
where the (user-defined) host program computes the function given the result of a subprogram. This can
be generalized to aggregates over multiple answer sets of the subprogram; e.g., to answer set counting, or
to find the minimum/maximum of some predicate over all answer sets (which may be exploited for global
optimization).

Generalized Quantifiers. Nested HEX-programs make the implementation of brave and cautious reasoning
for query answering tasks very easy, even if the backend reasoner only supports answer set enumeration.
Furthermore, extended and user-defined types of query answers (cf. [5]) are definable in a very user-friendly
way, e.g., majority decisions (at least half of the answer sets support a query), or minimum and/or maximum
number based decisions (qualified number restrictions).

Preferences. Answer sets as accessible objects can be easily compared wrt. user-defined preference rules,
and used for filtering as well as ranking results (cf. [4]): a host program selects appropriate candidates
produced by a subprogram, using preference rules. The latter can be elegantly implemented as ordinary
integrity constraints (for filtering), or as rules (possibly involving further external calls) to derive a rank.
A popular application are online shops, where the past consumer behavior is frequently used to filter or
sort search results. Doing the search via an ASP program which delivers the matches in answer sets, a host
program can reason about them and act as a filter or ranking algorithm.
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5 Conclusion

To overcome limitations of classical ASP regarding subprograms and reasoning about their possible out-
comes, we briefly presented nested HEX-programs, which realize subprogram calls via special external
atoms of HEX-programs; besides modularity, a plus for readability and program reusability, they allow for
reasoning over multiple answer sets (of subprograms). An prototype implementation on top of DLVHEX is
available. Related to this is the work on macros in [2], which allow to call macros in logic programs.

The possibility to access answer sets in a host program, in combination with access to other external
computations, makes nested HEX-programs a powerful tool for a number of applications. In particular,
libraries and user-defined functions can be incorporated into programs easily. As an interesting aspect is
that dynamic program assembly (using a suitable string library) and execution are possible, which other
approaches to modular ASP programming do not offer. Exploring this remains for future work.
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Abstract. In this paper, we present domain-specific languages (D®kas\te devised for their use in
the implementation of a finite domain constraint prograngsystem, available dibrary(clpfd)

in SWI-Prolog and YAP-Prolog. These DSLs are used in projpagalection and constraint reification.
In these areas, they lead to concise specifications thahayg@read and reason about. At compilation
time, these specifications are translated to Prolog codacieg interpretative run-time overheads. The
devised languages can be used in the implementation of fatliterdomain constraint solvers as well
and may contribute to their correctness, conciseness &oitety.

Keywords: DSL, code generation, little languages

1 Introduction

Domain-specific languages (DSLs) are languages tailoradsfecific application domain. DSLs are typ-
ically devised with the goal of increased expressivenesisemse of use compared to general-purpose
programming languages in their domains of application) (FEkamples of DSLs includiex andyacc([2])

for lexical analysis and parsing, regular expressions &btepn matching, HTML for document mark-up,
VHDL for electronic hardware descriptions and many othelf-keown instances.

DSLs are also known adittle language$ ([3]), where “little” primarily refers to the typically iinited
intended or main practical application scope of the langukgr example, PostScript is a “little language”
for page descriptions.

CLP(FD), constraint logic programming over finite domaissa declarative formalism for describing
combinatorial problems such as scheduling, planning dodatlion tasks ([5]). It is one of the most widely
used instances of the general C)Pcheme that extends logic programming to reason over &l
domains. Since CLP(FD) is applied in many industrial sg#ifike systems verification, it is natural to
ask: How can we implement constraint solvers that are mdigbte and more concise (i.e., easier to
read and verify) while retaining their efficiency? In thelégling chapters, we present little languages that
we devised towards this purpose. They are already beinginsedonstraint solver over finite domains,
available adibrary(clpfd) in SWI-Prolog and YAP-Prolog, and can be used in other systasn
well.

2 Related work

In the context of CLP(FD)indexicals([4]) are a well-known example of a DSL. The main idea of index
icals is to declaratively describe the domains of variabkefunctions of the domains of related variables.
The indexical language consisting of the constraint™and expressions such asin(X)..max(X)
also includes specialized constructs that make it apgécebdescribe a large variety of arithmetic and
combinatorial constraints. GNU Prolog ([7]) and SICStusl®&y ([6]) are well-known Prolog systems that
use indexicals in the implementation of their finite domainstraint solvers.

The usefulness of deriving large portions of code autoraliyiérom shorter descriptions also motivates
the use ofvariable viewsa DSL to automatically derivieerfectpropagator variants, in the implementation
of Gecode ([8]).
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Action rules([9]) and Constraint Handling Rules ([10]) are Turing-cdetp languages that are very
well-suited for implementing constraint propagators ameineentire constraint systems (for example, B-
Prolog’s finite domain solver).

These examples of DSLs are mainly used for the descriptidrganeration of constraipropagation
code in practice. In the following chapters, we contribotéiese uses of DSLs in the context of CLP(FD)
systems by presenting DSLs that allow you to concisely esgoselection of propagators and constraint
reification with desirable properties.

3 Matching propagators to constraint expressions

To motivate the DSL that we now present, consider the folhgaguote from Neng-Fa Zhou, author of
B-Prolog ([11]):

A closer look reveals the reason [for failing to solve thetppeons within the time limit]: Almost all
of the failed instances contain non-linear (eXjsY = C, abs(X —Y) = C, andXmodY = C)
and disjunctive constraints which were not efficiently iempkented in the submitted version of the
solver.

Consider the specific exampledfs(X —Y) = C': Itis clear thatinstead of decomposing the constraint
into X —Y = T, abs(T) = C, a specialized combined propagator can be implemented pickd,
avoiding auxiliary variables and intermediate propagasteps to improve efficiency. It is then left to
detect that such a specialized propagator can actually péedpo a given constraint expression. This
is the task ofmatchingavailable propagators to given constraint expressionggaivalently, mapping
constraint expressions to propagators.

Manually selecting fitting propagators for given constrarpressions is quite error-prone, and one
has to be careful not to accidentally unify variables thatumdn the expression with subexpressions that
one wants to check for. To simplify this task, we devised a D&the form of a simple committed-choice
language. The language is a list of rules of the favfn— As, whereM is a matcher andls is a list of
actions that are performed whén matches a posted constraint.

More formally, amatcherM consists of the terru_c¢( P, C). P denotes gatterninvolving a constraint
relation like #=, #> etc. and its arguments, aiddis acondition(a Prolog goal) that must hold for a rule
to apply. The basic building-blocks of a pattern are exm@diim Table 1. These building-blocks can be
nested inside all symbolic expressions like addition, iplifation etc. A rule is applicable if a given
constraint is matched b (meaning it unifies withP taking the conditions induced h¥ into account),
and additionallyC'is true. A matchern_c(P, true), can be more compactly written as(P).

any(X) Matches any subexpression, unifyirgwith that expression.
var(X) Matches a variable or integer, unifyirlg with it.
integer(X) Matches an integer, unifying’ with it.
Table 1.Basic building-blocks of a pattern

InaruleM — As, each actiond; in the list of actionsds = [4,,..., A,] is one of the actions
described in Table 2. When a rule is applicable, its actioaparformed in the order they occur in the list,
and no further rules are tried.

Figure 1 shows some of the matching rules that we use in owstint system. It is only an excerpt;
for example, in the actual system, nested additions aredatsrted and handled by a dedicated propaga-
tor. Such a declarative description has several advant&gss it allows automated subsumption checks
to detect whether specialized propagators are accidgwotaishadowed by other rules. This is also a mis-
take that we found easy to make and hard to detect when marseddicting propagators. Second, when
DSLs similar to the one we propose here are also used in otimstraint systems, it is easier to compare
supported specialized propagators, and to support commes more uniformly across systems. Third,
improvements to the expansion phase of the DSL benefits fialtgmany propagators at once.
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g(G) |Call the Prolog goals.
d(X, Y) |Decompose arithmetic subexpressi&n unifying Y with its result. Equiva-
lenttog(parse _clpfd(X, Y)) , an internal predicate that is also generated
from a similar DSL.
p(P) |Post a constraint propagatét. This is a shorthand notation for a specific|se-
qguence of goals that add a constraint to the constraint atatérigger it.

r(X, Y) |Rematch the rule’s constraint relation, using arguméhendY . Equivalent tg
g(call(F,X,Y)) , WhereF' is the functor of the rule’s pattern.
Table 2. Valid actions in a listAs of aruleM — As

m(integer(l) #>= abs(any(X))) => [d(X, RX), g((I>=0, 11 is -1, RX in I1..1))]
m(any(X) #>= any(Y)) => [d(X, RX), d(Y, RY), g(geq(RX, RY))]

m(var(X) #= var(Y)+var(Z)) => [p(pplus(Y,Z,X))]
m(var(X) #= var(Y)-var(Z)) => [p(pplus(X,Z,Y))]
m(any(X) #= any(Y)) => [d(X, RX), d(Y, RX)]
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m(var(X) #\= integer(Y))  =>[g(neq_num(X, Y))]

o m(any(X) #\= any(Y) + any(2)) => [d(X, X1), d(Y, Y1), d(Z, Z1),

10 p(x_neq_y_plus_z(X1, Y1, Z1))]

1 m(any(X) #\= any(Y) - any(Z)) => [d(X, X1), d(Y, Y1), d(Z, Z1),

12 p(x_neq_y_plus_z(Y1, X1, Z1))]

13 m(any(X) #\= any(Y)) =>[d(X, RX), d(Y, RY), g(neq(RX, RY))]

Fig. 1. Rules for matching propagators in our constraint systemxceEpt)

We found that the languages features we introduced abovadtahers and actions enable matching a
large variety of intended specialized propagators in gacand believe that other constraint systems may
benefit from this or similar syntax as well.

4 Constraint reification

We now present a DSL that simplifies the implementation ost@intreification which means reflecting
the truth values of constraint relations into Bool@gn-variables.

When implementing constraint reification, it is temptingptoceed as follows: For concreteness, con-
sider reified equality#=/2 ) of two CLP(FD) expressiond and B. We could introduce two temporary
variables,T4 andTz, and post the constrainis #= A and7p #= B, thus using the constraint solver
itself to decompose the (possibly compound) expressibasd B, and reducing reified equality of two
expressiongo equality of two finite domairvariables(or integers), which is easier to implement. Un-
fortunately, this strategy yields wrong results in geneCainsider for example the constraitikE=>/2
denotes Boolean equivalence):

(X/0 #= Y/0) #<==> B

Itis clear that the relatioX/0 #= Y/O0 cannot hold, since a divisor can never be 0. A valid (declara-
tively equivalent) answer to the above constraint is thasg(thatX andY must be constrained to integers
for the relation to hold):

B = 0, X in inf.sup, Y in inf..sup

However, if we decompose the equal®y0 #= Y/O into two auxiliary constraintd’y #= X/0
andTp #= Y/0O and post them, then (with strong enough propagation of idiw)sboth auxiliary con-
straints fail, and thus the whole query (incorrectly) faiéhile devising a DSL for reification, we found
one commercial Prolog system and one freely available sy8tat indeed incorrectly failed in this case.
After we reported the issue, the problem was immediatelgfixe

It is thus necessary to taldefinednessmto account when reifying constraints. See also [12], wher
our constraint system (in contrast to others that were d¢sterrectly handles all reification test cases,
which we attribute in part to the DSL presented in this chagdmce any subexpression of a relation
becomes undefined, the relation cannot hold and its aseddiatth value must be. Undefinedness can
occur whernt” = 0 in the expressionX /Y, XmodY, andXremY . Parsing an arithmetic expression that
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occurs as an argument of a constraint that is being reifidulis &t least a ternary relation, involving the
expression itself, its arithmetic result, and its Booleafirkkdness.

There is a fourth desirable component in addition to thoseuentioned: It is useful to keep track
of auxiliary variablesthat are introduced when decomposing subexpressions afsiramt that is being
reified. The reason for this is that the truth value of a reifiedstraint may turn out to be irrelevant, for
instance the implicatio@ #==> (C holds for both possible truth values of the constréinthus auxiliary
variables that were introduced to hold the results of sutesgions while parsing’ can be eliminated.
However, we need to be careful: A constraint propagator aliag user-specified variables with auxiliary
variables. For example, iabs(X) #= T, X #>= 0 , a constraint system may dedu¢e= T. Thus,
if T'was previously introduced as an auxiliary variable, &havas user-specified{ must still retain its
status as a constrained variable.

These considerations motivate the following DSL for pagsamithmetic expressions in reified con-
straints, which we believe can be useful in other constraystems as well: A parsing rule is of the
form H — Bs. A headH is either a terny(G), meaning that the Prolog go@!is true, or a termmn(P),
where P is a symbolic pattern and means that the expresBidhat is to be parsed can be decomposed
as stated, recursively using the parsing rules themsebresubterms ofF that are subsumed by vari-
ables inP. The bodyBs of a parsing rule is a list of body elements, which are deedrib Table 3. The
predicateparse _reified/4 , shown in Figure 2, contains our full declarative specifarafor parsing
arithmetic expressions in reified constraints, relatingaathmetic expressiof to its resultk, Boolean
definednes®), and auxiliary variables according to the given parsingsuwhich are applied in the order
specified, committing to the first rule whose head matcheis. §gecification is again translated to Prolog
code at compile time and used in other predicates.

a(G) Call the Prolog goaf=.

d(D) D is 1if and only if all subexpressions @f are defined.

p(P) Add the constraint propagatét to the constraint store.

a(A) A'is an auxiliary variable that was introduced while parsimg t
given compound expressidi.

a(xX,A) A'is an auxiliary variable, unlegs ==
a(xX,Y,A) A'is an auxiliary variable, unlegs == XorA == Y.
skeleton(Y,D,G) A “skeleton” propagator is posted. Whén cannot becom@

any more, it calls the Prolog go&l and bindsD = 1. WhenY
is 0, it bindsD = 0. WhenD = 1 (i.e., the constraint must
hold), it postsy #\= 0.

Table 3. Valid body elements for a parsing rule

parse_reified(E, R, D,
[g(cyclic_term(E)) => [g(domain_error(clpfd_expression, E))],
g(var(E)) => [g((constrain_to_integer(E), R=E, D=1))],
g(integer(E))  => [g((R=E, D=1))]
m(—X) => [d(D), p(ptimes(-1,X,R)), a(R)],
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m(abs(X)) => [g(R#>=0), d(D), p(pabs(X R)) a(X,R)],
m(X+Y) =>[d(D), p(pplus(X,Y,R)), a(X,Y,R)],
m(X-Y) =>[d(D), p(pplus(R,Y,X)), a(X Y R)],

9 m(X*Y) => [d(D), p(ptimes(X,Y,R)), a(X,Y,R)],

10 m(X"Y) => [d(D), p(pexp(X,Y,R)), a(X,Y,R)],

u m(min(x,Y))  => [d(D) p(p ge(J(X R)) p(pgeq(Y, R)),

12 p(pmin(X,Y, R))

13 m(max(X.Y))  => [d(D), p(DQGQ(R X)) p(pgeq(R, Y)),

14 p(pmax(X,Y,R)), a(X,Y,R)],

15 m(X/Y) => [skeleton(Y,D, X/Y #= R)I,

16 m(X mod Y) => [skeleton(Y,D,X mod Y #= R)],

17 m(X remY) => [skeleton(Y,D, X rem Y #= R)],

18 g(true) => [g(domain_ error(clpfd expression, E))]]).

Fig. 2. Parsing arithmetic expressions in reified constraints withDSL
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5 Conclusion and future work

We have presented DSLs that are used in the implementatiarfioite domain constraint programming
system. They enable us to capture the intended functignaifh concise declarative specifications. We
believe that identical or similar DSLs are also useful in ith@lementation of other constraint systems.
In the future, we intend to generate even more currently ivarittien code automatically from smaller
declarative descriptions.
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Abstract. A prototype system is described whose core functionality is, based on propositional logic,
the elimination of second-order operators, such as Boolean quantifiers and operators for projection, for-
getting and circumscription. This approach allows to express many representational and computational
tasks in knowledge representation — for example computation of abductive explanations and models
with respect to logic programming semantics — in a uniform operational system, backed by a uniform
classical semantic framework.

1 Computation with Logic as Operator Elimination

We pursue an approach to computation with logic emerging from three theses:

1. Classical first-order logic extended by some second-order operators suffices to express many
techniques of knowledge representation.

Like the standard logic operators, second-order operators can be defined semantically, by specifying the
requirements on an interpretation to be a model of a formula whose principal functor is the operator, de-
pending only on semantic properties of the argument formulas. Neither control structure imposed over
formulas (e.g. Prolog), nor formula transformations depending on a particular syntactic shape (e.g. Clark’s
completion) are involved. Compared to classical first-order formulas, the second-order operators give ad-
ditional expressive power. Circumscription is a prominent knowledge representation technique that can be
expressed with second-order operators, in particular predicate quantifiers [1].

2. Many computational tasks can be expressed as elimination of second-order operators.

Elimination is a way to computationally process second-order operators, for example Boolean quantifiers
with respect to propositional logic: The input is a formula which may contain the operator, for example a
quantified Boolean formula such as 3¢ ((p < ¢q) A (¢ < 7)). The output is a formula that is equivalent
to the input, but in which the operator does not occur, such as, with respect to the formula above, the
propositional formula p < 7. Let us assume that the method used to eliminate the Boolean quantifiers
returns formulas in which not just the quantifiers but also the quantified propositional variables do not
occur. This syntactic condition is usually met by elimination procedures. Our method then subsumes a
variety of tasks: Computation of uniform interpolants, QBF and SAT solving, as well as computation of
certain forms of abductive explanations, of propositional circumscription, and of stable models, as will be
outlined below.

3. Depending on the application, outputs of computation with logic are conveniently represented
by formulas meeting syntactic criteria.

If results of elimination are formulas characterized just up to semantics, they may contain redundancies
and be in a shape that is difficult to comprehend. Thus, they should be subjected to simplification and
canonization procedures before passed to humans or machine clients. The output format depends on the
application problem: What is a CNF of the formula? Are certain facts consequences of the formula? What
are the models of the formula? What are its minimal models? What are its 3-valued models with respect
to some encoding into 2-valued logics? Corresponding answers can be computed on the basis of normal
form representations of the elimination outputs: CNFs, DNFs, and full DNFs. Of course, transformation
into such normal forms might by itself be an expensive task. Second-order operators allow to counter this
by specifying a small set of application relevant symbols that should be included in the output (e.g. by
Boolean quantification upon the irrelevant atoms).
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2 Features of the System

ToyElim' is a prototype system developed to investigate operator elimination from a pragmatic point of
view with small applications. For simplicity, it is based on propositional logic, although its characteristic
features should transfer to first-order logic. It supports a set of second-order operators that have been
semantically defined in [11, 14, 13].

Formula Syntax. As the system is implemented in Prolog, formulas are represented by Prolog terms, the
standard connectives corresponding to t rue/0, false/0, /1, ,/2, ; /2, —>/2, <-/2, <=>/2. Propositional
atoms are represented by Prolog atoms or compound ground terms. The system supports propositional
expansion with respect to finite domains of formulas containing first-order quantifiers.

Forgetting. Existential Boolean quantification Ip F' can be expressed as forgetting [11,4] in formula F’
about atom p, written forget {p}(F), represented by forg ([p], F’) in system syntax, where F” is the
system representation of F'. To get an intuition of forgetting, consider the equivalence forget v} (F) =
F[p\true] V F[p\false], where F'[p\true] (F'[p\false]) denotes F' with all occurrences of p replaced by true
(false). Rewriting with this equivalence constitutes a naive method for eliminating the forgetting operator.
The formula forget v} (F) can be said to express the same as F* about all other atoms than p, but nothing
about p.

Elimination and Pretty Printing of Formulas. The central operation of the ToyElim system, elimination
of second-order operators, is performed by the predicate elim (F, G), with input formula F' and output
formula G. For example, define as extension of kb1/1 a formula (after [3]) as follows:

kbl (( (shoes_are_wet <- grass_is_wet), (D

(grass_is_.wet <- rained_last_night),
(grass_is.wet <- sprinkler_was.on))).

After consulting this, we can execute the following query on the Prolog toplevel:
?— kbl (F), elim(forg([grass_iswet], F), G), ppr(G). 2)

This results in binding G to the output of eliminating the forgetting about grass_is_wet. The predi-
cate ppr/l1 is one of several provided predicates for converting formulas into application adequate shapes.
It prints its argument as CNF with clauses written as reverse implications:

((shoes_arewet <- rained._last_night), 3)
(shoes_are_wet <- sprinkler_was_on)).

Scopes. So far, the first argument of forgetting has been a singleton set. More generally, it can be an
arbitrary set of atoms, corresponding to nested existential quantification. Even more generally, also polarity
can be considered: Forgetting can, for example, be applied only to those occurrences of an atom which have
negative polarity in a NNF formula. This can be expressed by literals with explicitly written sign in the
first argument of the forgetting operator. Forgetting about an atom is equivalent to nested forgetting about
the positive and the negative literal with that atom. In accord with this observation, we technically consider
the first argument of forgetting always as a set of literals, and regard an unsigned atom there as a shorthand
representing both of its literals. For example, [+grass_is_.wet, shoes_are_wet] is a shorthand
for [+grass_is_wet, +shoes_are_wet, -shoes_are_wet]. Not just forgetting, but, as shown
below, also other second-order operators have a set of literals as parameter. Hence, we refer to a set of
literals in this context by a special name, as scope.

Projection. In many applications it is useful to make explicit not the scope that is “forgotten” about, but
what is preserved. The projection [11] of formula F' onto scope S, which can be defined for scopes S
and formulas F as project¢(F) = forget, | _o(F'), where ALL denotes the set of all literals, serves this
purpose. Vice versa, forgetting could be defined in terms of projection: forgety(F') = project,, _o(F).
The call to e1 im/2 in the query (2) can equivalently be expressed with projection instead of forgetting by

elim(proj([shoes_are_wet, rained_last_night, sprinkler_was_on], F). (@]

! http://cs.christophwernhard.com/provers/toyelim/, under GNU Public License.
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User Defined Logic Operators — An Example of Abduction. ToyElim allows the user to specify macros
for use in the input formulas of e1im/2. The following example extends the system by a logic operator
gwsc for a variant of the weakest necessary condition [8], characterized in terms of projection:

:— define_elimmacro(gwsc(S, F, G), “proj(complements(S), (F, "G))). (®)]

Here complements (S) specifies the set of the literal complements of the members of the scope specified
by S. The term gwsc (S, F, G) is the system syntax for gwscs(F, G), the globally weakest sufficient
condition of formula G on scope .S within formula F’, which satisfies the following: A formula H is equiv-
alent to gwscg (F, G) if and only if it holds that (1.) H = projecty(H); (2.) F' = H — G; (3.) For all
formulas H' such that H' = projecty(H’) and F' |= G — H' it holds that H |= H'. With the gwsc
operator certain abductive tasks [3] can be expressed. The following query, for example, yields abductive
explanations for shoes_are_wet in terms of {rained_last_night, sprinkler_was_on} with re-
spect to the knowledge base (1):
2— kbl (F), 6)
elim(gwsc([rained_-last_.night, sprinkler_was_on], F, shoes_are_wet),
G),
ppm (G) .

The predicate ppm/1 serves, like ppr/1, to convert formulas to application adequate shape. It writes a DNF

of its input, in list notation, and simplified such that it does not contain tautologies and subsumed clauses.
In the example the output has two clauses, each representing an alternate explanation:

[[rained_last_night], [sprinkler_was_on]]. @)

Scope-Determined Circumscription. A further second-order operator supported by ToyElim is scope-
determined circumscription [14]. The corresponding functor circ has, like proj and forg, a scope
specifier and a formula as arguments. It allows to express parallel predicate circumscription with varied
predicates [5] (only propositional, since the system is based on propositional logic). The scope specifier
controls the effect of circumscription: Atoms that occur just in a positive literal in the scope are mini-
mized; symmetrically, atoms that occur just negatively are maximized; atoms that occur in both polarities
are fixed; and atoms that do not at all occur in the scope are allowed to vary. For example, the scope
specifier, [+abnormal, bird], a shorthand for [+abnormal, +bird, -bird], expresses that
abnormal is minimized, bird is fixed, and all other predicates are varied.

Predicate Groups and Systematic Renaming. Semantics for knowledge representation sometimes in-
volve what might be described as handling different occurrences of a predicate differently — for example
depending on whether it is subject to negation as failure. If such semantics are to be modeled with clas-
sical logic, then these occurrences can be identified by using distinguished predicates, which are equated
with the original ones when required. To this end, ToyElim supports the handling of predicate groups: The
idea is that each predicate actually is represented by several corresponding predicates p°, ..., p"™, where
the superscripted index is called predicate group. In the system syntax, the predicate group of an atom is
represented within its main functor: If the group is larger than 0, the main functor is suffixed by the group
number; if it is 0, the main functor does not end in a number. For example p(a)° and p(a)! are represented
by p (a) and pl (a), respectively. In scope specifiers, a number is used as shorthand for the set of all
literals whose atom is from the indicated group, and a number in a sign functor for the set of those literals
which have that sign and whose atom is from the indicated group. For example, [+ (0), 1] denotes the
union of the set of all positive literals whose atom is from group 0 and of the set of all literals whose atom
is from group 1. Systematic renaming of all atoms in a formula that have a specific group to their corre-
spondents from another group can be expressed in terms of forgetting [13]. The ToyElim system provides
the second-order operator rename for this. For example, rename ([1-0], F') isequivalent to F' after
eliminating second-order operators, followed by replacing all atoms from group 1 with their correspondents
from group 0.

An Example of Modeling a Logic Programming Semantics. Scope-determined circumscription and
predicate groups can be used to express the characterization of the stable models semantics in terms of
circumscription [7] (described also in [6, 13]). Consider the following knowledge base:
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kb2 ( ( (shoes_are.wet <- grass_-is._wet), ®)
(grass_is_.wet <- sprinkler_was_on, “sprinkler_was_abnormall),
sprinkler_was_on)) .

Group 1 is used here to indicate atoms that are subject to negation as failure: All atoms in (8) are from
group 0, except for sprinkler_was_abnormall, which is from 1. The user defined operator stable
renders the stable models semantics:

:— define_elim.macro (stable(F), rename([1-0], circ([+(0),1]1, F))). ©)

The following query then yields the stable models:
:- kb2 (F), elim(stable((F)), G), ppm(G). 10)

The result is displayed with ppm/1, as in query (6). It shows here a DNF with a single clause, representing
a single model. The positive members of the clause constitute the answer set

[[grass_is.wet, shoes_are_wet, “sprinkler_was_abnormal, sprinkler_was-on]]. (11)

If it is only of interest whether shoes_are_wet is a consequence of the knowledge base under stable
models semantics, projection can be applied to obtain a smaller result. The query

:— kb2 (F), elim(proj([shoes_are_wet], stable(F)), G), ppm(G). (12)

will effect that the DNF [ [shoes_are_wet]] is printed.

3 Implementation

The ToyElim system is implemented in SWI-Prolog and can invoke external systems such as SAT and QBF
solvers. It runs embedded in the Prolog environment, allowing for example to pass intermediate results
between its components through Prolog variables, as exemplified by the queries shown above.

The implementation of the core predicate e1 im/2 maintains a formula which is gradually rewritten un-
til it contains no more second-order operators. It is initialized with the input formula, preprocessed such that
only two primitively supported second-order operators remain: forgetting and renaming. It then proceeds
in a loop where alternately equivalence preserving simplifying rewritings are applied, and a subformula
is picked and handed over for elimination to a specialized procedure. The simplifying rewritings include
distribution of forgetting over subformulas and elimination steps that can be performed with low cost [12].
Rewriting of subformulas with the Shannon expansion enables low-cost elimination steps. It is performed
at this stage if the expansion, combined with low-cost elimination steps and simplifications, does not lead
to an increase of the formula size. The subformula for handing over to a specialized method is picked with
the following priority: First, an application of forgetting upon the whole signature of a propositional argu-
ment, which can be reduced by a SAT solver to either true or false, is searched. Second, a subformula that
can be reduced analogously by a QBF solver, and finally a subformula which properly requires elimina-
tion of forgetting. For the latter, ToyElim schedules a portfolio of different methods, where currently two
algorithmic approaches are supported: Resolvent generation (SCAN, Davis-Putnam method) and rewriting
of subformulas with the Shannon expansion [10, 12]. Recent SAT preprocessors partially perform variable
elimination by resolvent generation. Coprocessor [9] is such a preprocessor that is configurable such that
it can be invoked by ToyElim for the purpose of performing the elimination of forgetting.

4 Conclusion

We have seen a prototype system for computation with logic as elimination of second-order operators. The
system helped to concretize requirements on the user interface and on processing methods of systems which
are entailed by that approach. In the long run, such a system should be based on more expressive logics than
propositional logic. ToyElim is just a first pragmatic attempt, taking advantage of recent advances in SAT
solving. A major difference in a first-order setting is that computations of elimination tasks then inherently
do not terminate for all inputs.
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A general system should for special subtasks not behave worse than systems specialized for these.
This can be achieved by identifying such subtasks, or by general methods that implicitly operate like the
specialized ones. ToyElim identifies SAT and QBF subtasks. It is a challenge to extend this range, for
example, such that the encoded stable model computation would be performed efficiently. The system
picks in each round a single subtask that is passed to a specialized solver. We plan to experiment with a
more flexible regime, where different subtasks are alternately tried with increasing timeouts.

Research on the improvement of elimination methods includes further consideration of techniques from
SAT preprocessors, investigation of tableau and DPLL-like techniques [12, 2], and, in the context of first-
order logic, the so called direct methods [1]. In addition, it seems worth to investigate further types of
output: incremental construction, like enumeration of model representations, and representations of proofs.

The approach of computation with logic by elimination leads to a system that provides a uniform
user interface covering many tasks, like satisfiability checking, computation of abductive explanations and
computation of models for various logic programming semantics. Variants of established concepts can be
easily expressed on a clean semantic basis and made operational. The approach supports the co-existence
of different knowledge representation techniques in a single system, backed by a single classical semantic
framework. This seems a necessary precondition for logic libraries that accumulate knowledge indepen-
dently of some particular application.
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Abstract. In this work a stand-alone preprocessor for SAT is presented that is able to perform most
of the known preprocessing techniques. Preprocessing a formula in SAT is important for performance
since redundancy can be removed. The preprocessor is part of the SAT solver riss [9]] and is called
Coprocessor. Not only riss, but also MiniSat 2.2 [11] benefit from it, because the SatELite preprocessor
of MiniSat does not implement recent techniques. By using more advanced techniques, Coprocessor is
able to reduce the redundancy in a formula further and improves the overall solving performance.

1 Introduction

In theory SAT problems with n variables have a worst case execution time of O(2™) [2]]. Reducing the
number of variables results in a theoretically faster search. However, in practice the number of variables
does not correlate with the runtime. The number of clauses highly influences the performance of unit
propagation. Preprocessing helps to reduce the size of the formula by removing variables and clauses
that are redundant. Due to limited space it is assumed that the reader is familiar with basic preprocessing
techniques [3]]. Preprocessing techniques can be classified into two categories: Techniques, which change
a formula in a way that the satisfying assignment for the preprocessed formula is not necessarily a model
for the original formula, are called satisfiability-preserving techniques. Thus, for these techniques undo
information has to be stored. For the second category, this information is not required. The second category
is called equivalence-preserving techniques, because the preprocessed and original formula are equivalent.

This paper is structured in the following way. An overview of the implemented techniques is given in
Sect. 2| Details on Coprocessor, a format for storing the undo information and a comparison to SatELite is
given in Sect.[3] Finally, a conclusion is given in Sect. 4]

2 Preprocessor Techniques

The notation used to describe the preprocessor is the following: variables are numbers and literals are
positive or negative variables, e.g. 2 and —2. A clause C is a disjunction of a set of literals, denoted by
[l1,...,1,). A formula is a conjunction of clauses. The original formula will be referred to as F, the
preprocessed formula is always called F”. Unit propagation on F is denoted by BCP(]), where [ is the
literal that is assigned to true.

2.1 Satisfiability-Preserving Techniques

The following techniques change F' in a way, that models of F” are no model for F' anymore. Therefore,
these methods need to store undo information. Undoing of these methods has to be done carefully, because
the order influences the resulting assignment. All the elimination steps have to be undone in the opposite
order they have been applied before [6].

Variable Elimination (VE) [3I13] is a technique to remove variables from the formula. Removing a variable
is done by resolving the according clauses in which the variable occurs. Given two sets of clauses: C, with
the positive variable = and Cz with negative x. Let G be the union of these two sets G = C, U C%.
Resolving these two sets on variable x results in a new set of clauses G’ where tautologies are not included.
It is shown in [3] that G can be replaced by G’ without changing the satisfiability of the formula. If a model
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is needed for the original formula, then the partial model can be extended using the original clauses F' to
assign variable z. Usually, applying VE to a variable results in a larger number of clauses. In state-of-the-
art preprocessors VE is only applied to a variable if the number of clauses does not increase. The resulting
formula depends on the order of the eliminated variables. Pure literal elimination is a special case of VE,
because the number of resolvents is zero.

Blocked Clause Elimination (BCE) [7] removes redundant blocked clauses. A clause C is blocked if it
contains a blocking literal I. A literal [ is a blocking literal, if [ is part of C, and for each clause C’ € F
with [ € C’ the resolvent C' ®; C" is a tautology [4/7]. Removing a blocked clause from F' changes the
satisfying assignments [4]. Since BCE is confluent, the order of the removals does not change the result [[7]].

Equivalence Elimination (EE) [3] removes a literal [ if it is equivalent to another literal I’. Only one literal
per equivalence class is kept. Equivalent literals can be found by finding strongly connected components in
the binary implication graph (BIG). The BIG represents all implications in the formula by directed edges
I — I’ between literals that occur in a clause [ [, ]. If a cycle a — b — ¢ — a is found, there is also a
cycle@ — b — ¢ — @ and therefore a = b = ¢ can be shown and applied to F' by replacing b, and ¢ by a.
Finally, double literal occurrences and tautologies are removed.

Let F be ([1,-2]1,[~1,2]2,[1,2, 3]s, [~1, 23]4, [~3,4]5, [~1, —4]¢). The index i of a clause C; gives
the position of the clause in the formula. The order to apply techniques is EE, VE and finally BCE. EE will
find 1 = 2 based on the clauses C; and C5. Thus, it replaces each occurrence of 2 with 1, since 1 is the
smaller variable. This step alters C3 to C7 = [1,3]. Now VE on variable 3 detects that there are 3 clauses
in which 3 occurs. The single resolvent that can be build is C7g5 = [1, 4]. Finally, BCE removes the two
clauses, because all literals of each clause are blocking literals. Since the resulting formula is empty, it is
satisfied by any interpretation. It can be clearly seen, that the original formula cannot be satisfied by any
interpretation.

2.2 Equivalence-Preserving Techniques

Equivalence-preserving techniques can be applied in any order, because the preprocessed formula is equiv-
alent to the original one. By combining the following techniques with satisfiability-preserving techniques
the order of the applied techniques has to be stored, to be able to undo all changes correctly.

Hidden Tautology Elimination (HTE) [4] is based on the clause extension hidden literal addition (HLA).
After the clause C'is extended by HLA, C'is removed if it is tautology. The HLA of a clause C' with respect
to a formula F is computed as follows: Let I be a literal of C' and [I’, 1] € F'\ {C'}. If such a literal I’ can be
found, C is extended by C' := C U [’. This extension is applied until fix point. HLA can be regarded as the
opposite operation of self subsuming resolution. The algorithm is linear time in the number of variables [4].
An example for HTE is the formula F' = ([1, 3], [-2, 3], [1, 2]). Extending the clause C; stepwise can look
as follows: C; = [1, 3, =2] with Cs. Next, C; = [1, 3, =2, 2] with Cs, so that it becomes tautology and can
be removed.

Probing [8] is a technique to simplify the formula by propagating variables in both polarities [ and [
separately and comparing their implications or by propagating all literals of a clause C' = [ly,...,1,],
because it is known that in the two cases one of the candidates has to be satisfied.

Probing a single variable can find a conflict and thus finds a new unit. The following example illustrates
the other cases:

BCP(1) = 2, 3,4, -5, =7
BCP(1) = 2, 4, 6,7

To create a complete assignment, variable / has to be assigned and both possible assignments imply
2, so that 2 can be set to true immediately. Furthermore, the equivalences 4 = 1 and 7 = 1 can be found.
These equivalences can also be eliminated. Probing all literals of a clause can find only new units.
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Vivification (also called Asymmetric Branching) [12] reduces the length of a clause by propagating the
negated literals of a clause C' = [I1,...,1,] iteratively until one of the following three cases occurs:

1. BCP({ly,...,l;}) results in an empty clause for i < n.
2. BCP({ly,...,[;}) implies another literal [; of the C' with i < j <n
3. BCP({l4,...,l;}) implies another negated literal [; of the C' withi < j <n

In the first case, the unsatisfying partial assignment is disallowed by adding a clause C'=ly,..., L]
The clause C’ subsumes C. The implication [; A --- A l; — [; in the second case results in the clause
C" = [l,...,1;1;] that also subsumes C'. Formulating the third case into a clause C' = [I1,...,1;,[;]

subsumes C' by applying self subsumption to C”" = C ®;, C' = [ly, ..., lj_1,lj41,. .., 1n].

Extended Resolution (ER) [1]] introduces a new variables v to a formula that is equivalent to a disjunction
of literals v = [\VI’. All clauses in F' are updated by removing the pair and adding the new variable instead.
It has been shown, that ER is good for shrinking the proof size for unsatisfiable formulas. Applying ER
during search as in [[1] resulted in a lower performance of riss, so that this technique has been put into the
preprocessor and replaces the most frequent literal pairs. Still, no deep performance analysis has been done
on this technique in the preprocessor, but it seems to boost the performance on unsatisfiable instances.

3 Coprocessor

The preprocessor of riss, Coprocessor, implements all the techniques presented in Sect. 2] and introduces
many algorithm parameters. A description of these parameters can be found in the help of Coprocessorﬂ
The techniques are executed in a loop on F', so that for example the result of HTE can be processed with
VE and afterwards HTE tries to eliminate clauses again.

It is possible to maintain a blacklist and a white-list of variables. Variables on the white-list are tabooed
for any non-model-preserving techniques so that their semantic is the same in F’. Variables on the blacklist
are always removed by VE.

Furthermore, the resulting formula can be compressed. If variables are removed or are already assigned
a value, the variables of the reduct of F’ are usually not dense any more. Giving the reduct to another
solver increases its memory usage unnecessarily. To overcome this weakness, a compressor has been built
into Coprocessor that fills these gaps with variables that still occur in F” and stores the already assigned
variables for postprocessing the model. The compression cannot be combined with the white-list.

Another transformation that can be applied by the presented preprocessor is the conversion from en-
coded CSP domains from the direct encoding to the regular encoding as described in [10].

3.1 The Map File Format

A map file is used to store the preprocessing information that is necessary to postprocess a model of F’
such that it becomes a model for F' again. The map file and the model for F’ can be used to restore the
model for F' by giving this information to Coprocessor. The following information has to be stored to be
able to do so:

Once Per elimination step
Compression Table  |Variable Elimination
Equivalence Classes |Blocked Clause Elimination
Equivalence Elimination Step

The map file is divided into two parts. An partial example file for illustration is given in Fig. [1| The
format is described based on this example file. Each occurring case is also covered in the description. The
first line has to state “original variables” (line 1). This number is specified in the next line (line 2). Next,
the compression information is given by beginning with either “compress table” (line 3), if there is a table,
or “no table”, if there is no compression. Afterwards, the tables are given where each starts with a line
“table k v” and k represents the number of the table and v is the number of variables before the applied
compression (line 4). The next line gives the com-

! The source code can be found at/www.ki.inf.tu-dresden.de/~norbert,
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l:original variables pression by simply giving a mapping that depends on the order:
2:30867 the i*" number in the line is the variable that is represented by
3:compress tables variable ¢ in the compressed formula (line 5). The line is closed
4:table 0 30867 by a 0, so that a standard clause parser can be used. The next
5:1 2 3 56 7 9 10 11 ... line introduces the assignments in the original formula by saying
6:units O “units k£” (line 6). The following line lists all the literals that have
7:-31 32 ... -30666 —-3082%ebn assigned true in the original formula and is also terminated
8:end table by 0 (line 7). The compression is completed with a line stating
9:ee table “end table” (line 8). At the moment, only a single compression is
10:1 -19 0 supported, and thus, k is always 0. Since there is only a single
11:2 -20 0 compression, it is applied after applying all other techniques and
12:... therefore the following details are given with respect to the decom-
13:postprocess stack pressed preprocessed formula F’. The next static information is the
1l4:ee literals of the EE classes. They are introduced by a line “ee table”
15:bce 523 (line 9). The following lines represent the classes where the first
16:-81 523 -6716 0 element is the representative of the class that is in F’(line 10-12).
17:bce 10623 Each class is ordered ascending, so that the EE information can be
18:-10429 10623 -30296 0  stored as a tree and the first element is the smallest one. Again,
19:... each class is terminated by a 0. Finally, the postprocess stack is
20:ve 812 1 given and preluded with a line “postprocess stack” (line 13). After-
21:-812 =74 0 wards the eliminations of BCE and VE are stored in the order they
22:ve 6587 4 have been performed. BCE is prefaced with a line “bce [”” where [
23:6587 6615 0 is the blocking literal (line 15,17). The next line gives the accord-
24:-79 6587 0 ing blocked clause (line 16,18). For VE the first line is “ve v n”
25:. .. where v is the eliminated variable and n is the number of clauses

that have been replaced (line 20,22). The following n lines give the
according clauses (line 21,23-26). Finally, for EE it is only stated
that EE has been applied by writing a line “ee”, because postpro-
cessing EE depends also on the variables that are present at the
moment (line 14). Some of the variables might already be removed at the point EE has been run, so that it
is mandatory to store this information.

Fig. 1: Example map file

3.2 Preprocessor Comparison

A comparison of the formula reductions of Coprocessor and the current standard preprocessor SatELite is
given in Fig. [2]and has been performed on 1155 industrial and crafted instances from recent SAT Compe-
titions and SAT Racesﬂ The relative reduction of the clauses by Coprocessor and SatELite is presented.
Due to ER, Coprocessor can increase the number of clauses, whereby the average length is still reduced.
Coprocessor is also able to reduce the number of clauses more than SatELite. The instances are ordered by
the reduction of SatELite so that the plot for Coprocessor produces peaks.

Since SatELite [3] and MiniSAT [11] have been developed by the same authors, the run times of
MiniSAT with the two preprocessors are compared in Fig. [3] Comparing these run times of MiniSAT (MS)
combined with the preprocessors, it can be clearly seen that by using a preprocessor the performance of the
solver is much higher. Furthermore, the combination with Coprocessor (MS+Co) solves more instances
than SatELite (MS+S) for most of the timeouts.

2 For more details visit http://www.ki.inf.tu-dresden.de/~norbert/paperdata/WLP2011.
html,
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Fig. 3: Runtime comparison of MiniSAT combined with Coprocessor and SatELite

4 Conclusion and Future Work

This work introduces the SAT preprocessor Coprocessor that implements almost all known preprocessing
techniques and some additional features. Experiments showed that the default Coprocessor performs better
than SatELite when combined with MiniSAT 2.2. For suiting its techniques better to applications, Coproces-
sor provides many parameters that can be optimized for special use cases. Additionally, a map file format
is presented that is used to store the preprocessing information. This file can be used to re-construct the
model for the original formula if the model for the preprocessed formula is given.
Future development of this preprocessor includes adding the latest techniques such as HLE and HLA [445]

and to parallelize it to be able to use multi-core architectures. Furthermore, the execution order of the tech-
niques will be relaxed, so that any order can be applied to the input formula.
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Abstract. Answer set programming (ASP) is a paradigm for declarative problem solving where prob-
lems are first formalized as rule sets, i.e., answer-set programs, in a uniform way and then solved by
computing answer sets for programs. The satisfiability modulo theories (SMT) framework follows a
similar modelling philosophy but the syntax is based on extensions of propositional logic rather than
rules. Quite recently, a translation from answer-set programs into difference logic was provided—
enabling the use of particular SMT solvers for the computation of answer sets. In this paper, the trans-
lation is revised for another SMT fragment, namely that based on fixed-width bit-vector theories. Thus,
even further SMT solvers can be harnessed for the task of computing answer sets. The results of a
preliminary experimental comparison are also reported. They suggest a level of performance which is
similar to that achieved via difference logic.

1 Introduction

Answer set programming (ASP) is a rule-based approach to declarative problem solving [15,22,24]. The
idea is to first formalize a given problem as a set of rules also called an answer-set program so that the
answer sets of the program correspond to the solution of the problem. Such problem descriptions are
typically devised in a uniform way which distinguishes general principles and constraints of the problem in
question from any instance-specific data. To this end, term variables are deployed for the sake of compact
representation of rules. Solutions themselves can then be found out by grounding the rules of the answer-
set program, and by computing answer sets for the resulting ground program using an answer set solver.
State-of-the-art answer set solvers are already very efficient search engines [7, 11] and have a wide range
of industrial applications.

The satisfiability modulo theories (SMT) framework [3] follows a similar modelling philosophy but
the syntax is based on extensions of propositional logic rather than rules with term variables. The SMT
framework enriches traditional satisfiability (SAT) checking [5] in terms of background theories which are
selected amongst a number of alternatives.! Parallel to propositional atoms, also theory atoms involving
non-Boolean variables? can be used as references to potentially infinite domains. Theory atoms are typically
used to express various constraints such as linear constraints, difference constraints, etc., and they enable
very concise representations of certain problem domains for which plain Boolean logic would be more
verbose or insufficient in the first place.

As regards the relationship of ASP and SMT, it was quite recently shown [20,25] that answer-set
programs can be efficiently translated into a simple SMT fragment, namely difference logic (DL) [26].
This fragment is based on theory atoms of the form x — y < k formalizing an upper bound k on the
difference of two integer-domain variables x and y. Although the required transformation is linear, it is not
reasonable to expect that such theories are directly written by humans in order to express the essentials of
ASP in SMT. The translations from [20,25] and their implementation called LP2DIFF® enable the use of
particular SMT solvers for the computation of answer sets. Our experimental results [20] indicate that the
performance obtained in this way is surprisingly close to that of state-of-the-art answer set solvers. The
results of the third ASP competition [7], however, suggest that the performance gap has grown since the
previous competition. To address this trend, our current and future agendas include a number of points:

"http://combination.cs.uiowa.edu/smtlib/

2 However, variables in SMT are syntactically represented by (functional) constants having a free interpretation over
a specific domain such as integers or reals.

*http://www.tcs.hut.fi/Software/lp2diff/
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— We gradually increase the number of supported SMT fragments which enables the use of further SMT
solvers for the task of computing answer sets.

— We continue the development of new translation techniques from ASP to SMT.

— We submit ASP-based benchmark sets to future SMT competitions (SMT-COMPs) to foster the effi-
ciency of SMT solvers on problems that are relevant for ASP.

— We develop new integrated languages that combine features of ASP and SMT, and aim at implementa-
tions via translation into pure SMT as initiated in [18].

This paper contributes to the first item by devising a translation from answer-set programs into theories
of bit-vector logic. There is a great interest to develop efficient solvers for this particular SMT fragment
due to its industrial relevance. In view of the second item, we generalize an existing translation from [20] to
the case of bit-vector logic. Using an implementation of the new translation, viz. LP2BV, new benchmark
classes can be created to support the third item on our agenda. Finally, the translation also creates new
potential for language integration. In the long run, rule-based languages and, in particular, the modern
grounders exploited in ASP can provide valuable machinery for the generation of SMT theories in analogy
to answer-set programs: The source code of an SMT theory can be compacted using rules and term variables
[18] and specified in a uniform way which is independent of any concrete problem instances. Analogous
approaches [2, 14, 23] combine ASP and constraint programming techniques without a translation.

The rest of this paper is organized as follows. First, the basic definitions and concepts of answer-set pro-
grams and fixed-width bit-vector logic are briefly reviewed in Section 2. The new translation from answer-
set programs into bit-vector theories is then devised in Section 3. The extended rule types of SMODELS
compatible systems are addressed in Section 4. Such extensions can be covered either by native transla-
tions into bit-vector logic or translations into normal programs. As part of this research, we carried out a
number of experiments using benchmarks from the second ASP competition [11] and two state-of-the-art
SMT solvers, viz. BOOLECTOR and Z3. The results of the experiments are reported in Section 5. Finally,
we conclude this paper in Section 6 in terms of discussions of results and future work.

2 Preliminaries

The goal of this section is to briefly review the source and target formalisms for the new translation devised
in the sequel. First, in Section 2.1, we recall normal logic programs subject to answer set semantics and the
main notions exploited in their translation. A formal account of bit-vector logic follows in Section 2.2.

2.1 Normal Logic Programs

As usual, we define a normal logic program P as a finite set of rules of the form
a—by,... by, ~er, o O, ey

where a, by, ..., by, and cq, . .., ¢, are propositional atoms and ~ denotes default negation. The head of
a rule r of the form (1) is hd(r) = a whereas the part after the symbol < forms the body of r, denoted
by bd(r). The body bd(r) consists of the positive part bd™ () = {by,...,b,} and the negative part
bd™(r) = {c1, ..., ¢m} so thatbd(r) = bd™ (r) U {~c| ¢ € bd™ (r)}. Intuitively, a rule r of the form (1)
appearing in a program P is used as follows: the head hd(r) can be inferred by r if the positive body atoms
in bd ™ (r) are inferable by the other rules of P, but not the negative body atoms in bd ™~ (r). The positive
part of the rule, r* is defined as hd(r) < bd™(r). A normal logic program is called positive if r = r+
holds for every rule r € P.

Semantics To define the semantics of a normal program P, we let At(P) stand for the set of atoms that
appear in P. An interpretation of P is any subset I C At(P) such that for an atom a € At(P), a is true in
I, denoted I |= a, iff a € I. For any negative literal ~c, I |= ~ciff I [~ ciff ¢ ¢ I. A rule r is satisfied in
I, denoted I |= r, iff I = bd(r) implies I = hd(r). An interpretation I is a classical model of P, denoted
I = P,iff, I |= r holds for every r € P. Amodel M |= P is a minimal model of P iff thereisno M’ = P
such that M’ C M. Each positive normal program P has a unique minimal model, i.e., the least model



Translating Answer-Set Programs into Bit-Vector Logic 107

of P denoted by LM(P) in the sequel. The least model semantics can be extended for an arbitrary normal
program P by reducing P into a positive program PM = {r* | r € P .and M Nbd™ (r) = 0} with respect
to M C At(P). Then answer sets, also known as stable models [16], can be defined.

Definition 1 (Gelfond and Lifschitz [16]). An interpretation M C At(P) is an answer set of a normal
program P iff M = LM(P™M).

Example 1. Consider a normal program P [20] consisting of the following six rules:

a+—b,c. a «— d. b« a,~d.
b« a,~c. C — ~d. d «— ~ec.

The answer sets of P are M; = {a,b,d} and My = {c}. To verify the latter, we note that PM2 = {q «
b,c; b < a; ¢ «—; a « d} for which LM(P*2) = {c}. On the other hand, we have PM3 = PM: for
M3 = {a, b, c} so that M3 ¢ AS(P). |

The number of answer sets possessed by a normal program P can vary in general. The set of answer sets
of a normal program P is denoted by AS(P). Next we present some concepts and results that are relevant
in order to capture answer sets in terms of propositional logic and its extensions in the SMT framework.

Completion Given a normal program P and an atom a € At(P), the definition of a in P is the set of rules
Defp(a) = {r € P | hd(r) = a}. The completion of a normal program P, denoted by Comp(P), is a
propositional theory [8] which contains

a \/ ( /\ b A /\ —\c) 2)

r€Defp(a) bebdt(r) c€bd = (r)

for each atom a € At(P). Given a propositional theory 7" and its signature At(7'), the semantics of T is
determined by CM(T') = {M C At(T") | M = T}.1tis possible to relate CM(Comp(P)) with the models
of a normal program P by distinguishing supported models [1] for P. A model M = P is a supported
model of P iff for every atom a € M thereisarule r € P suchthathd(r) = a and M |= bd(r). In general,
the set of supported models SuppM(P) of a normal program P coincides with CM(Comp(P)). It can be
shown [21] that stable models are also supported models but not necessarily vice versa. This means that in
order to capture AS(P) using Comp(P), the latter has to be extended in terms of additional constraints as
done, e.g., in [17,20].

Example 2. For the program P of Example 1, the theory Comp(P) has formulas a < (bAc)Vd, b <
(a A =d) V (a A=c), c < —d, and d < —c. The models of Comp(P), i.e., its supported models, are
My = {a,b,d}, My = {c}, and M3 = {a, b, c}. |

Dependency Graphs The positive dependency graph of a normal program P, denoted by DG ™ (P), is a pair
(At(P), <) where b < a holds iff there is arule 7 € P such that hd(r) = a and b € bd™ (r). Let <* denote
the reflexive and transitive closure of <. A strongly connected component (SCC) of DG ™ (P) is a maximal
non-empty subset S C At(P) such that a <* b and b <* a hold for each a,b € S. The set of defining
rules is generalized for an SCC S by Defp(S) = |J, g Def p(a). This set can be naturally partitioned into
sets Extp(S) = {r € Defp(S) | bd™(r) NS = 0} and Intp(S) = {r € Defp(S) | bd™(r) N S # 0} of
external and internal rules associated with S, respectively. Thus, Def p(S) = Extp(S) UIntp(S) holds in
general.

Example 3. In the case of the program P from Example 1, the SCCs of DG (P) are S; = {a,b}, So =
{c}, and S3 = {d}. For S, we have Extp(S1) = {a < d}. |

2.2 Bit-Vector Logic

Fixed-width bit-vector theories have been introduced for high-level reasoning about digital circuitry and
computer programs in the SMT framework [27, 4]. Such theories are expressed in an extension of proposi-
tional logic where atomic formulas speak about bit vectors in terms of a rich variety of operators.
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Syntax As usual in the context of SMT, variables are realized as constants that have a free interpretation
over a particular domain (such as integers or reals)*. In the case of fixed-width bit-vector theories, this
means that each constant symbol x represents a vector z[1...m] of bits of particular width m, denoted
by w(z) in the sequel. Such vectors enable a more compact representation of structures like registers
and often allow more efficient reasoning about them. A special notation 7 is introduced to denote a bit
vector that equals to n, i.e., m provides a binary representation of n. We assume that the actual width
m > logy(n + 1) is determined by the context where the notation 7 is used. For the purposes of this paper,
the most interesting arithmetic operator for combining bit vectors is the addition of two m-bit vectors,
denoted by the parameterized function symbol +,, in an infix notation. The resulting vector is also m-bit
which can lead to an overflow if the sum exceeds 2”* — 1. Moreover, we use Boolean operators =,,, and
<,n with the usual meanings for comparing the values of two m-bit vectors. Thus, assuming that x and y
are m-bit free constants, we may write atomic formulas like * =,,, y and  <,,, ¥ in order to compare the
m-bit values of x and y. In addition to syntactic elements mentioned so far, we can use the primitives of
propositional logic to build more complex well-formed formulas of bit-vector logic. The syntax defined for
the SMT library contains further primitives which are skipped in this paper. A theory 7' in bit-vector logic
is a set of well-formed bit-vector formulas as illustrated by the following example.

Example 4. Consider a system of two processes, say A and B, and a theory T' = {a — (z <2 y), b —
(y <2 x)} formalizing a scheduling policy for them. The intuitive reading of a (resp. b) is that process A
(resp. B) is scheduled with a higher priority and, thus, should start earlier. The constants x and y denote the
respective starting times of A and B. Thus, e.g., * <o y means that process A starts before process B. W

Semantics Given a bit-vector theory T', we write At(7) and FC(T') for the sets of propositional atoms and
free constants, respectively, appearing in 7'. To determine the semantics of 7', we define interpretations for
T as pairs (I, 7) where I C At(T) is a standard propositional interpretation and 7 is a partial function
that maps a free constant z € FC(T') and an index 1 < ¢ < w(z) to the set of bits {0,1}. Given 7, a
constant z € FC(T') is mapped onto 7(z) = Z;”:(gf)(T(x, i) - 2¥(®)~%) and, in particular, 7(7) = n for any
n. To cover any well-formed terms’ t; and t, involving +,, and m-bit constants from FC(T'), we define
T(t1 +m t2) = 7(t1) + 7(t2) mod 2™ and w(¢y +,, t2) = m. Hence, the value 7(¢) can be determined
for any well-formed term ¢ which enables the evaluation of more complex formulas as formalized below.

Definition 2. Let T be a bit-vector theory, a € At(T') a propositional atom, t1 and to well-formed terms
over FC(T) such that w(t1) = w(te), and ¢ and i) well-formed formulas. Given an interpretation (I, 1)
for the theory T, we define

1. (I,T)Fa < a€l

2. <],T>':t1 =, ty T(t1>=7'(t2),

3 <I,T>':t1 < ty = T(t1)<7'(t2),

4. (I,m) E ¢ = (I,7) £ ¢,

5 <I7T>':¢v¢<:> <I’T> |=¢OV<I,T>)=’(/),

6. (I,TYEd—¢Y = (I,7)Epor{l,7) =, and
7.{Im)Ed oy = (I,7) Edifandonlyif (I,7) = 9.

The interpretation (I, 7) is a model of T, i.e., (I,7) =T, iff (I,7) = ¢ forall € T.

It is clear by Definition 2 that pure propositional theories T are treated classically, i.e., (I, 7) = T iff
I |= T in the sense of propositional logic. As regards the theory 7' from Example 4, we have the sets of
symbols At(T") = {a,b} and FC(T) = {z,y}. Furthermore, we observe that there is no model of T" of
the form ({a, b}, 7) because it is impossible to satisfy x <5 y and y <2 z simultaneously using any partial
function 7. On the other hand, there are 6 models of the form ({a}, 7) because x <2 y can be satisfied in
3+ 2 + 1 = 6 ways by picking different values for the 2-bit vectors x and y.

4 We use typically symbols x, y, z to denote such free (functional) constants and symbols a, b, ¢ to denote proposi-
tional atoms.

> The constants and operators appearing in a well-formed term ¢ are based on a fixed width m. Moreover, the width
w(z) of each constant x € FC(T') must be the same throughout 7".



Translating Answer-Set Programs into Bit-Vector Logic 109

3 Translation

In this section, we present a translation of a logic program P into a bit-vector theory BV (P) that is similar
to an existing translation [20] into difference logic. As its predecessor, the translation BV (P) consists of
two parts. Clark’s completion [8], denoted by CC(P), forms the first part of BV(P). The second part, i.e.,
R(P), is based on ranking constraints from [25] so that BV(P) = CC(P) U R(P). Intuitively, the idea is
that the completion CC(P) captures supported models of P [1] and the further formulas in R(P) exclude
the non-stable ones so that any classical model of BV (P) corresponds to a stable model of P.

The completion CC(P) is formed for each atom a € At(P) on the basis of (2):

—

. If Defp(a) = B, the formula —a is included to capture the corresponding empty disjunction in (2).

2. If there is r € Defp(a) such that bd(r) = 0, then one of the disjuncts in (2) is trivially true and the
formula a can be used as such to capture the definition of a.

3. If Defp(a) = {r} forarule r € P with n + m > 0, then we simplify (2) to a formula of the form

a N b A A e 3)
bebdt (r) cebd ™ (r)
4. Otherwise, the set Def p(a) contains at least two rules (1) with n +m > 0 and

a < \/ bd, 4)

re€Defp(a)

is introduced using a new atom bd,. for each r € Def p(a) together with a formula

b, A\ b A A e )

bebdt(r) cebd—(r)

The rest of the translation exploits the SCCs of the positive dependency graph of P that was defined in
Section 2.1. The motivation is to limit the scope of ranking constraints which favors the length of the
resulting translation. In particular, singleton components SCC(a) = {a} require no special treatment if
tautological rules with a € {by,...,b,} in (1) have been removed. Plain completion (2) is sufficient for
atoms involved in such components. However, for each atom a € At(P) having a non-trivial component
SCC(a) in DGT(P) such that [SCC(a)| > 1, two new atoms ext, and int, are introduced to formalize
the external and internal support for a, respectively. These atoms are defined in terms of equivalences

ext, < \/ bd, (6)
reExtp(a)
int, < \/ [bdr A A (2 <m Ta)] (7
relntp(a) bebdt (r)NSCC(a)

where x,, and x, are bit vectors of width m = [log,(|SCC(a)| + 1)] introduced for all atoms involved in
SCC(a). The formulas (6) and (7) are called weak ranking constraints and they are accompanied by

a — ext, Vintg, (3
—ext, V —int,. 9
Moreover, when Extp(a) # () and the atom a happens to gain external support from these rules, the value
of x, is fixed to 0 by including the formula
exty, — (Tq =m 0). (10)
Example 5. Recall the program P from Example 1. The completion CC(P) is:

a <« bd; Vbdy. bd; < bAec. bdy <« d.
b+ bd3zVbdy. bds«—aA-d. bdy < aA-c
c > —d.

d « —c.
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Since P has only one non-trivial SCC, i.e., the component SCC(a) = SCC(b) = {a, b}, the weak ranking
constraints resulting in R(P) are

ext, <> bds. int, <« bdy A (xp <2 x4).
exty <« L.
inty < [bdg A (24 <2 xp)] V [bdy A (4 <2 xp)].

In addition to these, the formulas

a — exty Vint,. —ext, V —int,. ext, — (z, =2 0).
b — exty Vint,.  —exty V —inty,.

are also included in R(P). |

Weak ranking constraints are sufficient whenever the goal is to compute only one answer set, or to check
the existence of answer sets. However, they do not guarantee a one-to-one correspondence between the
elements of AS(P) and the set of models obtained for the translation BV (P). To address this discrepancy,
and to potentially make the computation of all answer sets or counting the number of answer sets more
effective, strong ranking constraints can be imported from [20] as well. Actually, there are two mutually
compatible variants of strong ranking constraints:

bd, — \/ ~(p +m 1 <m 2q) an
bebd ™ (r)NSCC(a)

int, —» \/ [bd. A \V (Tq =m Tp +m 1)]. (12)
ré€lntp(a) bebdt (r)NSCC(a)

The local strong ranking constraint (11) is introduced for each r € Intp(a). It is worth pointing out that
the condition —(xp +m 1 < @) is equivalent to Ty +m, 1 >4 T4 % On the other hand, the global variant
(12) covers the internal support of a entirely. Finally, in order to prune copies of models of the translation
that would correspond to the exactly same answer set of the original program, a formula

—a — (4 =4 0) (13)

is included for every atom a involved in a non-trivial SCC. We write R!(P) and R&(P) for the respective
extensions of R(P) with local/global strong ranking constraints, and R'8(P) obtained using both. Similar
conventions are applied to BV (P) to distinguish four variants in total. The correctness of these translations
is addressed next.

Theorem 1. Let P be a normal program and BV (P) its bit-vector translation.

1. If S is an answer set of P, then there is a model (M, 1) of BV(P) such that S = M N At(P).
2. If (M, 1) is a model of BV (P), then S = M N At(P) is an answer set of P.

Proof. To establish the correspondence of answer sets and models as formalized above, we appeal to the
analogous property of the translation of P into difference logic (DL), denoted here by DL (P). In DL, theory
atoms x < y + k constrain the difference of two integer variables = and y. Models can be represented as
pairs (I, 7) where I is a propositional interpretation and 7 maps constants of theory atoms to integers so
that (I,7) Ex <y+k < 7(x) < 7(y) + k. The rest is analogous to Definition 2.

( = ) Suppose that S is an answer set of P. Then the results of [20] imply that there is a model
(M, T) of DL(P) such that S = M N At(P). The valuation 7 is condensed for each non-trivial SCC S of
DG™(P) as follows. Let us partition S into SpLI...US,, such that (i) 7(z,) = 7(z3) foreach 0 < i < n
and a,b € S;, (ii) 7(x,) = 7(2)” for each a € Sy, and (iii) foreach 0 < i < j < n,a € S;,and b € S,
T(2q) < 7(xp). Then define 7/ for the bit vector z,, associated with an atom a € S; by setting 7/ (x4, j) = 1
iff the 7' bit of 7 is 1, i.e., 7/(z4) = i. It follows that (I, 7) = z, < x, — Liff (I, 7') |= 25 <m 24 for

® However, the form in (11) is used in our implementation, since 4, and <,, are amongst the base operators of the
BOOLECTOR system.
7 A special variable z is used as a placeholder for the constant 0 in the translation DL(P) [20].
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any a, b € S. Moreover, we have (M, 7) | (24, < 24+ 0) A (2 <z, + 0) iff (M, 7) = 24 =y, 0 for any
a € S. Due to the similar structures of DL(P) and BV(P), we obtain (M, 7) = BV(P) as desired.

(<= ) Let (M, 7) be a model of BV(P). Then define 7’ such that 7/(z) = > (z)( (z,1) - 2¥(@)=1)
where x on the left hand side stands for the integer variable corresponding to the bit vector = on the right
hand side. It follows that (I, 7) = xp <., x4 iff (I, 7') = xp < 2, — 1. By setting 7/(z) = 0, we obtain
(M,7) = x4 =, 0ifand only if (M, 7') = (2, < 2+ 0) A (2 < x4 + 0). The strong analogy present in
the structures of BV (P) and DL(P) implies that (M, 7’) is a model of DL(P). Thus, S = M N At(P) is
an answer set of P by [20]. O

Even tighter relationships of answer sets and models can be established for the translations BV!(P),
BV&(P), and BV!8(P). It can be shown that the model (M, 7) of BV*(P) corresponding to an answer set
S of P is unique, i.e., there is no other model (N, 7’) of the translation such that S = N N At(P). These
results contrast with [20]: the analogous extensions DL*(P) guarantee the uniqueness of M in a model
(M, 7) but there are always infinitely many copies (M, 7’) of (M, ) such that (M, 7') = DL*(P). Such
a valuation 7/ can be simply obtained by setting 7/(x) = 7(z) + 1 for any z.

4 Native Support for Extended Rule Types

The input syntax of the SMODELS system was soon extended by further rule types [28]. In solver interfaces,
the rule types usually take the following simple syntactic forms:

{a1,...,q1} — by,...\bp,~eC1y .o y~e,. (14)
a — U{by1,... by, ~c1, ... ;~Cm ) (15)
a— by =Wy, by = Wp, ,~C] = Weyy. .. ,~Cm = W, }- (16)

The body of a choice rule (14) is interpreted in the same way as that of a normal rule (1). The head, in
contrast, allows to derive any subset of atoms a1, ...,q;, if the body is satisfied, and to make a choice
in this way. The head a of a cardinality rule (15) is derived, if its body is satisfied, i.e., the number of
satisfied literals amongst by, ... ,b, and ~cy,...,~c,, is at least [ acting as the lower bound. A weight
rule of the form (16) generalizes this idea by assigning arbitrary positive weights to literals (rather than
1s). The body is satisfied if the sum of weights assigned to satisfied literals is at least [, thus enabling one
to infer the head a using the rule. In practise, the grounding components used in ASP systems allow for
more versatile use of cardinality and weight rules, but the primitive forms (14), (15), and (16) provide a
solid basis for efficient implementation via translations. The reader is referred to [28] for a generalization
of answer sets for programs involving such extended rule types. The respective class of weight constraint
programs (WCPs) is typically supported by SMODELS compatible systems.

Whenever appropriate, it is possible to translate extended rule types as introduced above back to normal
rules. To this end, a number of transformations are addressed in [19] and they have been implemented as a
tool called LP2NORMAL®. For instance, the head of a choice rule (14) can be captured in terms of rules

ay < b,~ay. ... a; < b,~a,.
aj <~ ~aj. Lo Q) — ~ay.
where a7, . ..,a; are new atoms and b is a new atom standing for the body of (14) which can be defined

using (14) with the head replaced by b. We assume that this transformation is applied at first to remove
choice rules when the goal is to translate extended rule types into bit-vector logic. The strength of this
transformation is locality, i.e., it can be applied on a rule-by-rule basis, and linearity with respect to the
length of the original rule (14). To the contrary, linear normalization of cardinality and weight rules seems
impossible. Thus, we also provide direct translations into formulas of bit-vector logic.

We present the translation of a weight rule (16) whereas the translation of a cardinality rule (15) is
obtained as a special case wp, =...=wp, = We,=...=w., = 1. The body of a weight rule can be
evaluated using bit vectors 1, . .. Sy of width & = [logy (31, wy, + Y ie; we, + 1)] constrained by
2 x (n 4+ m) formulas

$http://www.tcs.hut.fi/Software/asptools/



112 Mai Nguyen, Tomi Janhunen, and Ilkka Niemeld

gringo program.lp instance.lp \

| smodels —-internal -nolookahead \
| lpcat —-s=symbols.txt \

| 1p2bv [-1] [-g] \

| boolector —-fm

Fig. 1. Unix shell pipeline for running a benchmark instance

b1 — (s1 = We, ), =by — (s1 = 0),
by — (82 =g $1 +& Wey)s by — (82 = s1),

bn i (Sn =k Sn—1 Tk wibn)s _‘bn - (Sn =k Snfl)’
c1 = (Sp41 =k Sn), et = (Sp41 =k Sn +i We, ),

Cm — (Sner =k sn+m71)’ Cmp, — (anrm =k Sn4+m—1 +i wcm)-

The lower bound [ of (16) can be checked in terms of the formula —(s,1m <k Z) where we assume that [
is of width &, since the rule can be safely deleted otherwise. In view of the overall translation, the formula
bd, < —(sp+m <k Z) can be used in conjunction with the completion formula (4). Weight rules also
contribute to the dependency graph DG (P) in analogy to normal rules, i.e., the head a depends on all
positive body atoms by, . .. ,b,. In this way, BV (P) generalizes for programs P having extended rules.

5 Experimental Results

A new translator called LP2BV was implemented as a derivative of LP2DIFF’ that translates logic programs
into difference logic. In contrast, the new translator will provide its output in the bit-vector format. In
analogy to its predecessor, it expects to receive its input in the SMODELS'? file format. Models of the
resulting bit-vector theory are searched for using BOOLECTOR!! (v. 1.4.1) [6] and z3'? (v. 2.11) [9] as
back-end solvers. The goal of our preliminary experiments was to see how the performances of systems
based on LP2BV compare with the performance of a state-of-the-art ASP solver CLASP'3 (v. 1.3.5) [13]. The
experiments were based on the NP-complete benchmarks of the ASP Competition 2009. In this benchmark
collection, there are 23 benchmark problems with 516 instances in total. Before invoking a translator and
the respective SMT solver, we performed a few preprocessing steps, as detailed in Figure 1, by calling:

— GRINGO (v. 2.0.5), for grounding the problem encoding and a given instance;

— SMODELS'* (v. 2.34), for simplifying the resulting ground program;

— LPCAT (v. 1.18), for removing all unused atom numbers, for making the atom table of the ground
program contiguous, and for extracting the symbols for later use; and

— LP2NORMAL (version 1.11), for normalizing the program.

The last step is optional and not included as part of the pipeline in Figure 1. Pipelines of this kind were
executed under Linux/Ubuntu operating system running on six-core AMD Opteron(™) 2435 processors
under 2.6 GHz clock rate and with 2.7 GB memory limit that corresponds to the amount of memory
available in the ASP Competition 2009.

For each system based on a translator and a back-end solver, there are four variants of the system to con-
sider: W indicates that only weak ranking constraints are used, while L, G, and LG mean that either local,
or global, or both local and global strong ranking constraints, respectively, are employed when translating
the logic program.

®http://www.tcs.hut.fi/Software/lp2diff/
Unttp://www.tcs.hut.fi/Software/smodels/

"http://fmv. jku.at/boolector/

2 nttp://research.microsoft.com/en-us/um/redmond/projects/z3/
Bhttp://www.cs.uni-potsdam.de/clasp/
Yhttp://www.tcs.hut.fi/Software/smodels/
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Table 1. Experimental results without normalization

INST[[CLASP LP2BV+BOOLECTOR LP2BV+Z3 LP2DIFF+Z3
Benchmark wlLt]|]c|w|w]|]L]c|w|w]|L |G|
Overall Performance 516 || 465 276 | 244 | 261 | 256 | 217 | 216 | 194 | 204 | 360 | 349 | 324 | 324
347/118 || 188/ 88 | 161/ 83| 174/ 87| 176/ 80| 142/ 75| 147/ 69| 124/ 70| 135/ 69| 257/103 | 251/ 98 | 225/ 99 [ 226/ 98
KnightTour 10 ][ 80 20 [ /0o [ oo [ oo 1o oo oo o] 60 ] 0] 40] 50
GraphColouring 29 || 870 7m0 | 0 | o | o | ero | o | e | e | 0 | 0 | 70 | 70
WireRouting Bl || 23 | v | w2 | o2 | u3 | oo | oo | o1 | w3 | w3 | w4 | 53
DisjunctiveScheduling 10| s0 || oo | o0 | o0 | o0 | o/0 | o/0 | o/0 | or0 | or0 | o0 | o0 | o0
GraphPartitioning 13 || &7 30 | 30 | 30 | 30 | 40 | 40 | 40 | 30 | 2 | &1 | &1 | 61
ChannelRouting 1 || e2 62 | 62 | 62 | 62 | 52 | 62 | 62 | 62 | 62 | 62 | 62 | 62
Solitaire 27 | 1970 || 270 | 570 | 10 | 40 | o0 | o0 | o0 | o/0 | 210 | 210 | 20/0 | 21/0
Labyrinth 29 || 2600 || 10 | or0 | or0 | ov0 | o0 | o0 | o0 | o0 | o0 | 00 | 0/0 | o/0
WeightBoundedDominatingSet 29 || 26/0 || 1870 | 18/0 | 1770 | 18/0 | 1270 | 1270 | 1170 | 1270 | 2200 | 220 | 22/0 | 21/0
MazeGeneration 29 || 10015 || 815 | 115 | o115 | o6 | 516 | 115 | o5 | 115 | 1017 | 1015 | 515 | 4715
15Puzzle 16 || 1670 || 160 | 1570 | 1470 | 1570 | 40 | 40 | s;0 | s;0 | o0 | o0 | o0 | o0
BlockedNQueens 29 || 1514 || 22 | o2 | w2 | o2 | vo | 20 | 20 | o0 | 1513 | 1513 | 1512 | 1513
ConnectedDominatingSet 21 || 10710 || 1011 | o8 | 10m1 | e/3 | 10710 | 910 | 1079 | 1079 | w8 | w6 | w7 | 76
EdgeMatching 29 (| 2970 || or0 | or0 | ov0 | ov0 | o0 | o0 | oo | oo | 30 | 1o | 30 | 20
Fastfood 29 || 1019 || 916 | 10116 | 10116 | 916 | 99 | %9 | 910 | 99 | 1018 | 1018 | 1018 | 10/18
GeneralizedSlitherlink 29 (| 2970 || 29/0 | 20/0 | 29/0 | 29/0 | 29/0 | 29/0 | 16/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0
HamiltonianPath 29 || 2070 || 2770 | 2570 | 2900 | 28/0 | 26/0 | 27/0 | 25/0 | 26/0 | 29/0 | 29/0 | 290 | 29/0
Hanoi 15 || 1570 || 150 | 150 | 150 | 150 | 5/0 | 5/0 | 550 | 40 | 150 | 150 | 150 | 15/0
HierarchicalClustering 12 || s4 8/4 | 8/4 | 8/4 | 8/4 | 44 | 44 | 44 | 44 | 814 | 84 | 84 | 84
SchurNumbers 29 || 1316 || 6/16 | 516 | si6 | su6 | o6 | o6 | o6 | o6 | 11716 | 11/16 | 11/16 | 11716
Sokoban 29 (| 920 || 919 | 819 | 819 | 819 | w15 | 13 | 14 | 513 | 920 | 920 | 9220 | 9/20
Sudoku 10 || 1000 || 570 | 40 | 40 | 570 | 40 | 40 | 40 | 40 | 90 | 80 | 80 | 90
TravellingSalesperson 29 29/0 3/0 0/0 6/0 10/0 | 0/0 8/0 0/0 0/0 29/0 29/0 710 710

Table 1 collects the results from our experiments without normalization whereas Table 2 shows the
results when LP2NORMAL [19] was used to remove extended rule types discussed in Section 4. In both
tables, the first column gives the name of the benchmark, followed by the number of instances of that
particular benchmark in the second column. The following columns indicate the numbers of instances that
were solved by the systems considered in our experiments. A notation like 8/4 means that the system was
able to solve eight satisfiable and four unsatisfiable instances in that particular benchmark. Hence, if there
are 15 instances in a benchmark and the system could only solve 8/4, this means that the system was
unable to solve the remaining three instances within the time limit of 600 seconds, i.e. ten minutes, per
instance'”. As regards the number of solved instances in each benchmark, the best performing translation-
based approaches are highlighted in boldface. Though it was not shown in all tables, we also run the
experiments using translator LP2DIFF with Z3 as back-end solver, and the summary is included in Table
3—giving an overview of experimental results in terms of total numbers of instances solved out of 516.

It is apparent that the systems based on LP2BV did not perform very well without normalization. As
indicated by Table 3, the overall performance was even worse than that of systems using LP2DIFF for
translation and 73 for model search. However, if the input was first translated into a normal logic program
using LP2NORMAL, i.e., before translation into a bit-vector theory, the performance was clearly better.
Actually, it exceeded that of the systems based on LP2DIFF and became closer to that of CLASP. We note
that normalization does not help so much in case of LP2DIFF and the experimental results obtained using
both normalized and unnormalized instances are quite similar in terms of solved instances. Thus it seems
that solvers for bit-vector logic are not able to make the best of native translations of cardinality and weight
rules from Section 4 in full. If an analogous translation into difference logic is used, as implemented
in LP2DIFF, such a negative effect was not perceived using Z3. Our understanding is that the efficient
graph-theoretic satisfiability check for difference constraints used in the search procedure of z3 turns the
native translation feasible as well. As indicated by our test results, BOOLECTOR is clearly better back-end
solver for LP2BV than Z3. This was to be expected since BOOLECTOR is a native solver for bit-vector

15 One observation is that the performance of systems based on LP2BV is quite stable: even when we extended the
time limit to 20 minutes, the results did not change much (differences of only one or two instances were perceived
in most cases).



114 Mai Nguyen, Tomi Janhunen, and Ilkka Niemeld

Table 2. Experimental results with normalization

INST||CLASP LP2BV+BOOLECTOR LP2BV+Z3

Benchmark w | L | 6 | LG W | L | 6 | LG
Overall Performance 516 459 381 343 379 381 346 330 325 331

346/113 |1279/102|243/100(278/101 |281/100 |240/106 | 231/ 99 {224/101 {232/ 99
KnightTour 10 10/0 2/0 2/0 170 0/0 170 0/0 0/0 0/0
GraphColouring 29 9/0 8/0 8/0 8/0 8/0 9/2 9/2 9/2 9/2
WireRouting 23 11/11 2/6 1/3 1/3 1/3 2/7 1/4 1/4 1/3
DisjunctiveScheduling 10 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0 5/0
GraphPartitioning 13 4/1 5/0 5/0 4/0 5/0 2/1 2/1 2/1 2/0
ChannelRouting 11 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2 6/2
Solitaire 27 18/0 23/0 23/0 23/0 23/0 | 22/0 | 22/0 | 22/0 | 22/0
Labyrinth 29 27/0 1/0 1/0 2/0 3/0 0/0 0/0 0/0 0/0
WeightBoundedDominatingSet | 29 25/0 15/0 | 15/0 15/0 16/0 10/0 | 10/0 | 10/0 | 10/0
MazeGeneration 29 10/15 8/15 0/15 0/15 0/16 5/16 | 0/15 | 0/15 | 0/15
15Puzzle 16 15/0 16/0 16/0 16/0 16/0 11/0 | 10/0 | 11/0 | 11/0
BlockedNQueens 29 15/14 14/14 | 14/14 | 14/14 | 14/14 | 15/14 | 15/14 | 15/14 | 15/14
ConnectedDominatingSet 21 10/11 10/11 | 8/11 9/11 9/10 | 10/11 | 9/11 9/11 9/11
EdgeMatching 29 29/0 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0
Fastfood 29 10/19 9/14 9/15 9/16 9/15 0/13 | 0/10 | 0/12 | 0/12
GeneralizedSlitherlink 29 29/0 29/0 | 21/0 | 29/0 | 29/0 | 29/0 | 29/0 | 21/0 | 29/0
HamiltonianPath 29 29/0 29/0 | 28/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0 | 29/0
Hanoi 15 15/0 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0 | 15/0
HierarchicalClustering 12 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4 8/4
SchurNumbers 29 13/16 10/16 | 10/16 | 9/16 | 10/16 | 13/16 | 13/16 | 13/16 | 13/16
Sokoban 29 9/20 9/20 9/20 9/20 9/20 9/20 | 9/20 | 9/20 | 9/20
Sudoku 10 10/0 10/0 10/0 10/0 10/0 10/0 | 10/0 | 10/0 | 10/0
TravellingSalesperson 29 29/0 16/0 0/0 27/0 27/0 0/0 0/0 0/0 0/0

logic whereas Z3 supports a wider variety of SMT fragments and can be used for more general purposes.
Moreover, the design of LP2BV takes into account operators of bit-vector logic which are directly supported
by BOOLECTOR and not implemented as syntactic sugar.

In addition, we note on the basis of our results that the performance of the state-of-the-art ASP solver
CLASP is significantly better, and the translation-based approaches to computing stable models are still
left behind. By the results of Table 2, even the best variants of systems based on LP2BV did not work well
enough to compete with CLASP. The difference is especially due to the following benchmarks: Knight Tour,
Wire Routing, Graph Partitioning, Labyrinth, Weight Bounded Dominating Set, Fastfood, and Travelling
Salesperson. All of them involve either recursive rules (Knight Tour, Wire Routing, and Labyrinth), weight
rules (Weight Bounded Dominating Set and Fastfood), or both (Graph Partitioning and Travelling Sales-
person). Hence, it seems that handling recursive rules and weight constraints in the translational approach
is less efficient compared to their native implementation in CLASP. When using the current normalization
techniques to remove cardinality and weight rules, the sizes of ground programs tend to increase signifi-
cantly and, in particular, if weight rules are abundant. For example, after normalization the ground programs
are ten times larger for the benchmark Weight Bounded Dominating Set, and five times larger for Fastfood.
It is also worth pointing out that the efficiency of CLASP turned out to be insensitive to normalization.

While having trouble with recursive rules and weight constraints for particular benchmarks, the transla-
tional approach handles certain large instances quite well. The largest instances in the experiments belong
to the Disjunctive Scheduling benchmark, of which all instances are ground programs of size over one
megabyte but after normalization'®, the LP2BV systems can solve as many instances as CLASP.

6 Conclusion

In this paper, we present a novel and concise translation from normal logic programs into fixed-width bit-
vector theories. Moreover, the extended rule types supported by SMODELS compatible answer set solvers
can be covered via native translations. The length of the resulting translation is linear with respect to the

16 In this benchmark, normalization does not affect the size of grounded programs significantly.
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Table 3. Summary of the experimental results

System [ A\ [ L [ G [ LG [
LP2BV+BOOLECTOR 276 | 244 | 261 | 256
LP2BV+Z3 217 | 216 | 194 | 204
LP2DIFF+Z3 360 | 349 | 324 | 324
CLASP 465
LP2NORMAL2BV+BOOLECTOR 381 | 343 | 379 | 381
LP2NORMAL2BV+Z3 346 | 330 | 325 | 331
LP2NORMAL2DIFF+Z3 364 | 357 | 349 | 349
LP2NORMAL+CLASP 459

length of the original program. The translation has been implemented as a translator, LP2BV, which enables
the use of bit-vector solvers in the search for answer sets. Our preliminary experimental results indicate
a level of performance which is similar to that obtained using solvers for difference logic. However, this
presumes one first to translate extended rule types into normal rules and then to apply the translation into
bit-vector logic. One potential explanation for such behavior is the way in which SMT solvers implement
reasoning with bit vectors: a predominant strategy is to translate theory atoms involving bit vectors into
propositional formulas and to apply satisfiability checking techniques systematically. We anticipate that an
improved performance could be obtained if a native support for certain bit vector primitives were incor-
porated into SMT solvers directly. When comparing to the state-of-the-art ASP solver CLASP, we noticed
that the performance of the translation based approach compared unfavorably, in particular, for benchmarks
which contained recursive rules or weight constraints or both. This indicates that the performance can be
improved by developing new translation techniques for these two features. In order to obtain a more com-
prehensive view of the performance characteristics of the translational approach, the plan is to extend our
experimental setup to include benchmarks that were used in the third ASP competition [7]. Moreover, we
intend to use the new SMT library format [4] in future versions of our translators.

Acknowledgments This research has been partially funded by the Academy of Finland under the project
“Methods for Constructing and Solving Large Constraint Models” (MCM, #122399).
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Abstract. Dung’s famous abstract argumentation frameworks represent the core formalism for many
problems and applications in the field of argumentation which significantly evolved within the last
decade. Recent work in the field has thus focused on implementations for these frameworks, whereby
one of the main approaches is to use Answer-Set Programming (ASP). While some of the argumenta-
tion semantics can be nicely expressed within the ASP language, others required rather cumbersome
encoding techniques. Recent advances in ASP systems, in particular, the met asp optimization front-
end for the ASP-package gringo/claspD provides direct commands to filter answer sets satisfying
certain subset-minimality (or -maximality) constraints. This allows for much simpler encodings com-
pared to the ones in standard ASP language. In this paper, we experimentally compare the original
encodings (for the argumentation semantics based on preferred, semi-stable, and respectively, stage
extensions) with new metasp encodings. Moreover, we provide novel encodings for the recently in-
troduced resolution-based grounded semantics. Our experimental results indicate that the metasp ap-
proach works well in those cases where the complexity of the encoded problem is adequately mirrored
within the metasp approach.

Keywords: Abstract Argumentation, Answer-Set Programming, Metasp

1 Introduction

In Artificial Intelligence (Al), the area of argumentation (the survey by Bench-Capon and Dunne [3] gives
an excellent overview) has become one of the central issues during the last decade. Although there are now
several branches within this area, there is a certain agreement that Dung’s famous abstract argumentation
frameworks (AFs) [7] still represent the core formalism for many of the problems and applications in the
field. In a nutshell, AFs formalize statements together with a relation denoting rebuttals between them,
such that the semantics gives a handle to solve the inherent conflicts between statements by selecting
admissible subsets of them, but without taking the concrete contents of the statements into account. Several
semantical principles how to select those subsets have already been proposed by Dung [7] but numerous
other proposals have been made over the last years. In this paper we shall focus on the preferred [7], semi-
stable [4], stage [17], and the resolution-based grounded semantics [1]. Each of these semantics is based on
some kind of C-maximality (resp. -minimality) and thus is well amenable for the novel metasp concepts
which we describe below.

Let us first talk about the general context of the paper, which is the realization of abstract argumen-
tation within the paradigm of Answer-Set Programming (see [16] for an overview). We follow here the
ASPARTIX' approach [11], where a single program is used to encode a particular argumentation seman-
tics, while the instance of an argumentation framework is given as an input database. For problems located
on the second level of the polynomial hierarchy (i.e. for preferred, stage, and semi-stable semantics) ASP
encodings turned out to be quite complicated and hardly accessible for non-experts in ASP (we will sketch
here the encoding for the stage semantics in some detail, since it has not been presented in [11]). This
is due to the fact that tests for subset-maximality have to be done “by hand” in ASP requiring a certain
saturation technique. However, recent advances in ASP solvers, in particular, the metasp optimization

* Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-028.
! See http://rull.dbai.tuwien.ac.at:8080/ASPARTIX for a web front-end of ASPARTIX.
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front-end for the ASP-system gringo/claspD allows for much simpler encodings for such tests. More
precisely, metasp allows to use the traditional #minimize statement (which in its standard variant mini-
mizes wrt. cardinality or weights, but not wrt. subset inclusion) also for selection among answer sets which
are minimal (or maximal) wrt. subset inclusion in certain predicates. Details about metasp can be found
in [13].

Our first main contribution will be the practical comparison between handcrafted encodings (i.e. encod-
ings in the standard ASP language without the new semantics for the #minimize statement) and the much
simpler metasp encodings for argumentation semantics. The experiments show that the metasp encod-
ings do not necessarily result in longer runtimes. In fact, the metasp encodings for the semantics located
on the second level of the polynomial hierarchy outperform the handcrafted saturation-based encodings.
We thus can give additional evidence to the observations in [13], where such a speed-up was reported for
encodings in a completely different application area.

Our second contribution is the presentation of ASP encodings for the resolution-based grounded se-
mantics [1]. To the best of our knowledge, no implementation for this quite interesting semantics has been
released so far. In this paper, we present a rather involved handcrafted encoding (basically following the
NP-algorithm presented in [1]) but also two much simpler encodings (using metasp) which rely on the
original definition of the semantics.

Our results indicate that metasp is a very useful tool for problems known to be hard for the second-
level, but one might loose performance in case metasp is used for “easier” problems just for the sake of
comfortability. Nonetheless, we believe that the concept of the advanced #minimize statement is vital for
ASP, since it allows for rapid prototyping of second-level encodings without being an ASP guru.

The remainder of the paper is organized as follows: Section 2 provides the necessary background. Sec-
tion 3 then contains the ASP encodings for the semantics we are interested in here. We first discuss the
handcrafted saturation-based encoding for stage semantics (the ones for preferred and semi-stable are simi-
lar and already published). Then, in Section 3.2 we provide the novel met asp encodings for all considered
semantics. Afterwards, in Section 3.3 we finally present an alternative encoding for the resolution-based
grounded semantics which better mirrors the complexity of this semantics. Section 4 then presents our
experimental evaluation. We conclude the paper with a brief summary and discussion for future research
directions.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [7] and recall the semantics we study
in this paper (see also [1,2]). Moreover, we highlight complexity results for typical decision problems
associated to such frameworks.

Definition 1. An argumentation framework (AF) is a pair F' = (A, R) where A is a set of arguments and
R C A x A is the attack relation. The pair (a,b) € R means that a attacks b. An argument a € A is
defended by a set S C A if, for each b € A such that (b,a) € R, there exists a ¢ € S such that (c,b) € R.

Example 1. Consider the AF F' = (A, R) with A = {a,b,c,d,e, f} and R = {(a,b), (b,d), (¢,b), (¢,d),
(c,e), (d,c), (d,e), (e, f)}, and the graph representation of F':

® e(é)-e @

Semantics for argumentation frameworks are given via a function o which assigns to each AF F' = (A, R)
aset o(F) C 24 of extensions. We shall consider here for o the functions stb, adm, com, prf, grd,
grd*, stg, and sem which stand for stable, admissible, complete, preferred, grounded, resolution-based
grounded, stage, and semi-stable semantics respectively. Towards the definition of these semantics we have
to introduce two more formal concepts.
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Definition 2. Given an AF F' = (A, R). The characteristic function Fr : 2% = 24 of F is defined as
Fr(S) = {x € A | zisdefended by S}. Moreover, for a set S C A, we denote the set of arguments
attacked by S as S§ = {x | 3y € S such that (y, ) € R}, and define the range of S as S}, = SU S§.

Definition 3. Let F' = (A, R) be an AF. A set S C A is conflict-free (in F), if there are no a,b € S, such
that (a,b) € R. cf (F) denotes the collection of conflict-free sets of F. For a conflict-free set S € cf (F), it
holds that

S € sth(F), if S§ = A;

S € adm(F), if S C Fr(9);

S € com(F), if S = Fr(S);

S € grd(F), if S € com(F) and there isno T € com(F) withT C S;

S e prf(F), if S € adm(F) and there isno T € adm(F) with T D S;

S € sem(F), if S € adm(F) and there isno T € adm(F) with Ty, > S};
S € stg(F), ifthere isno T € cf (F) in F, such that Tj; > Sf.

We recall that for each AF F, the grounded semantics yields a unique extension, the grounded extension,
which is the least fix-point of the characteristic function Fr.

Example 2. Consider the AF F' from Example 1. We have {a,d, f} and {a, ¢, f} as the stable extensions
and thus stb(F) = stg(F) = sem(F) = {{a,d, f},{a,c, f}}. The admissible sets of F' are {}, {a}, {c},

{a,c}, {a,d}, {c, f}, {a,c, f}, {a,d, f} and therefore prf(F) = {{a,c, f},{a,d, f}}. Finally we have
com(F) = {{a}, {a,c, f}, {a,d, f}}, with {a} being the grounded extension.

On the base of these semantics one can define the family of resolution-based semantics [1], with the
resolution-based grounded semantics being the most popular instance.

Definition 4. A resolution § C R of an F = (A, R) contains exactly one of the attacks (a,b), (b,a) if
{(a,b),(b,a)} C R, a # b, and no further attacks. A set S C A is a resolution-based grounded extension
of F if (i) there exists a resolution (3 such that S = grd((A, R\ 3));? and (ii) there is no resolution 3' such
that grd((A,R\ p')) C S.

Example 3. Recall the AF F' = (A, F') from Example 1. There is one mutual attack and thus we have two
resolutions 31 = {(¢,d)} and B2 = {(d, c)}. Definition 4 gives us two candidates, namely grd((A, R\
B£1)) = {a,d, f} and grd((A, R\ B2)) = {a,c, f}; as they are not in C-relation they are the resolution-
based grounded extensions of F'.

We now turn to the complexity of reasoning in AFs. To this end, we define the following decision problems
for the semantics o introduced in Definitions 3 and 4:

— Credulous Acceptance Cred,: Given AF F' = (A, R) and an argument a € A. Is a contained in some
Sea(F)?

— Skeptical Acceptance Skept,: Given AF F' = (A, R) and an argument a € A. Is a contained in each
Seo(F)?

— Verification of an extension Ver,: Given AF F' = (A, R) and a set of arguments S C A.Is S € o(F)?

We assume the reader has knowledge about standard complexity classes like P and NP and recall that X1’
is the class of decision problems that can be decided in polynomial time using a nondeterministic Turing
machine with access to an NP-oracle. The class IT is defined as the complementary class of ¥, i.e.
5 = cox?.

In Table 1 we summarize complexity results relevant for our work [1, 6, 8—10].

2 Abusing notation slightly, we use grd (F') for denoting the unique grounded extension of F'.
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prf sem stg grd”

Cred, NP-c »Pc P NP-c
Skept, | II¥-c nf-c f-c  coNP-c
Ver, coNP-c  coNP-c  coNP-c in P

Table 1. Complexity of abstract argumentation (C-c denotes completeness for class C)

2.2 Answer-Set Programming

We first give a brief overview of the syntax and semantics of disjunctive logic programs under the answer-
sets semantics [14]; for further background, see [15].

We fix a countable set U of (domain) elements, also called constants; and suppose a total order < over
the domain elements. An afom is an expression p(t1,...,t,), where p is a predicate of arity n > 0 and
each ¢; is either a variable or an element from /. An atom is ground if it is free of variables. B;; denotes
the set of all ground atoms over U.

A (disjunctive) rule r is of the form

a; V -V oay, <—by,...,bg, notbgyy,..., notby,

withn > 0,m > k > 0,n+m > 0, where a1, ...,ay,,b1,...,b, are atoms, and “not” stands for
default negation. The head of r is the set H(r) = {a1,...,a,} and the body of r is B(r) = {by,..., by,
not byy1,. .., not by, }. Furthermore, BT (r) = {by,...,bx} and B~ (r) = {bg+1,-..,bm}. A rule r is
normal if n < 1 and a constraint if n = 0. A rule r is safe if each variable in r occurs in B*(r). A rule
r is ground if no variable occurs in r. A fact is a ground rule without disjunction and empty body. An
(input) database is a set of facts. A program is a finite set of disjunctive rules. For a program 7 and an input
database D, we often write 7(D) instead of D U . If each rule in a program is normal (resp. ground),
we call the program normal (resp. ground). Besides disjunctive and normal program, we consider here the
class of optimization programs, i.e. normal programs which additionally contain #minimize statements

H#minimizelly = w1 QJy, ...l = wpQJg), M

where [; is a literal, w; an integer weight and .J; an integer priority level.

For any program 7, let U, be the set of all constants appearing in 7. Gr(w) is the set of rules ro
obtained by applying, to each rule » € m, all possible substitutions o from the variables in 7 to elements
of Uy. An interpretation I C By satisfies a ground rule r iff H(r) N I # () whenever BT (r) C I
and B~ (r) NI = (. I satisfies a ground program , if each r € 7 is satisfied by I. A non-ground
rule r (resp., a program 7) is satisfied by an interpretation [ iff I satisfies all groundings of r (resp.,
Gr(m)). I C By is an answer set of m iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
7l = {H(r) < B*(r) | INB~(r) = 0,7 € Gr(r)}. For a program m, we denote the set of its answer
sets by AS ().

For semantics of optimization programs, we interpret the #minimize statement wrt. subset-inclusion:
For any sets X and Y of atoms, we have Y C% X, if for any weighted literal | = w@J occurring in
(1), Y [= [ implies X |= {. Then, M is a collection of relations of the form C% for priority levels J and
weights w. A standard answer set (i.e. not taking the minimize statements into account) Y of 7 dominates
a standard answer set X of 7 wrt. M if there are a priority level J and a weight w such that X C% Y does
not hold for C¥€ M, while Y Qj,’ X holds for all Q”,/ € M where J' > J. Finally a standard answer
set X is an answer set of an optimization program 7 wrt. M if there is no standard answer set Y of 7 that
dominates X wrt. M.

Credulous and skeptical reasoning in terms of programs is defined as follows. Given a program 7 and
a set of ground atoms A. Then, we write 7 =, A (credulous reasoning), if A is contained in some answer
set of 7; we write 7 =, A (skeptical reasoning), if A is contained in each answer set of 7.

We briefly recall some complexity results for disjunctive logic programs. In fact, since we will deal
with fixed programs we focus on results for data complexity. Depending on the concrete definition of |,
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e normal programs  disjunctive program  optimization programs
. NP =y %y
s coNP nr nr

Table 2. Data Complexity for logic programs (all results are completeness results).

we give the complexity results in Table 2 (cf. [S] and the references therein). We note here, that even
normal programs together with the optimization technique have a worst case complexity of ¥&" (resp. IT5).
Inspecting Table 1 one can see which kind of encoding is appropriate for an argumentation semantics.

3 Encodings of AF Semantics

In this section we first show how to represent AFs in ASP and we discuss three programs which we need
later on in this section’. Then, in Subsection 3.1 we exemplify on the stage semantics the saturation tech-
nique for encodings which solve associated problems which are on the second level of the polynomial
hierarchy. In Subsection 3.2 we will make use of the newly developed metasp optimization technique.
In Subsection 3.3 we give an alternative encoding based on the algorithm of Baroni et al. in [1], which
respects the lower complexity of resolution-based grounded semantics.

All our programs are fixed which means that the only translation required, is to give an AF F' as input
database F to the program 7, for a semantics o. In fact, for an AF F' = (A, R), we define Fas

F = {arg(a) | a € A} U {defeat(a,b) | (a,b) € R }.

In what follows, we use unary predicates in/1 and out/1 to perform a guess for a set S C A, where in(a)
represents that a € S. The following notion of correspondence is relevant for our purposes.

Definition 5. Let S C 2 be a collection of sets of domain elements and let T C 254 be a collection of sets
of ground atoms. We say that S and T correspond to each other, in symbols S = T, iff (i) for each S € S,
there exists an I € T, such that {a | in(a) € I} = S; (ii) for each I € T, it holds that {a | in(a) € I} € S;
and (iii) |S| = |Z|.

Consider an AF F'. The following program fragment guesses, when augmented by F, any subset S C A
and then checks whether the guess is conflict-free in F:

e = { In(X) < not out(X), arg(X);
out(X) « notin(X), arg(X);
— in(X),in(Y), defeat(X,Y) }.

Proposition 1. For any AF F, cf (F) = AS(7.;(F)).

Sometimes we have to avoid the use of negation. This might either be the case for the saturation technique
or if a simple program can be solved without a Guess&Check approach. Then, encodings typically rely on
a form of loops where all domain elements are visited and it is checked whether a desired property holds
for all elements visited so far. We will use this technique in our saturation-based encoding in the upcoming
subsection, but also for computing the grounded extension in Subsection 3.2. For this purpose the program
T, which is taken from [11], is used to encode the infimum, successor and supremum of an order < over
the domain elements in the predicates inf/1, succ/2 and sup/1 respectively. The order over the domain
elements is usually provided by common ASP solvers.

Finally, the following module computes for a guessed subset S C A the range SE (see Def. 2) of S in
an AF (A, R).

3 We make use of some program modules already defined in [11].
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Trange = {in,range(X) — IH(X),
in_range(X) « in(Y"), defeat(Y, X);
not_in_range(X) < arg(X), not in_range(X)}.

3.1 Saturation Encodings

In this subsection we make use of the saturation technique introduced by Eiter and Gottlob in [12]. In [11],
this technique was already used to encode the preferred and semi-stable semantics. Here we give the en-
codings for the stage semantics, which is similar to the one of semi-stable semantics, to exemplify the use
of the saturation technique.

In fact, for an AF F = (A, R) and S € cf (F) we need to check whether no T' € cf (F) with S}, € T}
exists. Therefore we have to guess an arbitrary set 7' and saturate in case (i) 7" is not conflict-free, and (ii)
SE s T}‘{ . Together with 7 this is done with the following module, where in /1 holds the current guess for
S and inN/1 holds the current guess for T'. More specifically, rule fail «— inN(X),inN(Y"), defeat(X,Y")
checks for (i) and the remaining two rules with fail in the head fire in case S} = TE (indicated by predicate
eqplus/0 described below), or there exists an a € S} such that a & T (here we use predicate in_range/1
from above and predicate not_in_rangeN/1 which we also present below). As is easily checked one of
these two conditions holds exactly if (ii) holds.

Tsatstage = 1 IMN(X) V outN(X) « arg(X);
fail « inN(X), inN(Y), defeat(X,Y);
fail < eqplus;
fail « in_range(X), not_in_rangeN(X);
iInN(X) « fail, arg(X);
outN(X) « fail, arg(X);

— not fail }.

For the definition of predicates not_in_rangeN/1 and eqplus/0 we make use of the aforementioned loop
technique and predicates from program 7.

— inf(Y), outN(X), outN(Y");
— inf(Y), outN(X), not defeat (Y, X);
— succ(Z,Y), undefeated upto(X, Z), outN(Y);
«— succ(Z,Y), undefeated upto(X, Z),
not defeat (Y, X);
not_in_rangeN(X) « sup(Y), outN(X), undefeated_upto(X,Y);
in_rangeN(X) « inN(X);
in_rangeN(X) <« outN(X),inN(Y"), defeat(Y, X)) }.

TrangeN = { undefeated_upto

)

undefeated_upto

X
X,
undefeated_upto(X,
X

S==>

(
(
(
(

undefeated_upto

)

+:
€eq

™ eqp-upto(X) <« inf(X), in_range(X), in_rangeN (X );

eqp-upto(X) « inf(X), not_in_range(X ), not_in_rangeN(X);

eqp-upto(X) « succ(Z, X), in_range(X), in_rangeN(X), eqp_upto(Z);
eqp-upto(X) « succ(Y, X), not_in_range(X ), not_in_rangeN(X), eqp_upto(Y’);

eqplus < sup(X), eqp-upto(X) };
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Proposition 2. For any AF F, stg(F) = AS(’]Tstg(F)), where Tgg = Tep U T U Trange U Trangen U
7(-2;1 ) T satstage-

3.2 Meta ASP Encodings

The following encodings for preferred, semi-stable and stage semantics are written using the #minimize|:|
statement when evaluated with the subset minimization semantics provided by metasp. For our encodings
we do not need prioritization and weights, therefore these are omitted (i.e. set to default) in the minimization
statements. The fact optimize (1,1, incl) is added to the meta ASP encodings, to indicate that we
use subset inclusion for the optimization technique using priority and weight 1.

We now look at the encodings for the preferred, semi-stable and stage semantics using this minimization
technique. First we need one auxiliary module for admissible extensions.

Tadm = Tef U {defeated(X) « in(Y"), defeat(Y, X);
— in(X), defeat(Y, X), not defeated(Y)}.

Now the modules for preferred, semi-stable and stage semantics are easy to encode using the minimization
statement of metasp. For the preferred semantics we take the module 744, and minimize the out/1
predicate. This in turn gives us the subset-maximal admissible extensions, which captures the definition of
preferred semantics. The encodings for the semi-stable and stage semantics are similar. Here we minimize
the predicate not_in_range/1 from the T range Module.

Tprf metasp = Tadm U {Fminimize[out]}.
Tsem-metasp = Tadm U Trange U {#minimize[not_in_range]}.

Tstg-metasp = Tef U Trange U {#minimize[not_in_range]}.

The following results follow now quite directly.
Proposition 3. For any AF F, we have

1. prf(F) = AS(Wprf,metasp( )A)’
2. sem(F) = AS(Wsem,metasp(F))’ and
3. stg(F) = AS(Tstg_metasp (F')).

Next we give two different encodings for computing resolution-based grounded extensions. Both encodings
use subset minimization for the resolution part, i.e. the resulting extension is subset minimal with respect to
all possible resolutions. The first one computes the grounded extension for the guessed resolution explicitly
(adapting the encoding from [11]; instead of the defeat predicate we use defeat_minus_beta, since we need
the grounded extensions of a restricted defeat relation). In fact, the 7,.s module which we give next guesses
this restricted defeat relation {R \ 3} for a resolution f3.

Tres = { defeat_minus_beta(X,Y) < defeat(X,Y), not defeat_minus_beta(Y, X),
X £Y,
defeat_minus_beta(X,Y) « defeat(X,Y), not defeat(Y, X);
defeat_minus_beta(X, X) « defeat(X, X)}.

The second encoding uses the metasp subset minimization additionally to get the grounded extension
from the complete extensions of the current resolution (recall that the grounded extension is in fact the
unique subset-minimal complete extension). We again use the restricted defeat relation.



124 Dvorik et al.

Teom = Tadm U { undefended(X) « defeat_minus_beta(Y, X), not defeated(Y);
— out(X), not undefended(X) }.

Now we can give the two encodings for resolution-based grounded semantics.

Tgrd*_metasp = Tgrd U Tres U {#minimize[in] }

Tr;rd*,metasp = Teom U Tres U {#mzmmzze [in}}.

Proposition 4. For any AF F' and m € {T gra*_metasps Tyrd= metasp > 974" (F) corresponds to AS (m(F))
in the sense of Definition 5, but without property (iii).

3.3 Alternative Encodings for Resolution-based Grounded Semantics

So far, we have shown two encodings for the resolution-based grounded semantics via optimization pro-
grams, i.e. we made use of the #minimize statement under the subset-inclusion semantics. From the com-
plexity point of view this is not adequate, since we expressed a problem on the NP-layer (see Table 1) via an
encoding which implicitly makes use of disjunction (see Table 2 for the actual complexity of optimization
programs). Hence, we provide here an alternative encoding for the resolution-based grounded semantics
based on the verification algorithm proposed by Baroni et al. in [1]. This encoding is just a normal program
and thus located at the right level of complexity.

We need some further notation. For an AF F' = (A, R) and a set S C A we define F|g = ((AN
S),RN (S x S)) as the sub-framework of F wrt S; furthermore we also use F' — S as a shorthand for
F|a\s. By SCCs(F'), we denote the set of strongly connected components of an AF F' = (A, R) which
identify the vertices of a maximal strongly connected* subgraphs of F'; SCCs(F) is thus a partition of
A. A partial order <p over SCCs(F) = {C4,...,Cy}, denoted as (C; <r C;) for i # j, is defined, if
Jdz € C;,y € C} such that there is a directed path from x to y in F'.

Definition 6. A C € SCCs(F) is minimal relevant (in an AF F) iff C is a minimal element of <p and
F|¢ satisfies the following:

(a) the attack relation R(F|c) of F is irreflexive, i.e. (x,z) ¢ R(F|c) for all arguments x;

(b) R(F|c) is symmetric, i.e. (x,y) € R(F|¢c) & (y,x) € R(F|c);

(c) the undirected graph obtained by replacing each (directed) pair {(x,vy), (y,x)} in F|c with a single
undirected edge {x,y} is acyclic.

The set of minimal relevant SCCs in F is denoted by MR(F).

Proposition 5 ([1]). Given an AF F = (A, R) such that (F — S}) # (0,0) and MR(F — S}) # 0,
where S = grd(F), a set U C A of arguments is resolution-based grounded in F, i.e. U € grd*(F) iff the
following conditions hold:

(i) UNnSE =8;
(ii) (T NIE) € sth(F|m,), where T = U \ S}, and I p = UVeMR(F—S;) V;
(iii) (T'NIIE) € grd*(F|pg — (Sk U (T N IIR)R)), where T and Il are as in (i) and ITg; = A\ I .

To illustrate the conditions of Proposition 5, let us have a look at our example.

4 A directed graph is called strongly connected if there is a directed path from each vertex in the graph to every other
vertex of the graph.



Making Use of Advances in Answer-Set Programming for Abstract Argumentation Systems 125

Example 4. Consider the AF F' of Example 1. Let us check whether U = {a,d, f} is resolution-based
grounded in F, i.e. whether U € grd*(F). S = {a} is the grounded extension of F" and S}, = {a, b}, hence
the first Condition (i) is satisfied. We obtain T' = {d, f} and IIr = {c,d}. We observe that TN ITr = {d}
is a stable extension of the AF F'|,,; that satisfies Condition (ii). Now we need to check Condition (iii);
we first identify the necessary sets: II¢ = {a,b,e, f}, TNIIE = {f} and (TNIIp)% = {c,e}. It remains
to check {f} € grd*({f}, D) which is easy to see. Hence, U € grd*(F).

The following encoding is based on the Guess&Check procedure which was also used for the encodings
in [11]. After guessing all conflict-free sets with the program 7., we check whether the conditions of
Definition 6 and Proposition 5 hold. Therefore the program 7,4 sc; makes a copy of the actual arguments,
defeats and the guessed set to the predicates arg_set/2, defeatN/3 and inU/2. The first variable in these
three predicates serves as an identifier for the iteration of the algorithm (this is necessary to handle the
recursive nature of Proposition 5). In all following predicates we will use the first variable of each predicate
like this. As in some previous encodings in this paper, we use the program 7. to obtain an order over the
arguments, and we start our computation with the infimum represented by the predicate inf/1.

Targ.set = { arg-set(N, X) « arg(X), inf(N);
inU(N, X) « in(X), inf(N);
defeatN(N,Y, X) « arg-set(N, X),argset(N,Y), defeat(Y, X) }.

We use here the program 7 jefendean (Which is a slight variant of the program 7 ¢ fendeq) together with the
program Tgpoundn Where we perform a fixed-point computation of the predicate defendedN/2, but now
we use an additional argument N for the iteration step where predicates arg_set/2, defeatN/3 and inS/2
replace arg /1, defeat/2 and in/1. In 7grounan We then obtain the predicate inS(V, X') which identifies
argument X to be in the grounded extension of the iteration V.

T groundN = Tcf Ur< U Targ_set U T defendedN U { inS(N, X) — defendedN(N, X) }

The next module 7Tr_minus_range cOmputes the arguments in (F — Sg), represented by the predicate
notInSplusN/2, via predicates in_SplusN/2 and u_cap_Splus/2 (for S} and UNS}). The two constraints
check condition (i) of Proposition 5.

TF_minus_range = 1 11-SplusN(N, X) « inS(N, X);
in_SplusN(V, X) « inS(N,Y), defeatN(V, Y, X);
u_cap_Splus(N, X) < inU(N, X), in_SplusN (N, X);
— u_cap_Splus(N, X), not inS(N, X);
— not u_cap_Splus(N, X),inS(N, X);
notInSplusN(N, X) «— arg_set(N, X), not in_SplusN(N, X)) }.

The module 7z computes I1r = J,, EMR(F-5%) V', where mr(N, X) denotes that an argument is con-
tained in a set V' € MR. Therefore we need to check all three conditions of Definition 6. The first two
rules compute the predicate reach(N, X, Y) if there is a path between the arguments X, Y € (F — S}).
With this predicate we will identify the SCCs. The third rule computes self_defeat/2 for all arguments
violating Condition (a). Next we need to check Condition (b). With nsym/2 we obtain those arguments
which do not have a symmetric attack to any other argument from the same component. Condition (c) is
a bit more tricky. With predicate reachnotvia/4 we say that there is a path from X to Y not going over
argument V in the framework (F — S}). With this predicate at hand we can check for cycles with cyc/4.
Then, to complete Condition (c) we derive bad/2 for all arguments which are connected to a cycle (or a
self-defeating argument). In the predicate pos_mr/2, we put all the three conditions together and say that
an argument x is possibly inaset V € MR if (i) x € (F — S;g), (ii) = is neither connected to a cycle
nor self-defeating, and (iii) for all y it holds that (z,y) € (F — S}%) < (y,z) € (F — S},). Finally we
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only need to check if the SCC obtained with pos_mr/2 is a minimal element of <. Hence we get with
notminimal/2 all arguments not fulfilling this, and in the last rule we obtain with mr/2 the arguments
contained in a minimal relevant SCC.

mur =1 reach(N, X,Y) < notInSplusN(N, X ), notInSplusN(N, V), defeatN(N, X, Y);
reach(N, X,Y) « notInSplusN(NV, X)), defeatN(N, X, Z), reach(N, Z,Y'),
X'=Y;
self_defeat(N, X') « notInSplusN(N, X), defeatN(N, X, X);
nsym(N, X)) < notInSplusN (N, X), notInSplusN(N, Y'), defeatN(N, X, Y),
not defeatN(N, Y, X),reach(N, X,Y), reach(N,Y, X), X! =Y
nsym(N,Y) <« notInSplusN(N, X), notInSplusN(V, Y, defeatN(N, X, Y),
not defeatN(N,Y, X),reach(N, X,Y),reach(N,Y, X), X! =Y
reachnotvia(N, X, V,Y) « defeatN(N, X, Y), notInSplusN(N, V),
reach(N, X,Y),reach(N,Y, X), X! =V, Y! =V;
reachnotvia(N, X, V,Y) « reachnotvia(N, X, V, Z),reach(N, X,Y),
reachnotvia(N, Z, V,Y),reach(N,Y, X),
2=V, X =VY!l=V;
cyc(N, XY, Z) « defeatN(N, X, Y), defeatN(N, Y, X),
defeatN(N,Y, Z), defeatN(N, Z,Y),
reachnotvia(N, X, Y, 2), X! =Y, Y! = Z X! = Z,
bad(N,Y) « cyc(N, X,U, V), reach(N, X,Y), reach(N, Y, X);
bad(N,Y) « self _defeat(N, X),reach(N, X,Y), reach(N,Y, X);
pos_mr(N, X) « notInSplusN(N, X), not bad(N, X), not self_defeat(N, X),
not nsym(N, X);
notminimal(N, Z) < reach(N, X, Y'), reach(N, Y, X),
reach(N, X, Z), not reach(N, Z, X );
mr(N, X) < pos_mr(N, X), not notminimal(N, X) }.

We now turn to Condition (ii) of Proposition 5, where the first rule in 74455y computes the set 7 = U \SE.
Then we check whether 7' = () and MR(F — S}) = () via predicates emptyT/1 and not_exists_mr/1. If
this is so, we terminate the iteration in the last module 7 ;¢4 . The first constraint eliminates those guesses
where MR(F — SE) = ( but T # 0, because the algorithm is only defined for AFs fulfilling this. Finally
we derive the arguments which are defeated by the set T in the MR denoted by defeated /2, and with the
last constraint we eliminate those guesses where there is an argument not contained in 7" and not defeated
by T'in MR and hence (T'N Ip) & stb(F|m,)-

TstableN = { (N, X) < inU(N, X), not inS(N, X);
nemptyT(N) «— t(N, X);
emptyT(N) «— not nemptyT(N), arg_set(N, X);
existsMR(N) « mr(N, X), notInSplusN (N, X);
not_exists_mr(N) « not existsMR (V), notInSplusN(N, X);
true(N) « emptyT(N), not existsMR(N);
— not_exists_mr(N ), nemptyT(N);
defeated(N, X ) «— mr(N, X), mr(N,Y),t(N,Y), defeatN(N, Y, X);
— not t(N, X), not defeated (N, X), mr(N, X) }.
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With the last module 7;;¢rqt. We perform Step (iii) of Proposition 5. The predicate t_mrOplus/2 computes
the set (T'N I1r)$ and with the second rule we start the next iteration for the framework (F| g — (St u

(TN Ir)E)) and the set (T' N IIE).

Titerate = { t-mrOplus(N,Y") «— t(N, X), mr(N, X), defeatN(N, X, Y);
arg-set(M, X) < notInSplusN(N, X), not mr(N, X),
not t_-mrOplus(N, X), succ(N, M), not true(N);
inU(M, X) « t(N, X), not mr(N, X),succ(N, M), not true(N) }.

Finally we put everything together and obtain the program 7 g,.q- .

Tgrd* = TMgroundN U T F_minus_range U TR U TstableN U Titerate-

Proposition 6. For any AF F, grd*(F) = AS (7 gra- (F)).

4 Experimental Evaluation

In this section we present our results of the performance evaluation. We compared the time needed for
computing all extensions for the semantics described earlier using both the handcraft saturation-based and
the alternative metasp encodings.

The tests were executed on an openSUSE based machine with eight Intel Xeon processors (2.33 GHz)
and 49 GB memory. For computing the answer sets, we used gringo (version 3.0.3) for grounding and
the solver claspD (version 1.1.1). The latter being the variant for disjunctive answer-set programs.

We randomly generated AFs (i.e. graphs) ranging from 20 to 110 arguments. We used two parametrized
methods for generating the attack relation.The first generates arbitrary AFs and inserts for any pair (a, b)
the attack from a to b with a given probability p. The other method generates AFs with a n x m grid-
structure. We consider two different neighborhoods, one connecting arguments vertically and horizontally
and one that additionally connects the arguments diagonally. Such a connection is a mutual attack with a
given probability p and in only one direction otherwise. The probability p was chosen between 0.1 and 0.4.

Overall 14388 tests were executed, with a timeout of five minutes for each execution. Timed out in-
stances are considered as solved in 300 seconds. The time consumption was measured using the Linux
t ime command. For all the tests we let the solver generate all answer sets, but only outputting the number
of models. To minimize external influences on the test runs, we alternated the different encodings during
the tests.

Figures 1 - 3 depict the results for the preferred, semi-stable and stage semantics respectively. The
figures show the average computation time for both the handcraft and the metasp encoding for a certain
number of arguments. We distinguish here between arbitrary, i.e. completely random AFs and grid struc-
tured ones. One can see that the metasp encodings have a better performance, compared to the handcraft
encodings. In particular, for the stage semantics the performance difference between the handcraft and
the metasp variant is noticeable. Recall that the average computation time includes the timeouts, which
strongly influence the diagrams.

For the resolution-based grounded semantics Figure 4 shows again the average computation time
needed for a certain number of arguments. Let us first consider the case of arbitrary AFs. The handcraft
encoding struggled with AFs of size 40 or larger. Many of those instances could not be solved due to mem-
ory faults. This is indicated by the missing data points. Both met asp encodings performed better overall,
but still many timeouts were encountered. If we look more closely at the structured AFs then we see that
T4 rd* metasp PEforms better overall than the other met asp variant. Interestingly, computing the grounded
part with a handcraft encoding without a Guess&Check part did not result in a lower computation time on
average. The handcraft encoding performed better than 7 g,q=_metasp ON grids.
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5 Conclusion

In this paper, we inspected various ASP encodings for four prominent semantics in the area of abstract
argumentation. (1) For the preferred and the semi-stable semantics, we compared existing saturation-based
encodings [11] (here we called them handcrafted encodings) with novel alternative encodings which are
based on the recently developed metasp approach [13], where subset minimization can be directly spec-
ified (and a front-end, i.e. a meta-interpreter) compiles such statements back into the core ASP language.
(2) For the stage semantics, we presented here both a handcrafted and a metasp encoding. Finally, (3)
for the resolution-based grounded semantics we provided three encodings, two of them using the metasp
techniques.

Although the met asp encodings are much simpler to design (since saturation techniques are delegated
to the meta-interpreter), they perform surprisingly well when compared with the handcraft encodings which
are directly given to the ASP solver. This shows the practical relevance of the met asp technique also in
the area of abstract argumentation. Future work has to focus on further experiments which hopefully will
strengthen our observations.
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Abstract. Publishing private data on external servers incurs the problem of how to avoid unwanted
disclosure of confidential data. We study a problem of confidentiality in extended disjunctive logic
programs and show how it can be solved by extended abduction. In particular, we analyze how credu-
lous non-monotonic reasoning affects confidentiality.

Keywords: Data publishing, confidentiality, privacy, extended abduction, answer set programming, nega-
tion as failure, non-monotonic reasoning

1 Introduction

Confidentiality of data (also called privacy or secrecy in some contexts) is a major security goal. Releasing
data to a querying user without disclosing confidential information has long been investigated in areas like
access control, k-anonymity, inference control, and data fragmentation. Such approaches prevent disclo-
sure according to some security policy by restricting data access (denial, refusal), by modifying some data
(perturbation, noise addition, cover stories, lying, weakening), or by breaking sensitive associations (frag-
mentation). Several approaches (like [3, 8, 13, 14,2, 15]) employ logic-based mechanisms to ensure data
confidentiality. In particular, [5] use brave reasoning in default logic theories to solve a privacy problem
in a classical database (a set of ground facts). For a non-classical knowledge base (where negation as fail-
ure not is allowed) [16] study correctness of access rights. Confidentiality of predicates in collaborative
multi-agent abduction is a topic in [10].

In this article we analyze confidentiality-preserving data publishing in a knowledge base setting:
data as well as integrity constraints or deduction rules are represented as logical formulas. If such a knowl-
edge base is released to the public for general querying (e.g., microcensus data) or outsourced to a storage
provider (e.g., database-as-a-service in cloud computing), confidential data could be disclosed. We assume
that users accessing the published knowledge base use a form of credulous (also called brave) reasoning to
retrieve data from it; users also possess some invariant “a priori knowledge” that can be applied to these
data to deduce further information. On the knowledge base side, a confidentiality policy specifies which is
the confidential information that must never be disclosed. This paper is one of only few papers (see [11,
16, 10]) covering confidentiality for logic programs. This formalism however has relevance in multi-agent
communications where agent knowledge is modeled by logic programs. With extended abduction ([12])
we obtain a “secure version” of the knowledge base that can safely be published even when a priori knowl-
edge is applied. We show that computing the secure version for a credulous user corresponds to finding a
skeptical anti-explanation for all the elements of the confidentiality policy. Extended abduction has been
used in different applications like for example providing a logical framework for dishonest reasoning [11].
It can be solved by computing the answer sets of an update program (see [12]); thus an implementation
of extended abduction can profit from current answer set programming (ASP) solvers [4]. To retrieve the

* Lena Wiese gratefully acknowledges a postdoctoral research grant of the German Academic Exchange Service
(DAAD).
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Fig. 1. Finding a confidentiality-preserving K7’ for a credulous user

confidentiality-preserving knowledge base K P“® from the input knowledge base K, the a priori knowledge
prior and the confidentiality policy policy, a row of transformations are applied; the overall approach is
depicted in Figure 1.

In sum, this paper makes the following contributions:

— it formalizes confidentiality-preserving data publishing for a user who retrieves data under a credulous
query response semantics.

— it devises a procedure to securely publish a logic program (with an expressiveness up to extended
disjunctive logic programs) respecting a subset-minimal change semantics.

— it shows that confidentiality-preservation for credulous users corresponds to finding a skeptical anti-
explanation and can be solved by extended abduction.

In the remainder of this article, Section 2 provides background on extended disjunctive logic programs
and answer set semantics; Section 3 defines the problem of confidentiality in data publishing; Section 4
recalls extended abduction and update programs; Section 5 shows how answer sets of update programs
correspond to confidentiality-preserving knowledge bases; and Section 6 gives some discussion and con-
cluding remarks.

2 EDPs and answer set semantics

In this article, a knowledge base K is represented by an extended disjunctive logic program (EDP) — a set
of formulas called rules of the form:

Ly;...; L — Liy1, ...y Lin,notLyyy1,...,notL, (n>m>12>0)

6,9 TR

A rule contains literals L;, disjunction *“;”, conjunction “,”, negation as failure “not”, and material impli-
cation “«". A literal is a first-order atom or an atom preceded by classical negation “—". notL is called a
NAF-literal. The disjunction left of the implication « is called the head, while the conjunction right of «—
is called the body of the rule. For a rule R, we write head(R) to denote the set of literals {L4, ..., L;} and
body(R) to denote the set of (NAF-)literals {L;11, ..., Ly, notLy41,...,notL,}. Rules consisting only
of a singleton head L « are identified with the literal L and used interchangeably. An EDP is ground if it
contains no variables. If an EDP contains variables, it is identified with the set of its ground instantiations:
the elements of its Herbrand universe are substituted in for the variables in all possible ways. We assume
that the language contains no function symbol, so that each rule with variables represents a finite set of
ground rules. For a program K, we denote .Zx the set of ground literals in the language of K. Note that
EDPs offer a high expressiveness including disjunctive and non-monotonic reasoning.

Example 1. In a medical knowledge base Ill(x, y) states that a patient « is ill with disease y; Treat(x, y)
states that x is treated with medicine y. Assume that if you read the record and find that one treatment
(Medi1) is recorded and another one (Medi2) is not recorded, then you know that the patient is at least ill
with Aids or Flu (and possibly has other illnesses).
K = {lli(x, Aids); Ill(x, Flu) < Treat(x,Medi1), notTreat(x, Medi2) ,

IlI(Mary, Aids) , Treat(Pete,Medi1)} serves as a running example.
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The semantics of K can be given by the answer set semantics [7]: A set S C .Zx of ground literals satisfies
a ground literal L if L € §; S satisfies a conjunction if it satisfies every conjunct; .S satisfies a disjunction
if it satisfies at least one disjunct; .S satisfies a ground rule if whenever the body literals are contained in
S ({Li+1,---, L} € 5) and all NAF-literals are not contained in S ({ Ly41, - .-, Ly} NS = (), then at
least one head literal is contained in S (L; € S for an 4 such that 1 < ¢ < [). If an EDP K contains no
NAF-literals (m = n), then such a set S is an answer set of K if S is a subset-minimal set such that

1. S satisfies every rule from the ground instantiation of K,
2. If S contains a pair of complementary literals L and =L, then S = Zx.

This definition of an answer set can be extended to full EDPs (containing NAF-literals) as in [12]: For
an EDP K and a set of ground literals S C %, K can be transformed into a NAF-free program K S as
follows. For every ground rule from the ground instantiation of K (with respect to its Herbrand universe),
therule Ly;...;L; < Lit1,..., Ly isin K% if {L,11,..., Ly} NS = (). Then, S is an answer set of K
if S is an answer set of K. An answer set is consistent if it is not £ . A program K is consistent if it has
a consistent answer set; otherwise K is inconsistent.

Example 2. The example K has the following two consistent answer sets

S1 = {lll(Mary, Aids), Treat(Pete, Medi1), Ili(Pete, Aids) }
Sy = {Ill(Mary, Aids), Treat(Pete, Medi1), Ili(Pete, Flu) }

When adding the negative fact —/ll(Pete, Flu) to K, then there is just one consistent answer set left: for
K’ := K U {~lll(Pete, Flu)} the unique answer set is

S’ = {ll(Mary, Aids), —Iil(Pete, Flu), Treat(Pete, Medi1), Ill(Pete, Aids) }.

If a rule R is satisfied in every answer set of K, we write K = R. In particular, K |= L if a literal L is
included in every answer set of K.

3 Confidentiality-Preserving Knowledge Bases

When publishing a knowledge base K while preserving confidentiality of some data in K we do this
according to

— the query response semantics that a user querying the published knowledge base applies; we focus on
credulous query response semantics

— aconfidentiality policy (denoted policy) describing confidential information that should not be released
to the public

— background (a priori) knowledge (denoted prior) that a user can combine with query responses from
the published knowledge base

First we define the credulous query response semantics: a ground formula @ is true in K, if @) is satisfied
in some answer set of K — that is, there might be answer sets that do not satisfy @Q. If a rule () is non-ground
and contains some free variables, the credulous response of K is the set of ground instantiations of () that
are true in K.

Definition 1 (Credulous query response semantics). Let U be the Herbrand universe of a consistent
knowledge base K. The credulous query responses of formula Q(X) (with a vector X of free variables) in
K are
cred(K,Q(X)) = {Q(A) | Ais avector of elements a € U and there
is an answer set of K that satisfies Q(A)}

In particular, for a ground formula Q,

Q if K has an answer set that satisfies @
(0 otherwise

cred(K,Q) = {
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It is usually assumed that in addition to the query responses a user has some additional knowledge that
he can apply to the query responses. Hence, we additionally assume given a set of rules as some invariant
a priori knowledge prior. Without loss of generality we assume that prior is an EDP. Thus, the priori
knowledge may consist of additional facts that the user assumes to hold in K, or some rules that the user
can apply to data in K to deduce new information.

A confidentiality policy policy specifies confidential information. We assume that policy contains
only conjunctions of (NAF-)literals. However, see Section 5.1 for a brief discussion on how to use more
expressive policy formulas. We do not only have to avoid that the published knowledge base contains
confidential information but also prevent the user from deducing confidential information with the help of
his a priori knowledge; this is known as the inference problem [6, 2].

Example 3. If we wish to declare the disease aids as confidential for any patient x we can do this with
policy = {Ill(x, Aids)}. A user querying KP“* might know that a person suffering from flu is not able to
work. Hence prior = {-AbleToWork(x) < Ill(x, Flu)}. If we wish to also declare a lack of work ability
as confidential, we can add this to the confidentiality policy: policy’ = {Ill(z, Aids) , —~AbleToWork(x)}.

Next, we establish a definition of confidentiality-preservation that allows for the answer set semantics as
an inference mechanism and respects the credulous query response semantics: when treating elements of
the confidentiality policy as queries, the credulous responses must be empty.

Definition 2 (Confidentiality-preservation for credulous user). A knowledge base KP"" preserves con-
fidentiality of a given confidentiality policy under the credulous query response semantics and with respect
to a given a priori knowledge prior, if for every conjunction C(X) in the policy, the credulous query
responses of C(X) in KP"* U prior are empty: cred(KP“* U prior, C(X)) = (.

Note that in this definition the Herbrand universe of KP“* U prior is applied in the query response
semantics; hence, free variables in policy elements C'(X) are instantiated according to this universe. Note
also that K'P“* U prior must be consistent. Confidentiality-preservation for skeptical query response se-
mantics is topic of future work.

A goal secondary to confidentiality-preservation is minimal change: We want to publish as many data
as possible and want to modify these data as little as possible. Different notions of minimal change are
used in the literature (see for example [1] for a collection of minimal change semantics in a data integration
setting). We apply a subset-minimal change semantics: we choose a K P“ that differs from K only subset-
minimally. In other words, there is not other confidentiality-preserving knowledge base K pub’ which inserts
(or deletes) less rules to (from) K than KPub.

Definition 3 (Subset-minimal change). A confidentiality-preserving knowledge base KP"® subset-rnin;
imally changes K (or is minimal, for short) if there is no confidentiality-preserving knowledge base KP"
such that (K \ KP*') U (KP%'\ K)) C (K \ KP") U (K?" \ K)).

Example 4. For the example K and policy and no a priori knowledge, the fact I//(Mary, Aids) has to be
deleted. But also /li(Pete, Aids) can be deduced credulously, because it is satisfied by answer set S;. In
order to avoid this, we have three options: delete Trear(Pete, Medi1), delete the non-literal rule in K or
insert Treat(Pete, Medi2). The same solutions are found for K, policy’ and prior: they block the credulous
deduction of ~AbleToWork(Pete). The same applies to K’ and policy.

In the following sections we obtain a minimal solution KP* for a given input K, prior and policy
by transforming the input into a problem of extended abduction and solving it with an appropriate update
program.

4 Extended Abduction

Traditionally, given a knowledge base K and an observation formula O, abduction finds a “(positive) ex-
planation” E — a set of hypothesis formulas — such that every answer set of the knowledge base and the
explanation together satisfy the observation; that is, K U E |= O. Going beyond that [9, 12] use extended
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ELINT3

abduction with the notions of “negative observations”, “negative explanations” F' and “anti-explanations”.
An abduction problem in general can be restricted by specifying a designated set A of abducibles. This set
poses syntactical restrictions on the explanation sets E and F'. In particular, positive explanations are char-
acterized by E C A\ K and negative explanations by F' C K N A. If A contains a formula with variables,
it is meant as a shorthand for all ground instantiations of the formula. In this sense, an EDP K accompanied
by an EDP A is called an abductive program written as (K, A). The aim of extended abduction is then to
find (anti-)explanations as follows (where in this article only skeptical (anti-)explanations are needed):

— given a positive observation O, find a pair (F, F') where F is a positive explanation and F’ is a negative
explanation such that
1. [skeptical explanation] O is satisfied in every answer set of (K \ F)UE; thatis, (K \F)UE = O
2. [consistency] (K \ F') U E is consistent
3. [abducibility] E C A\ Kand FC AN K
— given a negative observation O, find a pair (E, F') where E is a positive anti-explanation and F is a
negative anti-explanation such that
1. [skeptical anti-explanation] there is no answer set of (K \ F') U E in which O is satisfied
2. [consistency] (K \ F') U E is consistent
3. [abducibility] E C A\ Kand FC AN K

Among (anti-)explanations, minimal (anti-)explanations characterize a subset-minimal alteration of the
program K: an (anti-)explanation (E, F') of an observation O is called minimal if for any (anti-)explanation
(E',F')of O,E' C Eand F' C Fimply ' = Fand F’ = F.

For an abductive program (K, A) both K and A are semantically identified with their ground instan-
tiations with respect to the Herbrand universe, so that set operations over them are defined on the ground
instances. Thus, when (E, F') contain formulas with variables, (K \ F') U E means deleting every instance
of formulas in F', and inserting any instance of formulas in & from/into K. When E contains formulas with
variables, the set inclusion £/ C F is defined for any set E’ of instances of formulas in F. Generally, given
sets S and 7" of literals/rules containing variables, any set operation o is defined as SoT" = inst(S)oinst(T)
where inst(S) is the ground instantiation of .S. For example, when p(x) € T, for any constant a occurring

in T, it holds that {p(a)} C T, {p(a)} \ T = 0,and T\ {p(a)} = (T'\ {p(z)}) U{p(y) | y # a}, etc.
Moreover, any literal/rule in a set is identified with its variants modulo variable renaming.

4.1 Normal form

Although extended abduction can handle the very general format of EDPs, some syntactic transformations
are helpful. Based on [12] we will briefly describe how a semantically equivalent normal form of an abduc-
tive program (K, A) is obtained — where both the program K and the set A of abducibles are EDPs. This
makes an automatic handling of abductive programs easier; for example, abductive programs in normal
form can be easily transformed into update programs as described in Section 4.2. The main step is that
rules in .A can be mapped to atoms by a naming function n. Let R be the set of abducible rules:

R={Y«TI|(X«TI)eAand (¥ < I)is not a literal }

Then the normal form (K™, A™) is defined as follows where n(R) maps each rule R to a fresh atom with
the same free variables as I

K" = (K\R)U{Y — I'n(R) | R= (¥ — I') € R}
U{n(R) | R € KNR}
A" = (A\R) U{n(R) | R € R}

We define that any abducible literal L has the name L, i.e., n(L) = L. It is shown in [12], that for any
observation O there is a 1-1 correspondence between (anti-)explanations with respect to (K, A) and those
with respect to (K™, A™). That s, forn(E) = {n(R)|R € E} and n(F) = {n(R)|R € F'}: an observation
O has a (minimal) skeptical (anti-)explanation (E, F') with respect to (K, A) iff O has a (minimal) skeptical
(anti-)explanation (n(E),n(F')) with respect to (K™, A™). Hence, insertion (deletion) of a rule’s name
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in the normal form corresponds to insertion (deletion) of the rule in the original program. In sum, with
the normal form transformation, any abductive program with abducible rules is reduced to an abductive
program with only abducible literals.

Example 5. We transform the example knowledge base K into its normal form based on a set of abducibles
that is identical to K: that is A = K; a similar setting will be used in Section 5.2 to achieve deletion of
formulas from K. Hence we transform (K, .A) into its normal form (K", A™) as follows where we write
n(R) for the naming atom of the only rule in A:

K" = {Illl(Mary, Aids),  Treat(Pete,Medi1), n(R),
Ill(x, Aids); Ill(z, Flu) « Treat(z,Medi1), notTreat(x, Medi2),n(R)}
A" = {lll(Mary, Aids), Treat(Pete,Medi1), n(R) }

4.2 Update programs

Minimal (anti-)explanations can be computed with update programs (UPs) [12]. The update-minimal (U-
minimal) answer sets of a UP describe which rules have to be deleted from the program, and which rules
have to be inserted into the program, in order (un-)explain an observation.

For the given EDP K and a given set of abducibles A, a set of update rules UR is devised that describe
how entries of K can be changed. This is done with the following three types of rules.

1. [Abducible rules] The rulfis for abducible literals state that an abducible is either true in K or not. For
each L € A, anew atom L is introduced that has the same variables as L. Then the set of abducible
rules for each L is defined as

abd(L) := {L « notL , L « notL}.

2. [Insertion rules] Abducible literals that are not contained in K might be inserted into K and hence
might occur in the set E of the explanation (E, F). For each L € A\ K, a new atom +L is introduced
and the insertion rule is defined as

+L «— L.

3. [Deletion rules] Abducible literals that are contained in K might be deleted from K and hence might
occur in the set F' of the explanation (E, F'). For each L € AN K, a new atom —L is introduced and
the deletion rule is defined as

—L < notL.

The update program is then defined by replacing abducible literals in K with the update rules; that is,
UP=(K\A)UUR.
Example 6. Continuing Example 5, from (K™, A™) we obtain

UP = { abd(lll(Mary, Aids)), abd(Treat(Pete,Medil1)), abd(n(R)),
—1li(Mary, Aids) < notlll(Mary, Aids),
—Treat(Pete, Medi1) < notTreat(Pete, Medil),
—n(R) « notn(R),
Hl(x, Aids); Ill(z, Flu) < Treat(x, Medi1), notTreat(z, Medi2), n(R)}

The set of atoms +L is the set A" of positive update atoms; the set of atoms —L is the set A~ of
negative update atoms. The set of update atoms is /. A = AT UU.A~. From all answer sets of an update
program UP we can identify those that are update minimal (U-minimal): they contain less update atoms
than others. Thus, S is U-minimal iff there is no answer set 7" such that T NUA C SNUA.
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4.3 Ground observations

It is shown in [9] how in some situations the observation formulas O can be mapped to new positive
ground observations. Non-ground atoms with variables can be mapped to a new ground observation. Several
positive observations can be conjoined and mapped to a new ground observation. A negative observation
(for which an anti-explanation is sought) can be mapped as a NAF-literal to a new positive observation
(for which then an explanation has to be found). Moreover, several negative observations can be mapped
as a conjunction of NAF-literals to one new positive observation such that its resulting explanation acts
as an anti-explanation for all negative observations together. Hence, in extended abduction it is usually
assumed that O is a positive ground observation for which an explanation has to be found. In case of
finding a skeptical explanation, an inconsistency check has to be made on the resulting knowledge base.
Transformations to a ground observation and inconsistency check will be detailed in Section 5.1 and applied
to confidentiality-preservation.

5 Confidentiality-Preservation with UPs

We now show how to achieve confidentiality-preservation by extended abduction: we define the set of
abducibles and describe how a confidentiality-preserving knowledge base can be obtained by computing
U-minimal answer sets of the appropriate update program. We additionally distinguish between the case
that we allow only deletions of formulas — that is, in the anti-explanation (E, F') the set E of positive
anti-explanation formulas is empty — and the case that we also allow insertions.

5.1 Policy transformation for credulous users

Elements of the confidentiality policy will be treated as negative observations for which an anti-explanation
has to be found. Accordingly, we will transform policy elements to a set of rules containing new positive
observations as sketched in Section 4.3. We will call these rules policy transformation rules for credulous
users (PTR™?).

More formally, assume policy contains k elements. For each conjunction C; € policy ( = 1...k),
we introduce a new negative ground observation O; and map C; to O; . As each C; is a conjunction of
(NAF-)literals, the resulting formula is an EDP rule. As a last policy transformation rule, we add one that
maps all new negative ground observations O; (in their NAF version) to a positive observation O". Hence,

PTR* :={0; « C; | C; € policy} U{OT «— not Oy ,...,not O }.
Example 7. The set of policy transformation rules for policy' is
PTR* = {O] « Hi(z,Aids) , O5 « —AbleToWork(z) , O « not O, not Oy }

Lastly, we consider a goal rule GR that enforces the single positive observation O7: GR = {«
not Ot }.

We can also allow more expressive policy elements in disjunctive normal form (DNF: a disjunction of
conjunctions of (NAF-)literals). If we map a DNF formula to a new observation (that is, O;isj — C1V...V
() this is equivalent to mapping each conjunct to the observation (that is, O, . < C1,..., 0y, «— C).
We also semantically justify this splitting into disjuncts by arguing that in order to protect confidentiality
of a disjunctive formula we indeed have to protect each disjunct alone. However, if variables are shared
among disjuncts, these variables have to be grounded according to the Herbrand universe of K U prior
first; otherwise the shared semantics of these variables is lost.

5.2 Deletions for credulous users

As a simplified setting, we first of all assume that only deletions are allowed to achieve confidentiality-
preservation. This setting can informally be described as follows: For a given knowledge base K, if we
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only allow deletions of rules from K, we have to find a skeptical negative explanation F' that explains the
new positive observation O while respecting prior as invariable a priori knowledge. The set of abducibles
is thus identical to K as we want to choose formulas from K for deletion: A = K. That is, in total we
consider the abductive program (K, A). Then, we transform it into normal form (K™, A™), and compute
its update program U P as described in Section 4.2. As for prior, we add this set to the update program U P
in order to make sure that the resulting answer sets of the update program do not contradict prior. Finally,
we add all the policy transformation rules PTR"*? and the goal rule GR. The goal rule is then meant as a
constraint that filters out those answer sets of U P U prior U PTR®"** in which O is true. We thus obtain
a new program P as
P = UP U prior UPTR™ U GR

and compute its U-minimal answer sets. If S is one of these answer sets, the negative explanation F is
obtained from the negative update atoms contained in S: F = {L | —L € S}.

To obtain a confidentiality-preserving knowledge base for a credulous user, we have to check for incon-
sistency with the negation of the positive observation O" (which makes F' a skeptical explanation of OT);
and allow only answer sets of P that are U-minimal among those respecting this inconsistency property.
More precisely, we check whether

(K \ F) U prior U PTR** U {— O} is inconsistent. (1)

Example 8. We combine the update program U P of K with prior and the policy transformation rules and
goal rule. This leads to the following two U-minimal answer sets with only deletions which satisfy the
inconsistency property (1):

S1 = {—Ill(Mary, Aids), —Treat(Pete, Medi1), n(R), lll(Mary, Aids), Treat(Pete, Medi1), 0"}
Sl = {—Ill(Mary, Aids), Treat(Pete, Medi1), —n(R), lll(Mary, Aids), n(R), O™ }.

These answer sets correspond to the minimal solutions from Example 4 where I//(Mary, Aids) must be
deleted together with either Trear(Pete, Medi1) or the rule named R.

Theorem 1 (Correctness for deletions). A knowledge base KP** = K \ F preserves confidentiality and
changes K subset-minimally iff F is obtained by an answer set of the program P that is U-minimal among
those satisfying the inconsistency property (1).

Proof. (Sketch) First of all note that because we chose K to be the set of abducibles .4, only negative
update atoms from YA~ occur in UP — no insertions with update atoms from A" will be possible.
Hence we automatically obtain an anti-explanation (E, F) where F is empty. As shown in [12], there is
a 1-1 correspondence of minimal explanations and U-minimal answer sets of update programs; and anti-
explanations are identical to explanations of a new positive observation when applying the transformations
asin PTR"*?. By properties of skeptical (anti-)explanations we have thus K?“* U prior UPTR™ |= Ot
but for every O, there is no answer set in which O;" is satisfied. This holds iff for every policy element C;
there is no answer set of KP“® U prior that satisfies any instantiation of C; (with respect to the Herbrand
universe of KP“ U prior); thus cred(KP"* U prior,C;) = (). Subset-minimal change carries over from
U-minimality of answer sets.

5.3 Deletions and literal insertions

To obtain a confidentiality-preserving knowledge base, (incorrect) entries may also be inserted into the
knowledge base. To allow for insertions of literals, a more complex set .4 of abducibles has to be chosen.
We reinforce the point that the subset .4 N K of abducibles that are already contained in the knowledge
base K are those that may be deleted while the subset .4 \ K of those abducibles that are not contained in
K may be inserted.

First of all, we assume that the policy transformation is applied as described in Section 5.1. Then,
starting from the new negative observations O, used in the policy transformation rules, we trace back all
rules in K U prior U PTR™? that influence these new observations and collect all literals in the bodies
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of these rules. In other words, we construct a dependency graph (as in [16]) and collect the literals that the
negative observations depend on. More formally, let P be the set of literals that the new observations O}
directly depend on:

Py ={L| L € body(R) or notL € body(R)
where R € PTR®* and O;" € head(R)}

Next we iterate and collect all the literals that the P, literals depend on:

Pjy1={L| L € body(R) or notL € body(R)
where R € K U prior U PTR™* and head(R) N P; # 0}
and combine all such literals in a set P = U;’io P;.

As we also want to have the option to delete rules from K (not only the literals in P), we define the set
of abducibles as the set P plus all those rules in K whose head depends on literals in P:

A=PU{R|Re K and head(R)NP # 0}

Example 9. For the example K U prior U PTR™*?, the dependency graph is shown in Figure 2. We
note that the new negative observation O; directly depends on the literal /ll(z, Aids) and the new nega-
tive observation O directly depends on the literal ~AbleToWork(x); this is the first set of literals Py =
{lll(x, Aids), ~AbleToWork(x) }. By tracing back the dependencies in the graph,

P = {1li(x, Aids), ~AbleToWork(z), Ill(xz, Flu), Treat(x, Medi1), Treat(x, Medi2) }

is obtained. Lastly, we also have to add the rule R from K to A because literals in its head are contained in
P.

o5 Ill(z, Aids) Treat(z, Medi1) |

O3 4—‘ —AbleToWork(x) H Ill(z, Flu) Treat(z, Medi2) ‘

Fig. 2. Dependency graph for literals in K U prior U PTR

We obtain the normal form and then the update program UP for K and the new set of abducibles .A.
The process of finding a skeptical explanation proceeds with finding an answer set of program P as in
Section 5.2 where additionally the positive explanation F is obtained as E = {L | +L € S} and S is
U-minimal among those satisfying

(K \ F)U E U prior U PTR™ U {«< O%} is inconsistent. (2)

Example 10. For UP from Example 8 the new set of abducibles leads to additional insertion rules. Among
others, the insertion rule for the new abducible Treat(Pete, Medi2) is +Treat(Pete, Medi2) « Treat(Pete,
Medi2). With this new rule included in U P, we also obtain the solution of Example 4 where the fact
Treat(Pete, Medi2) is inserted into K (together with deletion of ///(Mary, Aids)).

Theorem 2 (Correctness for deletions & literal insertions). A knowledge base KP** = (K \ F) U
E preserves confidentiality and changes K subset-minimally iff (E, F') is obtained by an answer set of
program P that is U-minimal among those satisfying inconsistency property (2).

Proof. (Sketch) In UP, positive update atoms from 2/ A™ occur for literals on which the negative obser-
vations depend. For subset-minimal change, only these literals are relevant for insertions; inserting other
literals will lead to non-minimal change. In analogy to Theorem 1, by the properties of minimal skep-
tical (anti-)explanations that correspond to U-minimal answer sets of an update program, we obtain a
confidentiality-preserving K P“* with minimal change.
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6 Discussion and Conclusion

This article showed that when publishing a logic program, confidentiality-preservation can be ensured
by extended abduction; more precisely, we showed that under the credulous query response it reduces
to finding skeptical anti-explanations with update programs. This is an application of data modification,
because a user can be mislead by the published knowledge base to believe incorrect information; we hence
apply dishonesties [11] as a security mechanism. This is in contrast to [16] whose aim is to avoid incorrect
deductions while enforcing access control on a knowledge base. Another difference to [16] is that they
do not allow disjunctions in rule heads; hence, to the best of our knowledge this article is the first one
to handle a confidentiality problem for EDPs. In [3] the authors study databases that may provide users
with incorrect answers to preserve security in a multi-user environment. Different from our approach, they
consider a database as a set of formulas of propositional logic and formulate the problem using modal
logic. In analogy to [12], a complexity analysis for our approach can be achieved by reduction of extended
abduction to normal abduction. Work in progress covers data publishing for skeptical users; future work
might handle insertion of non-literal rules.
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Abstract. We report about the current state and designated features of the tool SeaLion, aimed to
serve as an integrated development environment (IDE) for answer-set programming (ASP). A main
goal of SeaLion is to provide a user-friendly environment for supporting a developer to write, evalu-
ate, debug, and test answer-set programs. To this end, new support techniques have to be developed that
suit the requirements of the answer-set semantics and meet the constraints of practical applicability. In
this respect, SeaLion benefits from the research results of a project on methods and methodologies
for answer-set program development in whose context Sealion is realised. Currently, the tool pro-
vides source-code editors for the languages of Gringo and DLV that offer syntax highlighting, syntax
checking, and a visual program outline. Further implemented features are support for external solvers
and visualisation as well as visual editing of answer sets. SeaLion comes as a plugin of the popular
Eclipse platform and provides itself interfaces for future extensions of the IDE.

1 Introduction

Answer-set programming (ASP) is a well-known and fully declarative problem-solving paradigm based
on the idea that solutions to computational problems are represented in terms of logic programs such that
the models of the latter, referred to as the answer sets, provide the solutions of a problem instance.! In
recent years, the expressibility of languages supported by answer-set solvers increased significantly [3]. As
well, ASP solvers have become much more efficient, e.g., the solver C1lasp proved to be competitive with
state-of-the-art SAT solvers [4].

Despite these improvements in solver technology, a lack of suitable engineering tools for developing
programs is still a handicap for ASP towards gaining widespread popularity as a problem-solving paradigm.
This issue is clearly recognised in the ASP community and work to fill this gap has started recently, ad-
dressing issues like debugging, testing, and the modularity of programs [5—13]. Additionally, in order to
facilitate tool support as known for other programming languages, attempts to provide integrated devel-
opment environments (IDEs) have been put forth. Work in this direction includes the systems APE [14],
ASPIDE [15], and 1GROM [16].

Following this endeavour, in this paper, we describe the current status and designated features of a
further IDE, SeaLion, developed as part of an ongoing research project on methods and methodologies
for developing answer-set programs [17].

SeaLion is designed as an Eclipse plugin, providing useful and intuitive features for ASP. Besides
experts, the target audience for SeaLion are software developers new to ASP, yet who are familiar with
support tools as used in procedural and object-oriented programming. Our goal is to fully support the lan-
guages of the current state-of-the-art solvers Clasp (in conjunction with Gringo) [3, 18] and DLV [19],
which distinguishes SeaLion from the other IDEs mentioned above which support only a single solver.
Indeed, APE [14], which is also an Eclipse plugin, supports only the language of Lparse [20] that is a sub-
set of the language of Gringo, whilst ASPIDE [15], a recently developed standalone IDE, offers support
only for DLV programs. Although i GROM provides basic functionality for the languages of both Lparse
and DLV [16], it currently does not support the latest version of DLV or the full syntax of Gringo.

* This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
! For an overview about ASP, we refer the reader to a survey article by Gelfond and Leone [1] or the textbook by
Baral [2].
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At present, SeaLion is in an alpha version that already implements important core functionality. In
particular, the languages of DLV and Gringo are supported to a large extent. The individual parsers trans-
late programs and answer sets to data structures that are part of a rich and flexible framework for internally
representing program elements. Based on these structures, the editor provides syntax highlighting, syntax
checks, error reporting, error highlighting, and automatic generation of a program outline. There is func-
tionality to manage external tools such as answer-set solvers and to define arbitrary pipes between them (as
needed when using separate grounders and solvers). Moreover, in order to run an answer-set solver on the
created programs, launch configurations can be created in which the user can choose input files, a solver
configuration, command line arguments for the solver, as well as output-processing strategies. Answer sets
resulting from a launch can either be parsed and stored in a view for interpretations, or the solver output
can be displayed unmodified in Eclipse’s built-in console view.

Another key feature of SeaLion is the capability for the visualisation and visual editing of inter-
pretations. This follows ideas from the visualisation tools ASPVIZ [21] and IDPDraw [22], where a
visualisation program [Ty (itself being an answer-set program) is joined with an interpretation / that shall
be visualised. Subsequently, the overall program is evaluated using an answer-set solver, and the visual-
isation is generated from a resulting answer set. However, the editing feature of SeaLion allows also
to graphically manipulate the interpretations under consideration which is not supported by ASPVIZ and
IDPDraw.

The visualisation functionality of SeaLion is itself represented as an Eclipse plugin, called Kara.’
In this paper, however, we describe only the basic functionality of Kara; a full description is given in a
companion paper [23].

2 Architecture and Implementation Principles

We assume familiarity with the basic concepts of answer-set programming (ASP) (for a thorough introduc-
tion to the subject, cf. Baral [2]). In brief, an answer-set program consists of rules of the form

arV---Va:i— a1, .. ,0m, 00t Gy, ..., 00t Ay,

where n > m > [ > 0, “not” denotes default negation, and all a; are first-order literals (i.e., atoms possibly
preceded by the strong negation symbol —). For a rule r as above, the expression left to the symbol “: —”
is the head of r and the expression to the right of “: —” is the body of r. If n = | = 1, r is a fact; if r
contains no disjunction, r is normal; and if [ = 0 and n > 0, r is a constraint. For facts, the symbol “: —”
is usually omitted. The grounding of a program P relative to its Herbrand universe is defined as usual. An
interpretation I is a finite and consistent set of ground literals, where consistency means that {a, ~a} € I,
for any atom a. I is an answer set of a program P if it is a minimal model of the grounding of the reduct
of P relative to I (see Baral [2] for details).

A key aspect in the design of SeaLion is extensibility. That is, on the one hand, we want to have
enough flexibility to handle further ASP languages such that previous features can deal with them with
no or little adaption. On the other hand, we want to provide a powerful API framework that can be used
by future features. To this end, we defined a hierarchy of classes and interfaces that represent program
elements, i.e., fragments of ASP languages. This is done in a way such that we can use common inter-
faces and base classes for representing similar program elements of different ASP languages. For instance,
we have different classes for representing literals of the Gringo language and literals of the DLV lan-
guage in order to be able to handle subtle differences. For example, in Gringo, a literal can have several
other literals as conditions, e.g., redEdge (X, Y) :edge (X, Y) :red (X) : red (Y). Intuitively, during
grounding, this literal is replaced by the list of all literals redEdge (nl, n2), where edge (nl,n2),
red(nl), and red (n2) can be derived during grounding. As DLV is unaware of conditions, an object
of class DLVStandardLiteral has no support for them, whereas a GringoStandardLiteral ob-
ject keeps a list of condition literals. Substantial differences in other language features, like aggregates,

2 The name derives, with all due respect, from “Kara Zor-EI”, the native Kryptonian name of Supergirl, given that
Kryptonians have visual superpowers on Earth.
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optimisation, and filtering support, are also reflected by different classes for Gringo and DLV, respec-
tively. However, whenever possible, these classes are derived from a common base class or share common
interfaces. Therefore, plugins can, for example, use a general interface for aggregate literals to refer to ag-
gregates of both languages. Hence, current and future feature implementations can make use of high-level
interfaces and stay independent of the concrete ASP language to a large extent.

Also, within the SeaLion implementation, the aim is to have independent modules for different fea-
tures, in form of Eclipse plugins, that ensure a well-structured code. Currently, there are the following
plugins: (i) the main plugin, (ii) a plugin that adapts the ANTLR parsing framework [24] to our needs,
(iii) two solver plugins, one for Gringo/Clasp and one for DLV, and (iv) the Kara plugin for answer-set
visualisation and visual editing. Moreover, it is a key aim to smoothly integrate SeaLion in the Eclipse
platform and to make use of functionality the latter provides wherever suitable. The motivation is to exploit
the rich platform as well as to ensure compatibility with upcoming versions of Eclipse.

The decision to build on Eclipse, rather than writing a stand-alone application from scratch, has many
benefits. For one, we profit from software reuse as we can make use of the general GUI of Eclipse and
just have to adapt existing functionality to our needs. Examples include the text editor framework, source-
code annotations, problem reporting and quick fixes, project management, the undo-redo mechanism, the
console view, the navigation framework (Outline, Project Explorer), and launch configurations. Moreover,
much functionality of Eclipse can be used without any adaptions, e.g., workspace management, the possi-
bility to define working sets, i.e., grouping arbitrary files and resources together, software versioning and
revision control (e.g., based on SVN or CVS), and task management. Another clear benefit is the popularity
of Eclipse among software developers, as it is a widely used standard tool for developing Java applications.
Arguably, people who are familiar with Eclipse and basic ASP skills will easily adapt to SeaLion. Fi-
nally, choosing Eclipse for an IDE for ASP offers a chance for integration of development tools for hybrid
languages, i.e., combinations of ASP and procedural languages. For instance, Gringo supports the use of
functions written in the LUA scripting language [25]. As there is a LUA plugin for Eclipse available, one
can at least use that in parallel with SeaLion, however there is also potential for a tighter integration of
the two plugins.

The sources of SeaLion are available for download from

http://sourceforge.net/projects/mmdasp/.

An Eclipse update site will be made available as soon as SeaLion reaches beta status.

3 Current Features

In this section, we describe the features that are already operational in SeaLion, including technical
details on the implementation.

3.1 Source-Code Editor

The central element in SeaLion is the source-code editor for logic programs. For now, it comes in two
variations, one for DLV and one for Gringo. A screenshot of a Gringo source file in Sealion’s editor is
given in Fig. 1. By default, files with names ending in “.Ip”, “.Iparse”, “.gr”, or “.gringo” are opened in the
Gringo editor, whereas files with extensions “.dlv” or “.dl”” are opened in the DLV editor. Nevertheless,
any file can be opened in either editor if required.

The editors provide syntax highlighting, which is computed in two phases. Initially, a fast syntactic
check provides initial colouring and styling for comments and common tokens like dots concluding rules
and the rule implication symbol. While editing the source code, after a few moments of user inactivity, the
source code is parsed and data structures representing the program are computed and stored for various
purposes. The second phase of syntax highlighting is already based on this program representation and
allows for fine-grained highlighting depending not only on the type of the program element but also on its
role. For instance, a literal that is used in the condition of another literal is highlighted in a different way
than stand-alone literals.
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Fig. 1. A screenshot of SeaLion’s editor, the program outline, and the interpretation view.

The parsers used are based on the ANTLR framework [24] and are in some respect more lenient than the
respective solver parsers. For one thing, they are more tolerant towards syntax errors. For instance, in many
cases they accept terms of various types (constants, variables, aggregate terms) where a solver requires a
particular type, like a variable. The errors will still be noticed, during building the program representation
or afterwards, by means of explicit checks. This tolerance allows for more specific warning and error
reporting than provided by the solvers. For example, the system can warn the user that he or she used a
constant on the left-hand side of an assignment where only a variable is allowed. Another parsing difference
is the handling of comments. The parser does not throw them away but collects them and associates them to
the program elements in their immediate neighbourhood. One benefit is that the information contained in
comments can be kept when performing automatic transformations on the program, like rule reorderings or
translations to other logic programming dialects. Another advantage is that we can make use of comments
for enriching the language with our own meta-statements that do not interfere with the solver when running
the file. We reserved the token “%!” for initiating meta commands and “%*!” and “*%” for the start and
end of block meta commands in the Gringo editor, respectively. Currently, one type of meta command is
supported: assigning properties to program elements.

Example 1. In the following source code, a meta statement assigns the name “r1” to the rule it precedes.

%! name = rl;
a(X) :—= c(X)

These names are currently used in a side application of SeaLion for reifying disjunctive non-ground
programs as used in a previous debugging approach [10]. Moreover, names assigned to program elements
as above can be seen in Eclipse’s “Outline View”. SeaLion uses this view to give an overview of the edited
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Fig. 2. Selecting two source files for ASP solving in Eclipse’s launch configuration dialog.

program in a tree-shaped graphical representation. The rules of the programs are represented by the nodes
of depth 1 of this tree. By expanding the ancestor nodes of an individual rule, one can see its elements, i.e.,
head, body, literals, predicates, terms, etc. Clicking on such an element selects the corresponding program
code in the editor, and the programmer can proceed editing there. A similar outline is also available in
Eclipse’s “Project Explorer”, as subtree under the program’s source file.

Another feature of the editor is the support for annotations. These are means to temporarily highlight
parts of the source code. For instance, SeaLion annotates occurrences of the program element under the
text cursor. If the cursor is positioned over a literal, all literals of the same predicate are highlighted in
the text as well as in a bar next to the vertical scrollbar that indicates the positions of all occurrences in
the overall document. Likewise, when a constant or a variable in a rule is on the cursor position, their
occurrences are detected within the whole source code or within the rule, respectively.

Another application of annotations is problem reporting. Syntax errors and warnings are displayed
in two ways. First, as annotations in the source code, they are marked with a zig-zag styled underline.
Second, they are displayed in Eclipse’s “Problem View” that collects various kinds of problems and allows
for directly jumping to the problematic source code region upon mouse click.

3.2 Support for External Tools

In order to interact with solvers and grounders from SeaLion, we implemented a mechanism for handling
external tools. One can define external tool configurations that specify the path to an executable as well as
default command-line parameters. Arbitrary command-line tools are supported; however, there are special
configuration types for some programs such as Gringo, Clasp, and DLV. For these, it is planned to have a
specialised GUI that allows for a more convenient modification of command-line parameters. In addition to
external command-line tools, one can also define tool configurations that represent pipes between external
tools. This is needed when grounding and solving are provided by separate executables. For instance, one
can define two separate tool configurations for Gringo and Clasp and define a piped tool configuration
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Fig. 3. SeaLion’s interpretation view.

for using the two tools in a pipe. Pipes of arbitrary length are supported such that arbitrary pre- and post-
processing can be done when needed.

For executing answer-set solvers, we make use of Eclipse’s “launch configuration framework”. In our
setting, a launch configuration defines which programs should be executed using which solver. Figure 2
shows the the page of the launch configuration editor on which input files for a solver invocation can be
selected.

Besides using the standard command-line parameters from the tool configurations, also customised
parameters can be set for the individual program launches.

3.3 Interpretation View

The programmer can define how the output of an ASP solver run should be treated. One option is to print
the solver output as it is for Eclipse’s “console view”. The other option is to parse the resulting answer
sets and store them in SeaLion’s interpretation view that is depicted in Fig. 3. Here, interpretations are
visualised as expandable trees of depth 3. The root node is the interpretation (marked by a yellow “I”’),
and its children are the predicates (marked by a red “P”’) appearing in the interpretation. Finally, each of
these predicates is the parent node of the literals over the predicate that are contained in the interpretation
(marked by a red “L”). Compared to a standard textual representation, this way of visualising answer
sets provides a well-arranged overview of the individual interpretations. We find it also more appealing
than a tabular representation where only entries for a single predicate are visible at once. Moreover, by
horizontally arranging trees for different interpretations next to each other, it is easy to compare two or
more interpretations.

The interpretation view is not only meant to provide a good visualisation of results, but also serves as a
starting point for ASP developing tools that depend on interpretations. One convenient feature is dragging
interpretations or individual literals from the interpretation view and dropping them on the source-code
editor. When released, these are transformed into facts of the respective ASP language.

3.4 Visualisation and Visual Editing

The plugin Kara [23] is a tool for the graphical visualisation and editing of interpretations. It is started
from the interpretation view. One can select an interpretation for visualisation by right-clicking it in the
view and choose between a generic visualisation or a customised visualisation. The latter is specified by
the user by means of a visualisation answer-set program. The former represents the interpretation as a
labelled hypergraph.
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Fig. 4. A screenshot of SeaLion’s visual interpretation editor.

In the generic visualisation, the nodes of the hypergraph are the individuals appearing in the interpre-
tation. The edges represent the literals in the interpretation, connecting the individuals appearing in the
respective literal. Integer labels on the endings of an edge are used for expressing the argument position
of the individual. In order to distinguish between different predicates, each edge has an additional label
stating the predicate name. Moreover, edges of the same predicate are of the same colour. An example of a
generic visualisation of a spanning tree interpretation is shown in Fig. 4 (the layout of the graph has been
manually optimised in the editor).

The customised visualisation feature allows for specifying how the interpretation should be illustrated
by means of an answer-set program that uses a powerful pre-defined visualisation vocabulary. The approach
follows the ideas of ASPVIZ [21] and IDPDraw [22]: a visualisation program Iy is joined with the
interpretation [ to be visualised (technically, [ is considered as a set of facts) and evaluated using an
answer-set solver. One of the resulting answer sets, [y, is then interpreted by SeaLion for building the
graphical representation of I. The vocabulary allows for using and positioning basic graphical elements
such as lines, rectangles, polygons, labels, and images, as well as graphs and grids composed of such
elements.

The resulting visual representation of an interpretation is shown in a graphical editor that also allows
for manipulating the visualisation in many ways. Properties such as colours, IDs, and labels can be manip-
ulated and graphical elements can be repositioned, deleted, or even created. This is useful for two different
purposes. First, for fine-tuning the visualisation before saving it as a scalable vector graphic (SVG) for use
outside of SeaLion, using our SVG export functionality. Second, modifying the visualisation can be used
to obtain a modified version I’ of the visualised interpretation I by abductive reasoning.

In fact, we implemented a feature that allows for abducing an interpretation that would result in the
modified visualisation. Modifications in the visual editor are automatically reflected in an adapted version
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Fig. 5. A customised visualisation of an 8-queens instance.

I{, of the answer set Iy representing the visualisation. We then use an answer-set program A(I{,, ITy/) that
is constructed depending on the modified visualisation answer set I{, and the visualisation program ITy
for obtaining the modified interpretation I’ as a projected answer set of A(I{,, IIy/). For more details, we
refer to a companion paper [23]. An example for a customised visualisation for a solution to the 8-queens
problem is given in Fig. 5.

4 Projected Features

In the following, we give an overview of further functionality that we plan to incorporate into SeaLion
in the near future.

One core feature that is already under development is the support for stepping-based debugging of
answer-set programs as introduced in recent work [26]. Here, we aim for an intuitive and easy-to-handle
user interface, which is clearly a challenge to achieve for reasons intrinsic to ASP. In particular, the dis-
crepancy of having non-ground programs but solutions based on their groundings makes the realisation of
practical debugging tools for ASP non-trivial.

We want to enrich SealLion with support for typed predicates. That is, the user can define the domain
for a predicate. For instance consider a predicate age /2 stating the age of a person. Then, with typing, we
can express that for every atom age (t1, t2), the term t 1 represents an element from a set of persons,
whereas t2 represents an integer value. Two types of domain specifications will be supported, namely
direct ones, which explicitly state the names of the individuals of the domain, and indirect ones that allow
for specifications in terms of the domain of other predicates. We expect multiple benefits from having this
kind of information available. First, it is useful as a documentation of the source code. A programmer can
clearly specify the intended meaning of a predicate and look it up in the type specifications. Moreover, type
violations in the source code of the program can be automatically detected as illustrated by the following
example.
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Example 2. Assume we want to define a rule deriving atoms with predicate symbol serves/3, where
serves (R,D,P) expresses that restaurant R serves dish D at price P. Furthermore, the two predi-
cates dishAvailable/2 and price/3 state which dishes are currently available in which restau-
rants and the price of a dish in a restaurant, respectively. Assume we have type specifications stating that
for serves (R,D,P) and dishAvailable (D,R), Ris of type restaurant and D of type dish.
Then, a potential type violation in the rule

serves (R,D,P) :- dishAvailable(R,D),price(R,D,P)
could be detected, where the programmer mixed up the order of variables in dishAvailable (R, D).

In order to avoid problems like in the above example in the first place, autocompletion functionality could
be implemented such that variables and constants of correct types are suggested when writing the arguments
of a literal in a rule. Technically, we plan to realise type definitions within program comments, similar to
other meta-statements as sketched in Section 3.

We want to combine the typing system with functionality that allows for defining program signatures.
One application of such signatures is for specifying the predicates and terms used for abducing a modified
interpretation I’ in our plugin for graphically editing interpretations. Moreover, input and output signatures
can be defined for uniform problem encodings, i.e., answer-set programs that expect a set of facts repre-
senting a problem instance as input such that its answer sets correspond to the solutions for this instance.
Then, such signatures can be used in our planned support for assertions that will allow for defining pre-
and post-conditions of answer-set programs. Having a full specification for the input of a program, i.e., a
typed signature and input constraints in the form of preconditions, one can automatically generate input
instances for the program and use them, e.g., for random testing [12]. Also, more advanced testing and
verification functionality can be realised, like the automatic generation of valid input (with respect to the
pre-conditions) that violates a post-condition.

In order to reduce the amount of time a programmer has to spend for writing type and signature defini-
tions, we want to explore methods for partially extracting them from the source code or from interpretations.

Other projected features include typical amenities of Eclipse editors such as refactoring, autocomple-
tion, pretty-printing, and providing quick-fixes for typical problems in the source code. Moreover, checks
for errors and warnings that are not already detected by the parser, for example for detecting unsafe vari-
ables, need still to be implemented.

We also want to provide different kinds of program translations in SeaLion. To this end, we already
implemented a flexible framework for transforming program elements to string representations following
different strategies. In particular, we aim at translations between different solver languages at the non-
ground level. Here, we first have to investigate strategies when and how transformations of, e.g., aggre-
gates can be applied such that a corresponding overall semantics can be achieved. Other specific program
translations that we consider for implementation would be necessary for realising the import and export of
rules in the Rule Interchange Format (RIF) [27] which is a W3C recommendation for exchanging rules in
the context of the Semantic Web. Notably, a RIF dialect for answer-set programming, called RIF-CASPD,
has been proposed [28].

Further convenience improvements regarding the use of external tools in SeaLion include the support
for setting default solvers for different languages and a specialised GUI for choosing the command-line
parameters. For launch configurations, we want to add the possibility to directly write the output of a tool
invocation into a file and to allow for exporting the launch configuration as native stand-alone scripts.

Finally, there are many possible ways to enhance the GUI of SeaLion. We want to extend the support
for drag-and-drop operations such that, e.g., program elements in the outline can be dragged into the editor.
Moreover, we plan to realise sorting and filtering features for the outline and interpretation view. Regarding
interpretations, we aim for supporting textual editing of interpretations directly in the view, besides visual
editing, and a feature for comparing multiple interpretations by highlighting their differences.

5 Related Work

In this section, we give a short overview of existing IDEs for core ASP languages. To begin with, the
tool APE that has been developed at the University of Bath [14] is also based on Eclipse. It supports
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the language of Lparse and provides syntax highlighting, syntax checking, program outline, and launch
configuration. Additionally, APE has a feature to display the predicate dependency graph of a program.
ASPIDE, a recent IDE for DLV programs [15], is a standalone tool that already offers many features as
it builds on previous tools [29-31]. Some functionality we want to incorporate in SeaLion is already
supported by ASPIDE, e.g., code completion, refactoring, and quick fixes. Further features of ASPIDE are
support for code templates and a visual program editor. We do not aim for comprehensive visual source-
code editing in SeaLion but consider the use of program templates that allow for expressing common
programming patterns. One disadvantage of ASPIDE is that the tracing component of the IDE [30] is not
publicly available. In their current releases, neither APE nor ASPIDE support graphical visualisation or
visual editing of answer sets as available in SeaLion. ASPIDE allows for displaying answer sets in a
tabular form. This is an improvement compared to the standard textual representation but comes with the
drawback that only entries for a single predicate are visible at once. Besides the graphical representation,
Sealion can display interpretations in a dedicated view that gives a good overview of the individual
interpretations and allows also to compare different interpretations.

Concerning supported ASP languages, SeaLion is the first IDE to support the language of Gringo,
rather than its Lparse subset. Moreover, other proposed IDEs for ASP do only consider the language of
either DLV or Lparse, with the exception of 1 GROM that provides basic syntax highlighting and syntax
checking for the languages of both, Lparse and DLV [16]. Note that i GROM has been developed at our
department independently from SealLion as a student project. A speciality of 1 GROM is the support for the
front-end languages for planning and diagnosis of DLV. There also exist proprietary IDEs for ASP related
languages with support for object-oriented features, OntoStudio and OntoDLV [32,33].

Compared to ASPVIZ [21] and IDPDraw [22], our plugin Kara [23] allows not only for visualisation
of an interpretation but also for visually editing the graphical representation such that changes are reflected
in the visualised interpretation. Moreover, Kara offers support for generic visualisation, automatic layout
of graph structures, and special support for grids.

6 Conclusion

In this paper, we presented the current status of SeaLion, an IDE for ASP languages that is currently
under development. We discussed general principles that we follow in our implementation and gave an
overview of current and planned features. SeaLion is an Eclipse plugin and supports the ASP languages
of Gringo and DLV. The most important step in the advancement of the IDE is the integration of an
easy-to-use debugging system.
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Abstract. In answer-set programming (ASP), the solutions of a problem are encoded in dedicated
models, called answer sets, of a logical theory. These answer sets are computed from the program that
represents the theory by means of an ASP solver and returned to the user as sets of ground first-order
literals. As this type of representation is often cumbersome for the user to interpret, tools like ASPVIZ
and IDPDraw were developed that allow for visualising answer sets. The tool Kara, introduced in
this paper, follows these approaches, using ASP itself as a language for defining visualisations of
interpretations. Unlike existing tools that position graphic primitives according to static coordinates
only, Kara allows for more high-level specifications, supporting graph structures, grids, and relative
positioning of graphical elements. Moreover, generalising the functionality of previous tools, Kara
provides modifiable visualisations such that interpretations can be manipulated by graphically editing
their visualisations. This is realised by resorting to abductive reasoning techniques. Kara is part of
Sealion, a forthcoming integrated development environment (IDE) for ASP.

1 Introduction

Answer-set programming (ASP) [1] is a well-known paradigm for declarative problem solving. Its key idea
is that a problem is encoded in terms of a logic program such that dedicated models of it, called answer
sets, correspond to the solutions of the problem. Answer sets are interpretations, usually represented by
sets of ground first-order literals.

A problem often faced when developing answer-set programs is that interpretations returned by an ASP
solver are cuambersome to read—in particular, in case of large interpretations which are spread over several
lines on the screen or the output file. Hence, a user may have difficulties extracting the information he or
she is interested in from the textual representation of an answer set. Related to this issue, there is one even
harder practical problem: editing or writing interpretations by hand.

Although the general goal of ASP is to have answer sets computed automatically, we identify different
situations during the development of answer-set programs in which it would be helpful to have adequate
means to manipulate interpretations. First, in declarative debugging [2], the user has to specify the seman-
tics he or she expects in order for the debugging system to identify the causes for a mismatch with the
actual semantics. In previous work [3], a debugging approach has been introduced that takes a program P
and an interpretation [ that is expected to be an answer set of P and returns reasons why [ is not an answer
set of P. Manually producing such an intended interpretation ahead of computation is a time-consuming
task, however. Another situation in which the creation of an interpretation can be useful is testing post-
processing tools. Typically, if answer-set solvers are used within an online application, they are embedded
as a module in a larger context. The overall application delegates a problem to the solver by transforming it
to a respective answer-set program and the outcome of the solver is then processed further as needed by the
application. In order to test post-processing components, which may be written by programmers unaware

* This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
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n;r> [TuV] [Solver |
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Modified
Solver M, V) | — — Graphical
Modified Interpretation Abduction Program Representation

Fig. 1. Overview of the workflow (visualisation and abduction process).

of ASP, it would be beneficial to have means to create mock answer sets as test inputs. Third, the same idea
of providing test input applies to modular answer-set programming [4], when a module B that depends
on another module A is developed before or separately from A. In order to test B, it can be joined with
interpretations mocking answer sets from A.

In this paper, we describe the system Kara which allows for both visualising interpretations and editing
them by manipulating their visualisations.> The visualisation functionality of Kara has been inspired by
the existing tools ASPVIZ [5] and IDPDraw [6] for visualising answer sets. The key idea is to use ASP
itself as a language for specifying how to visualise an interpretation /. To this end, the user takes a dedicated
answer-set program V' —which we call a visualisation program—that specifies how the visualisation of /
should look like. That is, V' defines how different graphical elements, such as rectangles, polygons, images,
graphs, etc., should be arranged and configured to visually represent I.

Kara offers a rich visualisation language that allows for defining a superset of the graphical elements
available in ASPVIZ and IDPDraw, e.g., providing support for automatically layouting graph structures,
relative and absolute positioning, and support for grids of graphical elements. Moreover, Kara also offers
a generic mode of visualisation, not available in previous tools, that does not require a domain-specific
visualisation program, representing an answer set as a hypergraph whose set of nodes corresponds to the
individuals occurring in the interpretation.* A general difference to previous tools is that Kara does not
just produce image files right away but presents the visualisation in form of modifiable graphical elements
in a visual editor. The user can manipulate the visualisation in various ways, e.g., change size, position, or
other properties of graphical elements, as well as copy, delete, and insert new graphical elements. Notably,
the created visualisations can also be used outside our editing framework, as Kara offers an SVG export
function that allows to save the possibly modified visualisation as a vector graphic. Besides fine-tuning
exported SVG files, manipulation of the visualisation of an interpretation I can be done for obtaining a
modified version I’ of I by means of abductive reasoning [7]. This gives the possibility to visually edit
interpretations which is useful for debugging and testing purposes as described above.

In Section 3, we present a number of examples that illustrate the functionality of Kara and the ease of
coping with a visualised answer set compared to interpreting its textual representation.

Kara is designed as a plugin of SeaLion, an Eclipse-based integrated development environment
(IDE) for ASP [8] that is currently developed as part of a project on programming-support methods for
ASP [9].

2 System Overview

We assume familiarity with the basic concepts of answer-set programming (ASP) (for a thorough introduc-
tion to the subject, cf. Baral [1]). In brief, an answer-set program consists of rules of the form

arV---Va;:—ap1,...,0n, 00t apmy1,...,00tay,

* The name “Kara” derives, with all due respect, from “Kara Zor-El”, the native Kryptonian name of Supergirl, given
that Kryptonians have visual superpowers on Earth.

* A detailed overview of the differences concerning the visualisation capabilities of Kara with other tools is given in
Section 4.
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Fig. 2. The visualisation of interpretation I from Example 1.

where n > m > 1| > 0, “not” denotes default negation, and all a; are first-order literals (i.e., atoms
possibly preceded by the strong negation symbol, —). For a rule r as above, we define the head of r as
H(r) = {a1,...,a;} and the positive body as BY(r) = {aj11,...,am}. If n =1 = 1, r is a fact, and if
l = 0, r is a constraint. For facts, we will usually omit the symbol “: — ”. The grounding of a program
P relative to its Herbrand universe is defined as usual. An interpretation I is a finite and consistent set of
ground literals, where consistency means that {a, ma} € I, for any atom a. I is an answer set of a program
P if it is a minimal model of the grounding of the reduct of P relative to I (see Baral [1] for details).

The overall workflow of Kara is depicted in Fig. 1, illustrating how an interpretation I can be visualised
in the upper row and how changing the visualisation can be reflected back to I such that we obtain a
modified version I’ of I in the lower row. In the following, we call programs that encode problems for
which I and I’ provide solution candidates domain programs.

2.1 Visualisation of Interpretations

As discussed in the introduction, we use ASP itself as a language for specifying how to visualise an inter-
pretation. In doing so, we follow a similar approach as the tools ASPVIZ [5] and IDPDraw [6]. We next
describe this method on an abstract level.

Assume we want to visualise an interpretation [ that is defined over a first-order alphabet .A. We join
I, interpreted as a set of facts, with a visualisation program V that is defined over A" O A, where A’ may
contain auxiliary predicates and function symbols, as well as predicates from a fixed set P, of reserved
visualisation predicates that vary for the three tools.?

The rules in V' are used to derive different atoms with predicates from P,,, depending on I, that control
the individual graphical elements of the resulting visualisation including their presence or absence, position,
and all other properties. An actual visualisation is obtained by post-processing an answer set I, of V U [
that is projected to the predicates in P,. We refer to I, as a visualisation answer set for I. The process
is depicted in the upper row of Fig. 1. An exhaustive list of visualisation predicates available in Kara is
given in Appendix A.

Example 1. Assume we deal with a domain program whose answer sets correspond to arrangements of
items on two shelves. Consider the interpretation I = {book(s1, 1), book(s1, 3), book(sz, 1), globe(sz,2)}
stating that two books are located on shelf s; in positions 1 and 3 and that there is another book and a globe
on shelf sy in positions 1 and 2. The goal is to create a simple graphical representation of this and similar
interpretations, depicting the two shelves as two lines, each book as a rectangle, and globes as circles.
Consider the following visualisation program:

visline(shelf,, 10, 40, 80,40, 0). €))
visline(shelf 5, 10, 80, 80, 80, 0). 2)
visrect(f(X,Y),20,8) : — book(X,Y). 3)
visposition(f(s1,Y),20 %Y, 20,0) : — book(s1,Y). %)
visposition(f(s2,Y),20 %Y, 60,0) : — book(s2,Y). 5)
visellipse(f(X,Y),20,20) : — globe(X,Y). (6)
visposition(f(s1,Y),20*Y,20,0) : — globe(s1,Y). @)
visposition(f(s2,Y),20 %Y, 60,0) : — globe(s2,Y). (8)

5 Technically, in ASPVIZ, V is not joined with I but with a domain program P such that I is an answer set of P.
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Rules (1) and (2) create two lines with the identifiers shelf; and shelf 5, representing the top and bottom
shelf. The second to fifth arguments of visline /6 represent the origin and the target coordinates of the line.®
The last argument of wvisline/6 is a z-coordinate determining which graphical element is visible in case
two or more overlap. Rule (3) generates the rectangles representing books, and Rules (4) and (5) determine
their position depending on the shelf and the position given in the interpretation. Likewise, Rules (6) to (8)
generate and position globes. The resulting visualisation of I is depicted in Fig. 2. ad

Note that the first argument of each visualisation predicate is a unique identifier for the respective
graphical element. By making use of function symbols with variables, like f(X,Y") in Rule (3) above, these
labels are not limited to constants in the visualisation program but can be generated on the fly, depending
on the interpretation to visualise. While some visualisation predicates, like visline, visrect, and visellipse,
define graphical elements, others, e.g., visposition, are used to change properties of the elements, referring
to them by their respective identifiers.

Kara also offers a generic visualisation that visualises an arbitrary interpretation without the need for
defining a visualisation program. In such a case, the interpretation is represented as a labelled hypergraph.
Its nodes are the individuals appearing in the interpretation and the edges represent the literals in the
interpretation, connecting the individuals appearing in the respective literal. Integer labels on the endings
of the edge are used for expressing the term position of the individual. To distinguish between different
predicates, each edge has an additional label stating the predicate. Edges of the same predicate are of the
same colour. A generic visualisation is presented in Example 4.

2.2 Editing of Interpretations

We next describe how we can obtain a modified version I’ of an interpretation I corresponding to a manip-
ulation of the visualisation of 1. We follow the steps depicted in the lower row of Fig. 1, using abductive
reasoning. Recall that abduction is the process of finding hypotheses that explain given observations in the
context of a theory. Intuitively, in our case, the theory is the visualisation program, the observation is the
modified visualisation of I, and the desired hypothesis is I’.

In Kara, the visualisation of I is created using the Graphical Editing Framework (GEF) [10] of Eclipse.
It is displayed in a graphical editor which allows for various kinds of manipulation actions such as mov-
ing, resizing, adding or deleting graphical elements, adding or removing edges between them, editing their
properties, or change grid values. Each change in the visual editor of Kara is internally reflected by a mod-
ification to the underlying visualisation answer set I,,. We denote the resulting visualisation interpretation
by I]. From that and the visualisation program V', we construct a logic program A(I}, V) such that the
visualisation of any answer set I’ of A(I], V') using V' corresponds to the modified one.

The idea is that A(I, V'), which we refer to as the abduction program for I/ and V, guesses a set
of abducible atoms. On top of these atoms, the rules of V' are used in A(I}, V) to derive a hypothetical
visualisation answer set I,/ for I’. Finally, constraints in the abduction program ensure that I/ coincides
with the targeted visualisation interpretation I/, on a set P; of selected predicates from P, which we call
integrity predicates. Hence, a modified interpretation I’ can be obtained by computing an answer set of
A(I},V) and projecting it to the guessed atoms. To summarise, the abduction problem underlying the
described process can be stated as follows:

(*) Given the interpretation I

+, determine an interpretation I’ such that I/, coincides with each answer set
of VUI' on P;.

Clearly, visualisation programs must be written in a way that manipulated visualisation interpretations
could indeed be the outcome of the visualisation program for some input. This is not the case for arbitrary
visualisation programs, but usually it is easy to write an appropriate visualisation program that allows for
abducing interpretations.

The following problems have to be addressed for realising the sketched approach:

— determining the predicates and domains of the abducible atoms, and

% The origin of the coordinate system is at the top-left corner of the illustration window with the z-axis pointing to
the right and the y-axis pointing down.
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dom(I,,V) = {nonRecDom(t) :— v(t') | r € V,v/m € Py,v(t') € H(r),
a(t) eBY(r),t =t1,...,t,...,tn,a/n & P,
VAR(t) # 0, VAR(t) C VAR(t')}U
{dom(t) : — v(t"), nonRecDom(X1), ..., nonRecDom(X;) | r € V,
v/m € Pp,v(t') € H(r),a(t) € BT (r),t =t1,...,t,... tn,
a/n & Py, VAR(t) N VAR(t") # 0,
VAR(t)\ VAR(t') = {X1,..., Xi}}U

{dom(X) : — nonRecDom(X)},
guess(V) ={a(X1,...,X,) :— not =a(Xy,...,Xn), dom(X1),...,dom(Xn),
—a(X1,...,Xpn) :—not a(X1,...,X,), dom(X1),...,dom(X,) |
a/n ¢ Py,a(ty,... tn) € U,y B(r),
{a(ty,...,t)) | a(ty,... tn) € H(r),r € V} = 0},
check(I}) = {:—not v(t1,...,tn), :— v(X1,..., Xn),not v'(X1,..., Xn),
V(t1, . ytn) |v(t1, ... tn) € T, v/n € Pi},

Fig. 3. Elements of the abduction program \(I,,, V).

— choosing the integrity predicates among the visualisation predicates.

For solving these issues, we rely on pragmatic choices that seem useful in practice. We obtain the set P, of
predicates of the abducible atoms from the visualisation program V. The idea is that every predicate that
is relevant to the solution of a problem encoded in an answer set has to occur in the visualisation program
if the latter is meant to provide a complete graphical representation of the solution. Moreover, we restrict
P, to those non-visualisation predicates in V' that occur in the body of a rule but not in any head atom in
V. The assumption is that atoms defined in V' are most likely of auxiliary nature and not contained in a
domain program.

An easy approach for generating a domain D, of the abducible atoms would be to extract the terms
occurring in I],. We follow, however, a more fine-grained approach that takes the introduction and deletion
of function symbols in the rules in V' into account. Assume V' contains the rules

visrect(f(Street, Num),9,10) : — house(Street, Num) and
visellipse(sun, Width, Height) : — property(sun, size( Width, Height)),

and I contains visrect(f(bakerstreet,221b),9,10) and visellipse(sun, 10,11). Then, when extracting
the terms in I, the domain includes f(bakerstreet,221b), bakerstreet, 221b, 9, 10, sun, and 11 for the
two rules. However, the functor f is solely an auxiliary concept in V' and not meant to be part of domain
programs. Moreover, the term 9 is introduced in V' and is not needed in the domain for I’. Also, the terms
10 and 11 as standalone terms and sun are not needed in I’ to derive I . Even worse, the term size(10,11),
that has to be contained in I” such that I/, can be a visualisation answer set for I’, is missing in the domain.
Hence, we derive D, in A(I}, V) not only from I, but also consider the rules in V. Using our translation
that is detailed below, we obtain bakerstreet, 221b, and size(10, 12) as domain terms from the rules above.

For the choice of P, i.e., of the predicates on which I/ and the actual visualisation answer sets of I’
need to coincide, we exclude visualisation predicates that require a high preciseness in visual editing by
the user in order to match exactly a value that could result from the visualisation program. For example, we
do not include predicates determining position and size of graphical elements, since in general it is hard to
position and scale an element precisely such that an interpretation I’ exists with a matching visualisation.
Note that this is not a major restriction, as in general it is easy to write a visualisation program such that
aspects that the user wants to be modifiable are represented by graphical elements that can be elegantly
modified visually. For example, instead of representing a Sudoku puzzle by labels whose exact position is
calculated in the visualisation program, the language of Kara allows for using a logical grid such that the
value of each cell can be easily changed in the visual editor.

We next give the details of the abduction program.
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Definition 1. Let I! be an interpretation with atoms over predicates in P,, V a (visualisation) program,
and P; C P, the fixed set of integrity predicates. Moreover, let VAR(T) denote the variables occurring in
T, where T is a term or a list of terms. Then, the abduction program with respect to I and V' is given by

MI,, V) =dom(I,,V) Uguess(V) UV Ucheck(1)),

where dom(I], V'), guess(V'), and check(I]) are given in Fig. 3, and nonRecDom /1, dom/1, and v’ /n,

v

Sorallv/n € P;, are fresh predicates.

The idea of dom(I}, V) is to consider non-ground terms ¢ contained in the body of a visualisation rule that
share variables with a visualisation atom in the head of the rule and to derive instances of these terms when
the corresponding visualisation atom is contained in I/. In case less variables occur in the visualisation
atom than in ¢, we avoid safety problems by restricting their scope to parts of the derived domain. Here,
the distinction between predicates dom and nonRecDom is necessary to prevent infinite groundings of
the abduction program. Note that in general it is not guaranteed that the domain we derive contains all
necessary elements for abducing an appropriate interpretation I’. For instance, consider the case that the
visualisation program contains a rule visrect(id, 5, 5) : — foo(X), and V together with the constraints in
check(I})) require that for all terms ¢ of a domain that can be obtained from I/, and V', foo(t) must not hold.
Then, there is no interpretation that will trigger the rule using this domain, although an interpretation with
a further term ¢’ might exist that results in the desired visualisation. Hence, we added an editor to Kara
that allows for changing and extending the automatically generated domain as well as the set of abducible
predicates.
The following result characterises the answer sets of the abduction program.

Theorem 1. Let I/, be an interpretation with atoms over predicates in P,, V a (visualisation) program,
and P; C P, the fixed set of integrity predicates. Then, any answer set I] of A\(I,, V') coincides with I, on
the atoms over predicates from P;, and a solution I' of the abduction problem (x) is obtained from I by
projection to the predicates in

{a/n|a(ty,... t,) € U B(r), {a(ty,....t,) |a(ty,....t;) €e H(r),r e V} =0} \ P,.
reV

2.3 Integration in SeaLion

Kara is written in Java and integrated in the Eclipse-plugin SeaLion [8] for developing answer-set pro-
grams. Currently, it can be used with answer-set programs in the languages of Gringo and DLV. SeaLion
offers functionality to execute external ASP solvers on answer-set programs. The resulting answer sets can
be parsed by the IDE and displayed as expandable tree structures in a dedicated Eclipse view for interpreta-
tions. Starting from there, the user can invoke Kara by choosing a pop-up menu entry of the interpretation
he or she wants to visualise. A run configuration dialog will open that allows for choosing the visualisation
program and for setting the solver configuring to be used by Kara. Then, the visual editor opens with the
generated visualisation. The process for abducing an interpretation that reflects the modifications to the
visualisation can be started from the visual editor’s pop-up menu. If a respective interpretation exists, one
will be added to SeaLion’s interpretation view.
The sources of Kara and the alpha version of SeaLion can be downloaded from

http://sourceforge.net/projects/mmdasp/.

An Eclipse update site will be made available as soon as SeaLion reaches beta status.

3 Examples

In this section, we provide examples that give an overview of Kara’s functionality. We first illustrate the
use of logic grids and the visual editing feature.
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visgrid(maze, MAXR, MAXC, MAXR*20+5, MAXC%20+5): — mazC(MAXC), mazR(MAXR). (9)

visposition(maze, 0,0, 0). (10)
%A cell with a wall on it.

visrect(wall, 20, 20). (11)

visbackgroundcolor(wall, black). (12)
% An empty cell.

visrect(empty, 20, 20). (13)

visbackgroundcolor(empty, white). (14)

viscolor (empty, white). (15)
% Entrance and exit.

vistmage (entrance, “entrance.jpg”). (16)

visscale(entrance, 18, 18). 17)

visimage(exit, “exit.png”). (18)

visscale(exit, 18,18). (19)
%$Filling the cells of the grid.

visfillgrid(maze, empty, R, C) : — empty(C, R), not entrance(C, R), not exit(C, R). (20)

visfillgrid(maze, wall, R, C) : — wall(C, R), not entrance(C, R), not ezit(C, R). 21)

visfillgrid(maze, entrance, R, C') : — entrance(C, R). (22)

visfillgrid(maze, ezit, R, C) : — exit(C, R). (23)
% Vertical and horizontal lines.

visline(v(0),5,5,5, MAXR % 20 4+ 5,1) : — mazR(MAXR). (24)

visline(v(C), Cx20+5, 5, Cx20+5, MAXR*20+5,1) : — col(C), mazR(MAXR). (25)

visline(h(0), 5,5, MAXC %20 + 5,5,1) : — maxC(MAXC). (26)

visline(h(R),5, R %20 + 5, MAXC 204+ 5, R+ 20 + 5,1) : — row(R), mazC(MAXC). 27
% Define possible grid values for editing.

vispossiblegridvalues(maze, wall). (28)

(
vispossiblegridvalues(maze, empty). (29)
vispossiblegridvalues(maze, entrance). (30)
vispossiblegridvalues(maze, exit). (€28)

Fig. 4. Visualisation program for Example 2.

Example 2. Maze-generation is a benchmark problem from the second ASP competition [11]. The task is to
generate a two-dimensional grid, where each cell is either a wall or empty, that satisfies certain constraints.
There are two dedicated empty cells, being the maze’s entrance and its exit, respectively. The following
facts represent a sample answer set of a maze generation encoding restricted to interesting predicates.

col(1..5). row(1..5). mazC(5). mazR(5). wall(1,1). empty(1,2). wall(1,3).
wall(1,4). wall(1,5). wall(2,1). empty(2,2). empty(2,3). empty(2,4). wall(2,5).
wall(3,1). wall(3,2). wall(3,3). empty(3,4). wall(3,5). wall(4,1). empty(4,2).

empty(4,3). empty(4,4). wall(4,5). wall(5,1).wall(5,2). wall(5,3). empty(5,4).
wall(5,5). entrance(1,2). exit(5,4).

Predicates col/1 and row/1 define indices for the rows and columns of the maze, while mazC /1
and mazR /1 give the maximum column and row number, respectively. The predicates wall/2, empty /2,
entrance/2, and exit/2 determine the positions of walls, empty cells, the entrance, and the exit in the grid,
respectively. One may use the visualisation program from Fig. 4 for maze-generation interpretations of this
kind.

In Fig. 4, Rule (9) defines a logic grid with identifier maze, MAXR rows, and MAXC columns. The
fourth and fifth parameter define the height and width of the grid in pixel. Rule (10) is a fact that defines
a fixed position for the maze. The next step is to define the graphical objects to be displayed in the grid.
Because these objects are fixed (i.e., they are used more than once), they can be defined as facts. A wall is
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Fig. 5. Visualisation output for the maze-generation program.

represented by a rectangle with black background and foreground colour’ (Rules (11) and (12)) whereas an
empty cell is rendered as a rectangle with white background and foreground colour (Rules (13) to (15)). The
entrance and the exit are represented by two images (Rules (16) to (19)). Then, these graphical elements
are assigned to the respective cell of the grid (Rules (20) to (23)). Rules (24) to (27) render vertical and
horizontal lines to better distinguish between the different cells. Rules (28) to (31) are not needed for
visualisation but define possible values for the grid that we want to be available in the visual editor.

Once the grid is rendered, the user can replace the value of a cell with a value defined using predicate
vispossiblegridvalues /2 (e.g., replacing an empty cell with a wall). The visualisation of the sample inter-
pretation using this program is given in Fig. 5. Note that the visual representation of the answer set is much
easier to cope with than the textual representation of the answer set given in the beginning of the example.

Next, we demonstrate how to use the visual editing feature of Kara to obtain a modified interpretation,
as shown in Fig. 6. Suppose we want to change the cell (3, 2) from being a wall to an empty cell. The user
can select the respective cell and open a pop-up menu that provides an item for changing grid-values. A
dialog opens that allows for choosing among the values that have been defined in the visualisation program,
using the vispossiblegridvalues /2 predicate. When the user has finished editing the visualisation, he or she
can start the abduction process for inferring the new interpretation. When an interpretation is successfully
derived, it is added to SeaLion’s interpretation view. a

Kara supports absolute and relative positioning of graphical elements. If for any visualisation element
the predicate visposition /4 is defined, then we have fixed positioning. Otherwise, the element is positioned
automatically. Then, by default, the elements are randomly positioned on the graphical editor. However, the
user can define the position of an element relative to another element. This is done by using the predicates
visleft /2, visright /2, visabove /2, visbelow /2, and visinfrontof /2.

Example 3. The following visualisation program makes use of relative positioning for sorting elements
according to their label.

visrect(a, 50, 50). (32)
vislabel(a, laba). (33)
vistext(laba, 3). (34)
vispolygon(b, 0,20, 1). (35)
vispolygon(b, 25,0, 2). (36)
vispolygon (b, 50, 20, 3). (37)
vislabel (b, labb). (38)
vistext(labb, 10). (39)
visellipse(c, 30, 30). (40)
vislabel(c, labc). 41)
vistext(labe, 5). (42)
element(X) : — visrect(X, _, ). (43)
element(X) : — vispolygon(X, _, _, _). (44)
element(X) : — visellipse(X, _, -).element (45)

7 Black foreground colour is default and may not be set explicitly.
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Fig. 6. Abduction steps in the plugin.

visleft(X,Y) : — element(X), element(Y'), vislabel( X, LABX),
vistext(LABX , XNUM), vislabel(Y, LABY'), (46)
vistext(LABY , YNUM), XNUM < YNUM.

The program defines three graphical objects, a rectangle, a polygon, and an ellipse. In Rules (32) to (34),
the rectangle together with its label 3 is generated. The shape of the polygon (Rules (35) to (37)) is defined
by a sequence of points relative to the polygon’s own coordinate system using the vispolygon /4 predicate.
The order in which these points are connected with each other is given by the predicate’s fourth argument.
Rules (38) and (39) generate the label for the polygon and specify its text. Rules (43) to (45) state that every
rectangle, polygon, and ellipse is an element. The relative position of the three elements is determined by
Rule (46). For two elements F; and Es, E; has to appear to the left of E5 whenever the label of F;
is smaller than the one of E;. The output of this visualisation program is given in Fig. 7. Note that the
visualisation program does not make reference to predicates from an interpretation to visualise, hence the
example illustrates that Kara can also be used for creating arbitrary graphics. a

The last example demonstrates the support for graphs in Kara. Moreover, the generic visualisation
feature is illustrated.

Example 4. We want to visualise answer sets of an encoding of a graph-colouring problem. Assume we
have the following interpretation that defines nodes and edges of a graph as well as a colour for each node.
{node(1), node(2), node(3), node(4), node(5), node(6), edge(1,2), edge(1,3),
edge(1,4), edge(2,4), edge(2,5), edge(2,6), edge(3,1), edge(3,4), edge(3,5),
edge(4,1), edge(4,2), edge(5,3), edge(5,4), edge(5,6), edge(6,2), edge(6,3)
edge(6,5), color(1, lightblue), color(2, yellow), color(3 yellow), color(4, red),
color (5, lightblue), color(6, red)}.

3

We make use of the following visualisation program:
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3

Fig. 7. Output of the visualisation program in Example 3.

% Generate a graph.

visgraph(g). 47)
% Generate the nodes of the graph.

visellipse(X, 20,20) : — node(X). (48)

visisnode(X, g) : — node(X). (49)
% Connect the nodes (edges of the input).

visconnect(f(X,Y), X,Y) : — edge(X,Y). (50)

vistargetdeco(X, arrow) : — visconnect(X, _, _). 51)
% Generate labels for the nodes.

vislabel (X, (X)) : — node(X). (52)

vistezt(1(X), X) : — node(X). (53)

visfontstyle(1(X), bold) : — node(X). (54)
% Color the node according to the solution.

visbackgroundcolor(X, COLOR) : — node(X), color(X, COLOR). (55)

In Rule (47), a graph, g, is defined and a circle for every node from the input interpretation is created
(Rule (48)). Rule (49) states that each of these circles is logically considered a node of graph g. This has
the effect that they will be considered by the algorithm layouting the graph during the creation of the
visualisation. The edges of the graph are defined using the visconnect/3 predicate (Rule (50)). It can be
used to connect arbitrary graphical elements with a line, also if they are not nodes of some graph. As we
deal with a directed graph, an arrow is set as target decoration for all the connections (Rule (51)). Labels
for the nodes are set in Rules (52) to (54). Finally, Rule (55) sets the colour of the node according to the
interpretation. The resulting visualisation is depicted in Fig. 8. Moreover, the generic visualisation of the
graph colouring interpretation is given in Fig. 9. ad

4 Related Work

The visualisation feature of Kara follows the previous systems ASPVIZ [5] and IDPDraw [6], which also
use ASP for defining how interpretations should be visualised.® Besides the features beyond visualisation,
viz. the framework for editing visualisations and the support for multiple solvers, there are also differences
between Kara and these tools regarding visualisation aspects.

Kara allows to write more high-level specifications for positioning the graphical elements of a visuali-
sation. While IDPDraw and ASPVIZ require the use of absolute coordinates, Kara additionally supports
relative positioning and automatic layouting for graph and grid structures. Note that technically, the former
is realised using ASP, by guessing positions of the individual elements and adding respective constraints to
ensure the correct layout, while the latter is realised by using a standard graph layouting algorithm which
is part of the Eclipse framework. In Kara, as well as in IDPDraw, each graphical element has a unique
identifier that can be used, e.g., to link elements or to set their properties (e.g., colour or font style). That
way, programs can be written in a clear and elegant way since not all properties of an element have to be
specified within a single atom. Here, Kara exploits that the latest ASP solvers support function symbols

8 IDPDraw has been used for visualisation of the benchmark problems of the second and third ASP competition.
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Fig. 8. Visualisation of a coloured graph.

that allow for generating new identifiers from terms of the interpretation to visualise. IDPDraw does not
support function symbols. Instead, for having compound identifiers, IDPDraw uses predicates of variable
length (e.g., idp_polygon(idy,ids, ...)). A disadvantage of this approach is that some solvers, like DLV, do
not support predicates of variable length. ASPVIZ does not support identifiers for graphical objects.

The support for a z-axis to determine which object should be drawn over others is available in Kara
and IDPDraw but missing in ASPVIZ. Both Kara and ASPVIZ support the export of visualisations as
vector graphics in the SVG format, which is not possible with IDPDraw. A feature that is supported by
ASPVIZ and IDPDraw, however, is creating animations which is not possible with Kara so far.

Kara and ASPVIZ are written in Java and depend only on a Java Virtual Machine. IDPDraw, on
the other hand, is written in C++ and depends on the qt libraries. Finally, Kara is embedded in an IDE,
whereas ASPVIZ and IDPDraw are stand-alone tools.

A related approach from software engineering is the Alloy Analyzer, a tool to support the analysis of
declarative software models [12]. Models are formulated in a first-order based specification language. The
Alloy Analyzer can find satisfying instances of a model using translations to SAT. Instances of models
are first-order structures that can be automatically visualised as graphs, where the nodes correspond to
atoms from respective signature declarations in the specification, and the edges correspond to relations
between atoms. Since the Alloy approach is based on finding models for declarative specifications, it can
be regarded as an instance of ASP in a broader sense. The visualisation of first-order structures in Alloy
is closely related to the generic visualisation mode of Kara where no dedicated visualisation program is
needed. Alloy supports filtering predicates and arguments away of the graph. We consider to add such a
feature in future versions of Kara for getting a clearer generic visualisation.

5 Conclusion

We presented the tool Kara for visualising and visual editing of interpretations in ASP. It supports generic
as well as customised visualisations. For the latter, a powerful language for defining a visualisation by
means of ASP is provided, supporting, e.g., automated graph layouting, grids of graphical elements, and
relative positioning. The editing feature is based on abductive reasoning, inferring a new interpretation as
hypothesis to explain a modified visualisation. In future work, we want to add support for defining input
and output signatures for programs in SeaLion. Then, the abduction framework of Kara could be easily
extended such that instead of deriving an interpretation that corresponds to the modified visualisation, one
can derive inputs for a domain program such that one of its answer sets has this visualisation.
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Fig. 9. A screenshot of SeaLion’s visual interpretation editor showing a generic visualisation of the graph colouring
interpretation of Example 4 (the layout of the graph has been manually optimised by moving the nodes in the editor).

A Predefined Visualisation Predicates in Kara

Atom

Intended meaning

visellipse(id, height,width)

Defines an ellipse with specified height and width.

visrect(id,height,width)

Defines a rectangle with specified height and width.

vispolygon (id,x,y,ord)

Defines a point of a polygon. The ordering defines in which order
the defined points are connected with each other.

visimage (id,path)

Defines an image given in the specified file.

visline(id,x1,y1,T2,Y2,2)

Defines a line between the points (21, y1) and (22, y2).

visgrid (id,rows,cols,height, width)

Defines a grid, with the specified number of rows and columns;
height and width determine the size of the grid.

visgraph(id) Defines a graph.

vistezt(id,text) Defines a text element.

vislabel (idg,idy) Sets the text element id; as a label for graphical element id,. Labels
are supported for the following elements: visellipse/3, visrect/3,
vispolygon /4, and visconnect /3.

visisnode(idy,idy) Adds the graphical element id,, as a node to a graph id, for au-

tomatic layouting. The following elements are supported as nodes:
visrect /3, visellipse /3, vispolygon /4, visimage /2.

visscale(id,height, weight)

Scales an image to the specified height and width.

visposition(id,z,y,2)

Puts an element id on the fixed position (z, y, 2).
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visfontfamily (id,ff) Sets the specified font ff for a text element id.
visfontsize(id,size) Sets the font size size for a text element id.
visfontstyle(id,style) Sets the font style for a text element id to bold or italics.
viscolor(id,color) Sets the foreground colour for the element d.
visbackgroundcolor (id,color) Sets the background colour for the element id.
visfillgrid (idg,id.,row,col) Puts element id, in cell (row, col) of the grid id,.
visconnect(id.,idg, ,idyg,) Connects two elements, id,, and idg, , by a line such that idy, is the
source and id,, is the target of the connection.
vissourcedeco(id,deco) Sets the source decoration for a connection.
vistargetdeco(id,deco) Sets the target decoration for a connection.
visleft(idy,id,) Ensures that the z-coordinate of id; is less than that of id,..
visright (id,.,id;) Ensures that the z-coordinate of id, is greater than that of id;.
visabove (idy,idp) Ensures that the y-coordinate of id; is smaller than that of idp,.
visbelow (idy,idy) Ensures that the y-coordinate of idy, is greater than that of id;.
visinfrontof (id; ,idg) Ensures that the z-coordinate of ¢d; is greater than that of ids.
vishide(id) Hides the element id.
visdeletable(id) Defines that the element id can be deleted in the visual editor.
viscreatable(id) Defines that the element ¢d can be created in the visual editor.
vischangable(id,prop) Defines that the property prop can be changed for the element ¢d in
the visual editor.
vispossiblegridvalues(id,id.) Defines that graphical element id, is available as possible grid value
for a grid id in the visual editor.
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Abstract. Answer Set Programming (ASP) is a declarative logic programming formalism, which is
employed nowadays in both academic and industrial real-world applications. Although some tools for
supporting the development of ASP programs have been proposed in the last few years, the crucial task
of testing ASP programs received less attention, and is an Achilles’ heel of the available programming
environments.

In this paper we present a language for specifying and running unit tests on ASP programs. The test-
ing language has been implemented in ASPIDE, a comprehensive IDE for ASP, which supports the
entire life-cycle of ASP development with a collection of user-friendly graphical tools for program
composition, testing, debugging, profiling, solver execution configuration, and output-handling.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative logic programming formalism proposed in the area
of non-monotonic reasoning. The idea of ASP is to represent a given computational problem by a logic
program whose answer sets correspond to solutions, and then use a solver to find those solutions [2].

The language of ASP [1] supports a number of modeling constructs including disjunction in rule heads,
nonmonotonic negation [1], (weak and strong) constraints [3], aggregate functions [4], and more. These fea-
tures make ASP very expressive [5], and suitable for developing advanced real-world applications. ASP is
employed in several fields, from Artificial Intelligence [6—11] to Information Integration [12], and Knowl-
edge Management [13, 14]. Interestingly, these applications of ASP recently have stimulated some interest
also in industry [14].

On the one hand, the effective application of ASP in real-world scenarios was made possible by the
availability of efficient ASP systems [6, 18, 19]. On the other hand, the adoption of ASP can be further
boosted by offering effective programming tools capable of supporting the programmers in managing large
and complex projects [20].

In the last few years, a number of tools for developing ASP programs have been proposed, including
editors and debuggers [21-31]. Among them, ASPIDE [31] —which stands for Answer Set Programming
Integrated Development Environment— is one of the most complete development tools' and it integrates
a cutting-edge editing tool (featuring dynamic syntax highlighting, on-line syntax correction, autocom-
pletion, code-templates, quick-fixes, refactoring, etc.) with a collection of user-friendly graphical tools
for program composition, debugging, profiling, DBMS access, solver execution configuration and output-
handling.

Although so many tools for developing ASP programs have been proposed up to now, the crucial
task of testing ASP programs received less attention [32,46], and is an Achilles’ heel of the available
programming environments. Indeed, the majority of available graphic programming environments for ASP
does not provide the user with a testing tool (see [31]), and also the one present in the first versions of
ASPIDE is far from being effective.

In this paper we present a pragmatic solution for testing ASP programs. In particular, we present a new
language for specifying and running unit tests on ASP programs. The testing language presented in this
paper is inspired by the JUnit [33] framework: the developer can specify the rules composing one or sev-
eral units, specify one or more inputs and assert a number of conditions on both expected outputs and the

! For an exaustive feature-wise comparison with existing environments for developing logic programs we refer the
reader to [31].
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expected behavior of sub-programs. The obtained test case specification can be run by exploiting an ASP
solver, and the assertions are automatically verified by analyzing the output of the chosen ASP solver. Note
that test case specification is applicable independently of the used ASP solver. The testing language was
implemented in ASPIDE, which also provides the user with some graphic tools that make the development
of test cases simpler. The testing tool described in this work extends significantly the one formerly available
in ASPIDE, by both extending the language by more expressive (non-ground) assertions and the support
of weak-constraints, and enriching its collection of user-friendly graphical tools (including program com-
position, debugging, profiling, database management, solver execution configuration, and output-handling)
with a graphical test suite management interface.

As far as related work is concerned, the task of testing ASP programs was approached for the first time,
to the best of our knowledge, in [32,46] where the notion of structural testing for ground normal ASP
programs is defined and methods for automatically generating tests is introduced. The results presented
in [32,46] are, somehow, orthogonal to the contribution of this paper. Indeed, no language/implementation
is proposed in [32, 46] for specifying/automatically-running the produced test cases; whereas, the language
presented in this paper can be used for encoding the output of a test case generator based on the methods
proposed in [32]. Finally, it is worth noting that, testing approaches developed for other logic languages,
like prolog [34-36], cannot be straightforwardly ported to ASP because of the differences between the
languages.

The rest of this paper is organized as follows: in Section 2 we overview ASPIDE; in section 3 we
introduce a language for specifying unit tests for ASP programs; in Section 4 we describe the user inter-
face components of ASPIDE conceived for creating and running tests; finally, in Section 5 we draw the
conclusion.

2 ASPIDE: Integrated Development Environment for ASP

ASPIDE is an Integrated Development Environment (IDE) for ASP, which features a rich editing tool
with a collection of user-friendly graphical tools for ASP program development. In this section we first
summarize the main features of the system and then we overview the main components of the ASPIDE
user interface. For a more detailed description of ASPIDE, as well as for a complete comparison with
competing tools, we refer the reader to [31] and to the online manual published in the system web site
http://www.mat .unical.it/ricca/aspide.

System Features. ASPIDE is inspired by Eclipse, one of the most diffused programming environments.
The main features of ASPIDE are the following:

— Workspace management. The system allows one to organize ASP programs in projects, which are
collected in a special directory (called workspace).

— Advanced text editor. The editing of ASP files is simplified by an advanced text editor. Currently, the
system is able to load and store ASP programs in the syntax of the ASP system DLV [15], and sup-
ports the ASPCore language profile employed in the ASP System Competition 2011 [37]. ASPIDE
can also manage TYP files specifying a mapping between program predicates and database tables in
the DLVPZ syntax [38]. Besides the core functionality that basic text editors offer (like code line num-
bering, find/replace, undo/redo, copy/paste, etc.), ASPIDE offers other advanced functionalities, like:
Automatic completion, Dynamic code templates, Quick fix, and Refactoring. Indeed, the system is able
to complete (on request) predicate names, as well as variable names. Predicate names are both learned
while writing, and extracted from the files belonging to the same project; variables are suggested by
taking into account the rule we are currently writing. When several possible alternatives for completion
are available the system shows a pop-up dialog. Moreover, the writing of repeated programming pat-
terns (like transitive closure or disjunctive rules for guessing the search space) is assisted by advanced
auto-completion with code templates, which can generate several rules at once according to a known
pattern. Note that code templates can also be user defined by writing DLT [39] files. The refactoring
tool allows one to modify in a guided way, among others, predicate names and variables (e.g., variable
renaming in a rule is done by considering bindings of variables, so that variables/predicates/strings
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occurring in other expressions remain unchanged). Reported errors or warnings can be automatically
fixed by selecting (on request) one of the system’s suggested quick fixes, which automatically change
the affected part of code.

— Outline navigation. ASPIDE creates an outline view which graphically represents program elements.
Each item in the outline can be used to quickly access the corresponding line of code (a very useful
feature when dealing with long files), and also provides a graphical support for building rules in the
visual editor (see below).

— Dynamic code checking and error highlighting. Syntax errors and relevant conditions (like safety)
are checked while typing programs: portions of code containing errors or warnings are immediately
highlighted. Note that the checker considers the entire project, and warns the user by indicating e.g.,
that atoms with the same predicate name have different arity in several files. This condition is usually
revealed only when programs divided in multiple files are run together.

— Dependency graph. The system is able to display several variants of the dependency graph associated
to a program (e.g., depending on whether both positive and negative dependencies are considered).

— Debugger and Profiler. Semantic error detection as well as code optimization can be done by exploiting
graphic tools. In particular, we developed a graphical user interface for embedding in ASPIDE the
debugging tool spock [23] (we have also adapted spock for dealing with the syntax of the DLV system).
Regarding the profiler, we have fully embedded the graphical interface presented in [40].

— Unit Testing. The user can define unit tests and verify the behavior of program units. The language for
specifying unit tests, as well as the graphical tools of ASPIDE assisting the development of tests, are
described in detail in the following sections.

— Configuration of the execution. This feature allows one to configure and manage input programs and
execution options (called run configurations).

— Presentation of results. The output of the program (either answer sets, or query results) are visualized
in a tabular representation or in a text-based console. The result of the execution can be also saved in
text files for subsequent analysis.

— Visual Editor. The users can draw logic programs by exploiting a full graphical environment that
offers a QBE-like tool for building logic rules [41]. The user can switch, every time he needs, from the
text editor to the visual one (and vice-versa) thanks to a reverse-engineering mechanism from text to
graphical format.

— Interaction with databases. Interaction with external databases is useful in several applications (e.g.,
[12]). ASPIDE provides a fully graphical import/export tool that automatically generates mappings by
following the DLVPZ TYP file specifications [38]. Text editing of TYP mappings is also assisted by
syntax coloring and auto-completion. Database oriented applications can be run by setting DLVPZ as
solver in a run configuration.

Interface Overview The user interface of ASPIDE is depicted in Figure 1. The most common operations
can be quickly executed through a toolbar present in the upper part of the GUI (zone 1). From left to right
there are buttons allowing to: save files, undo/redo, copy & paste, find & replace, switch between visual to
text editor, run the solver/profiler/debugger. The main editing area (zone 4) is organized in a multi-tabbed
panel possibly collecting several open files. On the left there is the explorer panel (zone 2) which allows
one to browse the workspace; and the error console (zone 3). The explorer panel lists projects and files
included in the workspace, while the error console organizes errors and warnings according to the project
and files where they are localized. On the right, there are the outline panel (zone 5) and the sources panel
(zone 6). The first shows an outline of the currently edited file, while the latter reports a list of the database
sources connected with the current project. Note that, the layout of the system can be customized by the
user, indeed panels can be moved and rearranged.

ASPIDE is written in Java and runs on the most diffused operating systems (Microsoft Windows, Linux,
and Mac OS) and can connect to any database supporting Java DataBase Connectivity (JDBC).

3 A language for testing ASP programs

Software testing [42] is an activity aimed at evaluating the behavior of a program by verifying whether it
produces the required output for a particular input. The goal of testing is not to provide means for estab-
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Fig. 1. The ASPIDE graphical user interface.

lishing whether the program is totally correct; conversely testing is a pragmatic and cheap way of finding
errors by executing some test. A test case is the specification of some input I and corresponding expected

outputs O. A test case fails when the outputs produced by running the program does not correspond to O,

it passes otherwise.
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One of the most diffused white-box? testing techniques is unit testing. The idea of unit testing is to
assess an entire software by testing its subparts called units (and corresponding to small testable parts of
a program). In a software implemented by using imperative object-oriented languages, unit testing corre-
sponds to assessing separately portions of the code like class methods. The same idea can be applied to
ASP, once the notion of unit is given. We intend as unit of an ASP programs P any subset of the rules of P
corresponding to a splitting set [43] (actually the system exploits a generalization of the splitting theorem
by Lifschitz and Turner [43] to the non-ground case [44]). In this way, the behavior of units can be verified
(by avoiding unwanted behavioral changes due to cycles) both when they run isolated from the original
program as well as when they are left immersed in (part of) the original program.

In the following, we present a pragmatic solution for testing ASP programs, which is a new language,
inspired by the JUnit [33] framework, for specifying and running unit tests. The developer, given an ASP
program, can select the rules composing a unit, specify one or more inputs, and assert a number of condi-
tions on the expected output. The obtained test case specification can be run, and the assertions automati-
cally verified by calling an ASP solver and checking its output. In particular, we allow three test execution
modes:

— Execution of selected rules. The selected rules will be executed separated from the original program
on the specified inputs.

— Execution of split program. The program corresponding to the splitting set containing the atoms of the
selected rules is run and tested. In this way, the “interface” between two splitting sets can be tested
(e.g., one can assert some expected properties on the candidates produced by the guessing part of a
program by excluding the effect of some constraints in the checking part).

— Execution in the whole program. The original program is run and specific assertions regarding predi-
cates contained in the unit are checked. This corresponds to filtering test results on the atoms contained
in the selected rules.

Testing Language. A test file can be written according to the following grammar:?

: invocation ("invocationName" [ , "solverPath", "options" ]7?);
[ [ input ("program"); ] | [ inputFile ("file"); ] I«

1

2

3 :

4 : testCaseName ([ SELECTED_RULES | SPLIT_PROGRAM | PROGRAM ]?)
5

6

7

8

: A

: [newOptions ("options") ;] ?

: [ [ input ("program"); ] | [ inputFile("file"); 1 1x

[ [ excludeInput ("program"); ]

9 : | [ excludelInputFile("file"); ] 1x
10 @ [
11 : [ filter | pfilter | nfilter ]
12 : [ [ (predicateName [ ,predicateName ] ) ]
13 : | [SELECTED-RULES] 1 ;
14 : 172
15 : [ selectRule (ruleName); ]=x
16 : [ [ assertName( [ intnumber, ]2 [ [ "atoms" ] | [ "constraint" ] ); ]
17 : | [ assertBestModelCost (intcost [, intlevel 12 ); 1 1«x
18 : }
19 : Ix
20 : [ [ assertName( [ intnumber, ]? [ [ "atoms" ] | [ "constraint" ] ); ]
21 : | [ assertBestModelCost (intcost [, intlevel 12 ); ] 1x

A test file might contain a single test or a test suite (a set of tests) including several test cases. Each test
case includes one or more assertions on the execution results.

The invocation statement (line 1) sets the global invocation settings, that apply to all tests specified
in the same file (name, solver, and execution options). In the implementation, the invocation name might
correspond to an ASPIDE run configuration, and the solver path and options are not mandatory.

% A test conceived for verifying some functionality of an application without knowing the code internals is said to
be a black-box test. A test conceived for verifying the behavior of a specific part of a program is called white-box
test. White box testing is an activity usually carried out by developers and is a key component of agile software
development [42].

3 Non-terminals are in bold face; token specifications are omitted for simplicity.
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The user can specify one or more global inputs by writing some input and inputFile statements (line 2).
The first kind of statement allows one for writing the input of the test in the form of ASP rules or simply
facts; the second statement indicates a file that contains some input in ASP format.

A test case declaration (line 4) is composed by a name and an optional parameter that allows one to
choose if the execution will be done on the entire program, on a subset of rules, or on the program cor-
responding to the splitting set containing the selected rules. The user can specify particular solver options
(line 6), as well as certain inputs (line 7) which are valid in a given test case. Moreover, global inputs of the
test suite can be excluded by exploiting excludelnput and excludelnputFile statements (lines 8 and 9). The
optional statements filter, pfilter and nfilter (lines 11, 12, and 13) are used to filter out output predicates
from the test results (i.e., specified predicate names are filtered out from the results when the assertion is
executed).* The statement selectRule (line 15) allows one for selecting rules among the ones composing
the global input program. A rule r to be selected must be identified by a name, which is expected to be
specified in the input program in a comment appearing in the row immediately preceding 7 (see Figure 1).
ASPIDE adds automatically the comments specifying rule names. If a set of selected rules does not belong
to the same splitting set, the system has to print a warning indicating the problem.

The expected output of a test case is expressed in terms of assertion statements (lines 16/21). The
possible assertions are:

— assertTrue(”atomList” )lassertCautiouslyTrue(”atomList”). Asserts that all atoms of the atom list must
be true in any answer sets;

— assertBravelyTrue(”atomList”). Asserts that all atoms of the atom list must be true in at least one
answer set;

— assertTrueln(number, ”atomList”). Asserts that all atoms of the atom list must be true in exactly num-
ber answer sets;

— assertTruelnAtLeast(number, ”atomList”). Asserts that all atoms of the atom list must be true in at
least number answer sets;

— assertTrueInAtMost(number, ”atomList” ). Asserts that all atoms of the atom list must be true in at most
number answer sets;

— assertConstraint(”:-constraint.”). Asserts that all answer sets must satisfy the specified constraint;

— assertConstraintIn(number, ”:-constraint.” ). Asserts that exactly number answer sets must satisfy the
specified constraint;

— assertConstraintInAtLeast(number,
isfy the specified constraint;

— assertConstraintInAtMost(number,
isfy the specified constraint;

— assertBestModelCost(intcost) and assertBestModelCost(intcost, intlevel). In case of execution of pro-
grams with weak constraints, they assert that the cost of the best model with level intlevel must be
intcost,

”»

:-constraint.” ). Asserts that at least number answer sets must sat-

”»

:-constraint.” ). Asserts that at most number answer sets must sat-

together with the corresponding negative assertions: assertFalse, assertCautiouslyFalse, assertBravely-
False, assertFalseln, assertFalselnAtLeast, assertFalseInAtMost. The atomList specifies a list of atoms
that can be ground or non-ground; in the case of non-ground atoms the assertion is true if some ground
instance matches in some/all answer sets. Assertions can be global (line 20-21) or local to a single test (line
16-17).

In the following we report an example of test case.

Test case example. The maximum clique is a classical hard problem in graph theory requiring to find the
largest clique (i.e., a complete subgraph of maximal size) in an undirected graph. Suppose that the graph
G is specified by using facts over predicates node (unary) and edge (binary), then the program in Figure 1
solves the problem.

The disjunctive rule (r;) guesses a subset S of the nodes to be in the clique, while the rest of the pro-
gram checks whether S constitutes a clique, and the weak constraint (r;) maximizes the size of S. Here,

4 pfilter selects only positive literals and excludes the strongly negated ones, while nfilter has opposite behavior.
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Cliques: {1,4,5},{2,4,5},
{1,2,4},{1.2,5},{1,2,4,5}

Fig. 2. Input graphs.

an auxiliary predicate uedge exploits an ordering for reducing the time spent in checking. Suppose that
the encoding is stored in a file named clique.dl; and suppose also that the graph instance, composed by
facts { node(1). node(2). node(3). node(4). node(5). node(6). node(7). edge(1,2). edge(2,3). edge(2,4).
edge(1,4). edge(1,5). edge(4,5). edge(2,5). edge(4,6). edge(5,7). edge(3,7).}, is stored in the file named
graphlnstance.dl (the corresponding graph is depicted in Figure 2a). The following is a simple test suite
specification for the above-reported ASP program:

invocation ("MaximalClique", "/usr/bin/dlv", "");
inputFile ("clique.dl");
inputFile ("graphInstance.dl");

maximalClique ()

assertBestModelCost (3);

constraintsOnCliques ()

excludeInput (":” outClique (X2).");

assertConstraintInAtLeast (1,":- not inClique(l), not inClique(4).");
assertConstraintIn(5,":- #count{ X1: inClique (X1) } < 3.");

checkNodeOrdering (SELECTED_-RULES)
{

inputFile ("graphInstance.dl");
selectRule ("r2");

selectRule ("r3");

assertFalse ("uedge (2,1).");

}

guessClique (SPLIT_.PROGRAM)

{

selectRule("rl");

assertFalseInAtMost (1, "inClique (X).");
assertBravelyTrue ("inClique (X) .");

}

Here, we first set the invocation parameters by indicating DLV as solver, then we specify the file to be
tested clique.dl and the input file graphinstance.dl, by exploiting a global input statement; then, we add the
test case maximalClique, in which we assert that the best model is expected to have a cost (i.e., the number
of weak constraint violations corresponding to the vertexes out of the clique) of 3 (assertBestModelCost(3)
in Figure 3).

In the second test case, named constraintsOnCliques, we require that (7) vertexes 1 and 4 belong to at
least one clique, and (i7) for exactly five answer sets the size of the corresponding clique is greater than 2.
(The weak constraint is removed to ensure the computation of all cliques by DLV.)

In the third test case, named checkNodeOrdering, we select rules r and rs3, and we require to test
selected rules in isolation, discarding all the other statements of the input. We are still interested in con-
sidering ground facts that are included locally (i.e., we include the file graphinstance.dl). In this case we
assert that uedge(2,1) is false, since edges should be ordered by rules r, and rs.

Test case guessClique is run in SPLIT_PROGRAM modality, which requires to test the subprogram con-
taining all the rules belonging to the splitting set corresponding to the selection (i.e., {inClique, outClique,
node}). In this test case the sub-program that we are testing is composed by the disjunctive rule and by
the facts of predicate node only. Here we require that there is at most one answer set modeling the empty
clique, and there is at least one answer set modeling a non-empty clique.
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inputFile {"graphInstance.dl"});
selectRule("r2"); selectRule("=2");
assertFalse ("uedge (2,1).");

The test file described above can be created graphically and executed in ASPIDE as described in the

Fig. 3. Test case creation.

following section.
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Fig. 4. Test case execution and assertion management.
4 Unit Testing in ASPIDE

In this section we describe the graphic tools implemented in ASPIDE conceived for developing and running
test cases. Space constraints prevent us from providing a complete description of all the usage scenarios
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and available commands. However, in order to have an idea about the capabilities of the testing interface
of ASPIDE, we describe step by step how to implement the example illustrated in the previous section.

Suppose that we have created in ASPIDE a project named MaxClique, which contains the files cligue.dl
and graphinstance.dl (see Fig. 1) storing the encoding of the maximal clique problem and the graph in-
stance presented in the previous section, respectively. Moreover we assume that both input files are included
in a run configuration named MaximalCligue, and we assume that the DLV system is the solver of choice in
MaximalClique. Since the file that we want to test in our example is clique.dl, we select it in the workspace
explorer, then we click the right button of the mouse and select New Test from the popup menu (Fig. 3a).
The system shows the test creation dialog (Fig. 3b), which allows one for both setting the name of the
test file and selecting a previously-defined run configuration (storing execution options and input files).
By clicking on the Finish button, the new test file is created (see Fig. 3c) where a statement regarding
the selected run configuration is added automatically. We add the first unit test (called maximalClique) by
exploiting the text editor (see Fig. 3d), whereas we build the remaining ones (working on some selected
rules) by exploiting the logic program editor. After opening the clique.dl file, we select rules 7o and 73
inside the text editor, we right-click on them and we select Add selected rules in test case from the menu
item Test of the popup menu (fig. 3e). The system opens a dialog window where we indicate the test file
in which we want to add the new test case (fig. 3f). We click on the Create test case; the system will ask
for the name of the new test case and we write guessClique; after that, on the window, we select the option
execute selected rules and click on the Finish button. The system will add the test case guessCligue filled
with the selectRule statements indicating the selected rules. To add project files as input of the test case,
we select them from the workspace explorer and click on Use file as input in the menu item 7Zest (fig. 3g).
We complete the test case specification by adding the assertion, thus the test created up to now is shown in
figure 3h. Following an analogous procedure we create the remaining test cases (see Fig. 4a). To execute
our tests, we right-click on the test file and select Execute Test. The Test Execution Dialog appears and the
results are shown to the programmer (see Fig. 4b). Failing tests are indicated by a red icon, while green
icons indicate passing tests. At this point we add the following additional test:

checkNodeOutClique ()
excludelInput ("edge (2,4) .edge(2,5).");
assertFalse ("inClique (2) . inClique(5).");

}

This additional test (purposely) fails, this can be easily seen by looking at Figure 2b; and the reason
for this failure is indicated (see Fig. 4b) in the test execution dialog. In order to know which literals of
the solution do not satisfy the assertion, we right-click on the failed test and select Manage Asserts from
the menu. A dialog showing the outputs of the test appears where, in particular, predicates and literals
matching correctly the assertions are marked in green, whereas the ones violating the assertion are marked
in red (gray icons may appear to indicate missing literals which are expected to be in the solution). In
our example, the assertion is assertFalse(”inClique(2). inClique(5).” ); however, in our instance, node 5 is
contained in the maximal clique composed by nodes 7, 4, 5; this is the reason for the failing test. Assertions
can be modified graphically, and, in this case, we act directly on the result window (fig. 4c). We remove the
node 5 from the assertion by selecting it; moreover we right-click on the instance of inCligue that specifies
the node 5 and we select Remove from Assert. The atom node(5) will be removed from the assertion and
the window will be refreshed showing that the test is correctly executed (see fig. 4e). The same window
can be used to manage constraint assertions; in particular, by clicking on Manage Constraint Assert of the
popup menu, a window appears that allows the user to set/edit constraints (see fig. 4d).

5 Conclusion

This paper presents a pragmatic environment for testing ASP programs. In particular, we propose a new
language, inspired by the JUnit [33] framework, for specifying and running unit tests on ASP programs. The
testing language is general and suits both the DLV [15] and clasp [16] ASP dialects. The testing language
has been implemented in ASPIDE together with some graphic tools for easing both the development of
tests and the analysis of test execution (via DLV).



Unit Testing in ASPIDE 175

As far as future work is concerned, we plan to extend ASPIDE by improving/introducing additional

dynamic editing instruments, and graphic tools like VIDEAS [45]. Moreover, we plan to further improve
the testing tool by supporting (semi)automatic test case generation based on the structural testing techniques
proposed in [32, 46].
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A Prototype of a Knowledge-based Programming Environment

Stef De Pooter, Johan Wittocx, and Marc Denecker

Department of Computer Science, K.U. Leuven

Abstract. In this paper we present a proposal for a knowledge-based programming environment. In
such an environment, declarative background knowledge, procedures, and concrete data are represented
in suitable languages and combined in a flexible manner. This leads to a highly declarative program-
ming style. We illustrate our approach on an example and report about our prototype implementation.

1 Context

An obvious requirement for a powerful and flexible programming paradigm seems to be that within the
paradigm different types of information can be expressed in suitable languages. However, most traditional
programming paradigms and languages do not really have this property. In imperative languages, for ex-
ample, non-executable background knowledge can not be described. The consequences become clear when
we try to solve a scheduling problem in an imperative language: the background knowledge, the constraints
that need to be satisfied by the schedule, gets mixed up with the algorithms. This makes adding new con-
straints and finding and modifying existing ones cumbersome.

On the other hand, most logic-based declarative programming paradigms lack the capacity to express
procedures. Typically, they consist of a logic together with one specific type of inference. For example,
Prolog uses Horn clause logic and does querying, in Description Logic the studied task is deduction, and
Answer Set Programming and Constraint Programming make use of model generation. In such paradigms,
whenever we try to perform a task that does not fit the inference mechanism at hand, the declarative aspect
of the paradigm disappears. For example, when we try to solve a scheduling problem (which is a typical
model-generation problem) in Prolog, then we need to represent the schedule as a term, say a list (rather
than as a logical structure), and as a result the constraints do not really reside in the logic program, but will
have to be expressed by clauses that iterate over a list [4]. Proving that a certain requirement is implied by
another, is possible (in theory) for a theorem prover, but not in ASP. Etc.

To overcome these restrictions of existing paradigms, we propose a paradigm in which each compo-
nent can be expressed in an appropriate language. We distinguish three components: procedures, (non-
executable) background knowledge, and concrete data. For the first we need an imperative language, for
the second an (expressive) logic, for the third a logical structure (which corresponds to a database). The
connection between these components is mostly realized by various reasoning tasks, such as theorem prov-
ing, model generation, model checking, model revision, belief revision, constraint propagation, querying,
datamining, visualization, etc.

The idea to support multiple forms of inference for the same logic or even for the same theories, was
argued in [6]. Here it is argued that logic has a more flexible, multifunctional and therefore also more
declarative role for problem solving than provided in many declarative programming paradigms, where
typically one form of inference is central and theories are written to be used for this form of inference,
sometimes even for a specific algorithm implementing this form of inference (such as PROLOG resolution).
This view was therefore called the Knowledge Base System paradigm for declarative problem solving. The
framework presented here is based on this view and goes beyond it in the sense that it offers a programming
environment in which complex tasks can be programmed using multiple forms of inference and processing
tools.

2  Overview of the language and system

To try out the above mentioned ideas in practice, we built a prototype interpreter that supports some basic
reasoning tasks and a set of processing tools on high-level data such as vocabularies, structures and the-
ories. In this section we will highlight various decisions in the design of our programming language and
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interpreter. In the next section we will illustrate the usage of the language with an example. We named our
language DECLIMP, which is an aggregation of “declarative” and “imperative”.

2.1 Program structure

A DECLIMP program typically contains several blocks of code. Each block is either a procedure, a vo-
cabulary (which is a list of sort, predicate and function names), a logic theory over vocabularies (which
describes a piece of background knowledge using the relation and function names of its vocabulary), or a
(possibly three-valued) structure over vocabularies. The latter represent databases over their vocabularies.
To bring more structure into a program and to be able to work with multiple files, namespaces and include
statements are provided.

Because vocabularies, logic theories and databases are not executable, and a program needs to be ex-
ecuted, control of a DECLIMP program is always in the hands of the procedures. Moreover, when a main
procedure is available, the run of the program will start with the execution of this procedure. When there is
no main procedure, the user can run commands in an interactive shell, after parsing the program.

In the next sections, we will describe the languages for the respective components in a DECLIMP pro-
gram.

2.2 Knowledge representation language

For representing background knowledge we use an extended version of classical logic. A first advantage
in using this language lies in the fact that classical logic is the best known and most studied logic. Also,
classical logic has the important property that its informal semantics corresponds to its formal semantics.
In other words, in classical logic the meaning of expressions' is intuitively clear. This is an important re-
quirement in the design of a language that is accessible to a wider audience. Furthermore, there are already
numerous declarative systems that use a language based on classical logic, or can easily be translated to
it. Think of the languages of most theorem provers, various Description logics, and the language of model
generators such as IDP [20, 8] and ENFRAGMO [14].

Research in the Knowledge Representation and Reasoning community has clearly shown that classical
logic is in many ways insufficient. Aggregates and (recursive) definitions are well-known concepts that
are common in the background knowledge of many applications, and which can generally not, or not in a
concise and intuitively clear manner, be expressed in first-order logic. In DECLIMP we use an order-sorted
version of first-order logic, extended with inductive definitions [5], aggregates [15], (partial) functions and
arithmetic.

2.3 Structures

Structures in DECLIMP are written in a simple language that allows to enumerate all elements that belong
to a sort and all tuples that belong to a relation or function. As an alternative to enumerating a relation,
it is also possible to specify the relation in a procedural way, namely as all the tuples for which a given
procedure returns ‘true’. Furthermore, the interpretation of a function can be specified by a procedure,
somewhat similar to “external procedure” in DLV [2].

As mentioned before, structures in DECLIMP are not n