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Abstract. This paper describes two algorithms for the compression
of propositional resolution proofs. The first algorithm, RecyclePivots-
WithIntersection, performs partial regularization, removing an infer-
ence η when it is redundant in the sense that its pivot literal already
occurs as the pivot of another inference located below in the path from
η to the root of the proof. The second algorithm, LowerUnits, delays
the resolution of (both input and derived) unit clauses, thus removing
(some) inferences having the same pivot but possibly occurring also in
different branches of the proof.

1 Introduction

Propositional satisfiability (SAT) solving has made enormous progress during the
recent decade, and powerful decision procedures are being used in many different
contexts, such as hardware and software verification, knowledge representation,
and diagnostic applications (see [3] for a thorough presentation of techniques
and applications of SAT solving). SAT solving also forms the backbone for au-
tomated reasoning over more expressive logics, such as in SMT (satisfiability
modulo theories) solving (see [2] for a detailed account of techniques used in
SMT solvers). For many applications, it is not enough to just obtain a yes/no
answer to the decision problem, but one is also interested in a justification of the
verdict, that is, a model satisfying the original formula, or a proof showing that
no such model exists. For example, in the context of proof carrying code [7], the
code producer must provide a proof that will be checked by the code consumer.
In the context of SAT solving, it is well understood how decision procedures
can be adapted to construct a resolution proof while performing proof search.
However, proofs output by SAT solvers can be huge (millions of learned clauses
and tens or hundreds of megabytes for typical benchmark cases), and techniques
for obtaining small proofs become of interest. Producing a proof of minimum
size is an NP-hard problem, so it is important to find heuristics of low (prefer-
ably linear) complexity that achieve interesting reductions in practical cases.
Going beyond trivial optimizations, such as eliminating inferences that do not
contribute to the final conclusion, one frequently observes that the same clause
(or the same pivot literal) is used more than once within a proof, and even along
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a single branch in a proof. Although it is not a priori the case that multiple uses
of a clause (or pivot) are actually redundant or that their elimination results in a
shorter proof, we concentrate in this work on identifying such cases and on corre-
sponding transformations of proofs. Our algorithms are generalizations of similar
techniques proposed in the literature [1, 5, 9]. We show that our techniques yield
provably better results than previous algorithms, while their implementation is
no more complex. A more detailed comparison with existing work appears in
Section 7. We have implemented our algorithms and we presented experimental
validations on standard benchmarks in Section 6.

2 The Resolution Calculus

A literal is an atomic formula or a negated atomic formula. A clause is a set of
literals, ⊥ denotes the empty clause. We write ` to denote the dual of ` and |`|
for the atom underlying the literal ` (i.e., p = ¬p, ¬p = p, and |p| = |¬p| = p for
an atomic formula p).

Definition 1. A resolution inference is an instance of the following rule:

Γ1 ∪ {`} Γ2 ∪ {`} |`|
Γ1 ∪ Γ2

The clauses Γ1 ∪ {`} and Γ2 ∪ {`} are the inference’s premises and Γ1 ∪ Γ2 (the
resolvent of the premises) is its conclusion. The literal ` (`) is the left (right)
resolved literal, and |`| is the resolved atom or pivot. �

A (resolution) proof of a clause κ from a set of clauses C is a directed acyclic
graph (dag): the input nodes are axiom inferences (without premises) whose
conclusions are elements of C, the resolvent nodes are resolution inferences, and
the proof has a node with conclusion κ. The dag contains an edge from a node
η1 to a node η2 if and only if a premise of η1 is the conclusion of η2. In this case,
η1 is a child of η2, and η2 is a parent of η1. A node with no children is a root.
A (resolution) refutation of C is a resolution proof of ⊥ from C. For the sake
of brevity, given a node η, we say clause η or η’s clause meaning the conclusion
clause of η, and (sub)proof η meaning the (sub)proof having η as its only root.
The resolvent of κ1 and κ2 with pivot p can be denoted as κ1 �p κ2. When
the pivot is uniquely defined or irrelevant, we omit it and write simply κ1 � κ2.
In this way, the set of clauses can be seen as an algebra with a commutative
operator � whose properties have been investigated in [6]; and terms in the
corresponding term algebra denote resolution proofs in a notation style that is
more compact and more convenient for describing resolution proofs than the
usual graph notation.

Example 2. Consider the proof ψ shown below:

η1
η2 : a, c,¬b

η1 : ¬a η3 : a, b
a

η4 : b
bη5 : a, c

aη6 : c

η4 η7 : a,¬b,¬c
bη8 : a,¬c η1

aη9 : ¬c
c

ψ : ⊥



The node η4 has pivot a, left (right) resolved literal ¬a (a). Its conclusion is
{b} and its premises are the conclusions of its parents: the input nodes η1 ({¬a})
and η3 ({a, b}). It has two children (η5 and η8). ψ can be compactly represented
by the following proof term:

({¬a}︸ ︷︷ ︸
η1

�({a, c,¬b} � (η1 � {a, b})︸ ︷︷ ︸
η4

))� ((η4 � {a,¬b,¬c})� η1).

3 Redundant Proofs

A proof ψ of κ is considered redundant iff there exists another proof ψ′ of κ′

such that κ′ ⊆ κ (i.e. κ′ subsumes κ) and |ψ′| < |ψ| where |ϕ| is the number
of nodes in ϕ. The definition below describes two patterns of local redundancy:
proofs matching them (modulo commutativity of �) can be easily compressed.

Definition 3 (Local Redundancy). A proof containing a subproof of the
shapes (here omitted pivots indicate that the resolvents must be uniquely defined)

(η � η1)� (η � η2) or η � (η1 � (η � η2))

is locally redundant. Indeed, both of these subproofs can be equivalently replaced
by the shorter subproof η � (η1 � η2). �

Example 4. The proofs below are two of the simplest examples of locally redun-
dant proofs.

η : ¬a η1 : a, b
a

b

η η2 : a,¬b
a

¬b
b

ψ1 : ⊥

η : ¬a
η1 : a, b

η η2 : a,¬b
a

¬b
ba

a
ψ2 : ⊥

Both proofs can be rewritten to the shorter proof below:

η : ¬a
η1 : a, b η2 : a,¬b

ba
a

ψ3 : ⊥

Note that, by locally permuting the lowermost inference with pivot a and the
inference with pivot b, the proof ψ2 can be transformed into ψ1. This indicates
that the two patterns given in Def. 3 can be seen as different manifestations of
the same underlying phenomenon. They appear differently in resolution proofs
because the resolution calculus enforces a sequential order of inferences even
when the order actually does not matter. �

In the case of local redundancy, the pairs of redundant inferences having the
same pivot occur close to each other in the proof. However, redundant inferences
can also occur far apart in the proof. One could attempt to remove global re-
dundancies by repeatedly permuting inferences until the redundant inferences



appear next to each other. However this approach is intrinsically inefficient be-
cause many permutations must be considered and intermediate resolvents must
be recomputed after every permutation.

The following definition generalizes Def. 3 by considering inferences with
the same pivot that occur within different contexts. We write ψ[η] to denote a
proof-context ψ[ ] with a single placeholder replaced by the subproof η.

Definition 5 ((Global) Redundancy). A proof

ψ[ψ1[η �p η1]� ψ2[η �p η2]] or ψ[ψ1[η �p (η1 � ψ2[η �p η2])]]

is potentially (globally) redundant. Furthermore, it is (globally) redundant if it
can be rewritten to one of the following shorter proofs:

ψ[η �p (ψ1[η1]� ψ2[η2])] or η �p ψ[ψ1[η1]� ψ2[η2]] or ψ[ψ1[η1]� ψ2[η2]].

Example 6. Consider the following proof ψ.

η : p, q η1 : ¬p, r
p

q, r η3 : ¬q
q

r

η η2 : ¬p, s,¬r
p

q, s,¬r η3 q
s,¬r

r
ψ : s

It corresponds to the proof term ((η �p η1) � η3) � ((η �p η2) � η3), which
is an instance of the first pattern appearing in Def. 5, hence ψ is potentially
globally redundant. However, ψ is not globally redundant: the replacement terms
according to Def. 5 contain (η1 � η3)� (η2 � η3), which does not correspond to
a proof. In particular, neither η1 nor η2 can be resolved with η3, as they do not
contain the literal q. �

The second pattern of potentially globally redundant proofs appearing in
Def. 5 is related to the well-known notion of regularity [10]. Informally, a proof
is irregular if there is a path from a node to the root of the proof such that a
literal is used more than once as a pivot in this path.

Definition 7 (Irregularity). A proof of the form ψ[η�p (η1�ψ′[η′�p η2])] is
irregular. �

The regular resolution calculus is the resolution calculus restricted so that ir-
regular proofs are disallowed. Although it is still complete, it does not p-simulate
the unrestricted resolution calculus [10]: there are unsatisfiable formulas whose
shortest regular resolution refutations are exponentially longer than their short-
est unrestricted resolution refutations.

4 Algorithm LowerUnits

A closer inspection of Example 6 shows that it relies on η’s clause containing
two literals: its literal q had to be resolved within the proof-contexts ψ1[ ] and
ψ2[ ], and hence η could not be moved outside the contexts. It is easy to see that
a potentially redundant proof is always redundant in case the redundant node
contains a unit clause.



Theorem 8. Let ϕ be a potentially redundant proof, and η be the redundant
node. If η’s clause is a unit clause, then ϕ is redundant.

Proof. Consider first a proof of the form ψ[ψ1[η � η1] � ψ2[η � η2]] and let `
be the only literal of η’s clause. Then the clause ψ1[η1] � ψ2[η2] contains the
literal `. Two cases can be distinguished, depending on whether the literal ` gets
propagated to the root of ψ[ ]:

1. In all paths from ψ1[η1]�ψ2[η2] to the root of ψ[ ], ` gets resolved out: then,
the clause ψ[ψ1[η1]�ψ2[η2]] is equal to the clause ψ[ψ1[η� η1]�ψ2[η� η2]],
and hence the original proof can be rewritten to ψ[ψ1[η1]� ψ2[η2]].

2. In some paths from ψ1[η1]�ψ2[η2] to the root of ψ[ ], ` does not get resolved
out: in this case, the clause of ψ[ψ1[η1] � ψ2[η2]] is equal to the clause of
ψ[ψ1[η � η1] � ψ2[η � η2]] with the additional literal `. Consequently, the
clause η�(ψ[ψ1[η1]�ψ2[η2]]) is equal to the clause ψ[ψ1[η�η1]�ψ2[η�η2]],
and hence the original proof can be rewritten to η � (ψ[ψ1[η1]� ψ2[η2]]).

In both cases, since the rewriting to one of the three shorter proofs described in
Definition 5 is possible, the proof is redundant. The case for potentially redun-
dant proofs of the form ψ[ψ1[η �p (η1 � ψ2[η �p η2])]] is analogous. �

The LowerUnits (LU) algorithm targets exactly the class of global redun-
dancy stemming from multiple resolutions with unit clauses. The algorithm takes
its name from the fact that, when this rewriting is done and the resulting proof
is displayed as a dag, the unit node η appears lower (i.e., closer to the root) than
it used to appear in the original proof.

A naive implementation exploiting Theorem 8 would require the proof to be
traversed and fixed after each unit node is lowered. It is possible, however, to do
better by first collecting and removing all the unit nodes in a single traversal,
and afterwards fixing the whole proof in a single second traversal. Finally, the
collected and fixed unit nodes have to be reinserted at the bottom of the proof
(cf. Algorithms 1 and 2).

Care must be taken with cases when a unit node η′ occurs above in the sub-
proof that derives another unit node η. In such cases, η depends on η′. Let ` be
the single literal of the unit clause of η′. Then any occurrence of ` in the subproof
above η will not be cancelled by resolution inferences with η′ anymore. Conse-
quently, ` will be propagated downwards when the proof is fixed and will appear

input : A proof ψ
output: A proof ψ′ with no global redundancy with unit redundant node

(unitsQueue, ψb) ← collectUnits(ψ);1

ψf ← fix(ψb);2

fixedUnitsQueue ← fix(unitsQueue);3

ψ′ ← reinsertUnits(ψf , fixedUnitsQueue) ;4

return ψ′;5

Algorithm 1: LowerUnits



input : A proof ψ
output: A pair containing a queue of all unit nodes (unitsQueue) that are used

more than once in ψ and a broken proof ψb

ψb ← ψ;1

traverse ψb bottom-up and foreach node η in ψb do2

if η is unit and η has more than one child then3

add η to unitsQueue;4

remove η from ψb;5

end6

end7

return (unitsQueue, ψb);8

Algorithm 2: CollectUnits

in the clause of η. Difficulties with such dependencies can be easily avoided if
we reinsert the upper unit node η′ after reinserting the unit node η (i.e. after
reinsertion, η′ must appear below η, to cancel the extra literal ` from η’s clause).
This can be ensured by collecting the unit nodes in a queue during a bottom-up
traversal of the proof and reinserting them in the order they were queued.

The algorithm for fixing a proof containing many roots performs a top-down
traversal of the proof, recomputing the resolvents and replacing broken nodes
(e.g. nodes having deletedNodeMarker as one of their parents) by their surviving
parents (e.g. the other parent, in case one parent was deletedNodeMarker).

When unit nodes are collected and removed from a proof of a clause κ and
the proof is fixed, the clause κ′ in the root node of the new proof is not equal
to κ anymore, but contains (some of) the duals of the literals of the unit clauses
that have been removed from the proof. The reinsertion of unit nodes at the
bottom of the proof resolves κ′ with the clauses of (some of) the collected unit
nodes, in order to obtain a proof of κ again.

input : A proof ψf (with a single root) and a queue q of root nodes
output: A proof ψ′

ψ′ ← ψf ;1

while q 6= ∅ do2

η ← first element of q;3

q ← tail of q;4

if η is resolvable with root of ψ′ then5

ψ′ ← resolvent of η with the root of ψ′ ;6

end7

end8

return ψ′;9

Algorithm 3: ReinsertUnits



Example 9. When applied to the proof ψ shown in Example 2, the algorithm LU

collects the nodes η4 and η1, and replaces them by deletedNodeMarker (DNM):

DNM
η2 : a, c,¬b

DNM η3 : a, b
a

η4 : DNM
bη5 : a, c

aη6 : c

DNM η7 : a,¬b,¬c
bη8 : a,¬c DNM

aη9 : ¬c
c

ψ : ⊥

Fixing removes the DNMs. The derived unit clause η4 is replaced by η3, since its
other parent was a DNM. And the proof ψ becomes:

η2 : a, c,¬b η7 : a,¬b,¬c
c

ψ : a,¬b

Finally, the collected units η4 (now replaced by η3) and η1 can be reinserted in
the bottom of the proof, resulting in ((η2 � η7)� η3)� η1:

η2 : a, c,¬b η7 : a,¬b,¬c
c

ψ : a,¬b η3(η4) : a, b
b

ψ′ : a η1 : ¬a
a

ψ′′ : ⊥
�

For efficiency reasons, modern SAT solvers tend to use unit clauses eagerly:
once a unit clause is found, it is used to simplify all other clauses. While this is
clearly a good heuristic during proof search, unit resolutions can be delayed once
a proof is found, since the number of resolution steps can then be significantly
reduced. This effect is illustrated by a toy example in the proof of Theorem 10
below. While modern SAT solvers can produce a linear-size proof for this par-
ticular example, it nevertheless illustrates the undesirable effects that eager unit
resolution may have on proof size.

Theorem 10. There is a sequence of unsatisfiable clause sets Sn for which
the shortest refutations ϕn obtained via eager unit resolution grow quadratically
(i.e. |ϕn| ∈ Ω(n2)) while the compressed proofs LU(ϕn) grow only linearly (i.e.
|LU(ϕn)| ∈ O(n)).

Proof. Consider the clause set Sn below:

κ1 = ¬p1 κ2 = p1,¬p2 κ3 = p1, p2,¬p3 . . . κn+1 = p1, p2, p3, . . . , pn

By eager unit resolution, κ1 is firstly resolved with all other n clauses. Then
the unit resolvent of κ1 and κ2 is resolved with all resolvents of κ1 and κi
(3 ≤ i ≤ n + 1) and so on. . . The kth iteration of unit resolution generates
n+ 1− k resolvents. One of these is the unit clause κuk+1 = ¬pk+1 which is then
resolved in the next iteration. It is easy to see that this refutation ϕn has length
n2+n

2 . The compressed proof LU(ϕn), shown below, has length equal to n only.

(κ1 � (. . .� (κn−1 � (κn � κn+1)) . . .))

�



5 Algorithm RecyclePivotsWithIntersection

Our second algorithm, RecyclePivotsWithIntersection (RPI), aims at com-
pressing irregular proofs. It can be seen as a simple but significant modification
of the RecyclePivots (RP) algorithm described in [1], from which it derives
its name. Although in the worst case full regularization can increase the proof
length exponentially [10], these algorithms show that many irregular proofs can
have their length decreased if a careful partial regularization is performed.

Consider an irregular proof of the form ψ[η �p ψ′[η′ �p η′′]] and assume,
without loss of generality, that p ∈ η and p ∈ η′. Then, if η′ �p η′′ is replaced
by η′′ within the proof-context ψ′[ ], the clause η �p ψ′[η′′] subsumes the clause
η�pψ′[η′�p η′′], because even though the literal ¬p of η′′ is propagated down, it
gets resolved against the literal p of η later on below in the proof. More precisely,
even though it might be the case that ¬p ∈ ψ′[η′′] while ¬p /∈ ψ′[η′ �p η′′], it is
necessarily the case that ¬p /∈ η �p ψ′[η′ �p η′′] and ¬p /∈ η �p ψ′[η′′].

Although the remarks above suggest that it is safe to replace η′ �p η′′ by
η′′ within the proof-context ψ′[ ], this is not always the case. If a node in ψ′[ ]
has a child in ψ[ ], then the literal ¬p might be propagated down to the root
of the proof, and hence, the clause ψ[η �p ψ′[η′′]] might not subsume the clause
ψ[η�p ψ′[η′�p η′′]]. Therefore, it is only safe to do the replacement if the literal
¬p gets resolved in all paths from η′′ to the root or if it already occurs in the
root clause of the original proof ψ[η �p ψ′[η′ �p η′′]].

These observations lead to the idea of traversing the proof in a bottom-up
manner, storing for every node a set of safe literals that get resolved in all paths
below it in the proof (or that already occurred in the root clause of the original
proof). Moreover, if one of the node’s resolved literals belongs to the set of safe
literals, then it is possible to regularize the node by replacing it by one of its
parents (cf. Algorithm 4).

The regularization of a node should replace a node by one of its parents,
and more precisely by the parent whose clause contains the resolved literal that
is safe. After regularization, all nodes below the regularized node may have to

input : A proof ψ
output: A possibly less-irregular proof ψ′

ψ′ ← ψ;1

traverse ψ′ bottom-up and foreach node η in ψ′ do2

if η is a resolvent node then3

setSafeLiterals(η) ;4

regularizeIfPossible(η)5

end6

end7

ψ′ ← fix(ψ′) ;8

return ψ′;9

Algorithm 4: RecyclePivotsWithIntersection



input : A node η
output: nothing (but the proof containing η may be changed)

if η.rightResolvedLiteral ∈ η.safeLiterals then1

replace left parent of η by deletedNodeMarker ;2

mark η as regularized3

else if η.leftResolvedLiteral ∈ η.safeLiterals then4

replace right parent of η by deletedNodeMarker ;5

mark η as regularized6

end7

Algorithm 5: regularizeIfPossible

be fixed. However, since the regularization is done with a bottom-up traversal,
and only nodes below the regularized node need to be fixed, it is again possible
to postpone fixing and do it with only a single traversal afterwards. Therefore,
instead of replacing the irregular node by one of its parents immediately, its
other parent is replaced by deletedNodeMarker, as shown in Algorithm 5. Only
later during fixing, the irregular node is actually replaced by its surviving parent
(i.e. the parent that is not deletedNodeMarker).

The set of safe literals of a node η can be computed from the set of safe
literals of its children (cf. Algorithm 6). In the case when η has a single child ς,
the safe literals of η are simply the safe literals of ς together with the resolved
literal p of ς belonging to η (p is safe for η, because whenever p is propagated
down the proof through η, p gets resolved in ς). It is important to note, however,
that if ς has been marked as regularized, it will eventually be replaced by η, and
hence p should not be added to the safe literals of η. In this case, the safe literals

input : A node η
output: nothing (but the node η gets a set of safe literals)

if η is a root node with no children then1

η.safeLiterals ← η.clause2

else3

foreach η′ ∈ η.children do4

if η′ is marked as regularized then5

safeLiteralsFrom(η′) ← η′.safeLiterals ;6

else if η is left parent of η′ then7

safeLiteralsFrom(η′) ← η′.safeLiterals ∪ { η′.rightResolvedLiteral } ;8

else if η is right parent of η′ then9

safeLiteralsFrom(η′) ← η′.safeLiterals ∪ { η′.leftResolvedLiteral } ;10

end11

end12

η.safeLiterals ←
⋂
η′∈η.children safeLiteralsFrom(η′)13

end14

Algorithm 6: setSafeLiterals



input : A node η
output: nothing (but the node η gets a set of safe literals)

if η is a root node with no children then1

η.safeLiterals ← ∅2

else3

if η has only one child η′ then4

if η′ is marked as regularized then5

η.safeLiterals ← η′.safeLiterals ;6

else if η is left parent of η′ then7

η.safeLiterals ← η′.safeLiterals ∪ { η′.rightResolvedLiteral } ;8

else if η is right parent of η′ then9

η.safeLiterals ← η′.safeLiterals ∪ { η′.leftResolvedLiteral } ;10

end11

else12

η.safeLiterals ← ∅13

end14

end15

Algorithm 7: setSafeLiterals for RecyclePivots

of η should be exactly the same as the safe literals of ς. When η has several
children, the safe literals of η w.r.t. a child ςi contain literals that are safe on all
paths that go from η through ςi to the root. For a literal to be safe for all paths
from η to the root, it should therefore be in the intersection of the sets of safe
literals w.r.t. each child.

The RP and the RPI algorithms differ from each other mainly in the compu-
tation of the safe literals of a node that has many children. While RPI returns
the intersection as shown in Algorithm 6, RP returns the empty set (cf. Algo-
rithm 7). Additionally, while in RPI the safe literals of the root node contain all
the literals of the root clause, in RP the root node is always assigned an empty
set of literals. (Of course, this makes a difference only when the proof is not a
refutation.) Note that during a traversal of the proof, the lines from 5 to 10 in
Algorithm 6 are executed as many times as the number of edges in the proof.
Since every node has at most two parents, the number of edges is at most twice
the number of nodes. Therefore, during a traversal of a proof with n nodes, lines
from 5 to 10 are executed at most 2n times, and the algorithm remains linear.
In our prototype implementation, the sets of safe literals are instances of Scala’s
mutable.HashSet class. Being mutable, new elements can be added efficiently.
And being HashSets, membership checking is done in constant time in the av-
erage case, and set intersection (line 12) can be done in O(k.s), where k is the
number of sets and s is the size of the smallest set.

Example 11. When applied to the proof ψ shown in Example 2, the algorithm
RPI assigns {a, c} and {a,¬c} as the safe literals of, respectively, η5 and η8.
The safe literals of η4 w.r.t. its children η5 and η8 are respectively {a, c, b} and
{a,¬c, b}, and hence the safe literals of η4 are {a, b} (the intersection of {a, c, b}



and {a,¬c, b}). Since the right resolved literal of η4 (a) belongs to η4’s safe
literals, η4 is correctly detected as a redundant node and hence regularized: η4
is replaced by its right parent η3. The resulting proof is shown below:

η1 : ¬a
η2 : a, c,¬b η3 : a, b

η5 : a, c
η6 : c

η3 η7 : a,¬c,¬b
η8 : a,¬c η1

η9 : ¬c
ψ : ⊥

({¬a}︸ ︷︷ ︸
η1

�({a, c,¬b} � {a, b}︸ ︷︷ ︸
η3

))� ((η3 � {¬b,¬c, a})� η1)

RP, on the other hand, assigns ∅ as the set of safe literals for η4. Therefore, it
does not detect that η4 is a redundant irregular node, and then RP(ϕ) = ϕ. �

Theorem 12. For any proof ϕ, |RPI(ϕ)| ≤ |RP(ϕ)|.

Proof. For every node η in ϕ, let SηRPI (resp., SηRP) be the set of safe literals for η
computed by RPI and RP. It is easy to see that SηRPI ⊇ SηRP for all η. Therefore,
RPI detects and eliminates more redundancies than RP. �

The better compression of RPI does not come for free, as computing an
intersection of sets is more costly than assigning the empty set. For a node η
with k children, k sets must be intersected and the size of each set is in the worst
case in O(h), where h is the length of the shortest path from η to a root.

6 Experimental Evaluation

In order to evaluate these algorithms, we implemented prototypes1 of RP, RPI,
and LU in the high-level programming language Scala [8] and applied them, as
well as the two possible sequential compositions of LU and RPI, to 98 refuta-
tions of standard unsatisfiable benchmark problems2. These refutations3 were
generated by the CDCL-based SAT-solver included in veriT [4]. For each proof
ψ and each algorithm α, we measured4 the time t(α,ψ) taken by α to compress
ψ and the lengths of ψ and α(ψ), and we calculated the obtained compression
((|ψ| − |α(ψ)|)/|ψ|) and the compression speed ((|ψ| − |α(ψ)|)/t(α,ψ)).

The scatter plot shown in the left side of Figure 1 confirms that RPI always
compresses more than RP, as predicted by Theorem 12. Furthermore, it shows
that RPI often compressed much more than RP. The comparison becomes even
more favorable when RPI is followed by LU, as shown in the right-hand figure.

1 Source code available at http://code.google.com/p/proof-compression/.
2 The benchmarks were: (1) unsatisfiable problems of the SatRace 2010 competition

solved by veriT in less than 30s and stemming from verification of software (“Babic”
and “Nec” benchmarks) and hardware (“IBM” and “Manolios”); (2) smaller prob-
lems of the Sat-Lib DIMACS benchmarks (“AIM”, “Dubois”, “JNH”, “BF”, “Pret”,
“SSA”, described in www.cs.ubc.ca/~hoos/SATLIB/benchm.html)

3 Proofs in www.logic.at/people/bruno/Experiments/2011/LU-RPI/Proofs.zip
4 The raw data of the experiments is available at https://spreadsheets.google.

com/ccc?key=0Al709ihGgKdndG1yWm5kNXIzNHppNXd0ZGQwTE01V0E&hl=en.
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Fig. 1: Comparing RP and RPI, resp. RPI followed by LU.

Even though our implementations are just prototypes and the experiments
were executed on a modest computer (2.8GHz Intel Core 2 Duo processor with
only 2GB of RAM (1067MHz DDR3) available for the Java Virtual Machine),
we were pleased to see that the algorithms presented an acceptable and scalable
performance. The proofs generated by veriT contained up to millions of derived
clauses and were up to 100MB big (in the size of the text file) in a minimalistic
proof format5. They included all intermediate clauses that had been learned
during the execution of veriT, even those that were not used to derive the final
empty clause. Before applying the compression algorithms, we removed these
unused clauses, but the pruned proofs were still up to more than half a million
clauses long and up to about 20MB big. The execution times of all algorithms
varied between less than 100 miliseconds for the smaller proofs, less than 10
seconds for the majority of the much bigger proofs of the SatRace benchmarks,
and 7.5 minutes in the worst case (for a highly redundant proof with more than
half a million clauses).

Figure 2 shows the compression (top) and compression speed (bottom) for
the examples from the SatRace. The top figure suggests a trend where longer
proofs are more redundant and allow for more compression. This might be due
to the fact that the SAT solver backtracks and restarts more often for harder
problems that generate longer proofs.

The bottom figure shows that compression speeds of the RPI and RP algo-
rithms are very similar, although RPI took significantly more time than RP for
some examples. In cases where the compression rates are comparable, the exe-
cution times are similar as well. When RPI took more time than RP, it achieved
correspondingly better compression. This indicates that computing the inter-

5 This format is closely related to the resolution proof terms used in this paper and is
quite compact: (1) only the parents of a derived clause must be indicated explicitly;
(2) a clause only needs an explicit name/number if it has more than one child.
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Fig. 2: Compression and compression speed for the SatRace examples.

sections is worthwhile in practice. Finally, note that LU is usually the fastest
algorithm in terms of compression speed.
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The compression achieved by applying both LU and RPI is usually less than
the sum of the compressions achieved by each algorithm alone. This is so because



certain redundancies are eliminated by both algorithms. Moreover, the scatter
plot above shows that the order in which LU and RPI are applied matters.

7 Related Work and Ideas for Future Work

One of the kinds of local redundancy was considered in our previous work [6],
where we also proposed resolution hypergraphs as a possible non-linear nota-
tion for resolution proofs, making it easier to identify and address non-local
redundancies. Although in principle more general than the techniques described
here, they do not scale to large proofs, because resolution hypergraphs can be
exponentially larger than the proofs they represent.

The same kind of local redundancy was also mentioned by Simone et al. [9],
as the local proof rewriting rule A1′. They address global redundancies by hav-
ing another local proof rewriting rule (A2) that performs inference permutations
when possible. As we have argued before, this approach is inherently inefficient,
since too many permutations would have to be considered in order to eliminate
all global redundancies. They also consider other interesting local proof rewrit-
ing rules that eliminate redundancies not considered in this paper. It would be
worthwhile to generalize these other kinds of local redundancy by defining their
global counterparts too; it might then be possible to adapt the global techniques
described in this paper to these other kinds of redundancy.

Besides RP, Bar-Ilan et al. [1] also defined the RecycleUnits algorithm, which
replaces one of the parents of a resolvent with a resolved literal ` by a unit clause
containing `, if such a unit clause exists somewhere else in the proof. Although
this algorithm eliminates some kinds of redundancy, it generates redundancies of
the kind handled by LU. Therefore it would be helpful to always execute LU after
RecycleUnits, or to combine both algorithms more tightly: instead of replacing
a parent by the unit, the resolvent can be replaced by the other parent, and the
unit can be queued to be reinserted at the bottom of the proof.

Cotton [5] proposes to split a refutation ψ into a proof ψp of the unit clause
containing the atom p and a proof ψ¬p of unit clause containing the literal ¬p.
This is done by deleting one of the parents of every resolvent with pivot p. A
new refutation ψ′, possibly shorter than ψ, is then obtained by resolving ψp and
ψ¬p. Since in ψ′ there is now only one resolvent with pivot p, all potential redun-
dancies with pivot p are removed with this splitting technique. Consequently, in
principle this splitting technique could subsume all other techniques previously
described, including the ones in this paper. However, since not all potential re-
dundancies are actual redundancies, ψ′ might actually be longer than ψ. This
problem is atenuated by heuristically choosing a promising literal p to split, and
iterating until the next proof ψ′ becomes longer than the current proof ψ. The
techniques that globally identify precisely which potential redundancies are ac-
tual redundancies, such as those presented in [1] and here should scale better,
since they do not need to iterate an undefined number of times and fix the proof
after every iteration.



While this paper focused on regularization of proofs, trying to compress
proofs by introducing irregularities is also an interesting possibility to be in-
vestigated in future work, since exponential compression might be achieved in
the best cases.

8 Conclusions

The use of proof contexts makes for a clear transition from local to global trans-
formations of proofs, and in particular helped us generalize certain kinds of
local redundancies to global ones. In this way, we designed two algorithms that
eliminate these global redundancies more efficiently than previous ones. Our ex-
periments seem to indicate that we can expect reductions of around 20% for
large proofs, beyond what is possible just by pruning irrelevant inferences. Since
these reductions essentially come for free and proof checking can be costly (for
example when it is performed by the trusted kernel of an interactive proof as-
sistant or when it has to be repeated many times by different proof consumers
such as in a PCC scenario), we believe that it is worthwhile to implement our
techniques when proof size matters.
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