
SemTrace: Semantic Requirements Tracing
Using Explicit Requirement Knowledge

Thomas Moser and Stefan Biffl

Christian Doppler Laboratory SE-Flex
Vienna University of Technology

Favoritenstrasse 9-11/188, 1040 Vienna, Austria
+43 (1) 58801 188051

{thomas.moser, stefan.biffl}@tuwien.ac.at

Abstract. In the software engineering (SE) domain the EU challenge
on semantic systems and services motivates better support of knowledge
creation as well as better access of SE stakeholders to the knowledge
they need to perform their activities. Application Lifecycle Management
(ALM) is the coordination of development lifecycle activities by process
automation, management of relationships between artifacts, and report-
ing on development progress. ALM focuses on the integration of knowl-
edge between the tools that support SE roles and thus seems particularly
well suited to leverage benefits from advanced semantic technologies and
services that overcome limitations from semantic gaps in today’s hetero-
geneous SE platforms. In this paper, we present a semantic requirements
tracing approach (SemTrace), which makes the implicit interdependen-
cies between requirements and other artifacts explicit. We evaluate the
proposed approach in a change impact analysis use case. Initial results
show that the SemTrace approach allows for a flexibly identification of
semantically connected artifacts in SE projects..

Keywords: Requirement Tracing, Requirement Knowledge, Soft-Links.

1 Introduction

The effective and efficient creation of high-quality software products is a major
goal of software development organizations where teams coming from business
and technical domains collaborate to produce knowledge and artifacts. A major
challenge in distributed software development is the integration of the knowledge
scattered over processes, tools, and people to facilitate effective and efficient
coordination of activities along the development lifecycle. Application Lifecycle
Management (ALM) is defined as ”the coordination of development life-cycle
activities, including requirements, modeling, development, build, and testing”
[14].

Software engineering organizations can radically improve their project effec-
tiveness and efficiency if artifacts can be exchanged and understood both by the
human roles involved and machines, similar to advanced semantic technologies

2 Semantic Requirements Tracing Using Explicit Requirement Knowledge

and services that facilitate the creation and usage of machine-readable seman-
tic annotation of information. The EU research FP7 motivates a key strategic
research challenge1 in the area of semantic systems/technology development to
deal with the ”growing load and diversity of information and content” which
particularly applies to SE projects where semantic support for data analysis
and reasoning would improve data and knowledge exchange among distributed
project teams and promises more effective collaboration.

Current ALM approaches aim at solving the technical challenges of accessing
data in different tools to provide a common (relational) data model for process
automation, tracing of relationships between artifacts, reporting and progress
analysis beyond the data available in a single tool. ALM has been successful in
the context of semantically homogeneous platforms, e.g., IBM Jazz2 or Collab-
net3, but faces major obstacles due to semantic gaps in the integration and evolu-
tion of heterogeneous platforms, tool sets, and organizational contexts. Typical
semantic gaps are multitudes of proprietary tools with their own proprietary
notations, data that is scattered over multiple repositories (e.g., SVN, Mailing
Lists, Bug Tracking Systems), and the fact that often just syntactic matching
is used for detecting equalities between artifacts. These semantic gaps cannot
be overcome efficiently with the limited syntactic approaches of current ALM
approaches.

Semantic tracing builds on the semantic connections in the ALM data repos-
itory for more effective, efficient, and robust tracing of artifacts along the life
cycle (e.g., to find all artifacts that help implement or test a certain requirement
for change impact analysis) than traditional ALM approaches that do not use
semantic knowledge. Effective tracing is demanded by SE standards (e.g., SEI’s
CMM-I4) and a key enabler for management, design, and quality assurance ac-
tivities that have to understand the relationships between artifacts along the
life cycle, but currently not sufficiently well supported. Research target is to use
the ontology as a means for semantic tracing in order to derive dependencies
between work products (requirements, test cases, source code) from knowledge
and explicit user input.

In this paper we present a semantic requirements tracing approach (Sem-
Trace), which makes the implicit interdependencies between requirements and
other artifacts explicit. In the discussed use case, a change impact analysis is
done for a changing requirement to find out which issues and developers are
affected by the change request. This information can be used to mark all depen-
dent artifacts for review and to contact all involved developers automatically.
Furthermore it allows better estimates for the costs of the changes. Major results
of the evaluation are that the change impact analysis could be defined without
prior knowledge regarding the relations between the used engineering concepts,
besides the fact that such a relation exists. Furthermore, the possibility to de-

1 http://cordis.europa.eu/fp7/ict/content-knowledge/fp7 en.html
2 http://www.jazz.net (IBM Jazz collaboration Platform)
3 http://www.collabnet.net (Collabnet ALM platform)
4 http://www.sei.cmu.edu/cmmi

Semantic Requirements Tracing Using Explicit Requirement Knowledge 3

fine and use semantic meta information to model relations between engineering
concepts is a very flexible mechanism, which can also be used for other advanced
applications, like for example automatically linking commits to related issues.

The remainder of this paper is structured as follows: Section 2 summarizes
related work on requirements tracing and on semantic systems integration. Sec-
tion 3 identifies the research issues and presents the use case, while section 4
presents the SemTrace approach. Finally, section 5 discusses the results of the
initial evaluation, concludes the paper and identifies further work.

2 Related Work

This section summarizes related work on requirements tracing and on semantic
systems integration.

2.1 Requirements Tracing

Traceability is demanded by multiple software engineering standards like CMMI
[12] and provides SE project participants with explicit knowledge about rela-
tionships/dependencies between artifacts existing in the project. Usually, project
participants have to capture these dependencies manually, e.g. in matrices [10]
and current ALM platforms support this manual capture of dependencies. Unfor-
tunately, there is the challenge of significant effort to manually provide full trace-
ability of all requirements to all other artifacts [5]. Thus, automated approaches
have been developed to capture dependencies based on syntactical identity (e.g.
keyword-matching as in information retrieval approaches), e.g. [1][2][4]. These
automated approaches do not capture dependencies completely, because they
cannot capture dependencies between semantically related artifacts without syn-
tactic identity. Incomplete capture of dependencies has negative effects (higher
efforts) on important SE activities like change impact analysis and consistency
checking [7].

We have recently proposed innovative approaches for ”value-based require-
ments tracing” [8], and tool support for tracing across tool borders (by integrat-
ing a requirements management tool and the Eclipse IDE) [7]. In these initial
pilot studies we provided the project participants with semantic clues, which
improved their tracing efficiency significantly (between 60% and 85% savings of
effort). While the semantic clues were provided with extra effort by the research
team in the pilot studies, the SemTrace approach bridges the semantic gap men-
tioned above and provides access to semantic knowledge across tool borders as
part of its concept. As the explicit knowledge is usable both for humans and ma-
chines, SemTrace provides better foundations for automated tracing approaches,
makes tracing cognitive less challenging and takes considerably less effort.

2.2 Semantic Systems Integration

A major problem that occurs when different systems have to be integrated is data
heterogeneity. According to Cruz et al. [3] the mismatch in data representation

4 Semantic Requirements Tracing Using Explicit Requirement Knowledge

can be classified into three categories: syntactic, schematic and semantic. While
technical integration focuses more on syntactical and to some extent schematic
issues and on providing a common message format to make communication be-
tween different systems possible, semantic integration focuses on the meaning of
the data exchanged between those systems. This includes both schematic and
semantic factors. Effective and efficient cooperation between different tools or
systems is only possible if the semantics of source and target system are com-
patible [13]. Yet this compatibility is not given in most organizations, because
applications are not developed with interoperability in mind and because new
systems are added as a result of mergers or acquisitions [6]. Semantic integration
tries to solve the problem of semantic heterogeneity by providing an intermediate
layer that automatically transforms data between the involved systems.

The Engineering Knowledge Base (EKB) is a semantic integration approach
for tool and data integration in the engineering domain proposed by Moser [11].
The three main features of an EKB are: 1) data integration using mappings be-
tween different engineering concepts; 2) transformations between different engi-
neering concepts utilizing these mappings; and 3) advanced applications building
upon these foundations. The EKB framework was developed for engineering tool
integration. By providing an effective and efficient semantic integration layer it
simplifies the process of engineering. Especially tasks that span different do-
mains, where experts with different technical background have to cooperate can
be performed with less effort if all tools are integrated semantically.

3 Research Issues & Use Case

As engineering processes become more agile and customers are more closely
integrated into the development process the focus of requirement engineering
changes. The precise definition of the requirements up-front becomes less impor-
tant than the consistent management of the requirements. Part of this consistent
management is the traceability from a requirement to dependent engineering ar-
tifacts and vice versa. There are four types of traces [9]:

Forward from Requirements Traces from requirements to dependent en-
gineering artifacts. These traces are necessary to evaluate which changes have
to be performed if a requirement is updated, so they are used for change impact
analysis.

Backward to Requirements Traces from engineering artifacts to require-
ments. These are used to make sure that for every part of the developed system
a requirement exists and no superfluous work is done.

Forward to Requirements Traces from high level project descriptions
or design documents to derived requirements. If stakeholders change high level
system goals these traces can be used to determine all affected requirements and
finally all affected engineering artifacts.

Backward from Requirements Traces from requirements to high level
project descriptions and design documents. These traces are important to eval-

Semantic Requirements Tracing Using Explicit Requirement Knowledge 5

uate the quality of requirements, as the business needs leading to the respective
requirements can be identified.

It is possible to derive backward to requirements traces from forward from
requirements traces and vice versa if the tracing system has full information
about all trace links. This is done by automatically establishing links in both
directions if a link is created in one direction. Therefore many projects define
trace links only in one direction, relying on the possibility to derive links in
the other direction if they are needed. Likewise forward to requirements can
be derived from backward from requirements and vice versa. These use cases
especially focuses on the backward to and forward from requirements traces.
The advantages of managing the implicit dependencies between requirements
and engineering artifacts explicitly are on the one hand better decision support
in every phase of development, because crucial information can be found directly
and on the other hand easier change management, as affected artifacts can be
identified with the help of trace links. Some process quality standards like CMMI
demand the establishment of a structured requirement management and tracing
approach.

Despite all these advantages only few engineering projects use requirement
tracing. The reason is the huge effort needed to capture and manage require-
ments and trace links to engineering artifacts. Although there are specialized
tools for requirement tracing their major drawback is the missing integration
with other development tools. Furthermore, when requirement tracing is done
with a specialized tool the trace links have to be established in a dedicated work
step. This is undesirable, because it has to be either done after the developer
finished his work or parallel to the work. The first approach is impractical, be-
cause the effort for trace generation is considerably higher if tracing is done in an
extra step after the development task is finished. The second approach reduces
the time consumption for trace generation, but might break the workflow of a
developer as he has to constantly switch tools during development. Integrated re-
quirement tracing is an alternative, but is hard to accomplish in a heterogeneous
environment. Therefore requirement tracing is often done ad-hoc, hindering the
precise measurement of costs or benefits [8].

In the ”Change Impact Analysis for Requirement Changes” use case the in-
tegrated environment with semantic integration support proposed in this paper
is used to extract requirement traces from available information. In many soft-
ware engineering projects tracing information is captured in a structured and
well defined, but informal way, which can be understood by humans, but which
is not usable for automatic processing. By defining the semantics of tool data
models including the tracing information it is possible to automate parts of a
change impact analysis.

Figure 1 gives an overview about this use case. If a stakeholder files a change
request (1) the requirement engineer has to identify the affected requirements
using a requirement management tool (2). Then he can conduct a change impact
analysis with the help of the interaction and workflow component (3). The change
impact analysis is done for the affected requirements using the virtual common

6 Semantic Requirements Tracing Using Explicit Requirement Knowledge

Fig. 1. Overview of the ”Change Impact Analysis for Requirement Changes” use case.

data model (4). As a first step data is retrieved from the requirement manage-
ment tool (5) and by using the semantic information in the virtual common data
model all dependent issues are identified. So traces of the type ”forward from
requirements” are used to navigate from the requirements to dependent issues.
For this purpose the links need not actually be available in this direction, as
the integration system can use traces of the type ”backward to requirements”
to derive the trace links in the other direction. In this use case the link between
the trace link between issue and requirement is defined by a reference to the ad-
dressed requirement in the issue description. Such informal or semi-formal forms
of trace information are found in most engineering projects and can only be
used if semantic information about the meaning of these links is available. The
affected issues are retrieved from the integrated issue tracker (6) and separated
into three groups:

Open Issues These issues have to be marked for review. They are likely to
change as the underlying requirement has changed. After the issue is redefined
according to the new requirements and its estimates updated the change impact
can be evaluated.

In Progress Issues, which are currently in progress are the most critical
group. All development team members, who are assigned to this issue have to be
notified about the requirement change. They have to update the issue’s definition
and estimates, before they can continue with their work. Furthermore they need
to contact the requirement engineer undertaking the change impact analysis
and provide their opinion about the amount of work necessary to perform the

Semantic Requirements Tracing Using Explicit Requirement Knowledge 7

changes. The integration of the affected team members into the change impact
analysis is critical for its quality and correctness

Resolved and Closed Issues All issues, which are already finished have to
be reopened and marked for review, as the underlying requirement has changed.
The developers, which are assigned to these issues are notified that an already
finished piece of work has to be reevaluated. Furthermore, they have to pro-
vide their estimates for the amount of work necessary to perform the requested
changes.

To notify the affected team members again semantic information has to be
used. The issues contain information about the assignee, which has to be ex-
tracted and mapped to a member of the development team. Then another map-
ping between the developer and its contact information has to be used to deter-
mine the recipient of the notification. An integrated notification component, like
an email connector (7) sends the notifications. Finally the requirement engineer,
which started the change impact analysis process is presented with a report con-
taining all the information, which could be gathered automatically and a list of
all persons, who have to provide manual feedback.

This semi-automatic form of change impact analysis for requirement changes
provides a high quality result without the need to manually search and evaluate
the trace links between requirements, issues and developers. Furthermore, it
provides the possibility to inform all affected team members during the process
and to automatically perform necessary project management steps in the issue
tracker, like reopening already finished issues.

The goal of the ”Change Impact Analysis for Requirement Changes” use
case is to show that the proposed EKB based semantic integration solution
for (software+) engineering can be facilitated to perform a difficult and com-
plex software engineering task, like requirement tracing. Advanced applications
like change impact analysis can be built based upon the semantic integration
framework, which help to generate better estimates. This use case is designed to
underline the importance of efficient cooperation between different team mem-
bers to perform complex tasks, like the reevaluation of parts of the system after
a requirement change and the crucial role of effective tool support during this
process.

4 The SemTrace Approach

In the described use case, the semantic integration infrastructure is used to
conduct requirement tracing, an advanced software engineering task. A semi-
automatic change impact analysis for requirement changes is performed using
trace links between requirements, issues and developers. Team members, which
are affected by the requirement change are notified and project management
tasks like issue updates are performed automatically. Figure 2 shows a possible
setup for this use case. A requirement management tool, like Rationale Req-
uisitePro5 is connected to the integration system, as well as an issue tracker

5 http://www-01.ibm.com/software/awdtools/reqpro

8 Semantic Requirements Tracing Using Explicit Requirement Knowledge

like Trac6. In addition a connector for email notifications and a tool for the
management of developer contact and identity information has to be available.

Fig. 2. Possible setup for the ”Change Impact Analysis for Requirement Changes” use
case.

In this use case trace links between issues and requirements are established
using informal semantic information in the issue description. Each issue, which
is related to a requirement has to include a reference to the respective require-
ment using the format ”#requirement(¡requirementId¿)”, with the respective
requirement identifier in its description. Issues can either be related to no re-
quirement, to a single requirement or to multiple requirements. This informal
semantic information is used by the integration system to establish trace links.
Other forms of trace links between requirements and issues are possible, like for
example explicit mapping tables, but for the sake of simplicity only this simple
form of direct references is used. Links between the issue and developer are es-
tablished with the help of the assignee attribute of the issue concept. Figure 3
shows the references between these three concepts with actual and automatically
derived backward links. Although they are not explicitly modeled the backward
links can be navigated like normal traces and are automatically managed by the
integration system.

The change impact analysis process is triggered by an requirement change
request of a stakeholder of the (software+) engineering project. The requirement
engineer analyses the change request and identifies affected requirements. These

6 http://trac.edgewall.org

Semantic Requirements Tracing Using Explicit Requirement Knowledge 9

Fig. 3. Trace links between requirement, issue and developer concept.

requirements are used as input for the change impact analysis. In a first step all
related issues are identified. Depending on their current status they are simply
marked for review, or reopened and marked for review. All affected developers
are notified about the changes and asked for their estimates. Finally a report
is generated, which contains information about affected issues and developers
and who will need to contact the requirement engineer for a re-evaluation of the
requirement estimate.

Using the infrastructure provided by the proposed EKB based semantic in-
tegration solution the ”Change Impact Analysis for Requirement Changes” use
case can be realized with a simple configuration step during development of the
tool connectors and by using the workflow and interaction component of the
technical integration system in combination with the features provided by the
EKB. The definition of the relation between two different engineering concepts
based on informal semantic information is modeled in the virtual common data
model. For this purpose the soft reference mechanism of the EKB is used.

Relations between different concepts, which are represented by semantic meta
information, like for example trace links are modeled as soft references. The
goal of soft references is to provide a possibility to establish links between two
different concepts based on informal semantic information. In contrast to hard
references soft references are not directly included in the data model in the form
of a specific reference attribute. This means that they are part of the semantic
meta information and not included in the common data schema.

To establish a soft reference the following steps are necessary: The target
concept has to define a key attribute. This key attribute is used to identify the
target instance of the reference. The data extraction infrastructure also uses the
key attributes to load specific data items. The source concept has to define the
target of the soft reference and the attribute, which contains the soft reference.
In addition the mechanism for the extraction of the actual reference from the
content of this attribute has to be defined. The extraction process is adaptable
to make it possible to handle different forms of semantic meta information. In
the prototype a regular expressions based solution is implemented, which makes
it possible to extract the reference from an arbitrary textual source. A regular
expression based soft reference definition contains the target concept and the

10 Semantic Requirements Tracing Using Explicit Requirement Knowledge

regular expression for the key extraction. To establish a concrete reference the
content of the respective attribute of the source concept has to include the
reference, which has to be extractable using the mechanism explained in the
previous step.

Fig. 4. Overview about the soft reference definition process.

Figure 4 gives an overview about the different steps necessary for the defini-
tion of a soft reference between an issue and a requirement. First the requirement
concept has to define an identifier (1) and the requirement type, which is the
attached data type of the requirement concept has to define a key attribute (2).
In this example the requirement number attribute is used as key. Then the soft
reference between the issue concept and the requirement concept can be defined.
In the example shown in Figure 3 this is done with the help of a regular expres-
sion based soft reference. Besides the identifier for the target concept (3), also
the regular expression for the extraction of the reference key has to be defined
(4). Note that when only the identifier of the target concept is defined and the
version is omitted then the version of the source concept is also used for the
target concept. If an issue has a description which contains a reference (5) then
the semantic integration infrastructure can de-reference this link and load the
respective requirement (6).

In this use case the description attribute of an issue includes soft references
to requirements and the attribute assignedTo is a soft reference to a developer.
Listing 1 shows the definition of the soft references using an annotation based

Semantic Requirements Tracing Using Explicit Requirement Knowledge 11

Listing 1. Definition of soft references from issue to requirement and developer con-
cepts.

@ReferenceId (targetConceptId = ” deve loper ” ,
targetConceptVers ion = ” 1 . 0 . 0 ” ,
regexp = ”.+”)
private St r ing a s s i g n e e ;

@ReferenceId (targetConceptID = ” requirement ” ,
targetConceptVers ion = ” 1 . 0 . 0 ” ,
regexp = ”\#requirement \\ (([ˆ\\)]+)\\) ”)
private St r ing d e s c r i p t i o n ;

concept definition mechanism. As regular expression based soft references are
used, the definition includes beside target concept also the regular expression
for the extraction of the actual references. The configuration effort for this use
case is reduced to the definition of the attribute containing the reference and a
mechanism for extracting the actual reference from the field content. The EKB
based semantic integration solution supports the usage of other solutions for the
extraction of the references. Even very complex scenarios, where an knowledge
system is used to find references between elements is possible, but a regular
expression based approach is sufficient for this use case.

Building upon this configuration the workflow for the change impact analysis
is implemented using the soft reference mechanism of the EKB. Based on the
relation between requirements, issues and developers defined as soft references
and stored in the virtual common data model, the EKB can derive actual trace
links between instances of these concepts. So the requirement engineer defining
and using this process does not need to know how requirements are actually
linked to issues or developers. This knowledge is contained in the definition of the
soft references, which are performed parallel to the introduction of the guideline
for semantic meta information they originate from. The guideline in this use
case is that an issue has to reference related requirements in its description. The
requirement engineer can query the system for related issues and developers and
use this information to conduct a high quality change impact analysis and to
inform all affected team members.

5 Discussion & Conclusion

As the setup to use informal semantic references between different engineering
concepts is minimal, the proposed semantic integration solution is an effective
and efficient solution for advanced applications like requirement tracing. Using
the EKB, the usage of relations between concepts is decoupled from the actual
form of the relation. This means that if the way requirements are linked to issues
is changed, the change impact analysis process does not need to be adapted. The

12 Semantic Requirements Tracing Using Explicit Requirement Knowledge

requirement engineer can perform the change impact analysis without knowledge
about the issue domain and without tedious manual research which issues and
developers are affected. This means that the system is also usable for stakehold-
ers, which are not part of the development team, or not experts for all tools and
tool domains involved in the development process. No additional effort is neces-
sary for trace link generation, as the semantic meta information, which is already
available due to specific project guidelines is used to trace from requirements to
issues and from issues to developers.

Stakeholders, who are not part of the actual development team, usually do
not know about team internal guidelines, like the way requirements are refer-
enced in issue descriptions. Yet they need to perform high level quality assurance
and project management tasks, like the change impact analysis described in this
use case. Using the proposed EKB based semantic integration solution, they
can perform advanced applications using informal relations between different
engineering concepts, without the need to know how the different concepts are
actually connected. The robustness of the whole system is influenced positively
by the fact that the semantic relations between concepts are defined directly in
the respective domains and can be updated every time the underlying guidelines,
a tool or a tool domain changes. The proposed EKB based semantic integration
framework needs some additional setup, before soft references between different
engineering concepts can be used. Basically two steps have to be performed to
make references between concepts possible:

Definition of the soft reference The source concept has to define which
attribute contains a soft reference and a mechanism for extracting the actual
reference from the attribute value. The prototypic implementation of the EKB
supports a regular expression based mechanism for soft reference definition. List-
ing 1 shows how this definition can be performed with the help of an annotation
based concept specification mechanism. Other types of soft references can be im-
plemented and integrated into the EKB easily using a plug-in style architecture.

Definition of a key attribute at the target concept The target concept
of the soft reference needs to specify a key attribute. This has two specific impli-
cations. On the one hand the value of this key attribute is the actual reference
value and used like a foreign key in a relational database. On the other hand
the tool connector of the target concept needs to support queries for a specific
element based on this key attribute.

These two steps are usually performed during integration of an engineering
tool into the integration system. Domain experts and integration experts work
together to identify key attributes and relations between engineering concepts.
Furthermore, project guidelines, which are already in place and define how for
example issues have to be described when they are created, give hints where se-
mantic meta information is available and can be used to link between engineering
concepts. Once the domain expert and the integration expert have an overview
about potential references between different concepts the actual definition of the
references can be done in a very short time. The whole process including review
of project guidelines and other available meta information usually can be per-

Semantic Requirements Tracing Using Explicit Requirement Knowledge 13

formed in one to two developer workdays for both domain expert and integration
expert. If the project is smaller and each member has a good overview about
the semantic meta information less effort is necessary for this task.

Using the proposed semantic integration framework the definition of the
change impact analysis does not include any details about the relation between
requirement and issue, besides the fact that such a relation exists. This means
that a requirement engineer designing or using the change impact analysis work-
flow does not need to know any details about the relation between requirement
and issue concept and its actual representation. The requirement expert can
concentrate on the task of change impact analysis, which is decoupled from the
actual linking mechanism between different engineering concepts. The semantic
linking information between engineering concepts is defined directly in the vir-
tual common data model and can be used by any advanced application. This
means that this knowledge is not duplicated throughout the system and can be
changed or updated easily. As a result the team is flexible and can decide to
change specific guidelines or standards for semantic meta information, if they
feel the necessity to do so. Evolution of the system is possible without the fear
of breaking high level process definitions. Therefore tasks like tool exchange or
the introduction of new engineering tools are much easier to accomplish. The
explicit nature of the reference definition in the virtual common data model is
also a very useful documentation of semantic dependencies between different
engineering concepts and can be analyzed by integration experts or domain ex-
perts to better understand the current setup of the system and to find potential
inconsistencies or other problems.

To perform this use case in a technical only integration framework, it is
necessary to use the semantic information in the change impact analysis process
definition. This means that in the process implementation the semantic relation
between issues and requirements and issues and developers is explicitly used.
The drawback of such a solution is that the actual process of using the semantic
information has to be duplicated in every advanced application which needs to
facilitate the trace link between requirements and issues. In addition it is very
hard to perform changes of the layout of the semantic meta information, as there
is no single point of change, but all workflow definitions have to be reviewed and
possibly updated.

Compared to a solution based on a technical-only integration system the def-
inition of workflows in the proposed EKB based semantic integration system is
much more portable and reusable across different projects. Due to the fact that
only the existence of a link between two concepts regardless of the actual form
of the link is needed to build advanced applications, workflows can be reused
in other projects, where relations based on informal semantic information are
represented differently. Therefore it is possible to use a common set of workflow
definitions for typical project and quality management tasks recurring in all
kinds of different projects operating with the same engineering concepts. These
differences show that the proposed semantic integration solution is much better
suited for advanced software engineering applications like requirement tracing

14 Semantic Requirements Tracing Using Explicit Requirement Knowledge

than a technical-only integration solution. The possibility to define and use se-
mantic meta information to model relations between engineering concepts is a
very flexible mechanism, which can also be used for other advanced applications,
like for example automatically linking commits to related issues. The main ad-
vantage of this solution is the simplicity of the setup and the single point of
change making the overall system easier to change and to maintain. The main
drawback of the EKB based semantic integration solution is the additional con-
figuration and setup effort during development and implementation of the tool
connectors. But if advanced applications, like requirement tracing for have to be
performed regularly, the additional effort during system setup pays off.

Further work will include a large scale evaluation in an industrial context. In
addition, a new set of more complex soft-links between engineering concepts will
be used to further evaluate the automated derivation of tracing information. Fi-
nally, we are working on efficient tool-support for a more user-friendly definition
of the soft-links.

Acknowledgments. This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria. Furthermore, the authors want
to thank Michael Handler for his prototypic implementation of the use case.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. Software Engineering, IEEE Trans-
actions on 28(10), 970–983 (2002)

2. Cleland-Huang, J., Zemont, G., Lukasik, W.: A heterogeneous solution for im-
proving the return on investment of requirements traceability. In: Proceedings of
the Requirements Engineering Conference, 12th IEEE International. pp. 230–239.
IEEE Computer Society, Washington, DC, USA (2004), http://portal.acm.org/
citation.cfm?id=1018443.1022110

3. Cruz, I.F., Xiao, H., Hsu, F.: An ontology-based framework for xml semantic in-
tegration. In: Proceedings of the International Database Engineering and Appli-
cations Symposium. pp. 217–226. IEEE Computer Society, Washington, DC, USA
(2004), http://portal.acm.org/citation.cfm?id=1018432.1021520

4. Egyed, A.: A scenario-driven approach to trace dependency analysis. Software En-
gineering, IEEE Transactions on 29(2), 116–132 (2003)

5. Gotel, O., Finkelstein, C.: An analysis of the requirements traceability problem.
In: Requirements Engineering, 1994., Proceedings of the First International Con-
ference on. pp. 94 –101 (apr 1994)

6. Halevy, A.Y.: Why your data won’t mix: Semantic heterogeneity. Queue 3(8), 50–
58 (2005), article

7. Heindl, M.: Managing Dependencies in Complex Global Software Development
Projects. Ph.D. thesis, Vienna University of Technology, Faculty of Informatics
(2008)

8. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. In: Pro-
ceedings of the 10th European software engineering conference held jointly with

Semantic Requirements Tracing Using Explicit Requirement Knowledge 15

13th ACM SIGSOFT international symposium on Foundations of software en-
gineering. pp. 60–69. ESEC/FSE-13, ACM, New York, NY, USA (2005), http:

//doi.acm.org/10.1145/1081706.1081717

9. Jarke, M.: Requirements tracing. Commun. ACM 41(12), 32–36 (1998), article
10. Kaindl, H.: The missing link in requirements engineering. ACM SIGSOFT Software

Engineering Notes 18(2), 30–39 (1993)
11. Moser, T.: Semantic Integration of Engineering Environments Using an Engineer-

ing Knowledge Base. Ph.D. thesis, Vienna University of Technology, Faculty of
Informatics (2010), phdthesis

12. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability maturity model,
version 1.1. Software, IEEE 10(4), 18–27 (2002)

13. Rosenthal, A., Seligman, L., Renner, S.: From semantic integration to semantics
management: case studies and a way forward. SIGMOD Rec. 33(4), 44–50 (2004),
article

14. Schwaber, C.: The changing face of application life-cycle management. Forrester
Research (2006)

