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Abstract 

This paper gives an overview on the potentials of numerical simulations for understanding dynamics in laser material processing. 
After a short introduction into the model, simulation results on several processes like laser beam deep penetration welding, 
drilling or cutting are presented. Furthermore simulation results are compared with experimentally obtained data. 
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1. Introduction 

Numerical process simulations gain more and more importance both for industrial applications and for scientific 
purposes. In science these simulations enable for thorough process understanding as it is possible to separate 
different process or material parameters in their influence on the processing result. They also enable for a look 
inside the work piece also on very short time scales and thus allow the analysis of processes that can not or only 
hardly be observed by experimental means. In industrial production simulations serve as a tool for planning of single 
production steps or even of whole process chains. Furthermore, simulations are important for the development of 
production means like new machining tools. 

Contrary to other technologies, like e.g. forming, simulations for laser material processing are not yet state of the 
art especially in industrial production. This is due to the complexity of laser processes where a variety of different 
physical phenomena are coupled with each other. To reduce this complexity in state of the art models most of these 
phenomena are regarded as decoupled or they are even neglected dependent on the process that is to be simulated. 
Thus these models are only capable to analyze certain effects of the processing like e.g. thermal distortion or 
residual stresses. Figure 1 gives an overview of a newly developed model that is capable for simulating many 
aspects of different laser processes. This model allows the simulation of process dynamics, for example during laser 
beam welding including keyhole oscillations or melt pool respectively vapor flows. 
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Figure 1: Overview of the model for simulating laser material processing (here on the example of  laser beam drilling) 

In the following a short introduction into this model will be given pointing out which new developments have 
been done compared to standard algorithms. After that, results of simulations concerning laser beam welding, laser 
beam drilling and laser beam cutting are discussed. 

2. The Model 

The here presented model for simulating laser material processing has been implemented in the framework of the 
software package OpenFOAM® (Open Field Operation and Manipulation). This software package is a free open 
source toolbox mainly designed for solving fluid dynamical problems, but has also been used for solving mechanical 
problems. It mainly uses finite volume numerics to solve systems of coupled partial differential equations. Due to 
OpenFOAM’s modular design it is quite easy to extend the existing toolbox with regard to the physics of laser 
material processing. Namely the propagation of the laser beam to the work piece, the interaction of the laser beam 
with the material (absorption, reflection etc.), conductive respectively convective heat conduction and the fluid flow 
in the melt and the surrounding medium are already implemented in the model. The free surface of the material is 
computed by means of a volume of fluid (VOF) [1] approach included in OpenFOAM®. To reduce the calculation 
effort automatic adaptive time step control and adaptive remeshing strategies are incorporated in the model. 

The presented results concerning the electromagnetic wave propagation and the thermo-mechanical processes are 
obtained with the commercial multiphysics software COMSOL. For the future it is planned to tackle these topics 
also within OpenFOAM. 

2.1. Propagation of the Laser Beam to the Work Piece 

The straight forward approach for calculating the propagation of the laser beam to the work piece is the solving 
of Maxwell’s equations. Though such calculations are possible on very short time scales in the order of some 
hundreds of femtoseconds and small calculation domains in the μm range [2-5], other methods have to be developed 
if more macroscopic effects on longer time scales are to be examined. Otherwise this direct approach results in very 
long calculation times as the calculation time step width is clearly below 1 fs and the spatial resolution must be at 
least one third of the wavelength.  

Thus most models for laser material processing handle the beam propagation by means of ray tracing, e.g. [6, 7]. 
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The drawback for this approach is again the quite high calculation time as the laser beam has to be discretized quite 
finely and many search operations have to be done during tracing the rays through the calculation domain. An 
alternative approach that is currently used in our model handles the beam propagation as a stationary diffusion 
problem based on the so called radiative transfer equation [8]. This approach allows calculating the beam 
propagation until the first reflection with reasonably low computational effort. Both absorption, calculated with 
Beer’s law, and reflection, calculated with Fresnel’s equations (see figure 2), are handled as sinks in the used 
stationary diffusion equation. While the reflective sink deals as a source for the calculation of the reflected beam, the 
absorbed part is used as source for the heat equation. Until now it is not possible to handle the propagation of 
reflected beams with this very efficient approach. Thus we combined the method with a ray tracing algorithm 
reducing the computational effort for simulating the whole beam propagation by about 70% compared with a pure 
ray tracing algorithm. Further research work has to be carried out to totally avoid the ray tracing by means of 
generalizing our diffusion based method. 

 

Figure 2: Angle dependent absorption coefficients at room temperature for vertical and parallel polarized components [12].  a): Absorption 
coefficient for  = 10.6 m. b): Absorption coefficient for  = 1.06 m   

2.2. Heat Transfer and Fluid Flow 

Solving the heat equation for computing the convective and conductive heat transfer and deriving the temperature 
field is a standard problem for numerical simulations. Most challenging in this context is the incorporation of the 
latent heats during phase transitions like melting respectively solidification, evaporation and condensation or even 
ionization. For our model an approach quite similar to the method proposed in [9] has been developed, where latent 
heats are iteratively corrected within the heat equation. The basic heat equation to be solved is given by 

LTcH

QTHu
t

H

pwith

)(  (1) 

For iteratively solving this equation with regard to the total enthalpy H we start with neglecting the latent heat L 
of the phase changes. From the result we can estimate the latent heat and solve the differential equation again. This 
leads to a corrected estimation of the latent heat. These calculation steps are repeated until the difference of the 
result of two subsequent calculation steps is less than a certain threshold. In our implementation convergence is 
typically reached after 5 to 10 iteration steps if phase changes are included. The source term Q as heat input is 
calculated from the above described beam propagation module. From the acquired solution for H the final 
temperature field and the contained latent heat can be derived.  

Fluid flow must be taken into account if the material is molten or even vaporized during the laser material 
processing. If material is vaporized it expands into the surrounding medium and the recoil pressure deforms the 

a) b) 
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surface of the molten material. The calculated latent heat of evaporation is used to calculate the mass flow due to 
evaporation and the corresponding recoil pressure. The mass flow is then used as a source term in the Navier-Stokes 
equation which is solved with standard methods of OpenFOAM (PISO scheme, see e.g. [10]). Of course mass 
conservation and temperature dependent surface tension are also taken into account.

Up to know both the work piece material and the surrounding medium is handled as incompressible. This is 
reasonable as long as the flow velocity is below about one half of the speed of sound. As this limit is exceeded in the 
vapor if processing with high laser intensities, the implementation of a model for mixed compressible and 
incompressible flows is planned. 

2.3. Free Surface Handling 

To track deforming surfaces respectively free boundaries in computational fluid dynamics several methods have 
been developed in the past. Most prominent are the Level Set Method [11] and the Volume of Fluid Method (or in 
short VOF method)[1]. As the VOF method is capable to conserve the mass of the traced fluid also if its interface 
changes topology, this method has been chosen within the model for laser material processing. 

In this method a so called fraction function is defined. This function is zero if there is no traced fluid within one 
computational cell and one if the cell is full. At the interface between the material and the surrounding medium the 
function is between zero and one. To avoid unwanted smearing of the interface special compression algorithms are 
available within OpenFOAM. Consequently the fraction function is discontinuous and it is not possible to trace the 
expanding vapor. Therefore the original VOF method has been slightly modified by means of switching off the 
compression algorithm for material that is marked as vapor. Thus, evaporating material may cross the interface and 
vapor flow can be traced throughout the calculation domain. 

2.4. Course of the calculation 

Within each simulation time step the single modules for the calculation of the free surface movement, the beam 
propagation, the heat transfer and the fluid flow are solved sequentially. The calculation starts with the evaluation of 
the so called Courant number from which the time step width is according Courant-Friedrichs-Lewy condition [12] 
derived. Then the adaptive remeshing is started that is based on an analysis of the temperature field and the locations 
of the laser beam respectively the material’s surface. The mesh is refined where the beam hits the surface, where 
phase changes take place and where the surface temperature has exceeded melting temperature during the 
calculation run.  

After remeshing the movement of the free surface is calculated, based on the results on fluid flow from the 
preceding time step. Once the new free surface is given the beam propagation through the calculation domain can be 
calculated. Laser power that is absorbed in the vapor or in the work piece is handled as local heat source within the 
subsequent heat transfer module. From this module we get the temperature field and the latent heats due to phase 
changes. From this the mass flow due to possible evaporation is calculated and implemented as source term in the 
subsequent fluid flow calculation that takes mass conservation and surface tension into account. Solid material is 
fixed or keeps moving with a predefined working velocity during the calculation. Once the fluid flow is given the 
calculation loop starts again. 

3. Results 

In principle the developed model is capable for dealing with any kind of laser material processing that is 
governed by the physics already implemented. Namely one can simulate 

Laser beam welding 
Laser beam drilling and ablation with laser pulses > 1 ns 
Laser beam cutting 
without modifying the model, only by means of adapting boundary conditions and defining appropriate laser 

parameters. As result of the simulations it is possible to trace the laser induced melt and vapor flow allowing us to 
thoroughly investigate the process dynamics. This again allows the identification of reasons for processing failures 
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like e.g. holes in a weld seam. With some minor modification concerning the beam propagation and the absorption 
mechanisms the model has also been used for the simulation of electron beam material processing. 

In the following examples of simulation results for laser beam welding, laser beam drilling and laser beam 
cutting are given. 

3.1. Laser Beam Welding 

Laser beam welding is a joining technology that has gained enormous importance for industrial production in the 
last two decades. The main advantages of this technology are the high flexibility of the process, the high possible 
welding speeds and the excellent joining qualities comprising low thermal impact and marginal distortion.  

Though there are many applications, e.g. in automotive industry for joining metal sheets, the potential of laser 
beam welding for industrial production is not yet fully tapped. At diverse research institutions all over the world it is 
worked on methods to improve the reliability of laser beam welding processes. Prerequisite for the development of 
such methods is a thorough understanding of the beam material interaction and the resulting process dynamics. This 
thorough understanding can be best reached by means of a combined experimental and simulative approach. In this 
context simulations play an important role as they allow revealing the dynamic processes within the material. 
Furthermore phenomenological models derived from experimental observations can be tested by means of an 
implementation into the simulation model. 

Figure 3 shows simulation results of the formation of the melt pool and the keyhole during a laser beam deep 
penetration welding process. The power of the laser is 3000 W, the focus radius of the Gaussian laser beam is 
200 μm and the thickness of the sheet is 1 mm. The laser beam is fixed and the material moves with a velocity of 
6m/min from the left to the right. One can see a cross section through the weld line and the interfaces between the 
solid, liquid and gas phase. The color corresponds to the temperature. The laser beam hits the material and heat 
conduction leads to the formation of a temperature field. The metal melts up and the vapour pressure leads to a 
deformation of the surface of the melt pool. After roughly 2.0 ms the keyhole has completely penetrated the sheet. 
Due to liquid melt flowing down the keyhole, it shows strong oscillations especially at the keyhole front. These 
waves running down the keyhole front have already been observed in high speed images and are often called 
keyhole humps [13, 14]. Hot liquid melt is transported to the end of the melt pool, which grows further and further 
and finally reaches a length of about 5.0 mm. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Simulation results for keyhole and melt pool formation during laser beam deep penetration welding of 1mm thick stainless steel sheet. 
Laser power: 3 kW; wavelength: 1.06 μm; beam radius: 200 μm; profile: Gaussian; feed rate: 6 m/min. 
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The simulation model allows a look into the fluid dynamics of the welding process. In figure 4 vertical and 
horizontal views of the streamline distribution within the melt pool can be seen [15]. The velocity field shows waves 
of liquid melt running down the front of the keyhole. These waves lead to a periodical change of the keyhole 
diameter and are causal for keyhole oscillations. The liquid melt is accelerated around the keyhole. At about two-
thirds the length of the melt pool, the melt flow hits the backflow from the back of the melt pool and turbulences can 
be observed in the lower rear part. In the upper part of the melt pool, the flow pattern is more laminar. The melt flow 
changes the direction and recloses the keyhole. Furthermore, in simulations with higher feed rates the formation of 
pores in the weld seam can be observed (see figure 5) [16]. Wavelength dependent effects on the process dynamics 
are analyzed in [17]. 

 
 
 
 
 
 
 
 
 

Figure 4: Fluid dynamics of the melt pool during laser beam deep penetration welding of stainless steel: a) vertical view; b) horizontal view. 
Laser power: 3 kW; wavelength: 10.6 μm; beam radius: 200 μm; profile: Gaussian; feed rate: 6 m/min. [15, 16] 

 
 

 

 

 

Figure 5: Pore formation during laser beam deep penetration welding of stainless steel at higher feed rates. Laser power: 6 kW; wavelength: 10.6 
μm; beam radius: 200 μm; profile: Gaussian; feed rate: 12 m/min. [16] 

In order to compare the simulation results with experimental data, the integrated evaporation rate was compared 
with the process emissions detected with an on-axis Si-photodiode looking at the optical process emissions in a 
spectral range form 300 to 900 nm (see Figure 7). The process emissions and therefore the detected signals correlate 
with the integrated evaporation rate inside the keyhole and mirror its dynamic behavior [18]. The signals of 
simulation and experiment show a similar shape in time domain. By a closer look, a certain periodicity, reflecting 
oscillations of keyhole and melt pool, can be recognized in both signals. This gets more evident in the frequency 
domain. Although the two spectra acquired by a numerical fast Fourier transformation are far from being identical, 
they at least show a similar global structure. Both spectra include a band of peaks at lower frequencies, 
corresponding to melt pool oscillations. The peaks at about 3,000 Hz correspond to the oscillation of the keyhole 
[18-20]. The similar structure of the spectra shows that the simulation quite realistically predicts process dynamics. 
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Figure 6: Evaporation rates and spectra of a simulated and an experimental welding process on stainless steel [16]. Laser power: 2.5 kW; 
wavelength: 10.6 μm; material thickness: 1 mm; beam radius: 200 μm; profile: Gaussian; feed rate: 6  m/min.  

4. Ablative Processes 

Laser beam drilling, structuring or cutting are ablative processes where material is removed from the work piece. 
The group of ablative processes can be subdivided into processes, where an external gas jet is applied to blow out 
the molten material like in conventional laser beam cutting, and processes, where the expanding vapor itself 
expulses the material like in laser beam drilling. The latter process group can again be subdivided into processes, 
where most of the material leaves the work piece in form of vapor (e.g. drilling with short pulsed lasers), and 
processes, where the recoil pressure produced by vapor expansion expulses liquid material in form of droplets (e.g. 
drilling with longer pulses or ablative remote cutting). The developed model for laser material processing is in 
principle capable for modeling all these different processes as long as there are no nonlinear beam-material 
interaction mechanisms like in ultra-short pulsed laser processing. As the relevant mechanisms like momentum 
conservation and phase transitions are taken into account in a self consistent way all these processes can be 
simulated just by adapting the machining parameters within the model.  

Actually we just do one quite severe simplification that should also be avoided in the future: As the model is right 
now only capable for modeling incompressible fluid flow, effects that origin from the compressibility of e.g. the 
vapor flow cannot be simulated. To phenomenological take shock waves in the expanding vapor into account we 
apply a decelerating counter force on the expanding vapor if sonic speed is reached. Thus we avoid too high 
velocities in the expanding vapor plume. Figure 7 shows results from a simulation of a drilling process with a 15 ns 
laser pulse. The material removal is dominated by the expanding vapor, droplet blowout cannot be observed.  
Further results on laser beam drilling can be found in [21]. 
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Figure 7: Simulation of laser beam drilling with short pulsed lasers 

Gas-free remote cutting of sheet metal with highly brilliant laser beams is a quite newly developed laser 
technology [22, 23]. For this process one uses a laser beam with a high beam quality and sufficient power thus 
intensity exceeds around 108 W/cm2. Due to the high intensity combined with high laser power the illuminated 
material evaporates and expands very rapidly. The strong recoil pressure squeezes the molten material out of the 
work piece resulting in a large amount of droplets leaving the work piece. Figure 8 shows results from a first 
simulation run on remote cutting of stainless steel. One can see a more or less periodic detachment of droplets from 
the work piece resulting in a groove with a depth of around 80 μm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Gas-free remote cutting. Laser power: 1 kW; wavelength: 1.06 μm; beam radius: 25 μm; profile: Gaussian; feed rate: 420 m/min; 
material: stainless steel, s = 200 μm. 

Another interesting remote cutting technique recently developed is the so called vapor pressure fusion cutting 
technique [24, 25]. Within this technology the melt is blown out at the bottom side of the sheet metal. The driving 
force is again the recoil pressure of the evaporating vapor. The process itself has a lot of similarities with laser deep 
penetration welding. In the relevant section 3.1 of this paper it has already been mentioned that there are so called 
keyhole humps that run down the keyhole front. At certain machining parameters the momentum of these humps is 
high enough to exceed the forces due to surface tension at the outlet of the keyhole. Thus droplets can detach from 
the work piece (see figure 9 on the right). Remarkably the process experimentally obtained process parameters 
suitable for vapor pressure fusion cutting correspond very well with simulation parameters that lead to the blow out 
of droplets at the keyhole outlet. 

pulse length t=15ns,
wavelength l=1064nm,
pulse energy e=0,01J
pulse frequency f=10kHz

t=500ns

t=5ns t=20ns t=100ns

t=250ns

metal vapor droplets

groove
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Figure 9: Early stage of vapor pressure fusion cutting. Laser power: 3 kW; wavelength: 1.06 μm; beam radius: 300 μm; profile: Gaussian; feed 
rate: 4.2 m/min; material: stainless steel. 

Of course also conventional laser beam cutting processes using an external gas jet to blow out the molten 
material can be simulated. However the simulation of the external gas jet is quite challenging as it is necessary to 
model the compressible gas flow through the cutting nozzle to get satisfactory results comparable with experimental 
observations. 

5. Summary and Future Perspectives 

Building up a model for analyzing dynamics of laser material processing is a challenging task as one has to take 
into account many different physical phenomena that are coupled with each other. Aiming at such a model we built 
up a framework of modules within OpenFOAM® that enables for the simulation of thermal and fluid dynamical 
effects for several laser processes like e.g. laser beam welding, remote cutting or drilling. Further results covering 
also processes like laser beam droplet welding or laser beam brazing are given in [26].  First comparisons between 
simulation results and experimentally obtained data show quite sufficient correlations.  

Though many physical aspects of laser beam material processing like melting and evaporation are already 
implemented within the model, there are still a lot of challenges ahead. One very important task especially with 
respect to industrial applications of the model is the coupling of fluid dynamics with thermo-mechanics. While stand 
alone simulations of thermo-mechanical and metallurgical processes in laser material processing are already state of 
the art, their coupling with fluid dynamics, e.g. in a transient weld pool, has not yet been established. Such a 
coupling is planned as one of our future development tasks. 
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