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1 Introduction

The relationship between the three main topics of this thesis - environmen-
tal quality, education and economic growth - is of utmost importance in the
modern world. With large cities suffocating in smog, hurricanes, earthquakes
and other natural catastrophes becoming more and more frequent and cli-
matic change picking up speed steadily, nearly every branch of science has
come to occupy itself with environmental aspects such as pollution control
or waste reduction. Obviously, environmental quality influences public wel-
fare to a large extent, so it is natural that economics be one of the major
disciplines of science to engage in research related to the environment.
Since Lucas (1988), human capital has become an essential component of
modern growth theory. It is commonly accepted nowadays that the acqui-
sition of human capital (by schooling or learning-by-doing, both of which
we will refer to as education in this thesis) is one of the driving forces, if
not THE driving force behind economic growth, but that’s not the end of
it. As Wolfgang Lutz put it in his speech at the Wittgenstein-Symposium in
September 20111, ”using brain power is a zero-emission way of accelerating
technological change and wealth accumulation, thus investment in education
is probably the best long-term strategy to counteract climatic change”.

The interaction between environmental quality, education and growth
constitutes an enormously large field of study, and surely a lot of research
in this direction will be done in coming years. The aim of this thesis is to
analyze these interactions in a very specific setting, by using ”finite horizon”
models, which are in principle models of overlapping generations in continu-
ous time. The finite aspect of this kind of models applies only to individual
agents, who face finite lifespans. The economy of course persists irrespective
of the constant fluctuation of finitely lived agents.
The findings of these models will sometimes differ immensely from the results
of the commonplace neoclassical growth models, as agents of different ages
have different levels of wealth and consumption, which makes it a lot more
difficult to determine aggregate values for an existing population. Also, there
is need for life insurances to avoid unintended bequests.

This thesis is structured as follows: chapter 2 introduces the concept of
finite horizons, that is, a way of modelling death as a source of uncertainty
to heterogenize the agents of a model. The central model of this kind is

1Symposium on ”Demography, Education, and Democracy − A Global Perspective”, in
celebration of the opening of the Wittgenstein Centre for Demography and Global Human
Capital. September 29th, Austrian Parliament, Vienna.
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the basic Blanchard-Yaari model, which will be briefly presented. Chapter
3 analyzes Pautrel (2009), a more complex model of finite horizons where
agents also care about the environment. Chapter 4 takes human capital into
account, by first taking a look at the Lucas model, which paved the way for
human capital in growth models, and then by examining two more models
by Xavier Pautrel, the first combining environmental concerns and educa-
tion, the second differentiating between the technologies used in final goods
production and abatement services and thereby examining the role of the
abatement technology. Chapter 5 summarizes the main findings, common-
alities and differences between the respective models, chapter 6 concludes.
Very lengthy calculations are positioned in the Appendix, as they would oth-
erwise interfere with the legibility of the thesis.
All diagrams were created using MATLAB. All calculations were carried out
manually, except for one very cumbersome expression in Appendix C, which
was computed using Maple.
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2 The Blanchard-Yaari model

The perpetual youth model or Blanchard-Yaari model (see Blanchard (1985)
and Yaari (1965)) is a model of overlapping generations in continuous time. It
is in many ways related to two very popular growth models, namely the Ram-
sey model of infinitely lived agents in continuous time (see Ramsey (1928)),
and the Diamond model of overlapping generations in discrete time (see Di-
amond (1965)). Although these two models are among the most influential
growth models, they have certain weaknesses, especially in the way they
handle the death of an agent - in the Ramsey model there is no such thing
as death, whereas in the Diamond model agents die with certainty after a
given number of years. The Blanchard-Yaari model now tries to combine the
many excellent features of the Ramsey model and the Diamond model, and
at the same time to introduce a more realistic way of dying by making death
stochastic and assigning individuals certain probabilities of death.
The Blanchard-Yaari model was presented for the first time in Blanchard
(1985), with essential insights gained from Yaari (1965). Agents face proba-
bilities of death that are exponentially distributed and take the form

f(t) = λe−λt (1)

with constant death rate or instantaneous probability of death λ.2 In
the basic model, there is no population growth. In order to have the entire
population size normalized to 1, a (sufficiently large) cohort is born at every
instant of time, whose size is therefore necessarily equal to the death rate
λ, as can easily be seen from the fact that the size of the entire population
takes the form

∫ t
−∞ λe

−λ(t−s)ds = 1.3

Analyzing (1) more closely, the name ”Perpetual Youth Model” becomes
apparent: due to the exponential distribution’s memorylessness, each individ-
ual at every point of time faces exactly the same life expectancy

∫∞
0
tλe−λtdt =

1
λ
, therefore the same horizons and the same propensities to consume or

save, which makes aggregation quite easy. Moreover, the well-known Ram-
sey model is a special case of the Blanchard-Yaari model (for λ→ 0, that is,
infinite horizons).

2The notation presented differs somewhat from the original to stay consistent through-
out this thesis. This will be the case for all models from now on.

3The size at time t of a cohort born at time s is simply λe−λ(t−s) (non-stochastically).
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2.1 Individual consumption

Let c(s, t) denote per capita4 consumption at time t of an agent born in s.
Utility is derived from consumption only. In a first approach, we analyze a
logarithmic utility function. At time t, an agent born in s maximizes her
expected lifetime utility

E
[∫ ∞

t

log c(s, ν)eθ(t−ν) dν|t
]
, (2)

where θ ≥ 0 denotes the rate of time preference. The agent has to maxi-
mize her expected lifetime utility, since she is uncertain about the time of her
death (and utility in case of death is strictly 0). By recalling the calculation

rule for conditional expectations: E(X|Y ) = E(X∩Y )
E(Y )

with X denoting utility

at time ν ≥ t and Y denoting probability of survival at time ν ≥ t,5 (2) can
equivalently be written as

maxc(s,t),a(s,t)

∫ ∞
t

log c(s, ν)e(θ+λ)(t−ν) dν (3)

Therefore, the effective discount rate is (θ+λ). As long as λ > 0, individu-
als discount the future even for θ = 0 due to the positive probability of death.

Although agents are not altruistic towards their descendants, they are
forbidden to be in debt at their time of death (otherwise they would sim-
ply go indefinitely into debt and all model solutions would be pathologic).
As a consequence of the agents’ uncertainty regarding their time of death,
these assumptions would lead to a higher savings rate than the optimal rate
without uncertainty. To avoid this inefficiency, we allow for life insurances.
Of course, these life insurances are quite the opposite of conventional life
insurances: throughout their lives, individuals receive payments from the in-
surance companies and in return leave their entire wealth to the insurance
company after their death. As there is no aggregate uncertainty regarding
death in the Blanchard-Yaari model, life insurances are not exposed to any
kind of risk. It is assumed that there is perfect competition on the insur-
ance market, so at every point in time, insurances receive transfers λA from
the agents that have just died and pay λa to the surviving agents, where

4From now on, per capita values will be denoted by small letters with two arguments
in brackets, the first refering to the individuals time of birth, the second to the current
time period.

5The probability of survival at time ν ≥ t is e−λ(ν−t), see (1).
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A stands for aggregate and a for per-capita financial wealth (assets). Fur-
thermore, financial wealth bears interest at rate r(t), so that we have the
following budget constraint:

ȧ(s, t) = [r(t) + λ]a(s, t) + w(t)− c(s, t) (4)

w(t) denoting labour income (for simplicity, the assumption is made that
all agents work and receive the same amount of labour income, irrespective
of their age). To avoid a Ponzi-scheme, that is, individuals going in debt
indefinitely, we impose the following transversality condition:

limν→∞ e−
∫ ν
r [r(µ)+λ]dµa(s, ν) = 0 (5)

Each agent now maximizes (3) subject to (4) and (5). The current-value
Hamiltonian takes the form

H = log c(s, t) + µ(t)[(r(t) + λ)a(s, t) + w(t)− c(s, t)]

From the first order conditions

Hc = 0⇔ 1

c(s, t)
= µ(t) (6)

Ha = (θ + λ)µ(t)− µ̇(t)⇔ µ(t)[r(t) + λ] = (θ + λ)µ(t)− µ̇(t) (7)

Hµ = ȧ(s, t)⇔ [(r(t) + λ)a(s, t) + w(t)− c(s, t)] = ȧ(s, t) (8)

the Euler equation can easiliy be derived, as due to (7)

µ̇(t) = µ(t)[r(t)− θ], (9)

and by differentiating (6) with respect to time, we find that

µ̇(t) =
ċ(s, t)

c(s, t)2
. (10)

Combining (9) and (10) yields

ċ(s, t)

c(s, t)2
=

1

c(s, t)
[r(t)− θ]

and after multiplying c(s, t) to both sides we get

ċ(s, t)

c(s, t)
= r(t)− θ. (11)
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From (4), (5) and (11) we can derive the actual consumption of any
individual as per time t (see Appendix A):

c(s, t) = (λ+ θ)[a(s, t) + ω(t)], (12)

where ω(t) stands for per-capita human wealth, which is the discounted
present value of all future labour incomes:

ω(t) =

∫ ∞
t

w(ν)e−
∫ ν
t r(ζ)+λ dζ dν. (13)

As we can see from (13), individual consumption depends on the entire indi-
vidual wealth, with the same propensity (λ+θ) for all agents. The derivation
of equation (12) is somewhat complicated and is presented in Appendix A
for reasons of legibility.

2.2 Aggregate consumption

Aggregate Variables (which will be written in capital letters throughout this
thesis) can be easily calculated thanks to the simple demographic structure
of the model. Aggregate consumption for example takes the form

C(t) =

∫ t

−∞
c(s, t)λeλ(s−t) ds, (14)

in the same manner as aggregate labour income Y (t), financial assets A(t)
and human wealth Ω(t). Aggregate consumption can be expressed in a dif-
ferent and more instructive way as a consequence of equation (12):

C(t) = (λ+ θ)[Ω(t) +A(t)]. (15)

Aggregate consumption therefore also depends on the entire aggregate
wealth, with the same marginal propensity (λ+ θ).

Following (13), Ω(t) can be written as

Ω(t) =

∫ t

−∞

[∫ ∞
t

w(ν)e−
∫ ν
t r(ζ)+λ dζ dν

]
λeλ(s−t) ds. (16)

Changing the order of integration yields

Ω(t) =

∫ ∞
t

[∫ t

−∞
w(ν)λeλ(s−ν) ds

]
e−

∫ ν
t r(ζ)+λ dζ dν. (17)
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Aggregate human wealth is therefore equal to the aggregate discounted
present value of all future labour incomes accruing to all agents alive in t.
Due to the assumption that wages are independent of age, (17) can be written
as

Ω(t) =

∫ ∞
t

Y (ν)e−
∫ ν
t r(ζ)+λ dζ dν (18)

with Y (t) =
∫ t
−∞w(t)λeλ(s−t)ds, or, equivalently,

Ω̇(t) = [r(t) + λ]Ω(t)− Y (t) (19)

and
limν→∞ Ω(ν)e−

∫ ν
t r(ζ)+λ dζ = 0. (20)

To fully describe the dynamics of the system, we still need an expression
for Ȧ(t). Taking the time-derivative of A(t) =

∫ t
−∞ a(s, t)λeλ(s−t) ds, we

obtain, using the Leibnitz-rule

Ȧ(t) = a(t, t)︸ ︷︷ ︸
=0

−λA(t) +

∫ t

−∞
ȧ(s, t)λeλ(s−t) ds (21)

Equation (21) describes the change in aggregate financial wealth at an
arbitrary point of time and can be interpreted in quite an enlightening way:
the first term corresponds to the financial wealth of newborns; as there are no
bequests, newborns enter this world without any financial assets, therefore
a(t, t) = 0. The second term corresponds to the financial wealth of the dying
agents in t, the last term captures the fluctuations of financial wealth of all
the remaining agents.
Substituting (4) into (21) yields

Ȧ(t) = r(t)A(t) + Y (t)− C(t). (22)

Comparing (4) with (22), we notice that the rate at which financial wealth
accumulates differs between the individual and the aggregate variables: per-
capita financial wealth accumulates at rate (r(t) + λ), whereas aggregate
financial wealth only accumulates at rate r(t). The reason for this is evident:
the term λa in (4), describing the payments by the insurance company to the
agents, is nothing but a transfer from the dying agents to those who survive,
and therefore has no effect on aggregate financial wealth.
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Equations (15), (19) and (22) fully describe the dynamic system. How-
ever, by taking the time-derivative of (15) and eliminating Ω̇(t) and Ȧ(t), we
obtain at first6

Ċ = (λ+ θ)[(r + λ)Ω− Y + rA+ Y − C]

and after substituting Ω = C
λ+θ
−A from (15)

Ċ = (r − θ)C − λ(λ+ θ)A (23)

Ȧ = rA+ Y − C (24)

Equations (23) and (24) are equivalent to the equations (15), (19) and
(22), but easier to handle, so we will use them instead.
Equation (23) yields the well-known Ramsey model for λ = 0; for λ > 0,
agents have finite horizons and discount the future more heavily. Aggregate
consumption grows more slowly than in the case where agents live forever.
The reason for this is that agents differ in their levels of wealth, although
their marginal propensities to consume are identical. Old agents with greater
wealth die, younger agents with less wealth take their place. The growth rate
of aggregate consumption is smaller, the greater λ, i.e. the shorter the agents’
life expectancies.
It’s important to realize that in spite of all this argumentation, the Euler-
equation still applies for individual consumption: ċ = (r − θ)c. Therefore,
when λ > 0 and r = θ, individual consumption stays constant, whereas
aggregate consumption declines.

After having analyzed the main features of the Blanchard-Yaari model,
which will be the basis of nearly all of the following models, we now turn
towards a more sophisticated version of a perpetual youth model with envi-
ronmental concerns.

6From now on, time indices will be left out for reasons of legibility when they are not
essential.
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3 Environmental quality in a Blanchard-Yaari

model

This chapter is based on Pautrel (2009). Starting from the Blanchard-Yaari
model, Pautrel introduces a number of different features to the model and
examines the impact of environmental taxes on consumption and savings.
Our focus lies on a different aspect of the model: we will analyze the im-
plications of demographic changes and retirement schemes on the economy,
while leaving the environmental tax rate more or less unaffected. Thus we
will get a first insight into how finite horizons affect welfare when environ-
mental care is taken into account.

The growth rate of the population, gN , is now defined as gN ≡ Ṅ(t)
N(t)

= b−p
with b the birth rate and p the death rate. The population size at time t can
hence be derived as follows:∫

Ṅ(t)

N(t)
dt =

∫
(b− p) dt

ln (N(t)) + c0 = (b− p)t+ c1

N(t) = ce(b−p)t, c = ± ec1−c0 .

Without loss of generality let N(0) = 1, so that c = 1 and

N(t) = e(b−p)t. (25)

The size of a cohort of newborns is directly proportional to the current
population size via N(s, s) = bN(s) = be(b−p)s. The size of a cohort born in
s at time t (t ≥ s) is

N(s, t) = e−p(t−s)N(s, s) = be−pt+ps+bs−ps = bebs−pt. (26)

Individual labour supply ~(s, t) is age-dependent, with ~(s, t) = φe−ψ(t−s),
φ > 0, ψ ≥ 0. ψ denotes age-dependent productivity, that is, the rate at
which individual labour supply decreases with age. This age-dependent pro-
ductivity is a measure of the amount to which elderly people are part of the
workforce (the higher ψ, the earlier they retire) and must not be confused
with the common concept of labour productivity (units of output per units
of labour input).
Aggregate labour supply can hence be written as

L(t) =

∫ t

−∞
~(s, t)N(s, t) ds =

∫ t

−∞
φe−ψ(t−s)bebs−pt ds =

10



φbe−t(ψ+p) 1

ψ + b
[es(ψ+b)]t−∞ = φbe−t(ψ+p) 1

ψ + b
[et(ψ+b)] =

φb

ψ + b
et(b−p) = LN(t), (27)

with L ≡ φb
b+ψ

denoting per-capita labour supply. L fulfills the following
properties:

L ≥ 0,
∂L
∂b

=
φψ

(ψ + b)2
≥ 0,

∂L
∂ψ

= − φb

(b+ ψ)2
< 0.

Per-capita labour supply thus increases with the birth rate and decreases
with ψ. Both effects are reasonable: when age-dependent productivity is
high, people reduce their individual labour supply ~(s, t) faster (they ”retire”
earlier) which of course leads to lower per-capita labour supply. On the
other hand, individual labour supply is, regardless of the exact value of ψ,
always highest early in life. A high birth rate implies that there are many
young workers in the economy and consequently per-capita labour supply
increases. The implications of these dependencies will be studied in more
detail in chapter 3.5.

3.1 Individuals and households

Again, individuals maximize their expected lifetime utility being uncertain
about their time of death. However, consumption is no longer their only
source of utility, they also benefit from a clean and functioning environment,
so the net flow of pollution, P(t) now also enters the utility function in a
negative way. Agents born at time s now maximize as of time t

maxc(s,t),a(s,t) E
[∫ ∞

t

(log c(s, ν)− κ log P(ν)) e−θ(t−ν) dν|t
]

(28)

or, equivalently,

maxc(s,t),a(s,t)

∫ ∞
t

[log c(s, ν)− κ log P(ν)] e−(θ+p)(t−ν) dν (29)

with κ being the relative importance of environmental quality.

The transversality condition (5) stays the same, the budget constraint (4)
changes slightly as wage income now depends on individual labour supply7:

7Note that the insurance payments depend only on the death rate p.
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ȧ(s, t) = (r(t) + p)a(s, t) + ~(s, t)w(t)− c(s, t) (30)

Maximizing (29) subject to (30) and (5) yields the identical Hamiltonian,
first oder conditions and Euler equation as the basic model (see (6) to (11)).
Individual consumption again takes the form

c(s, t) = (θ + p)[a(s, t) + ω(s, t)], (31)

with the only difference that the expected present value of lifetime income
now also depends on individual labour supply, as
ω(s, t) =

∫∞
t

~(s, ν)w(ν)e−
∫ ν
t r(ζ)+p dζ dν, and is therefore no longer identical

for all agents. The derivation of (31) is identical to that of (12) except for
the different expression of ω(s, t) and can be found in Appendix A.

Aggregate consumption can again be written as in (15). However, tak-
ing the time derivate of (15) now leads to a somewhat different and more
complicated result:

Ċ(t) = [r(t)− θ + b− p+ ψ]C(t)− (ψ + b)(θ + p)A(t). (32)

As the calculations leading to this result are lengthy, they are presented
in Appendix A.

3.2 The firm sector

The productive sector is taken to be a perfectly competitive market. Firms
produce output Y (t) according to the (Harrod-neutral) Cobb-Douglas pro-
duction function

Y (t) = K(t)α[A(t)L(t)]1−α, α ∈ (0, 1) (33)

where K(t) denotes the aggregate stock of capital and A(t) the prevailing
level of technology.

It is now supposed that the level of pollution P(t) increases with output
and diminishes with abatement measures F (t):

P(t) =

[
Y (t)

F (t)

]γ
, γ > 0. (34)

As this model does not examine resource scarcity, firms have no incentive
to invest in abatement initially. To overcome this problem, an environmental
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tax at rate ϑ(t) on the net pollution of firms is introduced. After the envi-
ronmental tax is deducted from each firm, it is fully returned to the firms to
subsidize their abatement measures.8

Firms chose the amount of labour, capital and abatement that maximizes
their profit:

π(t) = Y (t)− r(t)K(t)− w(t)L(t)− ϑ(t)P(t)− F (t) + T p(t),

with T p(t) the governmental transfer payments (of course, T p(t) = ϑ(t)P(t)).
As the productive sector is perfectly competitive, firms make zero profit
(π = 0). All production factors (labour, capital and abatement) are deter-
mined by carrying out the representative firm’s profit optimization problem.

By taking the partial derivatives of the profit function and combining
them with (34), we get a formula for the interest rate:

∂π(t)

∂K(t)
= 0⇔

r(t) = αK(t)α−1(A(t)L(t))1−α
[
1− ϑ(t)γK(t)α(γ−1)(A(t)L(t))(1−α)(1−γ) 1

F (t)γ

]
as K(t)αγ−1

K(t)α−1 = K(t)α(γ−1) and L(t)(1−α)γ

L(t)1−α = L(t)(1−α)(γ−1).

With (33), we can see that

K(t)α(γ−1)(A(t)L(t))(γ−1)(1−α) 1

F (t)γ
= Y (t)γ−1 1

F (t)γ
=
P(t)

Y (t)
,

hence the interest rate can be expressed by

r(t) =

[
1− γϑ(t)

P(t)

Y (t)

]
αK(t)α−1(A(t)L(t))1−α. (35)

In the same way, we find an expression for the wage rate:

∂π(t)

∂L(t)
= 0⇔ w(t) =

(1− α)K(t)αA(t)1−αL(t)−α
[
1− ϑ(t)γK(t)α(γ−1)(A(t)L(t))(1−α)(γ−1) 1

F (t)γ

]
8Final output is used as numeraire, its price being set equal to 1. Moreover, we suppose

that the cost of one unit of abatement equals the cost of one unit of final output and is
therefore also set to 1.
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so that

w(t) =

[
1− γϑ(t)

P(t)

Y (t)

]
(1− α)K(t)αA(t)1−αL(t)−α. (36)

Finally, the optimization procedure yields

∂π(t)

∂F (t)
= 0⇔ ϑ(t)γY (t)γ

1

F (t)γ+1
− 1 = 0⇔ F (t) = ϑ(t)γP(t). (37)

From the last result, we obtain

P(t) =

(
Y (t)

ϑ(t)γP(t)

)γ
⇒ P(t)γ+1 =

(
Y (t)

ϑ(t)γ

)γ
⇒ P(t) =

(
γ
ϑ(t)

Y (t)

)− γ
γ+1

We assume that the environmental tax rate ϑ(t) grows at the same rate
as output Y (t). This assumption is reasonable, as net pollution has to be
constant in the long run to ensure a constant degree of environmental quality.
Due to the specification of net pollution (it also grows with output), the
tax rate also needs to grow in order to encourage firms to invest more in
abatement measures so that net pollution stays constant in spite of growing
output.
By defining the environmental tax rate in terms of final output τ ≡ ϑ(t)

Y (t)

(which has to be constant according to the considerations above) and χ(τ) ≡
(γτ)

1
1+γ , we get

χ(τ) =

(
γϑ(t)

Y (t)

) 1
1+γ

⇒ P(t) = χ(τ)−γ,

which particularly means that P is not time-dependent! Contrarily, F (t) is
indeed time-dependent:

F (t) = ϑ(t)γχ(τ)−γ = (ϑ(t)γ)
1

1+γ Y (t)
γ

1+γ = χ(τ)Y (t).

With some rearranging, it is possible to express χ(τ) via

γϑ(t)
P(t)

Y (t)
= γϑ(t)χ(τ)−γY (t)−1 = (γϑ(t))

1
1+γ Y (t)

γ
1+γ
−1 =
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(γϑ(t))
1

1+γ Y (t)
−1
1+γ = χ(τ),

so that we immediately get new expressions for the interest rate

r(t) = α(1− χ(τ))K(t)α−1[A(t)L(t)]1−α (38)

and for the wage rate

w(t) = (1− α)(1− χ(τ))K(t)αA(t)1−αL(t)−α (39)

3.3 Market equilibrium

By substituting F (t) = χ(τ)Y (t) and using (38) in the equilibrium conditions
for the goods market (Y (t) = C(t) + K̇(t) + F (t)) and the financial market
(A(t) = K(t)) we get two differential equations that fully characterise the
dynamics of the model economy:

K̇(t) = Y (t)− F (t) + C(t) = (1− χ(τ))K(t)α(A(t)L(t))1−α − C(t) (40)

and, due to

Ċ(t) = [r(t)− θ + b− p+ ψ]C(t)− (ψ + b)(θ + p)A(t)⇒

Ċ(t) = [α(1− χ(τ))K(t)α−1[A(t)L(t)]1−α − θ + b− p+ ψ]C(t)

− (ψ + b)(θ + p)K(t)
(41)

3.4 The steady state equilibrium

After having set up the model, we now turn to the task of looking for
steady states and determining their stability. We abstract from technological

progress, i.e. A(t) ≡ A
1

1−α .

It is important to emphasize that the per-capita variables for consump-
tion and capital, c(t) and k(t), differ from the per-worker variables, c̃(t) and
k̃(t) due to the assumed age-earning profiles (as long as ψ 6= 0). In our anal-
ysis of steady states we will use per-worker variables only. Later however,
we will also examine the equilibrium behaviour of the per-capita values and
discover some striking differences.
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Obviously k(t) = K(t)
N(t)

= K(t)L
L(t)

= Lk̃(t).9

We can now derive the two differential equations (42) und (43), that describe
the dynamics of the stock of capital per-worker and consumption per-worker,
respectively:
From k̃(t) = K(t)

L(t)
we get, by taking the logarithm and deriving with respect

to time

ln k̃(t) = ln K(t)− ln L(t)⇒
˙̃k(t)

k̃(t)
=
K̇(t)

K(t)
− L̇(t)

L(t)
=

(1− χ(τ))K(t)α−1AL(t)1−α − C(t)

K(t)
− (b− p),

as L̇(t)
L(t)

= Ṅ(t)
N(t)

= b− p, and therefore

˙̃k(t) = (1− χ(τ))Ak̃(t)α − c̃(t)− (b− p)k̃(t).

In the same way c̃(t) = C(t)
L(t)

:

ln c̃(t) = ln C(t)− ln L(t)⇒
˙̃c(t)

c̃(t)
=
Ċ(t)

C(t)
− L̇(t)

L(t)
=

[α(1−χ(τ))AK(t)α−1L(t)1−α− θ+ b− p+ψ]− (ψ + b)(θ + p)K(t)

C(t)
− (b− p)

= [α(1− χ(τ))Ak̃(t)α−1 − θ + ψ]c̃(t)− (ψ + b)(θ + p)k̃(t).

To summarize, the two central model equations read:

˙̃k(t) = (1− χ(τ))Ak̃(t)α − c̃(t)− (b− p)k̃(t) (42)

˙̃c(t) = [α(1− χ(τ))Ak̃(t)α−1 − θ + ψ]c̃(t)− (ψ + b)(θ + p)k̃(t) (43)

In a steady state, the conditions ˙̃k(t) = 0 and ˙̃c(t) = 0 have to be fulfilled.
As a consequence, we get the equilibrium value for c̃∗ in quite a simple way
by rearranging equation (42):

c̃∗ = A(1− χ(τ))k̃∗α − (b− p)k̃∗ (44)

9Note that L(t) = L(t)
N(t) , see (27).
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With this result and the insights gained from equation (43), it is now possible
to derive an expression for k̃∗:

0 = [α(1−χ(τ))Ak̃∗α−1−θ+ψ][A(1−χ(τ))k̃∗α−(b−p)k̃∗]−(θ+p)(b+ψ)k̃∗ =

[α(1− χ(τ))Ak̃∗α−1 − θ + ψ][A(1− χ(τ))k̃∗α−1 − (b− p)]− (θ + p)(b+ ψ) =

α[(1− χ(τ))Ak̃∗α−1]2 − (θ − ψ + α(b− p))[(1− χ(τ))Ak̃∗α−1]+

(θ − ψ)(b− p)− (θ + p)(b+ ψ)

Dividing the last expression by (1− χ(τ)) and collecting terms, we get

0 = k̃∗2(α−1)α(1−χ(τ))A+k̃∗α−1(−θ+ψ−α(b−p))−[(1−χ(τ))A]−1(ψ+p)(b+θ).

Solving the quadratic equation yields

k̃∗α−1 =
(θ − ψ + α(b− p))±

√
(ψ − α(b− p)− θ)2 + 4α(ψ + p)(b+ θ)

2α(1− χ(τ))A

As the share of capital per-worker cannot be negative, and the denominator
is necessarily positive (χ(τ) < 1), it is obvious that the numerator needs to
be positive as well. Consequently, the solution with ”-” before the square
root is obsolete.
For further analysis, we denote

D ≡ (θ − ψ + α(b− p)) +
√

(ψ − α(b− p)− θ)2 + 4α(ψ + p)(b+ θ).

It is now easy to see that

k̃∗ = [2α(1− χ(τ))A]
1

1−αD
−1

1−α (45)

If we ignore - just for a moment - the special case where k̃∗ and c̃∗ are
both zero, we have D > 0. Moreover, D is unique and D ∈ R. Thus the
steady state equilibrium is unique - again ignoring the zero-solution, which
of course is an equilibrium as well (although MATLAB does not identify the
point (0, 0) as an equilibrium10)

10For k̃ = 0 and c̃ = 0 it is obvious that
˙̃
k(t) = 0. For ˙̃c(t) this is not quite as clear

at first, as the term k̃α−1c̃ = c̃
k̃1−α

leads to an expression of the form ” 0
0” (which is

precisely the reason why MATLAB fails). Using the rules of de l’Hôspital, we find that
lim(c̃,k̃)→(0,0)

c̃
k̃1−α

= 1
(1−α)k̃−α

= kα

1−α = 0, which proves, that the point (0, 0) really is a

proper equilibrium (of course, this finding was intuitively clear from the very beginning, as
it is impossible to move away from a point where there is neither capital nor consumption
in a two-dimensional model).
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The Jacobian evaluated in (k̃∗, c̃∗) looks as follows (the special case (0,0)
is analyzed in chapter 3.5):

J =

[
α(1− χ(τ))Ak̃∗α−1 − (b− p) −1(

(α− 2)α(1− χ(τ))Ak̃∗α−1 + ψ − θ
)
c̃∗

k̃∗
α(1− χ(τ))Ak̃∗α−1 − θ + ψ

]

where c̃∗

k̃∗
= A(1− χ(τ))k̃∗α−1 − (b− p).

The derivation of the matrix elements is straightforward, except for the
(2,1)-element. For this element, we have

∂ ˙̃c(t)

∂k̃

∣∣∣∣
(c∗,k∗)

= α(α− 1)(1− χ(τ))Ak̃∗α−2c̃∗ − (θ + p)(b+ ψ) =

α(α−1)(1−χ(τ))Ak̃∗α−1 c̃
∗

k̃∗
−
[
α(1− χ(τ))Ak̃∗α−1 − θ + ψ

] [
A(1− χ(τ))k̃∗α−1 − (b− p)

]
We have already shown that c̃∗

k̃∗
= A(1 − χ(τ))k̃∗α−1 − (b − p), therefore

we can simplify the above expression so that

∂ ˙̃c(t)

∂k̃

∣∣∣∣
(c∗,k∗)

= (α−1)α(1−χ(τ))Ak̃∗α−1 c̃
∗

k̃∗
−
[
α(1− χ(τ))Ak̃∗α−1 − θ + ψ

] c̃∗
k̃∗

=

[
(α− 2)α(1− χ(τ))Ak̃∗α−1 − θ + ψ

] c̃∗
k̃∗
.

To analyze the stability of the steady state equilibrium, we first need the
determinant of the Jacobian:

det J =
[
α(1− χ(τ))Ak̃∗α−1 − θ + ψ

] [
αA(1− χ(τ))k̃∗α−1−

(b− p) +
c̃∗

k̃∗
(α− 2)

]
=

α(1− χ(τ))Ak̃∗α−1 − θ + ψ︸ ︷︷ ︸
>0


2(α− 1)

c̃∗

k̃∗︸ ︷︷ ︸
<0

 < 0.

The trace of the Jacobian reads

tr J = 2α(1− χ(τ))Ak̃∗α−1 − (b− p) + ψ − θ

and is non-negative. Combining the last two results, we conclude that the
steady state equilibrium lies in the fourth quadrant of the trace-determinant
plane. Consequently, the eigenvalues are real and have opposite signs, which
means that the equilibrium is saddlepoint stable.
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3.5 Equilibrium dynamics

We now focus on the deeper analysis of the steady state equilibrium. In order
to do so, Pautrel (2009) chooses parameter values estimated from US-data
in the year 2005: Life expectancy of an average US-citizen was around 77
years in 2005. In the context of this model, this yields 1

p
= 77⇒ p = 0.013.

US-population was growing at roughly 1% per year, so that b− p = 0.01⇒
b = 0.023. The value for α = 0.3 has been proven by empirical evidence in
many studies. The other parameters are calibrated in a way that they fulfill
two central requirements: that per-capita GDP be around 45 700 $, and that
the individual effective labour supply at the age of 80 be very close to 0.
The resulting parameter values are listed in Table 1; the values of the relevant
steady state variables, given the parameter set in Table 1, are listed in Table
2.

A α γ τ θ p b ψ φ
3.54 0.3 0.3 0.02 0.05 0.013 0.023 0.05 1

Table 1

k̃∗ c̃∗ ỹ∗ k∗ c∗ y∗

110.419 13.131 14.518 34.790 4.137 4.574

Table 2

We see from Table 2, that per-capita GDP, y∗, is very close to its target
value (except for some scaling). Individual consumption constitutes over
90% of GDP, the rest being allocated to abatement measures and changes in
financial assets.

With these values, the phase portrait can be computed (see Figure 1).
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Figure 1: Phase portrait of the steady state equilibrium

The dashed lines in pink and yellow depict the isoclines of the dynamic

system, the pink line representing the ˙̃k = 0 - locus, the yellow line repre-
senting the ˙̃c = 0 - locus. The steady state equilibrium lies exactly in the
intersection of the two isoclines. The starting point in this diagramm is of
utmost importance to the development of the trajectory. By starting above

the ˙̃k = 0 - locus, per-worker consumption is high and we see from (42) that
dissaving takes place, hence the capital stock per-worker declines. Below the
˙̃k = 0 - locus, the opposite is true, as consumption is low. Starting to the
left of the ˙̃c = 0 - locus, the capital stock per-worker is relatively small, thus
per-worker consumption increases, see (43) and vice versa to the right of the
˙̃c = 0 - locus.

The nearly straight blue lines with arrows depict the characteristic di-
rections of the system, where of course the two lines with arrows pointing
in towards the equilibrium are stable manifolds, the other two are insta-
ble manifolds. The stable manifolds are the only trajectories that lead into
the equilibrium (in forward-time). As, naturally, the stable manifolds have
Lebesgue-measure 0, the probability of ending up in the equilibrium by ran-
domly choosing a starting point is equal to 0. If, for example, we start at
some point close to (0,0) that is not on the stable manifold, at first con-
sumption and capital will rise according to the arguments above. As tra-
jectories must never intersect, it is important to notice at which side of the
stable manifold our starting point was. If it was to the left, the trajectory

will eventually intersect the ˙̃k = 0 - locus, which means that afterwards,
consumption will continue to rise but the capital stock will gradually tend
towards 0. If the starting point was to the right of the stable manifold, the
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trajectory will intersect the ˙̃c = 0 - locus, so that consumption will slowly
decline while the capital stock continues to grow. For the case that we choose
starting points above the steady state, we might even end up with infinite
per-worker consumption and/or capital stock. However, the transversality
condition ensures that we always start on a stable manifold: with a given
stock of per-capita capital, consumption per-capita is adjusted accordingly.11

As we have proved in the last chapter, the equilibrium turns out to be
a saddlepoint with values k̃∗ = 110.4, c̃∗ = 13.1 in the steady state. If we
examine the system more closely, that is, by trying many different sets of
parameter values, it turns out that the equilibrium is always saddlespoint-
stable. Only when we use economically non-relevant values that violate the
model specifications (such as α > 2), different kinds of equilibria occur.

However, as mentioned above, there is another equilibrium point in (0,0).12

The Jacobian, evaluated in (0,0) takes the form[
−(b− p) −1

(ψ − θ)(b− p) −θ + ψ

]
The eigenvalues can be calculated according to

[−(b− p)− λ](ψ − θ − λ) + (ψ − θ)(b− p) =

−(b− p)(ψ − θ)− λ(ψ − θ) + λ(b− p) + λ2 + (b− p)(ψ − θ) !
= 0

⇔ λ(λ+ b− p− ψ + θ) = 0 ⇒ λ1 = 0, λ2 = −(b− p) + (ψ − θ)

With the given parameter values, λ2 < 0, which would imply that the linear
system consists of a stable straight line of equilibria. However, as the Jaco-
bian, evaluated in (0,0), possesses imaginary eigenvalues (λ1 = 0 is strictly
imaginary in this case), (0,0) is a non-hyperbolic equilibrium, which throws
up a bunch of complications. For a start, the preconditions for the Hartman-
Grobman theorem are violated, so that the topological equivalence of the
linear and the nonlinear system is not granted in any neighborhood of (0,0),
no matter how small. Moreover, we cannot draw any conclusions from the
stability of the linearized system to that of the nonlinear system. A possi-
ble approach would be to try to find a Ljapunov-function to determine the

11This is precisely the reason why a saddlepoint is called a stable equilibrium.
12This point is completely ignored by Pautrel (2009). Although an equilibrium where

nothing is produced nor consumed is irrelevant from an economic point of view, it should
not be neglected when analyzing a dynamic system mathematically.
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stability of the equilibrium. Due to the complexity of the system however,
this is nearly impossible without an appropriate approach. The best thing
we can do is to examine the stability of the other equilibrium point in detail,
especially the direction of the trajectories, and to conclude logically on the
stability of the point (0,0). With the given parameter values, (0,0) is insta-
ble, as can be perceived from figure 1. In fact, by trying numerous different
scenarios, the equilibrium appears to be instable, irrespective of the chosen
parameter values (of course, only as long as the model specifications are not
violated).

Finally, we will study the bifurcations occurring when varying the most
important parameters (b, p, ψ). Of course, as we are dealing with a unique
steady state, we don’t find any further equilibria and therefore no branching
points. Still, the following diagrams illuminate the theoretic findings up to
now13.

Figure 2: Steady-state per-worker
consumption with varying birth rate

Figure 3: Steady-state per-capita con-
sumption with varying birth rate

Figure 2 shows, that the steady-state per-worker consumption depends
negatively on the birth rate, but with diminishing marginal rates. The closer
the birth rate approaches 1, the smaller the marginal effect becomes. The
higher the birth rate, the greater the labour force and thus GDP, but there
are two oppositional forces behind the development of per-worker consump-
tion: on the one hand a positive effect due to higher GDP, but on the other

13The respective values for consumption and capital are split into seperate diagrams for
matters of clearness.
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hand a negative dilution-effect that originates from the greater labour force
among which aggregate consumption has to be divided in order to obtain
per-worker GDP. Figure 2 shows that the dilution effect dominates, so that
a higher birth rate unambiguously leads to smaller per-worker consumption.

It is a very interesting feature of this model, that the sensitivity of per-
capita and per-worker values towards the same parameter might differ im-
mensely. The reason for this lies in the assumed age-earning profiles that
lead to the exgenous per-capita labour supply L = φb

b+ψ
with c(t) = Lc̃(t)

and likewise for k(t). Hence, with respect to productivity and the birth rate,
there is a second effect that either amplifies, weakens or even reverses the
impact of these parameters on per-capita values as compared to per-worker
values. In the case of per-capita consumption and the birth rate, we have

c∗b =
∂L
∂b
c̃∗b + Lc̃∗b .

As we have just discussed, c̃∗b < 0 (proven in Appendix B). However, ∂L
∂b

=
φψ

(b+ψ)2
> 0, therefore the overall effect is ambiguous. An increased birth rate

(a ”baby-boom”) leads to less per-worker consumption, but also to a higher
workforce participation rate, as young agents supply more individual labour
than old agents (for individual labour supply, we have ~(s, t) = φe−ψ(t−s),
therefore it declines with age). The interaction of these effects is not clear
immediately, but can be examined very nicely in Figure 3.

Exactly the same is true for capital. Whereas increased fertility unam-
biguously decreases per-worker capital, it can have a very positive impact
on the per-capita capital stock as per-capita labour supply rises with the
birth rate, see figures 4 and 5. Indeed, by examining Figure 3 and Figure
5 in detail, we observe that for low values of b the impact of fertility is
strictly positive, both with respect to capital and consumption. The birth
rate we assumed initially, based on US-data, was 0.023 and thus far below the
consumption- respectively capital-peak at about b = 0.1. Thus, for realistic
values of b, per-capita consumption and capital depend strictly positive on
the birth rate.
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Figure 4: Steady-state per-worker
capital with varying birth rate

Figure 5: Steady-state per-capita capital
with varying birth rate

The equilibrium per-worker capital stock also depends negatively on the
death rate, although with smaller sensitivity than on the birth rate. Again, it
is the interaction between direct GDP-effects through a demographic change
and the dilution effect through a changed workforce that determine the re-
lationship. This time however, the effects go in the opposite direction as
compared to the analysis of the birth rate. A higher death rate reduces GDP
due to a smaller labour force, but at the same time the smaller labour force
has a positive ”counter-dilutional” effect on per-worker capital. Contrarily to
the previous case, the GDP-effect dominates in this case so that the overall
effect is negative again. The result can be seen in Figure 6.
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Figure 6: Impact of the death rate on steady-state per-worker capital

As per-capita labour supply L does not depend on p,14 the effect a change
in mortality has on per-capita capital is qualitatively identical to the effect
on per-worker capital, the same being true for consumption. Interestingly,
in the steady-state equilibrium, consumption per-worker increases with the
death rate, which means that once more the dilution effect (which is of course
a counter-dilution effect) dominates. From an economic point of view, this
finding is very reasonable: the higher death rate increases the insurance pre-
mium paid to living agents by the insurance companies, whereas it decreases
their expected lifetime income. As agents face ever shorter lifespans and ever
higher uncertainty about their future, they discount the future more heavily
(see (29)). All these reasons together explain why agents prefer to consume
and gain direct utility from this consumption, than to wait for increased con-
sumption possibilities they might not live to see. Yet, the effect of the death
rate is not independent of the chosen parameter values. For very extreme
parameter values, the effect of the death rate can be negative (see Appendix
B); however, for any realistic parameter values, the relationship between the
death rate and steady-state consumption looks qualitatively like in Figure 7.

14k∗p = Lpk̃∗︸ ︷︷ ︸
=0

+Lk̃∗p = Lk̃∗p.
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Figure 7: Impact of the death rate on steady-state per-worker consumption

The impact of the age-specific productivity on the steady state equilib-
rium is positive with respect to both consumption and capital per-worker,
but with diminishing marginal rates, as can be seen in Figure 8 and 10.
Increased age-specific productivity decreases per-capita labour supply, as
∂L
∂ψ

= − φb
(b+ψ)2 < 0, and thereby aggregate labour supply. From (39), we

see that wages depend negatively on the work force, which of course means
they depend positively on ψ. Higher wages signify more wealth for workers,
and thus increased per-worker capital stock and consumption.
The effects of varying age-dependent productivity change drastically when
accounting for per-capita values. Figure 9 and Figure 11 show, that both
per-capita consumption and the per-capita capital stock in the steady state
decline when ψ rises. US-data suggest that ψ be small (we assumed ψ = 0.05
in our first analysis of the steady state), therefore the sensitivity of per-capita
consumption and capital towards productivity is high. This result is hardly
surprising: when there are less people in the workforce, the benefits of higher
wages accrues to ever fewer people. Also, GDP as a whole falls. So, while
the working population becomes wealthier, the retirees have to cut down on
consumption and savings. With increasing ψ, they get more and more nu-
merous and thereby outbalance the workers’ positive effects.
Again, these statements do not hold for every possible szenario; very extreme
parameter values could change the system variables’ dependencies with re-
spect to productivity. However, like in the last section, our analysis is accu-
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rate in any realistic setting (see Appendix B for details).

Figure 8: Steady-state per-worker
consumption with varying produc-
tivity

Figure 9: Steady-state per-capita
consumption with varying produc-
tivity

Figure 10: Steady-state per-worker
capital with varying productivity

Figure 11: Steady-state per-capita
capital with varying productivity

A detailed analysis of the relationship between per-worker and per-capita
values is to be found in Appendix B.

In summary, we found that the impact of demographic change on our
model economy depends on the precise nature of demographic change. While
a ”baby-boom”, expressed by a higher birth rate, can have positive as well
as negative effects on per-capita consumption and capital, the impact of a
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lower death rate is unanimously positive on per-capita capital and negative
on consumption. The reason lies in the assumed age-earning profiles, which
depend on the birth rate, but not on the death rate.
Pautrel’s examination of the environmental policy yields similar results: al-
though the impact of the environmental policy on per-capita consumption
and capital is always negative, its detrimal impact also depends on the nature
of demographic change. Whereas a decrease in the death rate (and thus an
increase in life expectancy) unanimously supports the negative impact of the
environmental policy, the effect of a lower birth rate is not clear. However,
for realistic values of b, an increase in fertility supports the detrimal impact
of the environmental policy.

28



4 Human capital driven growth

The models we have considered up to now, however insightful and well-
composed they might be, have one flaw in common: they are not growth
models per se. The basic version of the Blanchard-Yaari model presented
has no growth components at all (of course, they can be added in countless
ways) whereas the Pautrel model possesses two possible sources of growth,
namely population growth and technological advancement. But, as death and
birth rates as well as technology are exogenous, again no endogenous growth
occurs. In order to analyze a Blanchard-Yaari model with environmental
concerns in a growth scenario, we will now include a second state variable
apart from physical capital - human capital - in the same way as Lucas
(1988). Whereas physical capital refers to machines and other durable goods
used in production, human capital describes the abilities and the knowledge
of a worker that she uses in production. Generally, there are two major ways
of accumulating human capital: by schooling activities on the one hand,
and by ”learning by doing” on the other hand. Lucas (1988) paved the way
for human capital accumulation to enter growth models, so we will start
by briefly studying his model (and concentrate on the schooling aspect),
afterwards we will study two more models by Xavier Pautrel, which combine
the Lucas model with the Pautrel (2009) model: the first model (Pautrel
(2011b)) introduces finite horizons and environmental concerns to the Lucas
model, the second model (Pautrel (2011a)) has a similar approach with a
slightly simpler model structure, but differentiates between the technologies
used in output production and abatement service production. We start by
setting up the basic Lucas model.

4.1 The Lucas model

We begin in the setting of the well-known Ramsey model with CRRA-utility
with θ ≥ 0 again the rate of time preference and σ > 0 the coefficient of
relative risk aversion (and σ−1 the intertemporal elasticity of substitution).
Agents maximize

maxc(t),u(t),K(t),h(t)

∫ ∞
0

e−θt
1

1− σ
[c(t)1−σ − 1]N(t) dt (46)

subject to

K̇(t) = A(t)K(t)βN(t)1−β − c(t)N(t) (47)

and
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limt→∞e
−θtι(t)K(t) = 0 (48)

where ι(t) denotes the co-state variable and describes the ”shadow-price”
of capital. Technological progress takes place at rate µ, while population
grows at rate gN .
In contrast to the Blanchard-Yaari models considered so far, the Lucas model
does not maximize the utility of a single agent but rather of society as a
whole. Of course, in the context of the Lucas model, this is easier than in
a Blanchard-Yaari setting, as Lucas assumes all individuals to be identical -
the neoclassical concept of the ”representative individual” - whereas in the
models considered so far we would first need to aggregate the utility of the
very heterogeneous population, which would raise a lot of (philosophical)
questions: how can we compare the utility of agents of different ages, differ-
ent levels of wealth etc.

Now, we add human capital to the model. In the economy, there are N
workers, each with a skill-level somewhere between zero and infinity. Let h(t)
be the skill-level (in other words, the human capital) of a worker at time t,
we can denote by N(h) the total number of workers with skill-level h, so that

N =

∫ ∞
0

N(h) dh.

The average skill-level of all the workers in the economy is therefore equal
to

ha =

∫∞
0
hN(h) dh∫∞

0
N(h) dh

It is important to realize that ha is a positive external effect of human
capital, as every worker benefits from ha (as we will see soon), but a single
worker’s human capital accumulation has no measurable impact on ha.

Agents can accumulate human capital by devoting parts of their non-
leisure time to schooling activities, which naturally implies that the amount
of time used for production diminishes. Let u(h) be the fraction of non-
leisure time a worker with skill-level h uses for production. Instead of the
total workforce, we will now consider the effective workforce in production,
that is, the amount of skill-weighted manhours devoted to production:

N e =

∫ ∞
0

u(h)N(h)h dh.
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To simplify the model, all agents are taken to be identical, as in the
Ramsey-model. Consequently, N e = uhN and u(h) = u as all workers have
the same skill-level h.

Human capital accumulates according to

ḣ(t) = h(t)ζG(1− u(t)) (49)

with ζ ≤ 1 and G monotonically increasing and homogeneous. Human
capital accumulates faster, the more time agents invest in schooling. The

rate at which it accumulates is ḣ(t)
h(t)

= h(t)ζ−1G(1 − u(t)). Therefore, except
for the case ζ = 1, the accumulation of human capital depends negatively
on the prevailing level of knowledge. This is reasonable, as a less developed
society can normally increase its state of knowledge much faster than a more
developed society by adopting or copying techniques.
In a first basic approach, we set ζ = 1 and G(x) = δx, so that (49) becomes

ḣ(t) = h(t)δ[1− u(t)] (50)

This simplification is to be handled with caution, as now human capital
accumulates at the same rate irrespective of the prevailing level of knowledge,
which is of course unrealistic. If agents invest all their time in schooling,
human capital grows at its maximum rate δ. With human capital, (47)
becomes

K̇(t) = AK(t)βN e(t)1−βha(t)
γ −N(t)c(t) (51)

There are now two production factors, namely physical capital and the
effective workforce: Y = F (K,N e). In a strict sense, human capital is not
a production factor in itself. However, as a worker’s productivity increases
with human capital, it does (indirectly) enter the production function.
The reason we introduced the average skill level ha earlier on becomes appar-
ent now: it enters the capital accumulation function as a positive externality
and in that way it is intended to model knowledge spillovers in a society.
When Lucas first presented this model, the prevailing model was the stan-
dard neoclassical growth model, of which Lucas was very critical. Especially,
he criticized the neoclassical model’s inability to explain observed diversity
across countries. Through this knowledge spillover, Lucas tried to account for
this diversity by assuming that workers in technologically advanced countries
benefit from the prevailing level of technology (or human capital), whereas
workers in less technologically advanced countries suffer from the underde-
velopment of their country.
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The representative agent’s utility maximization problem is to maximize (46)
subject to (50), (51) and (48). Due to the existence of knowledge spillovers,
the equilibrium outcome, that is, the equilibrium that arises in a perfectly
competitive setting, is not identical to the optimal outcome (when a benev-
olent social planner is in charge of all the proceedings in the economy). The
reason lies in the fact that for an individual, ha represents an externality in
her optimization procedure, and it is only afterwards, due to market clear-
ance, that h(t) = ha(t) adjusts. Contrarily, to the planner, h(t) = ha(t)
from the beginning, as she internalizes the externality and includes it in her
optimization procedure. The results of the two approaches differ both with
respect to outcome and interpretation.

The main conclusion of the Lucas model is the fact, that, in equilibrium,
economies who are poor will remain poor, whereas their rich counterparts will
remain rich. The growth rate of all economies is the same in equilibrium, so
there is no convergence between economies of different levels of wealth. This
finding is completely opposed to the standard neoclassical growth model,
which suggests that economies converge with respect to their level of wealth.
The reason for this lies in the assumed knowledge spillover, which benefits
technologically advanced countries.
The Lucas model proposes that the acquisition of human capital and thereby
the development of better technologies is the driving force behind economic
growth. This is commonly accepted nowadays. Before this model was first
presented, technological advancement was mostly an exogenous parameter,
which was most unsatisfactory, as it is the rate of technological progress that
effectively determines the economic growth rate and the development of con-
sumption. This basic Lucas model marked the beginning of an era of - often
highly complex - models that use human capital accumulation as the key
element leading to economic prosperity.

The following model merges the Blanchard-Yaari model and the Lucas
model and includes environmental concerns.

4.2 Introducing education to the Blanchard-Yaari
model with environmental quality

The model presented in this chapter is an extension and a slight modification
of the model analyzed in chapter 3. It is introduced in Pautrel (2011b).
Agents now have the opportunity to invest part of their available time in
schooling activities à la Lucas (1988) and by doing so to increase their level of
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human capital and thereby their future consumption possibilities. Pollution
again affects the agents’ well-being, with the crucial difference, that the net
flow of pollution no longer increases with output, but with the aggregate
stock of capital.
The demographic structure is simpler than in Pautrel (2009), in order to
not let the model get too complex to handle. Analogously to the original
Blanchard-Yaari model, there is no population growth, with death rate and
birth rate equal to λ.

4.2.1 Individuals and households

Agents optimize their expected lifetime utility

maxc(s,t),u(s,t),z(s,t),a(s,t),h(s,t)

∫ ∞
s

[
log c(s, t)− ζ

1 + ϕ
P(t)1+ϕ

]
e−(θ+λ)(t−s) dt

(52)
Individuals therefore gain utility only from their individual consumption

c and perceive pollution P as a bad. Parameters ζ > 0 and ϕ > 0 capture the
relative importance of environmental quality in terms of utility. As agents
vary with respect to their ages and horizons, all individual variables depend
on two time indices, the first refering to the agents’ time of birth, the second
to the actual time. For example, c(s, t) denotes the consumption at time t of
an agent born in s. In the optimization process, agents choose their optimal
intertemporal allocation of consumption c, time spent working u, purchased
units of educational inputs (i.e. learning materials, education fees, etc.) z,15

net asset holdings a and human capital h. Thus, we now have three control
variables (c, u, z) and two state variables (a, h). The effective discount rate,
(θ+λ) is, like in every other finite-horizon model, higher than it would be in
a standard neoclassical model, as agents have to take the possibility of their
death into account (see Chapter 2).

Agents can accumulate human capital according to

ḣ(s, t) = B[(1− u(s, t))h(s, t)]1−δz(s, t)δ, δ ∈ [0, 1) (53)

where parameter B denotes the efficiency or quality of education and
u(s, t) ∈ (0, 1) stands for the part of non-leisure time used for work (and
consequently (1 − u(s, t)) for the part of time allocated to schooling activ-
ities). Note that for δ = 0, that is, educational inputs are not taken into

15For simplicity, one unit of z(s, t) is supposed to cost one unit of output.
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account, human capital accumulates in exactly the way proposed by Lucas
(1988), which we have analyzed in the last section (see (50)).

The budget constraint is very similar to those considered so far, except
that the acquisition of educational inputs needs to be considered as an ad-
ditional cost and that the wages earned, w, now depend on effective units
of labour, i.e. the skill-weighted time devoted to work, u(s, t)h(s, t). A less
educated agent can thus compensate her lack of skill by spending a greater
amount of her non-leisure time working (although she might be better off
spending her time studying to increase her future earnings). Altogether, we
have

ȧ(s, t) = [r(t) + λ]a(s, t) + u(s, t)h(s, t)w(t)− c(s, t)− z(s, t) (54)

where [r(t) + λ] stands for the insurance premium paid to each living agent
by the insurance companies at every point of time.
Last but not least, the transversality condition (5) applies.

As usual, we set up the Hamiltonian and derive the necessary first order
conditions. We now have three control variables (c, u, z) and two state vari-
ables (a, h), which means that this process is somewhat more lengthy than
in the models considered so far:

H = log c(s, t)− ζ

1 + ϕ
P(t)1+ϕ + µ1(t)([r(t) + λ]a(s, t) + u(s, t)h(s, t)w(t)

−c(s, t)− z(s, t)) + µ2(t)(B[(1− u(s, t))h(s, t)]1−δz(s, t)δ)

Hc = 0⇔ 1

c(s, t)
= µ1(t) (55)

Hu = 0⇔ µ1(t) =
(1− δ)µ2(t)Bh(s, t)−δ(1− u(s, t))−δz(s, t)δ

w(t)
(56)

Hz = 0⇔ µ1(t) = δµ2z(s, t)δ−1B[(1− u(s, t))h(s, t)]1−δ (57)

Ha = (θ + λ)µ1(t)− µ̇1(t)⇔ (r(t) + λ)µ1(t) = (θ + λ)µ1(t)− µ̇1(t) (58)

Hh = (θ + λ)µ2(t)− µ̇2(t)⇔ µ1(t)u(s, t)w(t)

+(1− δ)µ2(t)Bh(s, t)−δ(1− u(s, t))1−δz(s, t)δ = (θ + λ)µ2(t)− µ̇2(t)
(59)

Hµ1 = ȧ(s, t)⇔ [r(t) + λ]a(s, t) + u(s, t)h(s, t)w(t)− c(s, t)− z(s, t) = ȧ(s, t)
(60)

Hµ2 = ḣ(s, t)⇔ B[(1− u(s, t))h(s, t)]1−δz(s, t)δ = ḣ(s, t) (61)
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The derivation of the Euler-equation is once more straightforward. By
taking the time-derivative of (55) and substituting (58), we obtain

ċ(s, t)

c(s, t)
= r(t)− θ. (62)

It can be shown in exactly the same way as before that individual consump-
tion evolves according to

c(s, t) = (θ + λ)[a(s, t) + ω(s, t)], (63)

where the present value of lifetime earnings here takes the form ω(s, t) ≡∫∞
t

[u(s, ν)h(s, ν)w(ν)]e−
∫ ν
t [r(ζ)+λ]dζ dν (see the derivation of (12) Appendix

A).

A very important feature of this model is the fact that at any point of
time, all individuals devote the same amount of their non-leisure time to
schooling, which is a consequence of the following considerations:

Rearranging equation (56), we have
(

z(s,t)
(1−u(s,t))h(s,t)

)δ
= µ1(t)w(t)

µ2(t)B(1−δ) . As the

right hand side of this equation is independent of s, the same is true for the
left hand side. Consequently, we can denote z̃(t) ≡ z(s,t)

(1−u(s,t))h(s,t)
. Moreover,

by rearranging equation (59) and replacing z̃(t), we have

u(s, t) =
(θ + λ)µ2(t)− µ̇2(t)− (1− δ)µ2(t)Bz̃(t)δ

µ1(t)w(t)− (1− δ)µ2(t)Bz̃(t)δ
,

which shows that u(s, t) ≡ u(t) is independent from s. Utility maximiza-
tion therefore implies that all agents, irrespective of their age, devote the
same amount of their available time to schooling activities, which is of course
again an implication of the ”perpetual youth”-feature of the Blanchard-Yaari
model. The fact that u(t) is identical for all agents is of great importance as
we will see many times in the analysis of this model.

Aggregate variables are calculated analogously to the original Blanchard-
Yaari model. In particular, for aggregate human capital, we have

H(t) =

∫ t

−∞
h(s, t)λe−λ(t−s) ds. (64)

Although there are no bequests in terms of financial wealth, it is assumed
that a constant part η (if not all) of the dying agents’ human capital is inher-
ited by the newborn generation: h(t, t) = ηH(t), η ∈ (0, 1]. The remaining
part, (1− η), is lost to the economy. Of course, the smaller this ”knowledge
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inheritance” η, the slower aggregate human capital accumulates, if it accu-
mulates at all, as with decreasing η death destroys an ever larger share of
aggregate human capital at every point of time. We will see this soon when
deriving the dynamics of H.

4.2.2 The firm sector

Firms produce final output according to

Y (t) = K(t)α
[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s) ds

]1−α

, α ∈ (0, 1) (65)

This production function differs somewhat from (33), as the amount of out-
put produced now depends on the time dedicated to productive activities
and the prevailing level of human capital instead of the level of technology.
In addition, the labour force is constant and equal to unity here and there-
fore does not need to be considered. As we have seen, u(t) is identical for
all agents, hence we can simplify

∫ t
−∞ u(t)h(s, t)λe−λ(t−s)ds = u(t)H(t) and

express the economy’s production technology in a much more compact way:

Y (t) = K(t)α[u(t)H(t)]1−α (66)

Like in chapter 3, pollution is a matter over which the individual agent
has no control, although it affects her well-being. The net flow of pollution
is defined as

P(t) =

[
K(t)

F (t)

]γ
, γ > 0,

with F (t) once more denoting abatement measures which are undertaken
to counteract environmental degradation. Pollution increases with physi-
cal capital and decreases with abatement, therefore the government imposes
an environmental tax at rate ϑ(t) upon the net flow of pollution, which is
fully returned to the firms to fund their abatement activities (without this
tax, firms would have no incentive to invest in abatement). We expect the
environmental tax rate to increase similarly to aggregate physical capital,
which is the source of pollution, in order to provide firms with an incentive
to increase their abatement activities and thereby to preserve environmental
quality in the long run. Therefore, we now look at the environmental tax
rate normalized by physical capital, τ ≡ ϑ(t)

K(t)
, whereas in chapter 3 we were
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interested in the environmental tax rate normalized by final output.

Firms maximize their profits, which now take the form

π(t) = Y (t)+T p(t)−r(t)K(t)−w(t)

[∫ t

−∞
u(s, t)h(s, t)λe−λ(t−s) ds

]
−ϑP−F (t).

A firm’s profit hence consists of the final output it produces (the price of
output is set equal to 1, all other prices are to be seen relative to final out-
put) plus the transfer payments it receives from the government minus the
costs for physical capital and labour used in production, the environmental
tax payments and the firm’s abatement costs. Naturally, the cost of phys-
ical capital is the interest rate and the cost of effective labour is the wage
rate. From this profit function, we see the incentive for firms to invest in
abatement: if they let the environment degrade rampantly, their tax pay-
ments will increase just as rampantly (even more so if the capital stock and
thus the tax rate also increases). Note that although the environmental tax
is fully returned to the firms, i.e. T p = ϑP , this happens after the profit
maximization has taken place.

Carrying out the optimization procedure leads to the following factor
rewards:

∂π(t)

∂K(t)
= αK(t)α−1Hp(t)

1−α − r(t)− ϑ(t)γK(t)γ−1F−γ = 0

⇔ r(t) = α
Y (t)

K(t)
− ϑγ P

K(t)
(67)

∂π(t)

∂Hp(t)
= (1− α)K(t)αHp(t)

−α − w(t) = 0

⇔ w(t) = (1− α)K(t)αHp(t)
−α (68)

∂π(t)

∂F (t)
= γϑ(t)K(t)γF (t)−γ−1 − 1 = 0⇔ γϑ(t)

P(t)

F (t)
= 1

⇔ F (t) = γϑ(t)P(t) (69)

With (69), we can express the net flow of pollution in a different way:

P(t) =

(
K(t)

ϑ(t)γP(t)

)γ
⇒ P(t)γ+1 =

(
K(t)

ϑ(t)γ

)γ
⇒ P(t) =

(
γ
ϑ(t)

K(t)

)− γ
γ+1
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Analogously to chapter 3, we define χ(τ) ≡ (γτ)
1

1+γ so that

χ(τ) =

(
γϑ(t)

K(t)

) 1
1+γ

⇒ P(t) = χ(τ)−γ,

In particular, this implies once more that P does not depend on time! By
substituting P = χ(τ)−γ, equation (69) yields

F (t) = ϑ(t)γχ(τ)−γ = (ϑ(t)γ)
1

1+γK(t)
γ

1+γ = χ(τ)K(t).

If we now combine equations (67) and (69), we find that16

r(t) = α

(
u(t)

H(t)

K(t)

)1−α

− χ(τ) (70)

4.2.3 Market equilibrium

When the final goods market is cleared, production must be equal to the
sum of the economy’s expenditures, i.e. aggregate consumption, abatement,
purchase of educational inputs and changes in the aggregate stock of physical
capital, or, more formally

Y (t) = C(t) + F (t) + Z(t) + K̇(t)

This representation of the market clearing condition is perfectly valid, but
we will use a different version based on the following considerations:
By comparing equations (56) and (57), we get

(1− δ)µ2(t)Bz̃(t)δ

w(t)
= δµ2(t)z̃(t)δ−1B

and consequently a different expression for z̃(t):

z̃(t) =
δ

1− δ
w(t).

If we substitute the expression for the wage rate from profit maximization at
firm level, we obtain

w(t) = (1− α)K(t)α
[∫ t

−∞
u(t)h(s, t)λe−λ(t−s) ds

]−α
=

(1− α)

(
K(t)

u(t)H(t)

)α
= (1− α)

Y (t)

u(t)H(t)

(71)

16Note that F (t) = χ(τ)K(t).

38



⇒ z̃(t) = ∆
Y (t)

u(t)H(t)
,

due to the fact that K(t)α = Y (t)
(u(t)H(t))1−α , with ∆ ≡ δ(1−α)

1−δ . With this, we

can find a relation between Y (t) and Z(t):

Z(t) =

∫ t

−∞
z(s, t)λe−λ(t−s) ds =

∫ t

−∞
z̃(t)(1− u(t))h(s, t)λe−λ(t−s) ds =

z̃(t)(1− u(t))H(t) = ∆(1− u(t))

(
Y (t)

u(t)

)
.

Hence, the market clearing condition Y (t) = C(t) + K̇(t) + F (t) + Z(t)
can be written equivalently as(

1 + ∆

(
1− 1

u(t)

))
Y (t) = K̇(t) + C(t) + χ(τ)K(t), (72)

4.2.4 The dynamic system and the BGP

The next step is to set up the dynamic system. This will be achieved by
finding expressions for ẋ(t), ḃ(t) and u̇(t), where x(t) ≡ C(t)

K(t)
and b(t) ≡ H(t)

K(t)
.

The reason we are carrying out these transformations lies in the fact that
we are dealing with a proper growth model, which means that C(t), H(t)
and K(t) are constantly growing, so that it is impossible to find a steady
state where Ċ = Ḣ = K̇ = 0 other than the point (0, 0, 0). Hence, we seek
different forms of equilibria, namely balanced growth paths (BGP ). These
balanced growth paths are steady states of the transformed variables, which
implies that along a BGP, C,K and H grow at the same rate, as, due to
ẋ = ḃ = u̇ = 0 we have

ẋ =
Ċ

K
− K̇

K

C

K
= 0⇔ K̇

K
=
Ċ

C
,

ḃ =
Ḣ

K
− K̇

K

H

K
= 0⇔ K̇

K
=
Ḣ

H
.

From the market clearing condition we already have an expression for K̇(t),
so we will now turn to deriving expressions for Ḣ(t) and Ċ(t), which is quite
easy in both cases.
Taking the time-derivative of (64) yields the rate of accumulation of aggregate
human capital:
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Ḣ(t) = h(t, t)λ+

∫ t

−∞
B[(1− u(t))h(s, t)]1−δz(s, t)δλe−λ(t−s)−

λ2h(s, t)e−λ(t−s) ds
h(t,t)=ηH(t)

= ηλH(t) +B(1− u(t))z̃(t)δ − λH(t)

⇒ Ḣ(t) = H(t)[B(1− u(t))z̃(t)δ − (1− η)λ] (73)

which can be explained in a very intuitive way: the change in aggregate
human capital, Ḣ(t), is obviously equal to the human capital of the newborn
generation, h(t, t) = ηλH(t), minus the human capital of the dying agents,
λH(t), plus the changes in the levels of human capital of those surviving. As
we have assumed that η ∈ (0, 1], the net change in aggregate human capital
due to mortality and reproduction17, λH(t)[η− 1], is less or equal to 0. This
generational turnover effect increases with λ, that is, with shorter horizons,
as generational turnovers become more frequent.

The rate of accumulation of aggregate consumption can be obtained in a
very similar way, with the help of the Euler-equation:

Ċ(t) = c(t, t)λ+

∫ t

−∞
ċ(s, t)λe−λ(t−s) − λ2c(s, t)e−λ(t−s) ds =

λc(t, t)+

∫ t

−∞
(r(t)−θ)c(s, t)λe−λ(t−s)ds−λC(t) = λ[c(t, t)−C(t)]+(r(t)−θ)C(t)

⇒ Ċ(t)

C(t)
=
ċ(s, t)

c(s, t)
− 1

C(t)
[λC(t)− λc(t, t)] (74)

The ”generational turnover effect” of consumption therefore is equal to
λ[c(t, t) − C(t)], which is of course negative, as newborns have no financial
wealth. Moreover, with shorter horizons, the generational turnover effect re-
garding consumption increases and thus consumption growth declines more
sharply.

By aggregating (63) and differentiating with respect to time, we get a
different expression for the growth rate of consumption:18

Ċ(t)

C(t)
= r(t)− θ − (1− η)λ− ηλ(θ + λ)x(t)−1 (75)

17which Heijdra (2002) calls the ”generational turnover effect” of human capital.
18The calculations leading to this result are nearly identical to those presented in Ap-

pendix A for equation (32) and are straightforward to adapt.
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The last result needed to describe the dynamics of the system is an ex-

pression for u̇(t). From (71), we obtain u(t) = K(t)
H(t)

(
(1−α)
w(t)

) 1
α
. Taking the

logarithm

ln u(t) = ln K(t)− ln H(t) +
1

α
ln (1− α)− 1

α
ln w(t)

and applying the derivative with respect to time yields

u̇(t)

u(t)
=
K̇(t)

K(t)
− Ḣ(t)

H(t)
− 1

α

ẇ(t)

w(t)
.

For the growth rate of wages, we see immediately from the necessary condi-
tions, that

w(t)
(56)
=

µ2(t)B(1− δ)z̃(t)δ

µ1(t)
.

The same procedure as before yields

ln w(t) = ln µ2(t) + ln B(1− δ) + δ ln z̃(t)− ln µ1(t)

and, consequently,
ẇ(t)

w(t)
=
µ̇2(t)

µ2(t)
+ δ

˙̃z(t)

z̃(t)
− µ̇1(t)

µ1(t)
(76)

From (59), we know that

µ̇2(t) = (θ + λ)µ2(t)− µ1w(t)u(t)− µ2(t)B(1− δ)(1− u(t))z̃(t)δ

(57)
= (θ + λ)µ2(t)− µ2δBz̃(t)δ−1w(t)u(t)− µ2(t)B(1− δ)(1− u(t))z̃(t)δ

⇒ µ̇2(t)

µ2(t)
= θ+λ−Bz̃(t)δ

[
δw(t)u(t)

z̃(t)
+ (1− δ)(1− u(t))

]
= θ+λ−Bz̃(t)δ(1−δ),

where the last equality follows from w(t) = 1−δ
δ
z̃(t). Along with this, it is

easy to see from (58), that

µ̇1(t)

µ1(t)
= θ − r(t).

Thus, we can write (76) equivalently as

ẇ(t)

w(t)
= r(t) + λ−Bz̃(t)δ(1− δ) + δ

˙̃z(t)

z̃(t)
. (77)
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Finally, it is possible to replace the term
˙̃z(t)
z̃(t)

in (77), as ˙̃z(t) = δ
1−δ ẇ(t), so

that we get

ẇ(t)

w(t)
= δ

ẇ(t)

w(t)
−B(1− δ)

(
δ

1− δ
w(t)

)δ
+ r(t) + λ,

and therefore

ẇ(t)

w(t)
=
r(t) + λ−B(1− δ)1−δδδw(t)δ

1− δ
(71)
=

r(t) + λ−B(1− δ)1−δδδ(1− α)δ(u(t)b(t))−αδ

1− δ
.

Summarizing, we have

u̇(t)

u(t)
=
K̇(t)

K(t)
− Ḣ(t)

H(t)
− 1

α

(
r(t) + λ−B(1− δ)1−δδδ(1− α)δ(u(t)b(t))−αδ

(1− δ)

)
(78)

Now, the dynamic system can finally be derived:

ẋ(t) =
Ċ(t)

K(t)
− K̇(t)

K(t)

C(t)

K(t)

(75)
= x(t)[r(t)− θ − (1− η)λ]− ηλ(θ + λ)− K̇(t)

K(t)
x(t).

With (72) and Y (t) = K(t)α[u(t)H(t)]1−α, this becomes

ẋ(t) = x(t)
[
r(t)− θ − (1− η)λ− ηλ(θ + λ)x(t)−1

−
(

1 + ∆(1− 1

u(t)
)

)
(u(t)b(t))1−α + x(t) + χ(τ)

]
.

Remembering that r(t) = α(u(t)b(t))1−α − χ(τ), ẋ(t) can be expressed
equivalently as

ẋ(t) = x(t)
[
−θ − (1− η)λ− ηλ(θ + λ)x(t)−1

−
(

1 + ∆(1− 1

u(t)
)− α

)
(u(t)b(t))1−α + x(t)

]
.

(79)
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Similarly, we obtain

ḃ(t) =
Ḣ(t)

K(t)
− K̇(t)

K(t)

H(t)

K(t)

(73)
=
[
B(1− u(t))z̃(t)δ − (1− η)λ

]
b(t)− K̇(t)

K(t)
b(t).

Again, inserting the expression for K̇(t)
K(t)

and z̃(t) = ∆ Y (t)
u(t)H(t)

= ∆(b(t)u(t))−α

yields

ḃ(t) =
[
B(1− u(t))∆δ(u(t)b(t))−αδ − (1− η)λ

−(1 + ∆(1− 1

u(t)
))(u(t)b(t))1−α + x(t) + χ(τ)

]
b(t)

(80)

Finally, by rearranging (78) and replacing r(t), we have

u̇

u
=
K̇

K
− Ḣ

H
− 1

α

(
r(t) + λ−B(1− δ)1−δδδ(1− α)δ(u(t)b(t))−αδ

(1− δ)

)
=

(
1 + ∆(1− 1

u(t)
)

)
(u(t)b(t))1−α − x(t)− χ(τ)−B(1− u(t))z̃δ

+ (1− η)λ− 1

α(1− δ)
[α(u(t)b(t))1−α − χ(τ) + λ

−B(1− δ)1−δδδ(1− α)δ(u(t)b(t))−αδ] (81)

Observing that 1 + ∆(1 − 1
u(t)

) − 1
1−δ = ∆

(
(1− 1

u
)− 1

1−α

)
, we can simplify

this expression and thus obtain

u̇(t) =

[
B∆δ(b(t)u(t))−αδ(α−1 − 1 + u(t)) + χ(τ)

(
1

α(1− δ)
− 1

)
− x(t)

−λ
(

1

α(1− δ)
+ η − 1

)
+ (u(t)b(t))1−α∆

(
(1− 1

u(t)
)− 1

1− α

)]
u(t)

As discussed above, the concept of a steady state equilibrium no longer
suffices. Instead we are dealing with a ”balanced growth path” (BGP), that
is, a trajectory of the dynamic system along which all main model variables -
C, K and H - grow at the same rate g∗, which of course needs to be positive.
x, b and u stabilize at their BGP-values x∗, b∗ and u∗.
Aggregate consumption, human and physical capital however grow at the
same rate g∗, which is equal to Ḣ

H
and consequently
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g∗ = B(1− u∗)z̃∗δ − (1− η)λ = B(1− u∗)∆δ(b∗u∗)−αδ − (1− η)λ. (82)

These analytical findings will be illustrated in the next section. In particular,
we will study the impact of varying schooling quality, B, and discount rate,
θ, on the BGP-variables and the level of welfare.

4.2.5 Stability Analysis and Bifurcations

To analyze the stability of the BGP-equilibrium, we first need to determine
the Jacobian of the dynamic system and its eigenvalues. The Jacobian eval-
uated in (x∗, b∗, u∗) takes the form19

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33


with

J11 = ηλ(θ + λ)x∗−1 + x∗ > 0

J12 = −x
∗

b∗
(1− α)2(u∗ − δ)

(1− δ)u∗
(u∗b∗)1−α < 0

J13 = −x
∗

u∗
(1− α)(u∗b∗)1−α

[
(1− α)u+ αδ

(1− δ)u
+

]
< 0

J21 = b∗ > 0

J22 = −αδ(1− u∗)B∆δ(u∗b∗)−αδ − (1− α)[1−∆(
1

u∗
− 1)](u∗b∗)1−α < 0

J23 = −[1 + αδ(
1

u∗
− 1)]B∆δ(u∗b∗)−αδb∗ − (1 + αδ)

(
1

u
− 1

)[
1− α
1− δ

]
(u∗b∗)1−α b

∗

u∗
< 0

J31 = −u∗ < 0

J32 = −u
∗

b∗

(
αδ(α−1 − 1 + u∗)B∆δ(u∗b∗)−αδ + (1− α)∆

[
1

u∗
+

α

1− α

]
(u∗b∗)1−α

)
< 0

J33 = B∆δ(u∗b∗)−αδ[u∗ − δ + αδ(1− u∗)] + α∆

(
1

u∗
− 1

)
(u∗b∗)1−α > 0

The determinant of the Jacobian is unambiguously negative, whereas its
trace is positive (see Appendix C). Like in chapter 3, the equilibrium lies in

19A detailed derivation of the Jacobian’s elements is to be found in Appendix C.
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the fourth quadrant of the trace-determinant plane and is thus saddlepoint
stable.20

This equilibrium will now be analyzed using specific data. Again, the
chosen parameter values are based on estimates for the United States around
the year 200521. They are listed in Table 3:

α η θ τ B γ λ
0.3 0.85 0.025 0.01 0.075 0.3 0.0128

Table 3

The corresponding steady-state values are listed in Table 4:

g∗ P u∗ x∗ b∗

3.32% 3.82 0.5313 0.2009 0.2532

Table 4

As can be seen, the growth rate amounts to 3.32%, which is maybe a bit
optimistic, but at least in non-crisis times quite reasonable. With u∗ close
to 0.5, people spend half their non-leisure time for work and the other half
for education (whether or not this is realistic strongly depends on the exact
definition of education). The ratio of human capital to physical capital is only
0.25, which means that there is about four times as much physical capital
as human capital used in production. In order to improve environmental
quality, efforts should be made to increase this ratio, as human capital does
not harm the environment whereas physical capital does.
Next, the impact of different parameters on the BGP will be analyzed in
more detail. One of the most interesting parameters of this model is surely
the quality of schooling, B. We would expect a more effective education
system to increase the stock of human capital as education becomes more
rewarding and human capital accumulates easier. At the same time, a higher
level of human capital should not increase the stock of physical capital and
could even act as a substitute for physical capital in production and thus
lower the aggregate stock of physical capital, so that the ratio b∗ = H∗

K∗
rises.

In that way, pollution could be reduced without any negative sideeffects on

20There is, analogously to chapter 3, an instable equilibrium in (x, b, u) = (0, 0, 0). As
this equilibrium is economicaly not relevant, we will ignore it it the following analysis.

21We set δ = 0 to concentrate on other apects, which means that we are in a Lucas-
setting where educational inputs are not taken into account.
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GDP. This result demonstrates once more that the importance of high quality
schooling cannot be overemphaszied! Figure 12 illustrates the relationship
between the human/physical capital ratio and the effectiveness of schooling.
In fact, B has increasing marginal effects on b∗, which demonstrates how
influential the quality of schooling can be.22

Figure 12: Bifurcation diagram of b∗ with varying B

A better educational system cannot have negative effects on welfare, as
GDP will surely not decline. Thus, the agents’ consumption possibilities rise
whereas the stock of physical capital does not rise or even declines. Both
effects lead to an increasing consumption/capital ratio, which is depicted in
Figure 13.

22Note that the abscissa in Figures 12 - 14 starts at 0.04 rather than 0, as for smaller
values of B, the share of time devoted to work, u∗, is greater than 1 and thus inadmissible.
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Figure 13: Bifurcation diagram of x∗ with varying B

The implications of a rise in B on the time used for production, u∗,
are fairly straightforward. As education becomes more and more rewarding,
the share of time devoted to schooling, (1 − u∗) should rise. With agents
acquiring ever more knowledge, they can afford to invest less time in work
without having to accept salary losses, as it is effective labour, u∗H∗, that
counts. However, a rising B has diminishing marginal effects on u∗, which
means that the impact of quality of education on the agents’ time allocation
is limited after a certain degree. Also, agents cannot rely on their knowledge
alone, they must provide some work in order not to have negative effects on
GDP. The relationship is depicted in Figure (14).

Another very interesting parameter is the time preference rate θ. In
dynamic macroeconomic models, the specific value of θ is very often decisive
for the outcome of the model and one of the most influential parameters
altogether. In chapter 3, we have neglected the time preference rate in the
analysis of the equilibrium in order to concentrate fully on the demographic
aspects of the model, but now we will discuss its properties.
The most striking feature of the time preference rate is the enormous impact
it has on the equilibrium share of working time. Whereas in the original BGP-
equilibrium, an agent devoted about half her non-leisure time to production,
this fraction rises significantly with increasing θ, with agents spending all
their non-leisure time working with a θ of only around 0.08. When agents
care less about the future and prefer to consume now than to have higher
consumption possibilities later, they use their time in a way that is most
lucrative for them instantly, which is immediate work. They do not care
that education would lead to much higher revenues later, as time spent for
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Figure 14: Bifurcation diagram of u∗ with varying B

education now is time they cannot use to earn wages. If θ were 0, which
means that agents are more indifferent between consumption now and later
and only discount future consumption with the death rate, u∗ would be
around 0.2, in other words, 80% of an agent’s non-leisure time would be used
for schooling (see Figure 15).23

Figure 15: Bifurcation diagram of u∗ with varying θ

With the same arguments as above, Figure 16 can be explained: due to

23As u∗ reacts strongly to θ, the admissible range of Figures 15 - 17 is very limited,
beginning at θ = 0 and ending at θ = 0.06.
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the heavier discounting of the future, agents invest less time in schooling, thus
the aggregate stock of human capital grows ever slower or even diminishes.
At the same time, savings drop, as agents prefer to consume instantly than
to save for later consumption. However, the human/physical capital ratio
also drops, as agents stop learning at a faster pace than they cut down their
savings.

Figure 16: Bifurcation diagram of b∗ with varying θ

The effect of an increased time preference rate on the consumption/physical
capital ratio is straightforward: agents consume more and fund this higher
consumption by saving less. The result - an increasing x - is illustrated in
Figure 17.

The model we have just analyzed is an insightful way of dealing with the
question how to save the environment while not harming the economy. We
have found at least two answers: by increasing the quality of the education
system, or by decreasing the time preference rate. Of course, these are no
more than mere theoretical considerations, as any - benevolent - government
would gladly increase the quality of schooling if this were so easy. In real-
ity, a better schooling system can only be attained at some cost (whereas in
the model we have silently assumed that B can be increased without extra
costs). Although it is unquestioned that a good education system is prof-
itable in the long run, governments tend not to be overly interested in long
run effects. As John Maynard Keynes famously put it: ”In the long run,
we’re all dead”. Likewise, it is not possible to change the prevailing discount
rate overnight. Nevertheless, the model has provided us with many insights
on the relation between economic growth, education, the environment in a
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Figure 17: Bifurcation diagram of x∗ with varying θ

finite horizon context.

In his analysis of the environmental policy’s impact on the model econ-
omy, Pautrel finds another interesting result: in a model of finite horizons,
the environmental policy can in fact have a positive impact on economic
growth, so that a ”win-win” situation occurs - raising the environmental tax
rate would be beneficial to the state of the environment as well as to the econ-
omy’s growth rate. This results from the generational turnover effect, which
is absent in infinite horizon models. Further, he shows that a higher death
rate, that is, a lower life-expectancy and thus an even more frequent gen-
erational turnover, increases the environmental policy’s positive effect even
more.

We will now turn to another model which places more emphasis on the
way output and abatement services are generated.
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4.3 Abatement technology and endogenous labour sup-
ply

In order to examine the role of technology in the abatement sector, Pautrel
(2011a) modifies - and simplifies - the model structure of Pautrel (2011b), but
adds a new component by distinguishing between the production technology
in the output sector and in the abatement sector. The main differences to
the Pautrel (2011b) model are the following:

Whereas in Pautrel (2011b) agents had a fixed amount of leisure time
and could only choose between devoting time to production or education,
Pautrel (2011a) endogenizes labour supply by letting agents decide freely
on the time they spend for production, u(s, t), leisure, l(s, t), and schooling
activities, 1 − u(s, t) − l(s, t). Thus, leisure time enters the utility function
as a seperate variable.

4.3.1 Individuals and households

Agents maximize their expected lifetime utility

maxc(s,t),u(s,t),l(s,t),h(s,t),a(s,t)

∫ ∞
s

[log c(s, t) + ξl log l(s, t)− κ log S(t)]e−(θ+λ)(t−s) dt

(83)
where κ is once more the weight in the utility function attached to the state
of the environment and ξl the weight attached to time spent for leisure. Due
to the endogenizing of leisure, agents do not only gain utility from consump-
tion, as in the previous models, but also from their leisure time.

Human capital evolves in the following way:

ḣ(s, t) = B[1− u(s, t)− l(s, t)]h(s, t) (84)

Comparing this with the human capital dynamics of section 4.2, we notice
two essential differences: First, we have to bear in mind that leisure time is
now endogenous. u(s, t) is hence no longer the share of non-leisure time used
for production, but rather the share of time used for production. The share of
time devoted to education is therefore, as mentioned above, 1−u(s, t)−l(s, t).
The second difference is the absence of the factor z(s, t), so educational in-
puts are no longer taken into account.
Newborns inherit the average aggregate human capital stock from the dying
agents: h(s, s) = H(s). This assumption of course implies that, contrarily to
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the previous section, no knowledge is lost due to the generational turnover
(η = 1).

Except for the absence of educational inputs, the budget constraint is
identical to that of section 4.2:

ȧ(s, t) = [r(t) + λ]a(s, t) + u(s, t)h(s, t)w(t)− c(s, t) , (85)

and again the transversality condition (5) to avoid a Ponzi-scheme applies.
Agents determine their optimal intertemporal allocation of the three control
variables (c, u, l) and two state variables (h, a) by maximizing (83) subject
to (84), (85) and (5). Setting up the Hamiltonian

H = log c(s, t)+ξl log l(s, t)−κ log S(t)+µ1(t)(B(1−u(s, t)−l(s, t))h(s, t))+

µ2(t)((r(t) + λ)a(s, t) + u(s, t)h(s, t)w(t)− c(s, t))

we can derive the necessary first oder conditions

Hc = 0⇔ 1

c(s, t)
= µ2(t) (86)

Hu = 0⇔ µ2(t)w(t) = µ1(t)B (87)

Hl = 0⇔ ξl
l(s, t)

= µ1(t)Bh(s, t) (88)

Hh = (θ + λ)µ1(t)− µ̇1(t)⇔
µ1(t)B(1− u(s, t)− l(s, t)) + µ2(t)u(s, t)w(t) = (θ + λ)µ1(t)− µ̇1(t) (89)

Ha = (θ + λ)µ2(t)− µ̇2(t)⇔ µ2(t)[r(t) + λ] = (θ + λ)µ2(t)− µ̇2(t) (90)

By taking the time-derivative of (86) and substituting (90) we get the Euler-
equation

ċ(s, t) = [r(t)− θ]c(s, t).

The Euler-equation, together with the budget restriction and the transver-
sality condition enables us to explicitly express the consumption of any agent
as per time t:24

c(s, t) = (θ + λ)[a(s, t) + ω(s, t)]

with ω(s, t) =
∫∞
t

[u(s, ν)h(s, ν)w(ν)]e−
∫ ν
t [r(ζ)+λ]dζdν the present value of life-

time earnings.

24The calculations to this result are nearly identical to those of equation (12) and can
be found in Appendix A.
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From the F.O.C., we can also derive the leisure choice of any agent as
per time t: due to (88), we can express an individual’s leisure choice as
l(s, t) = ξl

µ1(t)Bh(s,t)
, and by substituting (87) and (86) we obtain

l(s, t) = ξl
c(s, t)

w(t)h(s, t)
. (91)

In section 4.2, the share of non-leisure time dedicated to work turned out
to be identical for all agents, i.e. u(s, t) = u(t) ∀s. In this model we find
even more: not only is the time dedicated to work identical for all agents,
but also their share of leisure and hence their entire time allocation. This
fact is remarkable, as it shows, that even with endogenized labour supply,
or in other words, an endogenized decision upon leisure time, all individuals
devote the same amount of time to schooling and production, despite the fact
that they have different levels of wealth and knowledge. The justification for
this statement comes from the F.O.C.: Substituting (87) into (89) yields
µ2(t)w(t)(1 − l(s, t)) = (θ + λ)µ1(t) − µ̇1(t). By taking the time-derivative

of (87) and (86) we furthermore get µ̇1(t) = µ̇2(t)w(t)+ẇ(t)µ2(t)
B

and µ̇2(t) =
(θ − r(t))µ2(t). Combining these findings and rearranging, we obtain

B[1− l(s, t)] = r(t) + λ− ẇ(t)

w(t)
, (92)

which implies that l(s, t) is independent of s. Consequently, equation (89)
shows that u(s, t) is also independent of s.

4.3.2 The firm sector

The interesting changes occur in the production sectors. Whereas in chapter
3 and section 4.2 abatement was produced with output, Pautrel (2011a)
distinguishes between the technology in the final goods sector and that in
the abatement sector.
Consequently, final goods G are produced according to

G = (φK)α(ψHp)
1−α, φ, ψ, α ∈ (0, 1), (93)

with Hp ≡
∫ t
−∞ u(s, t)h(s, t)λe−λ(t−s)ds the share of aggregate human capital

that is used for production.

The production of abatement services F underlies the following technol-
ogy:

F = [(1− φ)K]ε[(1− ψ)Hp]
1−ε, ε ∈ (0, 1). (94)
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Except for the case α = ε, the production technologies differ. However, as
both sectors are perfectly competitive, the production factors can be obtained
by taking the respective partial derivatives of the firms’ profit function. That
way, it is possible to determine φ and ψ, that is, the fraction of the stock of
physical respectively human capital that is devoted to final goods production,
by assuming that the production factors in both sectors coincide (which they
necessarily do in equilibrium).
National income is measured in terms of final output in this model, so

Y = G+ PFF. (95)

Here, PF denotes the relative price of abatement services in terms of final
output.

Pollution is now no longer defined as a flow variable: the stock of pol-
lution, denoted by S in order to make this difference apparent, accumulates
according to

Ṡ = f

(
Y

F

)
− ζS (96)

where f is a nonnegative, strictly monotonic increasing, convex function.
The stock of pollution therefore increases with production and decreases
with abatement as in earlier models, but, due to the stock-definition, a third
force plays a role in this process: the environment slowly recovers from ex-
isting pollution due to natural forces such as decay or air filtering by trees.
This ”natural rate of decay” is covered by a parameter ζ > 0. Abatement
takes place at firm level, but firms have no incentive to invest in abatement,
as pollution only enters the individual agent’s utility function. Hence, the
government introduces an environmental tax, like in chapter 3. Yet, as this
model deals with the stock rather than the flow of pollution, the way the en-
vironmental tax (which will be denoted by tY ∈ (0, 1) to make the difference
apparent) is being imposed needs to be altered. Because pollution increases
with production, tY is being imposed upon National income (instead of the
net flow of pollution as in earlier models). This approach drastically changes
the way abatement is conducted, and it places much more emphasis on the
role of the government than Pautrel (2009) and Pautrel (2011b): firms do
not abate at all, as they still have no incentive to do so, because the tax is
levied on National income rather than on pollution. The tax revenue, tY Y ,
is hence no longer transferred to the firms, but used entirely for abatement
measures by the government. Consequently, the government basically has a
demand monopoly on abatement services.
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The environmental tax amounts to tY Y and fully funds the abatement sector,
which produces abatement services worth PFF , so naturally

tY Y = PFF. (97)

Equations (95) and (97) combined yield Y = G
1−tY

and PFF = tY G
1−tY

. These
relations will be important for the comparison of the final goods sector and
the abatement sector.

Firms in both sectors maximize their profits, which add up to πG =
(1−tY )G−rφK−wψHp in the final goods sector and to πF = (1−tY )PFF−
r(1 − φ)K − w(1 − ψ)Hp in the abatement sector. Carrying out the profit
optimization procedure leads to

r = α(1− tY )
G

φK
(98)

w = (1− α)(1− tY )
G

ψHp

(99)

in the final goods sector. In the abatement sector, profit optimization yields
r = ε(1−tY ) PFF

(1−φ)K
and w = (1−ε)(1−tY ) PFF

(1−ψ)Hp
. In order to compare these

factor rewards with those of the final goods sector, we substitute PFF = tY G
1−tY

and obtain

r = εtY
G

(1− φ)K
(100)

w = (1− ε)tY
G

(1− ψ)Hp

(101)

in the abatement sector.
For a market equilibrium, wage rates and interest rates need to be identical
in both sectors. Therefore we can express φ and ψ by

φ =
α(1− tY )

α + tY (ε− α)
(102)

ψ =
(1− α)(1− tY )

(1− α) + tY (α− ε)
(103)

Thus the fraction of physical capital used in final goods production de-
pends positively on α, the intensity of physical capital in final goods produc-
tion, and negatively on ε, the intensity of physical capital in the production
of abatement services (as can easily be seen by taking the respective partial
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derivatives). This is hardly surprising, as factors of production should natu-
rally be used where there are most efficient (relatively seen).
In the special case where α = ε (both sectors use the same technology), we
find that φ = ψ = 1 − tY . When α > ε, that is, the final goods sector pro-
duces with a technology that is relatively more intensive in physical capital
than the abatement sector, we get φ > 1− tY and ψ < 1− tY , and vice versa
when α < ε.

4.3.3 The general equilibrium

We now investigate in the dynamics of the economy. Taking the time-
derivative of H(t) =

∫ t
−∞ h(s, t)λe−λ(t−s)ds leads to the rate of accumulation

of aggregate human capital:

Ḣ(t) = h(t, t)λ+

∫ t

−∞
B[(1− u(t)− l(t))h(s, t)]λe−λ(t−s) − λ2h(s, t)e−λ(t−s) ds

h(t,t)=H(t)
= λH(t) +B(1− u(t)− l(t))H(t)− λH(t) = H(t)[B(1− u(t)− l(t))]

⇒ Ḣ(t)

H(t)
= [B(1− u(t)− l(t))] (104)

With the equilibrium condition on the goods market

(1− tY )Y (t) = C(t) + K̇(t) (105)

or, equivalently, G(t) = C(t) + K̇(t), and the dynamics of aggregate
consumption25

Ċ(t)

C(t)
= r(t)− θ − λ(θ + λ)

K(t)

C(t)
, (106)

it is possible to summarize the dynamics of the system by three differential
equations and one static relation (once more, we define x ≡ C

K
and b ≡ H

K

and for better legibility Ψ ≡ φ
ψ

= α
1−α

(1−α)−(ε−α)tY
α+(ε−α)tY

). As ẋ
x

= ĊK−K̇C
K2 =

Ċ
K
− K̇

K
x and ḃ

b
= Ḣ

K
− K̇

K
b, we obtain by inserting equations (104)-(106) and

rearranging:

ẋ

x
= [α(1− tY )− φ]Ψα−1(bu)1−α − θ − λ(λ+ θ)x−1 + x (107)

25Which can be attained analogously to (32), see Appendix A.
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ḃ

b
= B[1− u− l]− φΨα−1(bu)1−α + x (108)

The dynamics of u(t) can be derived by substitutingG = (φK)α(ψuH)1−α

in (99) and taking the logarithm, which firstly yields

log w = log (1− α)(1− tY ) + α (log φ+ log K − log ψ − log u− log H)

and, taking the time-derivative and rearranging,

u̇

u
=
K̇

K
− Ḣ

H
− 1

α

ẇ

w
.

We already have an expression for ẇ
w

, see (92), so we can substitute every
term above (the interest rate can be expressed as r = α(1− tY )Ψα−1(ub)1−α)
and express the dynamics of u via

u̇

u
= α−1[B(1− l)− λ− α(1− tY )Ψα−1(bu)1−α]− ḃ

b
(109)

The last relation needed to fully describe the dynamics of the system is

l =
ξlxu

(1− tY )(1− α)Ψα(bu)1−α (110)

Equation (110) comes from the fact, that according to (91), profit maximiza-

tion yields l(t) = ξl
c(s,t)

w(t)h(s,t)
. With (93) and (99), this can equivalently be

expressed as l(t) = ξlu(t)
(1−tY )(1−α)u(t)1−αΨ−α b(t)

αc(s,t)
h(s,t)

. As the left hand side of
this equation is independent of s, the same must be true for the right hand
side, so that c(s,t)

h(s,t)
= c(t)

h(t)
, which is further equal to C(t)

H(t)
as the population size

is normalized to 1. With this, the expression for l in (110) is obvious.
To obtain expressions for the variables’ equilibrium values, a few considera-
tions need to be made. First, from (109) and the fact that u̇ = ḃ = 0 along
the BGP, we get

b∗u∗ =

(
B(1− l∗)− λ
Ψα−1α(1− tY )

) 1
1−α

As necessarily b∗u∗ > 0, the above equation implies that we have to
restrict B(1 − l∗) > λ, and as l∗ ∈ [0, 1) also B > λ. With (110), it is now
easy to see that
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l∗ =
ξlx
∗u∗α

(1− α)Ψ(B(1− l∗)− λ)
.

Solving the last equation for l∗, we find that

l∗ =
B − λ±

√
(B − λ)2 − 4 ξlαBx

∗u∗

(1−α)Ψ

2B
.

l∗ needs to be a nonnegative real number, so that it is required that
ξlαBx

∗u∗

(1−α)Ψ
< (B−λ)2

4
. For the case ξl = 0, we should of course have l∗ = 0, as

leisure is only wasted time when no utility can be gained from it. Therefore,
the expression with ”-” in front of the square root is the only sensible solution

of the quadratic equation.26 Knowing that ẋ
x
− ḃ

b
= 0 along the BGP, we get

0 = α(1− tY )Ψα−1(b∗u∗)1−α − θ − λ(λ+ θ)x−1∗ −B(1− u∗ − l∗)

and, by substituting (b∗u∗)

x∗ =
λ(λ+ θ)

Bu∗ − λ− θ

As x∗ needs to be nonnegative, we further have to restrict u∗ > λ+θ
B

. Another
- more cumbersome - expression for x∗ comes directly from (108):

ḃ

b
= 0⇒ x∗ = −B(1− u∗ − l∗) + φΨα−1Ψ1−αB(1− l∗)− λ

α(1− tY )

with (102)
=

−B +Bu∗ +Bl∗ +
B −Bl∗ − λ
α + (ε− α)tY

With (102) and (103), we find that 1−α
α

Ψ = 1−α−(ε−α)tY
α+(ε−α)tY

= 1
α+(ε−α)tY

− 1 and
therefore

x∗ = Bu∗ − λ
(

1 +
1− α
α

Ψ

)
+

1− α
α

ΨB(1− l∗)

As it is not possible to express u∗ explicitly, we define a function Γ(u), which
implicitly yields u∗ as solution of Γ(u) = 0. This is achieved by substracting
one expression for x∗ from the other and so Γ(u) reads

Γ(u) = Bu− λ
(

1 +
1− α
α

Ψ

)
+

1− α
α

ΨB(1− l∗)− λ(λ+ θ)

Bu− λ− θ
.

26Although Pautrel (2011a) comes to the same conclusion, his way of arguing is wrong.
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Closer analysis of this implicit function shows, that under one more pre-
condition, Γ(u) has exactly got one root: by examining the feasible bound-

aries of u∗ ∈ ( (λ+θ)
B

, 1), we find limu→(λ+θ)/B = −∞ and limu→1 > 0 if

B − λ− θ > λ(λ+θ)
θ

, which is hence a sufficient condition for the existence of
a unique u∗ and thus a unique equilibrium. This can be seen by rearranging

Γ(1) = B − λ− λ(λ+ θ)

B − λ− θ
+

1− α
α

Ψ(B(1− l∗)− λ︸ ︷︷ ︸
>0

)

and applying the sufficient condition.

Equipped with all this knowledge, it is now easy to determine the BGP-
growth rate g∗: along the BGP, all relevant variables (C,H and K) must
grow at the same rate g∗, therefore it suffices to calculate the growth rate of
Ḣ
H

, which is equal to
g∗ = B(1− u∗ − l∗), (111)

see (104).

4.3.4 Stability analysis

Although Pautrel (2011a) does not analyse the BGP’s stability, we will carry
out the necessary calculations in order to fully understand the dynamic sys-
tem. As before, to determine the stability of the BGP-equilibrium, we need
to examine the Jacobian of the dynamic system, which reads

J =

 J11 J12 J13

J21 J22 J23

J31 J32 J33


with
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J11 = λ(θ + λ)x∗−1 + x∗ > 0

J12 = (1− α)[α(1− tY )− φ]Ψα−1(u∗b∗)1−αx
∗

b∗

J13 = (1− α)[α(1− tY )− φ]Ψα−1(u∗b∗)1−αx
∗

u∗

J21 = b∗ > 0

J22 = −(1− α)φΨα−1(u∗b∗)1−α < 0

J23 = −B − (1− α)φΨα−1(u∗b∗)1−α b
∗

u∗
< 0

J31 = −u∗ < 0

J32 = −(1− α)(u∗b∗)1−αΨα−1u
∗

b∗
[1− tY − φ]

J33 = B − (1− α)(u∗b∗)1−αΨα−1[1− tY − φ]

The derivation of these elements is much simpler than in section 4.2 and
follows immediately from the dynamic system. We will now derive the Ja-
cobian’s determinant and trace and thereby determine the stability of the
BGP-equilibrium.
The determinant can be computed using the cofactor-method:

det J = J11(J22J33 − J23J32)︸ ︷︷ ︸
=: I

−J21(J12J33 − J32J13)︸ ︷︷ ︸
=: II

+J31(J12J23 − J22J13)︸ ︷︷ ︸
=: III

.

I = J11

(
(1− α)Ψα−1(bu)1−α

[
−φBu− u

b
(1− tY − φ)

])
= λ(θ + λ)x∗−1 + x∗

(
−(1− α)Ψα−1(bu)1−αBu(1− tY )

)
< 0

II = J21

(
(1− α)[α(1− tY )− φ]Ψα−1(bu)1−α) x

b
Bu

= (1− α)[α(1− tY )− φ]Ψα−1(bu)1−αBux

III = J31

(
(1− α)[α(1− tY )− φ]Ψα−1(bu)1−α) (−Bx)

= (1− α)[α(1− tY )− φ]Ψα−1(bu)1−αBux

⇒ det J = I− (1− α)[α(1− tY )− φ]Ψα−1(bu)1−αBux

+(1− α)[α(1− tY )− φ]Ψα−1(bu)1−αBux = I < 0.

For the trace, we have

tr J = J11 +J22 +J33 = λ(λ+ θ)x−1 +x+Bu− (1−α)Ψα−1(bu)1−α(1− tY )
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which, in equilibrium, is equal to (substituting (bu))

tr J = λ(λ+ θ)x−1 + x+Bu− (1− α)
B(1− l)− λ

α
> 0.

Therefore, the equilibrium lies once more in the fourth quadrant of the
trace-determinant plane and is saddlepoint stable.

We have now seen, that in a model of finite horizons with environmental
care and human capital accumulation, all agents devote the same share of
their time to production and to education, even if we endogenize leisure and
thus labour supply. When we distinguish between the technologies used in
final output production and abatement service production, factors of produc-
tion are used more intensively in the sector where they are relatively more
efficient. By imposing a few sensible restrictions on the model parameters,
we obtain a unique saddlepoint stable equilibrium. The ”win-win” situation
of the last section can no longer occur, as final output is now the source of
pollution.
Before we turn to a closer analysis of this equilibrium, we will alter the model
structure slightly in the next section.

4.4 Human capital spillover in abatement technology

In order to further investigate the role of technology in the abatement sector,
we modify the production technology used by Pautrel (94) in a Lucas-like
manner: we allow for the average share of human capital used in produc-

tion, Hp =
∫ t
−∞ h(s,t)u(t)λe−λ(t−s)ds∫ t

−∞ λe−λ(t−s)ds
to enter the production technology in the

abatement sector as a positive externality, according to

F = [(1− φ)K]ε[(1− ψ)Hp]
1−εHp

γ
, ε, γ ∈ (0, 1). (112)

There is, however, an important difference between the Lucas-approach
and ours: in Lucas (1988), the externality occurred at the individual level,
specifically at the agents’ human capital dynamics, whereas in our model, the
externality only occurrs at firm level. We will consider the various implica-
tions of this modification assuming that there is a benevolent social planner
in charge of the economy. To the social planner, Hp does not represent an
externality, as she can decide not only on the allocation of production factors,
but also on their disposal. Consequently, the modified production technology
in the abatement sector (112) looks slightly different to her:

F = [(1− φ)K]ε(1− ψ)1−εH1−ε+γ
p , ε, γ ∈ (0, 1) (113)
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Firms in the abatement sector maximize their profits π = (1− tY )PFF −
r(1−φ)K −w(1−ψ)Hp. Although the social planner internalizes the exter-
nality, the interest rate in this setting (and thus φ) is precisely the same as
before, which can be seen from

∂π

∂K
= (1− tY )PF (1− φ)εεKε−1(1− ψ)1−εH1−ε+γ

p − r(1− φ) = 0

⇔ r = ε(1− tY )
PFF

(1− φ)K
=

εTYG

K(1− φ)
.

However, the wage rate takes a different form:

∂π

∂Hp

= (1− tY )PF [(1− φ)K]ε(1− ε+ γ)(1− ψ)1−εH−ε+γp − w(1− ψ) = 0

⇔ w =
(1− ε+ γ)(1− tY )PFF

Hp(1− ψ)
=

(1− ε+ γ)tYG

Hp(1− ψ)
.

Comparing this with the - unchanged - wage rate in the final goods sector
(99), and knowing that the two wage rates need to match in equilibrium, we
can express ψ by

(1− α)(1− tY )

ψ
=

(1− ε+ γ)tY
1− ψ

⇒ ψ =
(1− α)(1− tY )

(1− α)− (ε− α− γ)tY

Comparing this expression for ψ with that in the baseline model, we see
that there is an additional positive term in the denominator (tY γ), so ψ in
this setting is smaller. This implies, that due to the more human capital
intensive production technology in the abatement sector, a larger proportion
of effective human capital is allocated there.

Now, how does the BGP-growth rate react to the change in technology?
To answer this question, we have to analyze the sensitivity of l∗ and u∗ to
a change in Ψ. In order to do so, we will start with a few considerations.
As the spillovers in abatement technology only affect the parameter ψ (and
thus of course Ψ), we can use all the insights gained in section 4.3 keeping
the alteration of these parameters in mind. Recalling that

l∗ =
B − λ±

√
(B − λ)2 − 4 ξlαBx

∗u∗

(1−α)Ψ

2B
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and

Γ(u) = Bu− λ
(

1 +
1− α
α

Ψ

)
+

1− α
α

ΨB(1− l∗)− λ(λ+ θ)

Bu− λ− θ
,

we see that l∗ depends (amongst others) on u∗ and on Ψ. Substituting l∗

into Γ(u), we observe that Γ(u) also depends on u∗ and on Ψ. To analyze
the effects of a change in Ψ on u∗, we need the implicit function theorem, as
we cannot express u∗ explicitly. The implicit function theorem states, that

(in our situation) ∂u∗

∂Ψ
= −

∂Γ
∂Ψ
∂Γ
∂u∗

. By determining the partial derivatives

∂l∗

∂u
=

−ξlα

(1− α)Ψ λ(λ+θ)2

(Bu−λ−θ)2

√
(B − λ)2 − 4 ξlα

(1−α)Ψ
Bx∗u∗

< 0

∂l∗

∂Ψ
=

−ξlαx∗u∗

(1− α)Ψ2
√

(B − λ)2 − 4 ξlα
(1−α)Ψ

Bx∗u∗
< 0

∂Γ

∂u
= B − 1− α

α
ΨB

∂l∗

∂u
+B

λ(λ+ θ)

(Bu− λ− θ)2
=

B +
ξlB

λ(λ+θ)2

(Bu−λ−θ)2√
(B − λ)2 − 4 ξlα

(1−α)Ψ
Bx∗u∗

+B
λ(λ+ θ)

(Bu− λ− θ)2
> 0

∂Γ

∂Ψ
=

1− α
α

(
B(1− l∗)− λ−B∂l

∗

∂Ψ
Ψ

)
=

1− α
α

B(1− l∗)− λ︸ ︷︷ ︸
>0

+B
ξlαx

∗u∗

(1− α)Ψ
√

(B − λ)2 − 4 ξlα
(1−α)Ψ

Bx∗u∗︸ ︷︷ ︸
>0

 > 0

it becomes apparent, that ∂l∗

∂Ψ
< 0 and that ∂u∗

∂Ψ
< 0 by applying the implicit

function theorem.
Comparing the new Ψnew = α

1−α
(1−α)−(ε−α−γ)tY

α+(ε−α)tY
with the old Ψold = α

1−α
(1−α)−(ε−α)tY
α+(ε−α)tY

,
we find that there is an additional positive term γtY in the nominator, so
that Ψnew > Ψold. With the knowledge we have just gained about the re-
spective partial derivatives, this implies that u∗new < u∗old and l∗new < l∗old so
that, finally,

g∗new > g∗old.
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A more human capital intensive production function is therefore beneficial
to the BGP-growth rate. Yet, how beneficial is it really? To answer this
question, we will first take a look at the Bifurcation diagrams of the system
variables, again with realistically calibrated data:

α θ tY B λ ε ξl
0.3 0.025 0.01 0.085 0.0128 0.3 0.15

Table 5

x∗ b∗ u∗ l∗ g∗

0.158 0.181 0.481 0.088 3.67%

Table 6

We start with α = ε, that is, both output and abatement sector use the
same technology, to have a clear view on the changes a ”knowledge spillover”
in abatement technology brings with it. The BGP-growth rate with γ = 0
is 3.67%. From the considerations above, we know that knowledge spillovers
will augment the growth rate, but so far we do not know how much. In fact,
Figures 18 - 20 depict a very small impact:

Figure 18: Impact of γ on x∗ Figure 19: Impact of γ on b∗

For γ = 0, we are in the situation of section 4.3. Knowledge spillovers
can be interpreted similarly to a more effective schooling system, see section
4.2: human capital accumulation becomes more rewarding, so H∗ increases,
whereas the physical capital stock remains at most unchanged, if not driven
back by more human capital. Hence, the human/physical capital ratio b∗

rises. In the same way, welfare and thus consumption possibilities increase,
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Figure 20: Impact of γ on u∗

Figure 21: Impact of γ on the BGP-growth rate g∗

which is beneficial to the consumption/capital ratio x∗. And because edu-
cation is more rewarding and the level of knowledge increases, agents can
cut down on their working hours without any income losses, as it is effective
labour u∗H∗ that determines wages, so u∗ decreases. Yet, all these effects
happen at a tiny scale compared to an increase of the quality of schooling
or even the time preference rate (see again section 4.2). Consequently, the
effects of knowledge spillovers in abatement technology on the growth rate
are small:

An increase in γ from 0 to 0.5, which would already be enormous, only
augments the growth rate by 0.01 points of a percent. There are clearly
more efficient ways to boost the economy, but stimulating the growth rate
was never our objective when we introduced knowledge spillovers in abate-
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ment technology. Lucas himself included knowledge spillovers into his model
for one specific reason: to account for the huge differences between countries
with respect to technology and the level of wealth. The knowledge spillovers
intensify the advantage technologically advanced countries have compared to
countries with less advanced technology, but they provoke level effects rather
than growth effects. In other words, with level effects, rich countries stay
rich, their level of wealth enhanced by the knowledge spillover, while poor
countries remain poor, but in equilibrium their growth rates match.
Indeed, we have adapted the model in a way that it embodies this modifica-
tion proposed by Lucas. Hence, our approach should not be viewed upon as
an amelioration of the Pautrel model, but rather as an extension of it.
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5 Comparison of the models

Pollution
The way pollution is defined is crucial to the findings of the models. Pautrel
(2009) and Pautrel (2011b) study the net flow of pollution, while Pautrel
(2011a) models pollution as a stock variable. In Pautrel (2009), pollution in-

creases with output and decreases with abatement activities: P(t) =
[
Y (t)
F (t)

]γ
.

This implies, that the only way to reduce or stabilize pollution when the econ-
omy is growing is to invest in more abatement. Contrarily, Pautrel (2011b)

defines the net flow of pollution as P(t) =
[
K(t)
F (t)

]γ
, so that physical (”brown”)

capital rather than output is the source of pollution. This way, it is possible
for the economy to grow without harming the environment via the accumu-
lation of human (”green”) capital. Investment in human capital therefore
bears a double dividend, as it increases both future consumption possibili-
ties and future environmental quality. This definition of pollution is clearly
beneficial to the aggregate level of human capital.
The approach in Pautrel (2011a) is of a different form: instead of the flow,
the stock of pollution is considered, which increases with production and
decreases with abatement and due to natural decay, according to

Ṡ = f

(
Y

F

)
− ζS.

Production and technological progress
The economy in Pautrel (2009) produces output according to

Y (t) = K(t)α [A(t)L(t)]1−α .

There is no technological progress (of course it could be introduced in man-
ifold ways), for reasons of simplicity the level of technology is set to A(t) ≡
A

1
1−α . In Pautrel (2011b), output is generated via

Y (t) = K(t)α
[∫ t

−∞
u(t)h(s, t)λe−λ(t−s)ds

]1−α

and technological progress takes place in the form of human capital accumu-
lation:

ḣ(s, t) = B[(1− u(t))h(s, t)]1−δz(s, t)δ.

u(t) represents the tradeoff between human capital accumulation and pro-
duction: a unit of time can only be used for either production, which in-
creases present wages, present consumption possibilities and thereby present
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utility, or human capital accumulation, which increases future consumption
possibilities and utility. Due to population dynamics, there is a generational
turnover effect in aggregate human capital, as only a fraction η of the human
capital of the dying agents is inherited by newborn agents. Aggregate human
capital follows

Ḣ(t) = B(1− u(t))z̃(t)δH(t)− (1− η)λH(t),

where the second term represents this turnover effect.
Pautrel (2011a) introduces a second production sector for abatement services,
and distinguishes between the production technologies in the two sectors:
final goods are produced according to

G(t) = (φK(t))α(ψHp(t))
1−α,

abatement services according to

F (t) = [(1− φ)K(t)]ε[(1− ψ)Hp(t)]
1−ε.

Technological progress again takes place via human capital accumulation:

ḣ(s, t) = B[1− u(s, t)− l(s, t)]h(s, t),

the generational turnover effect in aggregate human capital no longer exists
as newborns inherit the entire human capital from the dying agents (in terms
of Pautrel (2011b), η = 1).

Utility
The utility functions are nearly identical in all the models except for some
scaling parameters. Agents gain utility from consumption throughout their
lives, present consumption being valued more highly than future consump-
tion due to the probability to die and the rate of time preference. In Pautrel
(2011a), individuals also gain utility from their leisure time, while in both of
the other models, labour supply is exogenous and thus not part of the utility
function. Pollution enters the utility function as a bad (agents like a clean en-
vironment), whether pollution increases with output or with physical capital,
and whether it is modelled as a stock or a flow variable. If a non-pollutant
factor of production exists (as represented by human capital, which is always
assumed to be non-polluting), as in Pautrel (2011b) and Pautrel (2011a),
the presence of environmental concerns in the utility function enhances the
acquisition of the non-pollutant factor as discussed above.
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Population dynamics
In Pautrel (2009) agents face exogenous birth (b) and death (p) rates, which
make it possible to analyze the effects of demographical change via the growth
rate (gN) of the economy: gN = b− p. Pautrel (2011b) and Pautrel (2011a)
abstract from this possibility by simplifying the demographic structure, so
that birth and death rates are identical and denoted by λ. Of course, with
these assumptions, the total size of the population stays the same forever.
The only element that can be adjusted is the life expectancy of individuals
( 1
λ
).

Results
The models’ outcomes depend to a great extent on the definition of pollution.
If pollution grows with output, as in Pautrel (2009) and Pautrel (2011a),
there is no way the state of the economy and the state of the environment
can be ameliorated at the same time; all decisions upon environmental taxes
are hence tradeoffs between environmental care and economic stimulation.
Only in Pautrel (2001b), where human capital exists as a non-pollutant fac-
tor, can both be achieved at the same time. The reason for this lies in the
generational turnover effect. By raising the environmental tax rate, both the
economy and the environment can benefit under reasonable circumstances.
The impact of demographic change depends on the precise demographic
change, at least in Pautrel (2009); in the other models, birth and death rate
are identical, so there is little room for demographic change. While a higher
birth rate can have positive as well as negative effects on per-capita consump-
tion and capital, the impact of a lower death rate is unanimously positive on
per capita capital and negative on consumption in Pautrel (2009). This is
because of the assumed age-earning profiles, which depend on the birth rate,
but not on the death rate.
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6 Summary

In the course of this thesis, we have analyzed and discussed three growth mod-
els with environmental and/or educational aspects, and briefly presented the
basic models they originate from. What is common to all the models is the
assumption that agents have finite horizons, which means they will certainly
die at some point but they do not know when. Thus, agents discount the
future more heavily. The concept of death with all its implications (annuities
paid by life insurances, higher discount rate,...) is what draws a distinction
between finite horizon models and the standard neoclassical growth models,
where representative individuals live forever. In order to be able aggregate
the heterogeneous model population, it is further assumed that all agents
face the same instantaneous probability to die. This is probably one of the
finite horizon model’s greatest shortcomings, as it implies that a newborn
and an old man have the same life expectancy.

The first model we considered was Pautrel (2009), a Blanchard-Yaari
model with environmental concerns and exogenous technological change. De-
mographic change is possible, and agents supply labour depending on their
age. Life insurances avoid unintended bequests and increase the agents’ con-
sumption possibilities throughout their lives. Pollution grows with output
and is a public bad. Abatement takes place at firm level, where the govern-
ment imposes an environmental tax upon firms, which is fully returned to
them to fund their abatement activities.
We then looked for steady states and their stability. There are two steady
states, although the one at (k = 0, c = 0) is instable and thus economically
non-relevant as no poverty trap occurs and hence the economy always con-
verges towards the other equilibrium. We analyzed the other steady state,
which is stable, and its sensitivity to various model parameters. We saw,
that both steady state consumption and the steady state capital stock de-
pend negatively on the birth rate when accounting for per-worker variables,
but positively when accounting for per-capita variables (for realistic values of
b). The reason for this lies in the assumed age-specific labour supply, which
is also responsible for the diverging sensitivity of per-worker and per-capita
variables to productivity. Effectively, in this model economy, by increasing
fertility and reducing early retirement (that is, reducing ψ), the steady state
could be significantly improved. The state of the environment, at the same
time, remains unchanged in the steady state if we assume that the environ-
mental tax rate grows with output to encourage firms to abate more when
output rises. A tighter environmental policy would be beneficial to the envi-
ronment, but at the same time harm the economy’s growth rate.
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We then turned to Pautrel (2011b), which combines the Blanchard-Yaari
model and the Lucas model. Agents can now accumulate human capital,
which is a production factor, and thereby increase the level of technology.
Demographic change other than varying life-expectancies is no longer possi-
ble, as the model is already very complex. Pollution now grows with physical
capital, therefore a clean factor of production exists, namely human capital,
which bears a double dividend: it is the driving force behind technological
advancement, and it doesn’t harm the environment. Abatement again takes
place at firm level, the government taxing the net flow of pollution, but re-
turning the taxes fully to the firms.
This model is, in contrast to Pautrel (2009), a proper growth model, so we
had to look for balanced growth paths rather than steady states. There is
one - stable - BGP, which which we analyzed with respect to the quality
of schooling and the time preference rate. All model variables react very
strongly to changes in these parameters, especially to changes in the time
preference rate, which usually plays a decisive role in growth models.
Contrarily to the last model, it is possible in this model (under some reason-
able circumstances) to increase the economy’s growth rate while at the same
time intensifying environmental protection by raising the environmental tax
rate. The reason for this lies in the existence of a non-polluting factor of
production - human capital. By increasing the aggregate stock of human
capital, agents can reduce the stock of - polluting - physical capital without
suffering income losses, thus a ”win-win” situation occurs.

The last model we analyzed was Pautrel (2011a), which asumes different
technologies in the final output sector and the abatement sector. Agents
again gained knowledge by accumulating human capital, which they could
use as an input factor in production. Leisure time is endogenized, so agents
decide freely upon the amount of time they spend working, improving their
skills or relaxing. The polluting factor is final output, abatement is no longer
carried out by the firms, but rather by the government: firms are taxed pro-
portionally to output. The tax revenue is used by the government to fully
subsidize the abatement sector.
Although this model is in many ways similar to Pautrel (2011b), there is
one big difference: whereas in Pautrel (2011b) a ”win-win” situation could
occur, where a tighter environmental policy would at the same time boost
the economy’s growth rate and ameliorate the state of the environment, this
is no longer possible in this model, as no non-pollutant factor of production
exists. All decisions upon the level of the environmental tax are therefore
tradeoffs between economic growth and environmental care.

71



We extended the model by modifying the production technology in a Lucas
(1988)-way, so that the average level of human capital enters the production
technology in the abatement sector as a positive externality - a kind of a
knowledge spillover in abatement technology. A benevolent social planner
is presumed to be in charge of the entire economy (or at least the abate-
ment sector). We again looked for balanced growth paths - there is exactly
one, stable, equilibrium - and compared the modified version to the original
model. Thereby, we saw that the externality has a positive effect on the
economy’s growth rate, although the effect is tiny (0.01 of a percent for huge
spillovers).

Generally, we have seen that in finite horizon models, the impact of de-
mographic change on economic variables depends to a great extent on the
precise nature of the demographic change. The presence of environmental
concerns in the utility function mostly leads to tradeoffs between environ-
mental care and economic growth, except when a non-pollutant factor of
production exists. The quality of education turned out to increase welfare
in every setting, although we did not account for the costs of higher quality
education.
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8 Appendix

Appendix A - Fundamental Equations

Derivation of equation (12)

For simplicity let R(t, ν) = e−
∫ ν
t r(µ)+λ dµ. We start with the by now well

known budget constraint

ȧ(s, t) = [r(t) + λ]a(s, t) + w(t)− c(s, t). (114)

Multiplying R(t, ν) on both sides yields

[ȧ(s, t)− (r(t) + λ)a(s, t)]R(t, ν) = [w(t)− c(s, t)]R(t, ν).

Using the Leibnitz-rule,

d

dt
a(s, t)R(t, ν) = ȧ(s, t)R(t, ν)+−∫ ν

t

∂

∂t
(r(µ) + λ) dµ︸ ︷︷ ︸

=0

+ (r(ν) + λ)
∂ν

∂t︸ ︷︷ ︸
=0

−(r(t) + λ)
∂t

∂t︸︷︷︸
=1

 a(s, t)R(t, ν)

therefore the budget constraint further yields

d

dt
[a(s, t)R(t, ν)] = [w(t)− c(s, t)] (115)

By integrating (115) we get, using the transversality condition (5):∫ ∞
t

da(s, ν)R(t, ν) dν =

∫ ∞
t

(w(ν)− c(s, ν))R(t, ν) dν

⇒ limν→∞e
−

∫ ν
t (r(µ)+λ) dµa(s, ν)︸ ︷︷ ︸

=0

− e−
∫ t
t (r(µ)+λ) dµ︸ ︷︷ ︸

=1

a(s, t) =

ω(t)−
∫ ∞
t

c(s, ν)R(t, ν) dν,

therefore ∫ ∞
t

c(s, ν)R(t, ν) dν = a(s, t) + ω(t) (116)

From the Euler equation

ċ(s, ν)

c(s, ν)
= r(ν)− θ
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we get in a straightforward way∫ ∞
t

ċ(s, ν)

c(s, ν)
dν =

∫ ∞
t

r(ν)− θ dν

⇒ ln c(s, ν) =

∫ ∞
t

r(ν)− θ dν ⇒ c(s, ν) = e
∫∞
t r(ν)−θ dνc0.

As c(s, t) = c0, we can express c(s, ν) (ν ≥ t) as

c(s, ν) = e
∫∞
t r(ν)−θ dνc(s, t) (117)

Substituting (117) into (116) yields

ω(t) + a(s, t) =

∫ ∞
t

c(s, t)e−
∫ ν
t λ+θ dζ dν = c(s, t)et(λ+θ)

∫ ∞
t

e−ν(θ+λ) dν =

c(s, t)et(θ+λ) −1

θ + λ

[
e−ν(θ+λ)

]∞
t

= c(s, t)
1

θ + λ

and with this

c(s, t) = (θ + λ)[ω(t) + a(s, t)] q.e.d. (118)

Derivation of equation (32)

We know that

C(t) =

∫ t

−∞
c(s, t)bebs−pt ds = (θ + p) [Ω(t) +A(t)] (119)

Taking the time-derivative of (119), we get, using the Leibnitz-rule and (12):

Ċ(t) = c(t, t)bet(b−p) +

∫ t

−∞

˙c(s, t)bebs−pt ds−
∫ t

−∞
c(s, t)pbebs−pt ds =

c(t, t)bet(b−p) + (r(t)− θ)C(t)− pC(t) = (r(t)− θ − p)C(t) + c(t, t)bet(b−p).

Due to (12), we can express c(t, t) as

c(t, t) = (θ + p)[ω(t, t) + a(t, t)],

with a(t, t) = 0 (newborns have no financial wealth).
The actual difficulty is to determine ω(t, t). As we know, the expected present
value of lifetime labour income is

ω(s, t) =

∫ ∞
t

~(s, ν)w(ν)e−
∫ ν
t r(ζ)+p dζ dν
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with ~(s, t) = φe−ψ(t−s) and therefore ~(t, t) = φ. Knowing this, we can
express ω(s, t) as

ω(s, t) = φeψsŵ(t), (120)

with ŵ(t) ≡
∫∞
t
e−ψνw(ν)e−

∫ ν
t r(ζ)+p dζ dν. From (120), we now have a handy

expression for ω(t, t):

Ω(t) =

∫ t

−∞
ω(s, t)bebs−pt ds = φŵ(t)b

∫ t

−∞
eψs+bs−pt =

φŵ(t)be−pt+ψt+bt

ψ + b
.

As ω(t, t) = φeψtŵ(t) due to (120), by substituting into the expression
above we get

ω(t, t) =
Ω(t)(ψ + b)

bet(b−p)
(121)

With (119) and (121) it is no longer difficult to determine the final ex-
pression for Ċ(t):

Ċ(t) = (r(t)− θ − p)C(t) + (θ + p)(ψ + b)Ω(t) =

(r(t)− θ + b− p+ ψ)C(t)− (θ + p)(ψ + b)A(t) q.e.d.

Appendix B - Comparative statics in the Pautrel (2009)
- model

We now turn towards the analysis of the per-capita values k(t) and c(t). Due
to the relation Lk̃ = k we can use steady state per-worker values (which we
already know, see chapter 3.4) to find expressions for k(t) and c(t).

Higher fertility rates

From (45), we know that k̃∗ = [2α(1− χ(τ))A]
1

1−αD
−1

1−α and thus

∂k̃∗

∂b
= − 1

1− α
[2α(1− χ(τ))A]

1
1−α D

−1
1−α−1∂D

∂b
= −

1
1−α k̃

∗Db
D

=
1

1− α

(
k̃∗

D

)
Db.

As D > 0, α < 1 and

Db = α+
1

2

[
(ψ − α(b− p)− θ)2 + 4(ψ + p)α(b+ θ)

]− 1
2 [−2α(ψ − α(b− p)− θ)+
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4α(ψ + p)] = α

[
ψ + θ + α(b− p) + 2p√

(ψ − α(b− p)− θ)2 + 4(ψ + p)α(b+ θ)
+ 1

]
> 0

it must be true that k̃∗b < 0. Consequently, the capital stock per worker
decreases with a rise in the birth rate b.

The impact of the birth rate on the per-capita capital stock is less clear,
as we have discussed earlier, due to the fact that the per-capita labour supply
also depends on the birth rate, but positively:

k∗b = Lbk̃∗ + Lk̃∗b =
φψ

(b+ ψ)2

k∗

L
− 1

1− α

(
Lk̃∗

D

)
Db =

k∗


ψ

b(b+ ψ)︸ ︷︷ ︸
>0

− Db
(1− α)D︸ ︷︷ ︸

>0


<
> 0.

Hence, if we assume age-earning profiles (ψ 6= 0), an increase in fertility
can indeed have a positive impact on the per-capita capital stock.

Precisely the same is true for consumption. While a higher birth rate has
a negative effect on per-worker consumption, as we can see from

∂c̃∗

∂b
= A(1− χ(τ))αk̃∗(α−1)k̃∗b − (b− p)k̃∗b − k̃∗ =

k̃∗b

(
c̃∗

k̃∗

)
− k̃∗ = − c̃∗

(1− α)D
Db − k̃∗ < 0,

the impact of increased fertility on per-capita consumption is ambiguous:

c∗b = Lbc̃∗ + Lc̃∗b =
φψ

(b+ ψ)2

c∗

L
− φb

b+ ψ

[
c̃∗

(1− α)D
Db + k̃∗

]
=

c∗


ψ

b(b+ ψ)︸ ︷︷ ︸
>0

− Db
(1− α)D︸ ︷︷ ︸

>0

− k∗
<
> 0.
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Shorter horizons

In a very similar way, we can determine the impact of the death rate on the
per-capita capital stock:

k̃∗p = − 1

1− α

(
k̃∗

D
Dp

)
.

We further find that

Dp = −α+
1

2

[
(ψ − α(b− p)− θ)2 + 4(ψ + p)α(b+ θ)

]− 1
2 [2α(ψ − α(b− p)− θ)+

4α(b+ θ)] = α

[
ψ + θ − α(b− p) + 2b√

(ψ − α(b− p)− θ)2 + 4(ψ + p)α(b+ θ)
− 1

]
Dp > 0, which is in fact not quite as obvious as it was for Db. However, we
can show that

Dp > 0⇔ ψ+θ−α(b−p)+2b >
√

(ψ − α(b− p)− θ)2 + 4(ψ + p)α(b+ θ)⇔

and finally, with some basic calculus,

⇔ ψ(b+ θ) + αp(b+ θ) + θb(1− α) + b2(1− α) > 0,

which is always the case, as due to α < 1 the last line contains only non-
negative expressions. Thus k̃∗p < 0, a shorter life expectancy decreases the
per-worker capital stock.
Furthermore,

k∗p = Lpk̃∗ + Lk̃∗p = 0
k∗

L
− 1

1− α

(
Lk̃∗

D

)
Dp = −(1− α)−1k

∗

D
Dp < 0.

In contrast to k∗b , the direction of the death rate’s impact on steady state
per-capita capital is unambiguous, as L is independent of p. Therefore it also
suffices to examine steady-state per worker consumption:

∂c̃∗

∂p
= A(1− χ(τ))αk̃∗(α−1)k̃∗p − (b− p)k̃∗p + k̃∗ =

k̃∗p

(
c̃∗

k̃∗

)
+ k̃∗ = − c̃∗

(1− α)D
Dp + k̃∗

<
> 0.
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The impact of the death rate on steady-state consumption is thus not clear.
In the ”generic” case, steady-state consumption depends positively on the
death rate, like in Figure 7. It needs a combination of extremly high produc-
tivity and discount rate (ψ, θ ≈ 1) and low capital intensity in production
(α ≈ 0) to attain a negative relationship. Although this is not impossible in
our model structure, we have c∗p > 0 for all realistic szenarios.

Early retirement

The impact of age-specific productivity, which models the agents’ ”retirement-
scheme”, on per-worker capital is given by

k̃∗ψ = − 1

1− α

(
k̃∗

D
Dψ

)

with

Dψ =
ψ − α(b− p)− θ + 2α(b+ θ)√

(ψ − α(b− p)− θ)2 + 4α(ψ + p)(b+ θ)
− 1

<
> 0.

Like before, the direction of productivity’s impact is ambiguous, although
again it needs an unrealistic combination of parameter values (α, θ, ψ ≈ 1)
to attain a negative relationship. The generic case is therefore k̃∗ψ > 0.
For per-worker consumption, we have

∂c̃∗

∂p
= A(1− χ(τ))αk̃∗(α−1)k̃∗ψ − (b− p)k̃∗ψ = k̃∗ψ

(
c̃∗

k̃∗

)
= − c̃∗

(1− α)D
Dψ

<
> 0,

where again the generic case is c̃∗ψ > 0.

Once more, the situation changes when accounting for per-capita values.
Due to Lψ = −φb

(b+ψ)2 < 0, we obtain (concentrating on the realistic case)

k∗ψ = Lψ︸︷︷︸
<0

k̃∗ + L k̃∗ψ︸︷︷︸
>0

<
> 0,

c∗ψ = Lψ︸︷︷︸
<0

c̃∗ + L c̃∗ψ︸︷︷︸
>0

<
> 0.

The impact of productivity on the per-capita values is hence not clear without
futher knowledge about the parameters. In our steady state, both parameters
respond unambiguously negatively to changes in ψ, which is economically
reasonable, but not necessarily always the case from a strict mathematic
point of view.
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Demographic changes with constant
population size

Finally, we examine the case where birth and death rate change to the same
extent (db = dp). This way, the population size remains constant (dgN = 0).
Like before, we obtain

k̃∗bp = − 1

1− α

(
k̃∗

D

)
Dbp < 0.

Dbp = Db+Dp = 2α ψ+b+p+θ√
(ψ−α(b−p)−θ)2+4(ψ+p)α(b+θ)

> 0, which means that higher

birth and death rates that leave the size of the population unchanged, have
a negative impact on the capital stock per-worker.

The impact of this population-”shift” on the capital stock per capita
however is not clear, as

k∗bp =
∂L
∂b︸︷︷︸
>0

k̃∗ +
∂L
∂p︸︷︷︸
=0

k̃∗ + L k̃∗bp︸︷︷︸
<0

= k∗
{

ψ

b(b+ ψ)
− Dbp

(1− α)D

}
<
> 0

Appendix C - Stability analysis in the Pautrel (2011b)-
model

We first determine the elements of the Jacobian J for the BGP-equilibrium
of the dynamic system

ẋ(t) = x(t)
[
−θ − (1− η)λ− ηλ(θ + λ)x(t)−1

−
(

1 + ∆(1− 1

u(t)
)− α

)
(u(t)b(t))1−α + x(t)

]
.

ḃ(t) =
[
B(1− u(t))∆δ(u(t)b(t))−αδ − (1− η)λ

−(1 + ∆(1− 1

u(t)
))(u(t)b(t))1−α + x(t) + χ(τ)

]
b(t)
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u̇(t) =

[
B∆δ(b(t)u(t))−αδ(α−1(1− α)−δ − 1 + u(t)) + χ(τ)

(
1

α(1− δ)
− 1

)
−λ
(

1

α(1− δ)
+ η − 1

)
− x(t) + (u(t)b(t))1−α∆

(
(1− 1

u(t)
)− 1

1− α

)]
u(t)

Some of these elements are easy to derive:27

J11 =
∂ẋ

∂x
= (ηλ(θ + λ)x−2 + 1)x+

ẋ

x︸︷︷︸
=0

= ηλ(θ + λ)x−1 + x > 0

J21 =
∂ḃ

∂x
= b > 0

J22 =
∂ḃ

∂b
=

(
−αδB(1− u)∆δb−αδ−1u−αδ − (1− α)

[
1 + ∆(1− 1

u
)

]
u1−αb−α

)
b+

ḃ

b︸︷︷︸
=0

= −αδB(1− u)∆δ(bu)−αδ − (1− α)

[
1 + ∆(1− 1

u
)

]
(bu)1−α < 0

J31 =
∂u̇

∂x
= −u < 0

J32 =
∂u̇

∂b
=

(
−αδB∆δb−αδ−1u−αδ[α−1 − 1 + u] + (1− α)∆

[
(1− 1

u
)− 1

1− α

]
b−αu1−α

)
u

= −u
b

[
αδB∆δ(ub)−αδ[α−1 − 1 + u] + (1− α)∆

[
1

u
+

α

1− α

]
(ub)1−α

]
< 0

while others are more cumbersome:

J12 =
∂ẋ

∂b
= −(1− α)

(
1− α +

δ − αδ
1− δ

(1− 1

u
)

)
u1−αb−αx

= −(1− α)2

(
−1 +

δ

1− δ
− δ

u− uδ

)
(bu)1−αx

b

= −(1− α)2

(
u− δ
u− uδ

)
(bu)1−αx

b
< 0

27The * marking equilibrium values is omitted for convenience.
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J13 =
∂ẋ

∂u
=

(
(1− α)

[
α−

(
1 + ∆(1− 1

u
)

)]
b1−αu−α − 1

u2
∆(bu)1−α

)
x

= −(1− α)(ub)1−αx

u

[
1− α +

δ(1− α)(u− 1)

(1− δ)u
+

δ

u(1− δ)

]
= −(1− α)(ub)1−αx

u

[
1− α
1− δ

+
αδ

(1− δ)u

]
< 0

J23 =
∂ḃ

∂u
=

(
−B∆δ(ub)−αδ − αδB∆δ(1− u)u−αδ−1b−αδ − 1

u2
∆(ub)1−α

−(1− α)u−αb1−α
(

1 + ∆(1− 1

u
)

))
b

= −b[1 + αδ(
1

u
− 1)]B∆δ(ub)−αδ − (ub)1−α b

u

[
1

u
∆ + (1− α)

(
1 + ∆(1− 1

u
)

)]
= −b[1 + αδ(

1

u
− 1)]B∆δ(ub)−αδ − (ub)1−α b

u

[
1− α
1− δ

] [
1 + αδ(

1

u
− 1)

]
< 0

J33 =
∂u̇

∂u
=
[
−αδ

(
B∆δb−αδu−αδ−1(α−1 − 1 + u)

)
+B∆δ(ub)−αδ

+ (1− α)u−αb1−α∆

(
1− 1

u
− 1

1− α

)
+

1

u2
(ub)1−α∆

]
u+

u̇

u︸︷︷︸
=0

= B∆δ(ub)−αδ[u− δ + αδ − αδu] + (ub)1−α∆

[
(1− α)(−1

u
− α

1− α
) +

1

u

]
= B∆δ(ub)−αδ[u− δ + αδ(1− u)] + (ub)1−αα∆

[
1

u
− 1

]
> 0

The calculation of the determinant is extremly cumbersome and therefore
carried out in Maple:

det J = −
[
(1− α + ∆)(ub)1−α + δB∆δ(ub)−αδ

] [ ∆

ux
ηλ(λ+ θ)(ub)1−α

+uB∆δ(ub)−αδ(x+ ηλ(θ + λ)x−1)
]
< 0

The Jacobian’s trace is positive:

tr J = ηλ(θ+λ)x−1+x+B∆δ(ub)−αδ(u−δ)−(ub)1−α
[
(1− α)(1− ∆

u
+ ∆)− α∆

u
+ α∆

]
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= ηλ(θ + λ)x−1 + x+B∆δ(ub)−αδ(u− δ)− (ub)1−α (1− α)(u− δ)
(1− δ)u

> 0

Hence, the equilibrium is a stable saddle.

83


