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The Mixed Convection Flow past a Horizontal Plate in a Channel:

Wake - Potential Flow Interaction

Herbert Steinrück1,∗

1 Vienna University of Technology, Institute of Fluid Dynamics and Heat Transfer, Resselgasse 3, 1040 Vienna, Austria

The mixed convection flow past a horizontal plate in a horizontal channel in a distinguished limit of large Reynolds and

Grashof numbers is considered. An interaction problem between the wake and the potential flow is formulated and analyzed.

It turns out that stationary solutions exist only if a suitable defined interaction parameter is below a critical value.
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1 Introduction

We consider a horizontal plate of length L with a temperature Tp in the mid-plane of a horizontal channel of width b in a

uniform flow with velocity velocity U∞ and temperature T∞ of an incompressible fluid with kinematic viscosity ν, thermal

expansion coefficient β and density ρ. Although the Reynolds number Re = U∞L/ν is assumed to be large we consider the

flow to be laminar. Thus the flow field can be decomposed into a boundary-layer flow along the plate and side walls, the wake

flow behind the trailing edge and the potential flow in rest of the flow domain.

Due to the temperature perturbation in the wake there will be a hydrostatic pressure difference across the wake such that the

potential flow outside of the wake has to adjust to it. However, the adjusted potential flow causes the wake to be inclined. Thus

an interaction between the wake and the potential flow will occur. Following [2] and [3] we introduce an appropriate scaling

and identify a meaningful interaction parameter κ. Thus we formulate the interaction problem and discuss its solution. In the

limit of vanishing Prandtl number and no wake/potential flow interaction (κ = 0) this problem has been solved analytically

in [4] and [1], respectively.
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Fig. 1 Mixed convection flow past a horizontal plate in a horizontal channel

2 The interaction mechanism

In order to find a meaningful scaling we estimate the expected interaction mechanism. The vertical hydrostatic pressure

gradient is of the order gρβ∆T where g is the gravity acceleration and ∆T = Tp−T∞ the temperature perturbation. Since the

thickness of the wake is of the order LRe−1/2 the hydrostatic pressure difference across the wake is ∆ph = ρgβ∆TLRe−1/2.

This pressure perturbation induces a velocity perturbation of order ∆U = ∆ph/ρU∞ of the potential flow. Thus an inclination

of the wake of the order K = ∆U/U∞ = ∆ph/ρU
2
∞

is expected. Thus the hydrostatic pressure gradient induced by the

temperature perturbation has a component of the order K gρβ∆T in the main flow direction. Referring this pressure gradient

in the wake to its natural reference value ρU2
∞
/L we obtain the interaction parameter κ2 = ρgβ∆TK L

ρU2
∞

= Gr2Re−9/2

which has been expressed in terms of the Reynolds and Grashof number Gr = gβ∆TL3/ν2.

The potential flow field is given by u − iv = 1 + K(u1 − iv1) + ..., where u1 − iv1 is the first order correction due to

the hydrostatic pressure difference across the wake. Note that the pressure difference across the wake can be interpreted as a

vortex distribution γw(x) along the center line of the channel. The scaled inclination ȳ′w = v1(x, 0) of the wake is equal to
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592 Section 9: Laminar flows and transition
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Fig. 2 Vorticity γw , center line velocity ūw(x, 0) of the

wake and inclination of the wake v1 for b = 100, Pr = 1.
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Fig. 3 center line velocity ūc(x∗), x∗ = 46.6, (red solid line),

local minimum (blue dashed line) and local maximum (green,

dashed dotted line) of the center line velocity ūcof the wake

as a function of the interaction parameter κ for b = 100 and

Pr = 1.

the correction of the potential flow field at the centerline of the channel. Using wake coordinates the equations for the velocity

ūw and temperature profile θ̄w in the wake read

ūwūw,x + v̄wūw,ȳ = κ2 ȳ′w θ̄w + ūw,ȳȳ, ūw,x + v̄w,ȳ = 0, ūw θ̄w,x + v̄w θ̄w,ȳ =
1

Pr
θ̄w,ȳȳ.

supplemented by the symmetry conditions ūw,ȳ(x, 0) = v̄w(x, 0) = θ̄w,ȳ(x, 0) = 0, the matching conditions ūw(x,∞) = 1,

θ̄w(x,∞) = 0 and the “initial conditions” ūw(0, ȳ) = ūB(ȳ), θ̄w(0, ȳ) = θ̄B(ȳ), where ūB(ȳ) and θ̄B(ȳ) are the velocity and

temperature profile in the Blasius boundary-layer.

Following [4] and [2] the potential flow problem in the channel can be solved analytically and we obtain the vertical velocity

perturbation at the center line:
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1
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dξ, x > 0, γw(x) = 2

∫

∞

0

θ̄w dȳ.

These two equations are solved iteratively until convergence is obtained.

3 Results

The wake and potential flow problem has been solved for Pr = 1 and b = 100 for increasing values of the interaction param-

eter κ. Starting with κ = 0, where we have no interaction at all, we obtain first a monotonically decreasing vortex distribution

γw (see figure 2) . This is due to the fact that due to the preservation of the dimensionless enthalpy flux
∫

∞

0
ūw θ̄wdȳ = const

in the wake and that the flow at the center of the wake is accelerated shortly after the trailing edge, see figure 2. However,

we observe that the vertical velocity v1 is first positive but becomes negative shortly after the trailing edge. Now increasing

the interaction parameter κ results in an adverse hydrostatic pressure gradient in the wake. Thus the center line velocity ūw

decreases with increasing κ. If κ is large enough (κ > 0.47) a minimum in center line velocity forms. The minimum decreases

with increasing κ, However, for κ > κc = 0.525 no solutions can be found. Using a different numerical strategy a second

solution branch for κ∗ = 0.471 < κ < κc can be found. This second solution branch terminates in a singularity at κ = κ∗

There the minimum of ūw is zero and as a consequence the γw has a logarithmic singularity.

In figure 3 the ūw(x∗, 0), where x∗ is the location of the singularity in the wake flow for κ = κ∗ is shown. Also the the

local minimum value and maximum values of the center line velocity ūw where they exist are shown.
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