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Abstract—We consider estimation of a sparse parameter vector
from measurements corrupted by white Gaussian noise. Using the
framework of reproducing kernel Hilbert spaces, we derive closed-
form expressions of the Barankin bound, i.e., of the minimum
locally achievable variance of any estimator with a prescribed bias
function, including the unbiased case. We also derive the locally
minimum variance (LMV) estimator that achieves the minimum
variance, and a necessary and sufficient condition on the pre-
scribed bias function for the existence of finite-variance estimators
and, simultaneously, of the LMV estimator. Finally, we present a
numerical comparison of the variance of the hard-thresholding
estimator with the corresponding minimum achievable variance.

Index Terms—Sparsity, denoising, reproducing kernel Hilbert
space, RKHS, Barankin bound, minimum variance estimation,
unbiased estimation.

I. INTRODUCTION

We consider the problem of estimating an unknown but
deterministic signal or parameter vector x ∈ RN based on a
noisy observation y∈RN, i.e.,

y = x+ n , (1)

where n ∼ N (0,σ2I) is white Gaussian noise with known
variance σ2>0. The signal vector x is assumed S-sparse, i.e.,

x ∈ XS !
{

x′∈ R
N
∣

∣‖x′‖0 ≤ S
}

, (2)

where ‖x‖0 denotes the number of nonzero entries of x.
Whereas the sparsity degree S is assumed known, the set of
positions of the nonzero entries of x (denoted by S(x); note that
|S(x)|=‖x‖0≤ S) is unknown. We call the model defined by
(1) and (2) the sparse signal in noise model (SSNM). Applica-
tions of the SSNM include channel estimation when the channel
consists of only few significant taps and an orthogonal training
signal is used, and image denoising using an orthonormal
wavelet basis (see references in [1]).

For the SSNM, lower and upper bounds on the minimum
achievable variance of unbiased estimators were derived in
[1]. In [2, 3], a Cramér–Rao bound (CRB) was derived for
a generalization of the SSNM called the sparse linear model
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(SLM). However, the CRB is discontinuous when passing from
the case ‖x‖0<S to the case ‖x‖0=S. One can conclude from
this discontinuity that the CRB cannot be tight for all x, i.e.,
there is a gap between the CRB and the minimum achievable
variance (also known as the Barankin bound [4, 5]). Improved
variance bounds for the SLM were derived in [6].

In this paper, we present a closed-form expression of the
minimum variance at a given signal vector x0∈XS that can be
achieved within the SSNM by any estimator x̂(·) that has a
prescribed bias c(x) for all x∈XS . We also derive a closed-
form expression of the locally minimum variance (LMV)
estimator, i.e., the estimator achieving this minimum variance
at x0 while satisfying the bias constraint. Finally, we present
a necessary and sufficient condition on the bias function c(·)
for the existence of estimators with finite variance at x0 and,
simultaneously, for the existence of the LMV estimator at x0.

Our main mathematical tool will be the theory of reproducing
kernel Hilbert spaces (RKHS) [7]. The use of RKHS theory
for minimum variance estimation has a long history [8, 9]. In
[6], we applied RKHS theory to minimum variance estimation
within the SLM and derived a lower variance bound that is
tighter than the CRB in [2, 3]. In the present paper, we consider
exclusively the SSNM, which is a special case of the SLM with
a simpler structure. Our results will be stronger than those of
[6] specialized to the SSNM.

This paper is organized as follows. In Section II, we review
some elements of minimum variance estimation [4, 10]. Section
III summarizes the RKHS approach to minimum variance
estimation [8, 9]. In Section IV, we use RKHS theory to derive
closed-form expressions of the minimum achievable variance
and of the LMV estimator for the SSNM. The special case
of bias functions with a particular “diagonal” structure is
considered in Section V. In Section VI, we present numerical
results that compare the minimum variance with the variance
of the hard-thresholding estimator.

II. REVIEW OF MINIMUM VARIANCE ESTIMATION

A popular criterion for judging the performance of an esti-
mator x̂(·) is the mean squared error (MSE)

ε(x̂(·);x) ! Ex

{

‖x̂(y)−x‖22
}

,
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where the notation Ex{·} indicates that the expectation is taken
with respect to the probability density function (pdf) f(y;x)
parametrized by x. For the SSNM,

f(y;x) =
1

(2πσ2)N/2
exp

(

− ‖y−x‖22
2σ2

)

. (3)

The MSE can be written as the sum of two nonnegative terms:

ε(x̂(·);x) = ‖b(x̂(·);x)‖22 + v(x̂(·);x) ,

with the estimator bias b(x̂(·);x) ! Ex{x̂(y)} − x and the

estimator variance v(x̂(·);x) ! Ex

{
∥

∥x̂(y) − Ex{x̂(y)}
∥

∥

2

2

}

.
The MSE, bias, and variance depend on the underlying true
signal vector x.

A. Minimum Variance Estimation of x

Requiring the estimator x̂(·) to minimize the MSE simulta-
neously for all x is not meaningful because such an estimator
generally does not exist [10]. Therefore, a common approach
is to fix the bias b(x̂(·);x) for all x ∈ XS and look for the
estimator(s) achieving minimum variance at a specific nominal
signal vector x0∈XS under this bias constraint. Thus, hereafter
we only consider estimators satisfying

b(x̂(·);x) = c(x) , ∀x∈XS , (4)

for a prescribed bias function c(·) : XS→RN . This is equivalent
to the following constraint on the mean of the estimator:

Ex{x̂(y)} = γ(x) , ∀x∈XS , with γ(x) ! c(x)+x . (5)

The LMV estimator at x0, denoted x̂(x0)(·), is then defined as
the solution to the following optimization problem:

x̂(x0)(·) = argmin
x̂(·)∈Bγ(·),x0

v(x̂(·);x0) , (6)

where the constraint set Bγ(·),x0
consists of all estimators

whose bias is equal to c(x) for all x ∈ XS and whose variance
at x0 is finite:

Bγ(·),x0
!

{

x̂(·) : RN→ R
N
∣

∣Ex{x̂(y)} = γ(x) ∀x ∈ XS ,

v(x̂(·);x0)<∞
}

.

Note that the estimators x̂(·) we consider are not constrained to
be S-sparse. The prior information of S-sparsity enters merely
by the fact that the bias constraint (4), (5) is formulated only
for x ∈XS .

If an LMV estimator x̂(x0)(·) exists, we call its variance,

Lγ(·),x0
! min

x̂(·)∈Bγ(·),x0

v(x̂(·);x0) ,

the minimum achievable variance at x0 for the prescribed bias
function c(·). Furthermore, we call c(·) a valid bias function
at x0 if Bγ(·),x0

is nonempty, i.e., if there exists at least one
estimator with bias c(x) for all x ∈XS and with finite variance
at x0.

B. Minimum Variance Estimation of xk

The variance can be decomposed as

v(x̂(·);x) =
∑

k∈[N ]

v(x̂k(·);x) ,

where [N ] ! {1, . . . , N} and v(x̂k(·);x) ! Ex

{[

x̂k(y) −
Ex{x̂k(y)}

]2}
is the variance of the component estimator

x̂k(·) =
(

x̂(·)
)

k
. Furthermore, the estimator x̂(·) has mean

γ(x) = c(x) + x if and only if the mean of each component
x̂k(·) equals γk(x) = ck(x) + xk , where γk(x), ck(x), and xk

denote the kth components of γ(x), c(x), and x, respectively. It
is then easily verified that solving the problem (6) is equivalent
to separately solving for each k ∈ [N ] the scalar problem

x̂(x0)
k (·) = argmin

x̂k(·)∈Bγk(·),x0

v(x̂k(·);x0) , (7)

with the constraint set

Bγk(·),x0
!

{

x̂k(·) : RN→ R
∣

∣Ex{x̂k(y)} = γk(x) ∀x ∈ XS ,

v(x̂k(·);x0)<∞
}

.

Therefore, hereafter we will consider the scalar problem (7).

We will call x̂(x0)
k (·) (if it exists) the LMV estimator of xk at

x0, and its variance, Lγk(·),x0
! minx̂k(·)∈Bγk(·),x0

v(x̂k(·);x0),
the minimum achievable variance at x0 for the prescribed bias
function ck(·). Furthermore, we will call ck(·) : XS → R a
valid bias function at x0 if Bγk(·),x0

is nonempty. If all ck(·),
k ∈ [N ] are valid bias functions at x0, then so is c(·), and we
have Lγ(·),x0

=
∑

k∈[N ]Lγk(·),x0
.

Using the RKHS framework of [8], it can be shown that if
ck(·) is a valid bias function at x0, then there exists a unique

LMV estimator x̂(x0)
k (·). Thus, a necessary and sufficient con-

dition for the existence of a unique LMV estimator is that there
is at least one estimator x̂k(·) with finite variance at x0 whose
mean Ex{x̂k(y)} is equal to γk(x) = ck(x)+xk for all x∈XS .
It can also be shown that if an LMV estimator exists, it is unique
[4].

If there exists a single estimator x̂k(·) which is the LMV
estimator for all x0, i.e., which solves (7) for all x0 simul-
taneously, then that estimator is called a uniformly minimum
variance (UMV) estimator. For the special case of unbiased
estimation, i.e., ck(x)≡0 or equivalently γk(x)≡xk , the LMV
and UMV estimators are termed locally minimum variance
unbiased (LMVU) and uniformly minimum variance unbiased
(UMVU) estimators, respectively. However, for the SSNM with
sparsity S<N , it was shown in [11] that, under mild technical
conditions, there does not exist a UMVU estimator. For the
nonsparse case, i.e., S=N , a UMVU estimator is given by the
trivial estimator x̂k(y) = yk.

III. THE RKHS FRAMEWORK

The RKHS framework of classical estimation was introduced
in [8], further developed in [9], and specialized to the SLM
and SSNM in [6, 12]. This framework is based on two Hilbert
spaces. The first, denoted L, consists of functions a(·) : RN→
R. For the SSNM, it is defined as the closed linear span of the



set {ρx(·)}x∈XS
, where

ρx(y) !
f(y;x)

f(y;x0)
= exp

(

2yT(x−x0)− ‖x‖22 + ‖x0‖22
2σ2

)

(cf. (3)), with a fixed x0∈XS , is the likelihood ratio for the pa-
rameter vector x. The inner product in L (which is also required
mathematically for the closure operation defining L) is given
by 〈a, b〉RV ! Ex0{a(y)b(y)}, with induced norm ‖a‖RV =
√

〈a, a〉RV =
√

Ex0{a2(y)}. Note that these quantities explic-
itly depend on x0.

The second Hilbert space, denoted H(R), is an RKHS [7]
consisting of functions f(·) : XS → R. It is defined via the
kernel function R(·, ·) : XS ×XS →R given by

R(x1,x2) ! 〈ρx1 , ρx2〉RV = exp

(

(x1−x0)T(x2−x0)

σ2

)

.

More precisely, H(R) is defined as the closure of the linear
span of the set of functions {fx′(x) = R(x,x′)}x′∈XS

(i.e.,
these functions are obtained from R(x,x′) by fixing x′ and
using x as the function argument). This closure is taken with
respect to the topology that is given by the inner product
〈· , ·〉H(R) defined via the reproducing property [7]

〈

f(·), R(·,x′)
〉

H(R)
= f(x′) .

The above relation holds for all f(·) ∈ H(R) and x′ ∈ XS .

The induced norm is ‖f‖H(R) =
√

〈f, f〉H(R) . As shown in

[8], H(R) is isometric to L; there exists a congruence1 J[·] :
H(R)→ L, which is completely specified by the relation

J[R(·,x)] = ρx(·) .

The following facts, proven in [8] in the general context
of minimum variance estimation, are the basis for our results.
As before, we consider the SSNM together with a prescribed
bias function ck(·)—equivalently, a prescribed mean function
γk(x) = ck(x) + xk—and a fixed parameter vector x0∈XS .

1.) There exists a finite minimum in (7), i.e., ck(·) is valid
at x0, if and only if γk(·) ∈H(R).

2.) If γk(·) ∈ H(R), then the minimum variance at x0

achievable by an estimator x̂k(·) with prescribed bias function
ck(·) is given by

Lγk(·),x0
= ‖γk‖2H(R) − γ2k(x0) . (8)

3.) The unique LMV estimator x̂(x0)
k (·) that achieves this

minimum variance is given by

x̂(x0)
k (·) = J[γk(·)] . (9)

IV. MINIMUM VARIANCE ESTIMATION FOR THE SSNM

According to (8) and (9), finding the minimum achievable
variance and the LMV estimator amounts to evaluating the

1A linear mapping J[·] : H1 → H2 between two Hilbert spaces H1, H2
is said to be a congruence if it is bijective and preserves inner products, i.e.,
〈f, g〉

H1
= 〈J[f ], J[g]〉

H2
for all f(·), g(·) ∈H1. Two Hilbert spaces are said

to be isometric if there exists at least one congruence between them.

squared RKHS norm ‖γk‖2H(R) and the image J[γk(·)] of the

prescribed mean function γk(x) = ck(x) + xk.

A. An Isometric RKHS

To perform these tasks, it will be convenient to work not
directly in the RKHS H(R) but in another RKHS H(R′) of
functions f(·) : XS → R. This RKHS is defined by the kernel
R′(·, ·) : XS ×XS → R given by

R′(x1,x2) ! exp
(

xT
1x2

)

.

The two RKHSs H(R) and H(R′) are isometric; a congruence
K[·] : H(R)→H(R′) is provided by

K[f(·)] = f(σx)νx0 (x) , x∈XS , f(·) ∈H(R) , (10)

with the weight function νx0(·) : XS→R defined as

νx0(x) ! exp

(

−
‖x0‖22
2σ2

+
xT
0x

σ

)

. (11)

Due to (10), R′(x1,x2) = R(σx1,σx2) νx0(x1)νx0(x2).
We now present a characterization of the RKHS H(R′) in

the sense of [9], i.e., we will specify an orthonormal basis for
H(R′) together with a condition that allows one to judge if a
given function f(·) : XS→R belongs to H(R′). It is one of the
appealing properties of H(R′) that an orthonormal basis can be
readily constructed. In what follows, let NS ! ZN

+ ∩ XS (with

Z+ ! {0, 1, . . .} the set of nonnegative integers) be the set of
all S-sparse N -dimensional multi-indices p = (p1, . . . , pN ).
Furthermore, let p! !

∏

k∈[N ] pk!, xp !
∏

k∈[N ] x
pk

k , and
∂pf(x)
∂xp !

(

∏

k∈[N ]
∂pk

∂x
pk
k

)

f(x). The following results are pre-

sented without proof because of space restrictions; a detailed
proof is provided in [12].

Theorem 1: 1.) For any p ∈NS , the function

g(p)(x) !
1√
p!

∂pR′(x,x′)

∂x′p

∣

∣

∣

∣

x′=0

=
1√
p!

xp

is an element of H(R′).
2.) The functions {g(p)(·)}p∈NS

are orthonormal, i.e.,

〈g(p), g(p
′)〉H(R′) =

{

1, p= p′

0, p /= p′.

3.) The inner product of any f(·) ∈ H(R′) with g(p)(·) is
given by

〈f, g(p)〉H(R′) =
1√
p!

∂pf(x)

∂xp

∣

∣

∣

∣

x=0

.

4.) The set {g(p)(·)}p∈NS
forms an orthonormal basis for

H(R′), i.e., any f(·) ∈H(R′) can be expanded as

f(·) =
∑

p∈NS

〈f, g(p)〉H(R′) g
(p)(·) ,

where the sum converges in the RKHS norm ‖ · ‖H(R′) and also
pointwise.



5.) A function f(·) : XS→R is an element of H(R′) if and
only if it can be written pointwise as a series

f(x) =
∑

p∈NS

a[p] g(p)(x) ,

with a coefficient sequence a[p] ∈ (2(NS), where (2(NS) de-
notes the set of all square summable sequences a[·] : NS→R.

Based on Theorem 1, we will next characterize for the
SSNM the set of valid bias functions, the minimum achievable
variance, and the LMV estimator.

B. Valid Bias Functions

Consider a bias function ck(·) and the associated mean
function γk(x) = ck(x) + xk. According to Section III, ck(·)
is valid at x0 if and only if γk(·) ∈ H(R). It is then further
shown in [12] that ck(·) is valid at x0 if and only if there exists
a coefficient sequence a[p] ∈ (2(NS) such that

γk(σx)νx0 (x) =
∑

p∈NS

a[p]
xp

√
p!

, ∀x∈XS , (12)

with νx0(x) defined in (11). In the unbiased case ck(·)≡0, we
have γk(σx)=σxk ; it can here be verified easily that condition
(12) is satisfied, and hence ck(·)≡0 is a valid bias function.

Based on condition (12), it can be shown that for specific
choices of σ, S, and N , there are bias functions ck(·) that are
valid at some x0 but not at all x0 ∈XS [12]. We note that if
ck(·) is the actual bias function of an existing estimator with
finite variance at all x0 ∈ XS (e.g., the hard-thresholding
estimator, cf. Section VI), then it trivially follows by the very
definition of a valid bias function in Section II-B that ck(·) is
valid at all x0 ∈ XS . In particular, the validity of ck(·) ≡ 0
also follows trivially from the fact that the specific estimator
x̂k(y) = yk is unbiased and has a finite variance at all x0.

C. Minimum Achievable Variance and LMV Estimator

The following further results are shown in [12]. If the pre-
scribed bias ck(·) is valid at x0, then it follows from (8), with
(12), that the minimum achievable variance at x0 is given by

Lγk(·),x0
=

∑

p∈NS

1

p!

(

∂p[γk(σx)νx0 (x)]

∂xp

∣

∣

∣

∣

x=0

)2

− γ2k(x0)

=
∑

p∈NS

a2[p] − γ2k(x0) . (13)

Furthermore, the LMV estimator at x0—i.e., the estimator
whose variance at x0 equals Lγk(·),x0

in (13)—is given by

x̂(x0)
k (y) =

∑

p∈NS

1√
p!

[

∂p[γk(σx)νx0 (x)]

∂xp

∂pψx0(x;y)

∂xp

]

x=0

=
∑

p∈NS

a[p]

[

∂pψx0(x;y)

∂xp

]

x=0

,

with

ψx0(x;y) ! exp

(

yT(σx−x0)

σ2
+

xT
0x

σ
− ‖x‖22

2

)

.

The expression (13) nicely demonstrates the reduction of the
minimum achievable variance due to the sparsity constraint (2).
For simplicity, we consider the unbiased case, i.e., ck(·)≡ 0 or
γk(x) = xk . It can here be shown that the difference between
the minimum achievable variance without a sparsity constraint
(this would be obtained for S=N ) and the minimum achievable
variance for the actual sparsity S is given by

∆Lx0 =
∑

p∈ZN
+\NS

a2[p] .

For decreasing S, ∆Lx0 increases because the set ZN
+ \NS

becomes larger. Thus, when x0 becomes more sparse, the
minimum achievable variance decreases.

V. DIAGONAL BIAS FUNCTION

We now consider the SSNM for the special case of a bias
function ck(x) that is “diagonal” in the sense that it depends
only on the entry xk, i.e., ck(x) = c̃k(xk) with some function
c̃k(·) : R→ R. We make the weak assumption that c̃k(·) can
be represented by a power series centered at x0,k ! (x0)k.
Equivalently, the mean function γk(x) = c̃k(xk) + xk can be
represented by a power series centered at x0,k, i.e.,

γk(x) =
∞
∑

l=0

γk,l
l!

(xk−x0,k)
l , (14)

with suitable coefficients γk,l. Examples where the diagonal
power series representation (14) applies include unbiased es-
timation and the mean functions of the hard- and soft-thresh-
olding estimators (cf. Section VI).

The following results can now be shown [12]. A diagonal
bias function is valid if and only if the coefficients γk,l satisfy
Pk <∞, with Pk !

∑∞
l=0 γ

2
k,lσ

2l/l!. Furthermore, if the bias
function is valid, the minimum achievable variance at x0 is
obtained as

Lγk(·),x0
= g(x0)Pk − γ2k(x0) , (15)

where

g(x0) !
∑

j∈[S]

exp

(

−
x2
0,ij

σ2

)

∏

j′∈[j−1]

[

1− exp

(

−
x2
0,ij′

σ2

)]

(16)

if |S(x0) ∪ {k}|= S +1 and g(x0)! 1 otherwise. As to the
indices ij in (16), we note that the case |S(x0) ∪ {k}|=S+1
implies that x0 has exactly S nonzero entries; the corresponding
positions are denoted by S(x0) = {i1, . . . , iS}. Finally, the
LMV estimator at x0 is given by

x̂(x0)
k (y) = h(y,x0)

∞
∑

l=0

γk,lσl

l!
Hl

(yk
σ

)

, (17)

where

h(y,x0) !
∑

j∈[S]

exp

(

−
x2
0,ij + 2yijx0,ij

2σ2

)

×
∏

j′∈[j−1]

[

1− exp

(

−
x2
0,ij′

+ 2yij′x0,ij′

2σ2

)]

if |S(x0) ∪ {k}| = S +1 and h(y,x0) ! 1 otherwise. Here,



Hl(·) : R→R is the lth-order (probabilists’) Hermite polyno-

mial, i.e., Hl(x) ! (−1)lex
2/2 dl

dxl e−x2/2 [13].
Some comments can now be made. 1.) The LMVU estimator

at x0 is given by (17) with γk,0 = x0,k, γk,1 =1, and γk,l =0
for l≥2. One can show that its bias and variance remain finite
at x /= x0; this is also true if x /∈ XS , i.e., if x violates the
sparsity constraint (2).

2.) If Pk =
∑∞

l=0 γ
2
k,lσ

2l/l! appearing in the expression (15)

of Lγk(·),x0
is replaced by a partial sum

∑

l∈T γ
2
k,lσ

2l/l!, with
arbitrary T ⊆ Z+, then the resulting expression provides a lower
bound on Lγk(·),x0

(and, in turn, on the variance at x0 of any
estimator with mean equal to γk(·)).

3.) Finally, consider a valid bias function c(·) such that every
component γk(·) of γ(x) = c(x) + x is of the diagonal form
(14). It can then be shown [12] that the minimum achievable
overall variance at x0, Lγ(·),x0

=
∑

k∈[N ]Lγk(·),x0
, is given by

Lγ(·),x0
=

∑

k∈S(x0)

Pk +
∑

k∈S(x0)

g(x0)Pk − ‖γ(x0)‖22 , (18)

where S(x0) ! [N ]\S(x0).

VI. NUMERICAL RESULTS

We study the minimum achievable variance Lγ(·),x0
for

prescribed mean functions γ(·) that are the actual mean func-
tions of given estimators. We consider the family of hard-
thresholding (HT) estimators x̂HT,k(·) given by x̂HT,k(y) = yk
when |yk| ≥ T and x̂HT,k(y) = 0 otherwise, where T is a
parameter. In the limiting case T =0, the HT estimator equals
the least squares (LS) estimator given by x̂LS,k(y)=yk, which
is unbiased. The mean function of x̂HT,k(y) can be shown to
be of the form (14). For T =0 (LS estimator), (14) simplifies
because γk,0 = x0,k, γk,1 = 1, and γk,l = 0 for l ≥ 2. It can
also be shown that, for any T , Ex0{x̂HT,k(y)} = γk,0 and
v(x̂HT,k(·);x0) =

∑∞
l=1 γ

2
k,lσ

2l/l! = Pk − γ2k,0.
In what follows, we choose N = 5 and ‖x0‖0 = S = 1.

In Fig. 1, we show the variance v(x̂HT(·);x0) (obtained by
numerical integration) versus the “signal-to-noise ratio” (SNR)
ξ20/σ

2, where ξ0 denotes the single nonzero entry of x0 and
σ2=1, for different choices of T . For comparison, along with
each variance curve, we also show the corresponding mini-
mum achievable variance (Barankin bound) Lγ(·),x0

calculated
according to (18). Here, “corresponding” means that γ(·) is
chosen equal to the mean of the respective estimator, which
was calculated by numerical integration. It is seen that for small
T (in particular, for T =0 where the HT estimator reduces to
the LS estimator), the Barankin bound is significantly below
the corresponding variance curve. However, as T increases, the
gap between variance and Barankin bound becomes smaller;
in particular, the two curves are already indistinguishable for
T = 4. For high SNR, the Barankin bound converges to Sσ2=1
for any value of T ; this equals the variance of an oracle
estimator that knows the support of x0.

VII. CONCLUSION

We applied the mathematical framework of reproducing
kernel Hilbert spaces to minimum variance estimation within
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Fig. 1. Variance of the HT estimator, v(x̂HT(·);x0), for different T (solid lines)
and corresponding minimum achievable variance (Barankin bound) Lγ(·),x0

(dashed lines) versus the SNR ξ20/σ
2, for N=5, S=1, and σ2=1.

the sparse signal in noise model. This provided a necessary
and sufficient condition on the prescribed bias function for
the existence of estimators with finite variance and, simulta-
neously, for the existence of the locally minimum variance
(LMV) estimator. We also derived closed-form expressions
of the minimum locally achievable variance of any estimator
with a prescribed bias function (Barankin bound), and of the
LMV estimator that achieves the minimum variance. Finally,
using numerical simulation, we analyzed how far the variance
of the hard-thresholding estimator exceeds the corresponding
minimum achievable variance (Barankin bound).
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