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Hula-hoop is a popular toy — a thin hoop that is twirled around tbe
waist, limbs or neck. To twirl a hula-hoop the waist of a gymnas.t carries
out a periodic motion in the horizontal plane. For the sake of s1mp11c11.:y
we assume that the waist of the gymnast is round and its center moves in
the horizontal plane along an elliptic trajectory z = asinwt, y = bcos u{t
close to a circle (a = b) with frequency w, semi-major axis a, and semi-
minor axis b. Then in new time 7 = wt we have the equation for angle ¢
that determines the position of the hula-hoop center with respect to the
waist

@+ v + peos(p — ) = ecos(p + T) (1)
along with the condition for the hula-hoop not to separate from the waist
during its motion

@? — 2usin(p — 7) + 2 cos(p + 7) > 0, (2)

with dimensionless parameters vy = ﬁ , b= 4(‘?’_br) > 03
€= #‘_”) > 0, where k is the coefficient of viscous friction, r is the
radius( of rthe waist, R and m are the radius and mass of the hula—hoop.

In [1] the periodic motion of the gymnast’s waist a}ong only one axis
was considered (b= 0). In the present study, we consider the hula—hoqp
excitation along two axes corresponding to an elliptic traJet.:tory as in
[2]. But in contrast to previous works [1],[2] we do not require that all
parameters of excitation p and dissipation <y are small. We assume only
€ to be small like in our work [3] which we extend here.

When the waist moves along a circle (a = b, i.e. € = 0) we have exact

solutions of (1)

©=T+p, o= xarccos(—y/p) mod 27 ®3)
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corresponding to the hula-hoop rotation with a constant angular velocity
equal to the excitation frequency, provided that [v| < p. According to
the Lyapunov’s theorem on the stability based on a linear approzimation
solution with the use of Routh-Hurwitz criterion we obtain asymptotic
stability conditions v > 0 and sin wo < 0 from which the inequalities
0 <7< u follow.

Inseparability condition (2) takes the form 1 — 2psingg > 0. Hence,
rotation (3) with ¢, = —arccos(—y/u) is asymptotically stable and
inseparable, while that of with ¢, = arccos(—y/u) is unstable and
inseparable only if u < \/1/4+72.

When the waist center trajectory has small ellipticity (a > b, i.e.
€ > 0) we use simple perturbation method assuming that solution of (1)
can be expressed in series ¢ = 7+@y+ep;(T)+... of small parameter €.
After substitution of this series in (1) and grouping the terms by powers of
€ we obtain ¢y like in (3). Taking @y = —arccos(—y/u) corresponding
to the stable solution (3) of the unperturbed system we derive

2vsin(pg + 27) — (4 -/ p? - 72) cos(po + 27)
372+ u?2 —8y/u2 — 4% + 16 '

Inseparability condition (2) leads in the first approximation to the
following inequality

142/ =2 [ p2+ 342 —8\/i2 — 12+ 16
€< .
2 B2+ 872 — 12/ — 7% + 36
The hula-hoop can rotate in both direction only if all parameters
7, and € are small since the coexistence condition for both direct and

inverse rotations has the form 0 < v < min{e, u}. In physical variables
the coexistence condition takes the form

R—r
R2wm

meaning that the trajectory of the waist should be sufficiently prolate.

®1 (7') =

0<2k <a-—|b
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OPTIMAL CONTROL OF CONTINUOUS-DISCRETE SYSTEMS
WITH MULTIPLE INSTANTANEOUS SWITCHINGS OF THE
DESCRETE PARTS6
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We consider the continuous-discrete system with the continuous part
dynamics determined by differential equations, and with the behaﬁor
of the discrete part determined by the recurrent equations. Multiple
instantaneous switches at given pace time instants are allowed. These
systems, which are called hybrid, takes an intermediate place betw'een
discrete-continuous systems with single switches [1] and logic-dynamical
systems [2].

We describe various settings of the problem, when the number of
switches of the discrete part is either given, either is totally bounded over
all pace switching instants, or is to be found within the solution of the
optimization problem.

The equations for the variations of the functionals, deﬁged on
the trajectories of these systems and prove the necessary optimality
conditions. The relevant practical examples are considered.
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Two-dimensional almost-Riemannian structures are generalized
Riemannian structures on surfaces for which a local orthonormal frame
is given by a Lie bracket generating pair of vector fields that can become
collinear. They appears naturally in optimal control problems linear in
the control and with quadratic cost. Generically, the singular set is an
embedded one dimensional manifold and there are three type of points:
Riemannian points where the two vector fields are linearly independent,
Grushin points where the two vector fields are collinear but their Lie
bracket is not and tangency points where the two vector fields and their
Lie bracket are collinear and the missing direction is obtained with one
more bracket, the last one being isolated. In this talk we study the Laplace-
Beltrami operator on such a structure. In the case of a compact orientable
surfaces without tangency points, we prove that the Laplace-Beltrami
operator is essentially self-adjoint. As a consequence a quantum particle
in such a structure cannot cross the singular set and the heat cannot
flow through the singularity. This is an interesting phenomenon since
when approaching the singular set (i.e. where the vector fields become
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