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Abstract—We consider the downlink of a multiuser system with
multiple antennas at the base station. Vector perturbation (VP)
precoding is a promising variant of transmit-side channel inver-
sion allowing the users to detect their data in a simple, noncoopera-
tive manner. VP precoding has so far been developed and analyzed
under the assumptions that the transmitter has perfect channel
state information (CSI) and that the receivers know perfectly a
channel-dependent transmit power normalization factor and have
infinite dynamic range. We demonstrate that the violation of any of
these idealizing assumptions degrades the performance of VP sig-
nificantly and almost always results in an error floor. Motivated
by this observation, we propose a novel scheme which we term
transmit outage precoding (TOP). With TOP, the transmitter uses
a prearranged power scaling known by the receivers and refrains
from transmitting when channel conditions are poor. We further
show how to augment TOP and conventional VP to deal with a fi-
nite dynamic range at the receiver. The performance of the pro-
posed schemes under various levels of transmit CSI is studied in
terms of a theoretical diversity analysis and illustrated by numer-
ical results.

Index Terms—Diversity, imperfect channel state information,
precoding.

I. INTRODUCTION

W E consider a wireless communication scenario in which
a base station is in possession of channel state infor-

mation (CSI) and uses multiple antennas to transmit simultane-
ously to multiple users with one antenna each. In such a mul-
tiple-input multiple-output (MIMO) broadcast scenario, dirty-
paper coding [1] is a capacity-achieving strategy [2]–[4]. How-
ever, our interest here is in vector perturbation (VP) precoding
[5]–[7] since it is a scheme with much lower complexity. VP
precoding is a promising technique that shifts most of the signal

Manuscript received January 06, 2010; accepted September 12, 2010. Date of
publication October 07, 2010; date of current version December 17, 2010. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Anna Scaglione. This work was supported by the STREP
project MASCOT (IST-026905) within the Sixth Framework Programme of
the European Commission and by the FWF project “Information Networks”
(S10606) within the National Research Network SISE. The material in this
paper was presented at the IEEE Workshop on Signal Processing Advances in
Wireless Communications (SPAWC 2008), at the IEEE Int. Conf. Acoustics,
Speech and Signal Processing (ICASSP 2009), and at the Asilomar Conference
on Signals, Systems, and Computers, 2008.

J. Maurer and G. Matz are with the Institute of Communications and Radio-
Frequency Engineering, Vienna University of Technology, A-1040 Wien, Aus-
tria (e-mail: jmaurer@nt.tuwien.ac.at; gmatz@nt.tuwien.ac.at).

J. Jaldén was with the Vienna University of Technology, A-1040 Wien, Aus-
tria. He is now with the ACCESS Linnaeus Center, KTH Signal Processing Lab,
Royal Institute of Technology, Stockhom, Sweden (e-mail: jalden@kth.se).

D. Seethaler was with the Communication Technology Lab, ETH Zurich,
Zurich, Switzerland and is now with RobArt, 4020 Linz, Austria (e-mail: do-
minik.seethaler@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2084083

processing to the transmit side and enables the users to detect
their data in a simple and noncooperative manner. The basic
idea is to perform channel inversion at the base station, pre-
ceded by a perturbation of the transmit vector in order to reduce
the transmit power. To meet the transmit power constraint, the
transmit signal undergoes a channel-dependent power normal-
ization [6] which the receivers have to know. The users recover
the transmitted data symbols by scaling the received signal, per-
forming a modulo operation to compensate for the vector pertur-
bation, and quantizing the result to to the nearest constellation
point. Throughout the paper, we will refer to this scheme as con-
ventional VP precoding or CVP. Our goal here is to identify and
resolve several problems that are specific to CVP and hamper its
practical implementation. These problems are briefly outlined
in the next three subsections. We note that there are other im-
pairments (e.g., timing and frequency offsets, I/Q imbalance)
which we do not address here since they affect any communica-
tion system and are not specific to CVP.

A. Power Normalization

In order to satisfy the transmit power constraint, the trans-
mitter in CVP must apply a channel- and data-dependent
transmit power normalization. The corresponding power
scaling factor must be known to the receivers in order to be
able to recover the transmitted data. Under a long-term average
transmit power constraint in the ergodic regime this is no issue:
with increasing transmission block length the power scaling
factor here converges to a fixed limit [6] which can be assumed
to be known by the receivers. However, in a quasi-static fading
regime or under a short-term power constraint, the power
scaling factor must be communicated to the receivers prior to
data transmission. The transmission of the power scaling factor
obviously cannot be performed with CVP itself and hence
necessitates the implementation of a second transmission mode
which is undesirable.

We address this problem by proposing in Section III a novel
VP precoding scheme referred to as transmit outage precoding
(TOP). TOP is a modification of CVP that uses a transmit
power scaling factor which is agreed upon in advance and
hence known to the receivers. In some time slots, the prear-
ranged power scaling would lead to a violation of the power
constraint, i.e., the transmit power is not sufficient to invert
the channel; this situation is referred to as transmit outage.
Since for a transmit outage it is likely that the data cannot be
recovered anyways, TOP refrains from transmitting in such
cases. We will show that in spite of intentionally discarding
some data, TOP is able to achieve a performance similar to that
of genie-aided (i.e., unrealizable) CVP (see Sections III, IV,
and VI).

1053-587X/$26.00 © 2010 IEEE



316 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011

B. Dynamic Range

The vector perturbation underlying CVP and TOP results
in an infinitely large symbol constellation in which each data
vector is represented by an equivalence class. The actual con-
stellation point from the equivalence class to be transmitted
is chosen to minimize the unnormalized transmit power. The
use of an infinitely large constellation imposes unrealistic
requirements on the dynamic range of the transceiver chain (a
similar problem is encountered in Tomlinson-Harashima pre-
coding [8]). Specifically, a finite dynamic range causes an error
floor in CVP and TOP. We propose to resolve this problem by
using a restricted set of perturbation vectors (see Section V).
This modification, referred to as restricted vector perturbation
(RVP) in what follows, is applicable to CVP and TOP.

C. Diversity Order and Imperfect CSI

The accuracy of the CSI at the transmitter is crucial for the
performance of any precoding scheme. Understanding its im-
pact analytically is thus important for system design [9]. For
the MIMO broadcast channel, it has been shown that the sum
capacity at high signal-to-noise ratio (SNR) deteriorates signifi-
cantly if the transmitter has imperfect CSI that does not improve
with SNR [10]. Robust transceiver designs [11], [12] are an at-
tempt to maintain a certain performance even if the CSI is af-
fected by errors.

As an analytical contribution, we completely characterize the
diversity order of CVP and TOP in quasi-static fading under
a variety of CSI conditions, both for unrestricted perturbations
(Section IV) and for RVP (Section V-A). These results show that
with increasing SNR the CSI mismatch must vanish at least as
fast as the reciprocal SNR in order for any of the VP schemes
to achieve the same diversity as under perfect CSI. A result in
a similar spirit showed that in order to achieve the full multi-
plexing gain with zero-forcing precoding in an ergodic setting,
the channel estimation error must scale as the inverse of SNR
[13]. The effect of imperfect CSI on CVP and on spatial Tom-
linson-Harashima precoding (which can be viewed as approxi-
mation to CVP) was investigated in [14] and [15], [16], respec-
tively. Different from those works, our primary aim herein is to
obtain closed form expressions for the diversity of CVP.

D. Paper Outline

The rest of the paper is organized as follows. In Section II we
present the system model, discuss the CSI model, and review
CVP. TOP is introduced in Section III and the performance of
TOP and CVP is discussed in Section IV. RVP is proposed in
Section V. In Sections VI and VII, we present simulation results
and provide conclusions, respectively. Three appendices offer
proofs of the main analytical results.

II. PRELIMINARIES

A. System Model

We consider a multiuser communication system operating in
the downlink (cf. [5] and [7]). The base station is equipped with

transmit antennas and each of the noncoopera-
tive users has a single receive antenna. Transmission happens
in blocks of duration . The symbol vectors transmitted in the
time slots are denoted as
where is the signal transmitted from the antenna in
the time slot. The multiple-input single-output channels ,

, from the base station to the individual users
are assumed quasi-static, i.e., is random but remains con-
stant within a block [17]. In the time slot, the user
receives ; here, de-
notes spatially and temporally white complex Gaussian noise.
By collecting the receive values of all users in a receive vector

, the overall channel input-output rela-
tion is given by

(1)

where and . For
the performance analysis and numerical simulations, we will
assume the elements of the channel matrix to be
i.i.d. Rayleigh distributed, i.e., .

We impose a per-block short-term power constraint (cf. [18]
and [19]) that requires

(2)

This is different from the less restrictive long-term average
power constraint1 (see [5]–[7]), which can
be viewed as limiting case of (2) obtained for . The
instantaneous (peak) power constraint is obtained
as a special case of (2) with . This instantaneous power
constraint is different from the per-antenna power constraint

which is addressed in [20] (see also the con-
clusions section). Based on the power constraint (2), we define
the nominal SNR as

(3)

B. CSI Model

We assume that the transmitter (base station) is in possession
of imperfect CSI, given by the “noisy” channel matrix

(4)

The CSI accuracy is characterized by the error matrix which
is assumed to be independent of . We model as complex
Gaussian with i.i.d. elements, i.e.

(5)

With this model, the error variance depends on the nominal
SNR unless . The parameters and are
used to capture a variety of scenarios. In particular, perfect CSI

1Here, � ��� denotes expectation.
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is reobtained in the limit . Two special cases of (5) which
are of particular interest are described next.

1) Reciprocal Channels: In reciprocal systems (e.g., time di-
vision duplex), uplink and downlink channel are identical [21].
Here, the downlink channel can be estimated using pilots sent
over the uplink channel and the CSI error matrix models the
channel estimation error which depends on the noise level at
the base station and on the pilot power. If the pilot power in-
creases proportionally to , the channel estimation error scales
inversely proportional with increasing nominal SNR; this case
is captured by (5) with .

2) CSI Feedback: For nonreciprocal systems, the channel
matrix is usually estimated using pilot transmissions in the
downlink; a quantized version of the channel estimate is then
sent back to the base station via a dedicated feedback channel.
In such a scenario, the CSI mismatch will be dominated by
errors resulting from quantization and from feedback delay,
which causes the CSI at the base station to be outdated if the
channel coherence time is smaller than the feedback delay
[22]. The channel coherence time and often also the quantizer
resolution do not depend on the nominal SNR. This situation
is modeled by (5) with .

C. Review of CVP

We next rephrase CVP as introduced in [5]–[7] for the case
of imperfect CSI.

1) Base-Station Processing: At each time instant ,
the base station transmits a length- symbol vector

whose elements are independent,
uniformly distributed over the symbol alphabet , and normal-
ized such that . The transmit vector in (1) is
then obtained as [6]

(6)

Here, is a real-valued scalar factor used for transmit power
normalization; denotes the right pseudo
inverse of used to preequalize the channel; is a per-
turbation vector whose elements are Gaussian integers2; and
is a real-valued translation parameter chosen such that
forms an extended symbol alphabet consisting of nonoverlap-
ping copies of (cf. [6]). The idea underlying (6) is to pree-
qualize the channel by precoding with the pseudo inverse and to
perturb the symbol vector so that is better matched to
the channel. This can be viewed as communicating by some
other vector in the equivalence class . We note that
zero-forcing (ZF) precoding [5] corresponds to (6) without per-
turbation, i.e., .

The perturbation vector is obtained according to [6]

(7)

This particular choice of is further explained in Section II-D.
The minimization problem in (7) can be efficiently solved using
the sphere decoding algorithm [6], [23] (in this context also re-
ferred to as sphere encoding [6]). Even though the complexity

2The set of Gaussian integers � � � comprises all complex numbers
with integer real and imaginary parts.

of the sphere decoder is exponential in [24], it performs fa-
vorably for moderate .

The power normalization factor is chosen according to

with (8)

With this choice of , (2) is satisfied with equality.
2) Receiver Processing: Under the assumption of perfect

CSI the receive signal of user in the time-slot
is given by

(9)

where denotes the component of . The receiver can
thus detect by multiplying the received signal by ,
followed by a modulo- operation to remove and quanti-
zation to the symbol alphabet (cf. [6]).

We assume throughout that the receiver acts similarly in the
case of imperfect CSI. In particular, the receiver scales the
received signals according to

(10)

(the factor will be made explicit in Section II-D) and obtains
an estimate of according to

(11)

Here, denotes the
modulo operation and denotes quantization to the
closest symbol. The detector in (11) has very low complexity
and does not require user cooperation, both of which are major
advantages of VP precoding.

3) Regularized Precoding: Regularizing the pseudo inverse
in (6) provides a slight performance improvement in CVP [5],
[25]. However, as is apparent from [25, eq. (23)], such a regu-
larization will not eliminate the need to communicate a channel
and data dependent power scaling factor nor will it limit the dy-
namic range of the perturbed transmit symbols. For these rea-
sons, and in order not to obscure our main arguments, we only
consider nonregularized precoding as described earlier.

D. Performance of CVP

In order to assess the performance of CVP under imperfect
CSI, we consider in (10) conditioned on and . Since

where and are statistically independent
Gaussian matrices, and are jointly Gaussian. Conditioned
on , has a Gaussian distribution with mean
and statistically independent elements of variance
(cf. [26, Th. 10.2]). We can therefore write3

(12)

where is independent of .

3In [27] the expression� � ���� was used in place of (12) based on the
incorrect assumption that� and �� are independent. However, this mistake does
not affect the results of the diversity analysis presented in [27].
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Since (cf. (10)), inserting (6) into (1) and using
(12) results in

By choosing the scaling factor as

(13)

the multiplicative factor in the signal part is removed
and we obtain

(14)

Here, the interference-plus-noise term is given by

(15)

Throughout the rest of the paper, we assume that is chosen
according to (13)4. We note that in the case of perfect CSI (i.e.,

) the normalization factor becomes [cf. (9)]
and the multiuser interference term vanishes.

Based on (15), it can be shown that the distribution of
conditioned on and is i.i.d. zero mean Gaussian, i.e.

with the interference-plus-noise power given by

(16)

where and are defined in (8) and is the nominal SNR in
(3).

A common approach (see [28]) to assess the high SNR be-
havior and the diversity order of a system is to consider the
probability that the noise-plus-interference power at the detector
input exceed a given threshold. The argument5 is that detection
errors are unlikely when and likely when . From
(16) it follows that either if (in which case
the system is interference limited) or if (in which case
the system is noise limited). When and , noise
and interference are small and the detector is likely to produce
correct symbol decisions.

The above argument shows that CVP becomes sensitive to
CSI imperfections whenever the unnormalized instantaneous

4The inclusion of �� � �� in (13) removes a bias which would otherwise be
present in (14) due to the imperfect CSI.

5For the diversity order, the argument can be made mathematically rigorous
as outlined in [28, Ch. 3]. More details are given in Section IV.

transmit power is large. Similarly, the rescaling of the re-
ceive signal amplifies the noise if is large. These observations
serve as a basis for our proposed precoding strategy. However,
before discussing this in detail we reconsider the critical issues
of CVP mentioned in the introduction.

E. Critical Issues With CVP

1) Power Normalization: As made apparent by (13), the re-
ceive signal scaling (10) requires knowledge of the power nor-
malization factor . Since depends on the channel realiza-
tion and on the data, it must be communicated to the receivers
by the base station via an auxiliary transmission. Since CVP
presupposes knowledge of at the receivers, it cannot be used
for broadcasting to the receivers. Therefore, the feedforward
of requires an additional transmission scheme, which is un-
desirable. In addition, the feedforward transmission requires a
quantization of which—regardless of the quantization code-
book—introduces an error floor [29]. In case of large block
lengths, pilot-aided or blind estimation of the power scaling is
a conceivable alternative to feedforward transmission but suf-
fers from the same limitations (error floor). To alleviate these
problems, the precoding scheme proposed in Section III uses
a power normalization factor that is agreed upon in advance,
thereby obviating the need for auxiliary feedforward transmis-
sions or estimation of the power normalization.

2) Dynamic Range: Another problem with CVP is its large
dynamic range at the receivers. Specifically, the desired part

of the scaled receive signal [cf. (10) and
(14)] can have arbitrarily large magnitude due to the perturba-
tion vector . This is clearly a problem for practical im-
plementations of CVP, where amplifiers, A/D converters, DSPs,
etc. have a limited dynamic range. This problem is not unique
to CVP and is seen in other precoding schemes such as Tom-
linson-Harashima precoding [8].

We will show in Section V-B that CVP indeed occasionally
uses arbitrarily large perturbations . Since CVP implemen-
tations with finite dynamic range incur errors when

is large (due to clipping etc.), an undesired error floor
results again. In Section V, we propose a VP precoder that uses
a limited set of perturbation vectors and avoids an error floor.

III. TRANSMIT OUTAGE PRECODING

A. Basic Idea

In order to avoid the need for (error-prone) feedforward
transmission or estimation of the channel- and data-dependent
normalization factor , we propose a new precoding strategy
termed transmit outage precoding (TOP) (see also [30]). TOP
is a modification of CVP where the transmit signal is given by

for

for
(17)

with as defined in (8); here, is a design parameter that
is agreed upon in advance and hence independent of channel
and data and known in advance by the receivers. The precoding
strategy in (17) is straightforwardly shown to satisfy the short-
term power constraint (2). In particular, TOP will always use
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less transmit power than CVP. The receiver processing is as-
sumed to be the same as with CVP, with the important differ-
ence that is replaced by , resulting in a receive signal scaling
factor of

We next explain the rationale underlying (17).
1) Outage Case: The case , i.e., large average unnor-

malized transmit power, corresponds to unfavorable channel re-
alizations (large channel condition number). Here, TOP declares
a transmit outage and discards the data by sending nothing (i.e.,

). Since the receivers are unaware of the transmit outage,
they attempt to detect that data, which is highly likely to re-
sult in incorrect symbol decisions (the receive signal consists of
noise only). While seemingly detrimental to the performance of
the proposed scheme, this event must be viewed in relation to
what will happen with CVP. In particular, when is large ei-
ther or [note that for some , cf.
(8)] so that according to Section II-D detection errors are highly
probable with CVP as well. Therefore, the fact that TOP refrains
from transmitting whenever is large does not seriously affect
the system performance.

2) Non-Outage Case: Under favorable channel con-
ditions we have . Here, the VP-precoded data is
transmitted using the prearranged power normalization .
The average transmit power within a block in this case is

, thus satisfying the transmit
power constraint (2). A similar derivation as in Section II-D
shows that the noise-plus-interference power at the input of the
detectors in this case equals

(18)

The inference part equals that of CVP which is natural as the
signal-to-self-interference power ratio is independent of the
transmit power. The power of the noise part is however larger
than for CVP. Still, as long as , the noise component will
contribute only marginally to the overall interference-plus-noise
power.

The arguments above will be made rigorous in Section IV by
showing that TOP has the same diversity order as CVP, provided
that is chosen appropriately. We thus next discuss the optimal
choice of the power threshold .

B. Threshold Optimization

Let denote the outage event that and denote
its complement. The choice of influences the transmit outage
probability , but it also influence the noise-plus-inter-
ference power [cf. (18)] and thus the error probability in
the non-outage case. A small outage probability requires large

, whereas small non-outage error probability requires small .
Thus, the overall performance of TOP is a tradeoff between two
opposite effects.

The optimal choice of in the sense of minimizing the bit
error probability is

(19)

where denotes the uncoded bit error probability for a
particular . The bit error probability can be written as

(20)

(21)

where the second line follows from and the fact
that in the outage case where the receivers will guess
only half of the bits correctly, i.e., . Since
in practice we are interested in small bit error rates, it follows
that must be small or, equivalently, , thus
implying that the upper bound (21) is tight (at least for close to

). The two terms in (21) are depicted in Fig. 1 along with the
bit error probability, highlighting the tradeoff between
and .

As part of the system design, finding requires Monte-Carlo
simulation to determine . Note that is a function of
the nominal SNR and grows with increasing (see Fig. 1).
In the low-SNR regime, detection is likely to fail, and therefore
a larger number of outages can be tolerated, corresponding to
small . Since detection is likely to be correct in the high-SNR
regime, only few outages are acceptable and hence is large.
As an alternative, in Appendix A we provide an approximation
of that is valid for any threshold , CSI accuracy ,
and SNR . This approximation allows for predicting and op-
timizing the performance of TOP quickly, without the need to
perform Monte-Carlo simulations repeatedly anew.

C. Complexity Reduction

One of the advantages of VP precoding is that most of the
computational complexity is shifted to the base station, whereas
the receiver complexity is extremely low. The base station com-
plexity in turn is dominated by the search for the optimal pertur-
bation vector [cf. (7)] that minimizes the unnormalized transmit
power . As noted previously, the most promising algorithm
for this purpose is the sphere decoding algorithm [23], in this
context also referred to as sphere encoding [6].

In the case of an instantaneous power constraint ,
there is an interesting complexity reduction for TOP. A
promising search strategy of the transmitter is to find an arbi-
trary vector for which

or to establish that no such vector exists (the outage case). The
sphere decoder solves (7) by enumerating all perturbation vec-
tors that satisfy [23]

(22)
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Fig. 1. Bit error probability ���� � �� (solid), outage term ���� ��� (dashed), and non-outage error probability ���� � �� � (dash-dotted) versus threshold �
for a 6� 6 system with 4-QAM in i.i.d. Rayleigh fading with perfect CSI and SNR � � ���� ��� ��� �	. The minima of ���� � �� are marked with filled circles.

where is the initial search radius that needs to be chosen suit-
ably. In the context of TOP, the optimal initial search radius is
a priori known to be . If the sphere decoder doesn’t
find a perturbation vector satisfying (22) with this choice of ,
a transmit outage is declared. In addition, the sphere decoder
may terminate early as soon as the first admissible perturba-
tion vector satisfying (22) is found. If the sphere decoder is
implemented according to the Schnorr-Euchner strategy [23],
[31], early termination and the choice provide a sig-
nificant complexity reduction without noticeably increasing the
probability of error. This is particularly interesting for perfect
transmit-side CSI , where the proposed search strategy
does not imply any performance penalty at all. This may be seen
by noting that the noise power equals , inde-
pendently of the perturbation vector in the case of perfect
CSI and no outage. We note that for imperfect CSI the transmit
power resulting with this reduced-complexity implementation
is in general larger than for TOP using according to (7), but
still smaller than for CVP. Therefore, the increased interference
power in (18) typically leads to a small performance degrada-
tion.

Fig. 2 confirms that the complexity of the reduced-complexity
implementation is indeed much smaller than for the standard
sphere decoder (the graph depicts the mean and the 99% per-
centile of the number of nodes visited by the sphere decoder
versus the SNR ). This example uses [cf. (19)] and

. In contrast to the standard sphere decoder, the number
of nodes visited by the reduced-complexity implementation de-
pends on the SNR since depends on . The complexity re-
duction tends to be particularly pronounced for low SNR (here,
the initial search radius is small which allows the sphere de-
coder to aggressively prune the search tree) and for high SNR
(here, an admissible perturbation vector is quickly found since
the search radius is large).

For imperfect CSI , simulation results in Section VI
show that the performance degradation due to increased inter-

Fig. 2. Mean (solid) and 99% percentile (dash-dotted) of the number of nodes
visited by the standard sphere decoder (’�’) and by the reduced-complexity
implementation (’�’) versus the SNR � for a 6� 6 system with 4-QAM in i.i.d.
Rayleigh fading.

ference power is often small. Similar strategies for reducing the
complexity are possible for block lengths , although the
complexity savings are not as large in these cases.

IV. DIVERSITY ANALYSIS

In this section we characterize the diversity order of TOP and
CVP under the short-term power constraint. In particular, we
demonstrate that TOP achieves the same diversity as CVP. For
technical reasons, we impose the condition that , which
is satisfied for most common symbol alphabets.

A. Main Diversity Result

The diversity order is defined as

(23)
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where denotes the bit error probability. We note that the
diversity order remains unchanged if the bit error probability
in (23) is replaced by the symbol or block error probability. For
reasons of symmetry, the same is true if the diversity order is
defined on a per-user basis (all users have identical individual
error probabilities). We recall that the variance of the elements
of the CSI error matrix is given by [cf.
(5)].

Theorem 1: The diversity orders of CVP and of TOP with
chosen according to (19) are given by

where characterizes the CSI accuracy.
This result reveals that the critical parameter determining di-

versity order of CVP and TOP is the exponent in the CSI
error variance. Specifically, imperfect CSI degrades the diver-
sity order unless .

Proof of Theorem 1

To prove Theorem 1, note that in the outage case TOP cannot
perform better than CVP and in the non-outage case (i.e., when

) (16) and (18) imply . Thus, the error
probability of CVP must be smaller than that of TOP, regardless
of how is chosen. This in turn implies that

(24)

In order to establish Theorem 1, we thus only need to show that
constitutes a lower bound on the diversity of TOP

and an upper bound on the diversity of CVP. The average un-
normalized transmit power will turn out to be a key quantity
in our proof (see also Section II-D). We hence provide the fol-
lowing lemma whose proof is given in Appendix A.

Lemma 1: The tail probability of the average unnormalized
transmit power defined in (8) decays according to

for any constants and .
For notational convenience, we will in the following use the
notation (cf. [28]) where is short for

(25)

The symbols and are defined similarly. In this notation, the
statement of Lemma 1 becomes . We
use the notation for the case where vanishes
exponentially fast with increasing .

1) Top Diversity Lower Bound: To show that is
a lower bound for the diversity of TOP, we need to establish a
corresponding upper bound on the error probability .
We note that for , the statement

is trivially true and we can thus restrict to . From the
definition of in (19) we have

(26)

for arbitrary . Furthermore

(27)

where we used and . By setting
with , Lemma 1 implies

(28)

In order to bound the second term in (27) we consider the noise-
plus-interference power of TOP [cf. (18)] under the condition
imposed by , i.e., . Since and

, it follows for that

for constants , , and . Due to the Gaussianity of the inter-
ference and noise we may upper bound the second term in (27)
according to

where denotes the Q-function, and , , and denote
positive constellation-dependent constants. Here, we used the
fact that the bit error probability can be bounded by the symbol
error probability, e.g., . Since the
tails of the Gaussian distribution decay exponentially, it follows
that

(29)

whenever as , i.e., when .
Combining (26)–(29), it follows that for any

Considering the limit , we obtain

which confirms the lower bound

(30)

2) CVP Diversity Upper Bound: To establish
as upper bound for the CVP diversity, we need a lower bound
for the error probability. Specifically, we have for any

(31)

With where , the event corresponds to
, in which case the noise-plus-interference power of CVP

in (16) satisfies

(32)
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Fig. 3. Illustration of error mechanism resulting from receive-side clipping.

for some , where . The first inequality follows
from for some and . For any ,
(32) shows that as , which in turn implies
that is bounded away from zero. As a consequence,
we conclude with (31) and Lemma 1 that

for any . Considering the limit as ,
it follows that

and consequently

(33)

Combining (24), (30), and (33) establishes Theorem 1.

V. RESTRICTED VP PRECODING

As noted in Section II-E, CVP and TOP involve unbounded
signal magnitudes at the receivers. We address this problem in
the following.

A. Restricted Vector Perturbation

We first propose a straightforward method to limit the dy-
namic range that we will refer to as restricted vector perturba-
tion (RVP). RVP is similar in spirit to the method developed in
[8] in the context of Tomlinson-Harashima precoding. The idea
is to consider a predetermined finite set of perturba-
tion vectors at the transmitter [cf. (7)]

(34)

We note that (34) can again be solved efficiently using sphere
encoding; the finiteness of can be additionally exploited to
reduce the complexity of the algorithm. The set is chosen in
advance so that any combination of transmit symbol
and perturbation remains well within the dynamic range of the
receivers. We emphasize that both CVP and TOP are straightfor-
wardly augmented using RVP. For CVP, only the power scaling
needs to be modified accordingly as

where (35)

With TOP, an outage is declared for , with suitably chosen
. For both CVP and TOP, the receive side processing remains

unchanged.
The reduced dynamic range of RVP is bought by an increase

of the noise-plus-interference power that results from .

This leads to an increased error probability, especially when
is small. In fact, as stated by the next theorem, the restriction
of the perturbation set results in a loss of the entire diversity
advantage of VP precoding over ZF precoding.

Theorem 2: The diversity order of CVP and TOP using RVP
with arbitrary finite according to (34) equals

where characterizes the CSI accuracy as in (5).
The proof of this theorem is completely analogous to

Section IV-B, with the only difference being that Lemma 1 is
replaced with the following result, whose proof can be found in
Appendix C.

Lemma 2: The tail probability of the average unnormalized
transmit power defined in (35) decays according to

for any constants and .
Since Theorem 2 holds for arbitrary finite , the diversity

order of RVP is the same as that of ZF precoding, which corre-
sponds to . Although this result may seem very pes-
simistic, our simulation results reveal that for practical SNR the
performance degradation often is small and the diversity result
kicks in only at quite high SNR (see Section VI). Furthermore,
we note that RVP has the potential to improve the peak-to-av-
erage power ratio (cf. [8]).

B. Impact of Limited Dynamic Range on CVP and TOP

We next argue that with limited dynamic range both CVP and
TOP suffer from an error floor if RVP is not used. Let

with model the finite dynamic range
at the receivers. If the receive signal exceeds the receiver
dynamic range in the sense that , a detection error will
occur with nonzero probability even without noise. We provide
a simple and intuitive example illustrating why this is the case.

Example: For simplicity, we assume a real-valued
signal , a 4-PAM alphabet , and

with . The receiver truncates the
signal in (10) to the range prior to detection (see
Fig. 3). Whenever , the signal is clipped to

, depending on the sign of , leading to the decisions
. Hence, if the transmitted symbol is in the interior

of the constellation (i.e., ), the clipping will
always cause in an incorrect decision. A similar argument that
identifies constellation points for which clipping always causes
a detection error can be made for arbitrary constellations and
clipping thresholds .
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Fig. 4. (a) BER versus SNR for TOP, TOP with approximately optimal threshold, and CVP. (b) Average transmit power normalized by the available power �
versus SNR for TOP and CVP (� � � � �, 4-QAM, and perfect CSI).

To establish the existence of an error floor, we show by way
of contradiction that with nonzero probability,
i.e., the receive signal will occasionally exceed the dynamic
range even in the absence of noise and thus a certain fraction of
errors will occur even when SNR tends to infinity. To this end,
assume that the statement is false, i.e., for all

obtained according to (7). This means, that the perturbation
vectors have to come from a finite set and we would have
obtained the same results with RVP based on this specific so
that . In this case, both Lemma 1 and Lemma 2 would si-
multaneously apply which is impossible. Thus, the assumption

cannot be true, i.e., we have
with nonzero probability for any . In other words, the un-
restricted VP precoders will occasionally use arbitrarily large
perturbations.

VI. SIMULATION RESULTS

In order to illustrate the theoretical results obtained in the pre-
vious sections and to assess the performance of TOP and RVP,
we next present numerical simulation results. TOP results are
based on Monte Carlo evaluations of the optimal threshold
(cf. Section III-B). Unless stated otherwise, we consider

, a 4-QAM symbol alphabet, and block length .
Furthermore, all CVP results were obtained with the unrealistic
assumption that the power normalization factor is perfectly
known at the receivers.

A. Perfect CSI

Fig. 4(a) shows the bit error rate (BER) versus nominal SNR
for TOP under the assumption of perfect CSI and

infinite dynamic range. The BER of CVP with perfect knowl-
edge of at the receivers is plotted as an ultimate (but unre-
alizable) benchmark. We observe that TOP has a 5 dB perfor-
mance loss compared to CVP. However, we stress that TOP uses
a prearranged power normalization factor and uses only a frac-
tion of the transmit power , all of which is in stark contrast
to CVP. For comparison, we also show TOP with the approxi-
mately optimal threshold (labeled ‘TOP approx’) that is ob-
tained according to Appendix A. It is seen that using instead

of induces virtually no performance penalty. The power sav-
ings achieved with TOP are illustrated in Fig. 4(b) which depicts
the average transmit power normalized by the available power

versus the SNR. It is seen that here TOP consumes at most
60% (and for a wide SNR range significantly less) of the av-
erage transmit power spent by CVP.

B. Imperfect CSI

Fig. 5(a) depicts BER versus SNR for TOP and CVP for the
case of imperfect CSI ( , ) and a block length of

. Results for TOP using the reduced-complexity sphere
encoder (labeled ’TOP-RC’) for are also included (here,
the power constraint is more stringent). Both versions of TOP
are shown with optimal threshold and approximately optimal
threshold. In this imperfect CSI scenario, all implementations
of TOP achieve a performance very close to that of CVP. This
improvement is due to the fact that the overall system now is to
a large extent interference limited and the interference power
in TOP and CVP is identical [see (16) and (18)]. The figure
further confirms that performs as well as and that the
reduced-complexity implementation of TOP results only in a
small performance loss.

The behavior of both CVP and TOP changes dramatically for
imperfect CSI with and , see Fig. 5(b). Here,
we observe an error floor for both schemes in accordance with
Theorem 1 . This confirms that poor CSI
accuracy can have a disastrous effect on the performance of any
VP precoding scheme.

C. TOP/CVP With RVP

We next illustrate the performance of VP precoding for finite
dynamic range. The clipping threshold was which en-
tails the restricted perturbation set
of size .

For and perfect CSI, Fig. 6(a) shows BER
versus nominal SNR for plain CVP and CVP with RVP (here,

). For comparison, we show CVP with infinite
dynamic range (labeled ’CVP inf’) as ultimate benchmark
and ZF precoding as opposite extreme with no perturbation.
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Fig. 5. BER versus SNR for TOP, TOP with approximately optimal threshold,
and CVP for imperfect CSI and block length� � �� (� � � � �, 4-QAM).
(a) � � � and � � ��. (b) � � � and � � ����. For comparison, (a) also
shows reduced-complexity TOP (’TOP-RC’) with optimal and approximately
optimal threshold and block length � � �.

All CVP schemes are based on perfect knowledge of at
the receivers. It is seen that CVP with RVP (diversity order
1) clearly outperforms plain CVP which—in agreement with
Section V-B—features an error floor (diversity order 0) and
eventually performs even worse than ZF precoding.

Similar observations apply to the case , shown
in Fig. 6(b). The main difference to the case
is the fact that for the BER range shown, CVP with RVP now
performs within 0.5 dB of CVP with infinite dynamic range,
i.e., the diversity order kicks in only at much higher
SNR. This can be partly attributed to the fact that for the
size of the perturbation set is significantly larger (i.e.,

).
Finally, Fig. 7 illustrates the performance of TOP using RVP

and of CVP under finite dynamic range and imperfect CSI
for . For comparison, CVP with in-

finite dynamic range is also shown. At small SNR, TOP per-
forms close to CVP. At high SNR, TOP clearly outperforms
CVP under finite dynamic range (which again shows an error
floor) and approaches the performance achieved by CVP with
infinite dynamic range. We conclude that for practically rele-
vant SNRs, TOP-RVP performs almost as well as CVP without

Fig. 6. BER versus SNR for CVP, CVP with RVP, and ZF precoding, all with
finite dynamic range, and for CVP with infinite dynamic range (4-QAM, perfect
CSI). (a) � � � � �. (b) � � � � �.

requiring the unrealistic assumptions of perfectly known power
normalization and infinite dynamic range.

VII. CONCLUSION

We considered vector perturbation precoding for a
quasi-static MIMO downlink multiuser system. We identi-
fied a number of practical problems of vector perturbation
schemes presented so far in the literature and proposed cor-
responding solutions. In particular, we introduced a novel
scheme termed transmit outage precoding (TOP) which does
not require the receivers to know a channel-dependent transmit
power normalization factor. This was accomplished by al-
lowing transmit outages in case of bad channel realizations,
where power is saved by discarding the data to be transmitted.
We further modified TOP and conventional vector perturbation
precoding (CVP) by restricting the perturbation set; this avoids
that the precoding schemes break down in practical implemen-
tations with finite dynamic range at the receivers. A theoretical
analysis of the diversity order was provided and numerical
results obtained by simulations illustrated the performance of
our precoding scheme under a variety of CSI models.

Determining whether there is a straight-line approximation
for the error probability of CVP and TOP at high SNR and, if
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Fig. 7. BER versus SNR for TOP using RVP and for CVP with limited dy-
namic range and for CVP with infinite dynamic range (� � � � �, 4-QAM,
imperfect CSI with � � �, � � ��).

yes, obtaining the corresponding SNR shift (or coding gain) in
addition to the diversity order is a challenging topic for future
research since current techniques cannot be straightforwardly
applied. For example, the approach from [32] fails here since
it requires a polynomial approximation of the distribution of an
SNR-independent fading parameter. Unfortunately, with CVP
and TOP under imperfect CSI the fading parameter in (16)
and (18) is SNR-dependent and there is no apparent polynomial
approximation for its distribution.

Another interesting research avenue is the modification of our
results for the case of a per-antenna power constraint where the

norm in the definition of in (8) is replaced by the norm.
The optimization of the perturbation vector can here be achieved
using the -sphere decoder [20] instead of the standard sphere
decoder. The diversity results of Theorem 1 hold true also for
this case. This follows as a consequence of the following facts:
1) the norm and the norm are equivalent (i.e., their ra-
tios are upper and lower bounded by fixed nonzero constants);
2) the diversity is invariant under constant (i.e., SNR-indepen-
dent) multiplicative changes in the transmit, noise, and inter-
ference powers. However, under a per-antenna power constraint
the performance difference between TOP and CVP at finite SNR
may not be the same as for the total power constraint.

APPENDIX A
APPROXIMATING THE OPTIMAL TOP THRESHOLD

The optimization of the TOP threshold with respect to error
probability according to (19) in general requires Monte Carlo
simulations to obtain . These simulations need to be
repeated for any desired parameter configuration (SNR, CSI ac-
curacy, etc.). In this Appendix, we present an approximation
of which is valid for any , channel accuracy , and
SNR . This approximation induces a corresponding approxi-
mation for the optimal TOP threshold in (19), which can be
easily determined without repeated Monte Carlo simulations.
Our starting point is the expression for the bit error probability in
(20), i.e., . We

will next show how to (approximately) obtain the outage proba-
bility and the non-outage error probability .

Outage Probability: We first consider the outage proba-
bility (equivalently, the complementary cumulative distribution
function of the average unnormalized transmit power ) for the
case of perfect CSI, i.e.,

(36)

The important observation now is that and are identical
in distribution up to a factor, i.e., . This means
that the outage probability for the case of imperfect CSI can be
simply obtained as [cf. (36) with replaced with ]

(37)

This means that needs to be determined only once by
Monte Carlo simulations (for ) and computing the
outage probability for arbitrary CSI accuracy requires only one
function evaluation according to (37).

We note that the perturbation vector in (36) depends on which
precoding scheme is considered, i.e., for TOP we use
and for RVP we use .

Non-Outage Error Probability: The error probability con-
ditioned on no outage can be written as

(38)

Here, denotes the conditional (conditioned on
no outage) probability density function of the interfer-
ence-plus-noise power in a randomly chosen time slot,
given by

(39)

The probability is difficult to evaluate since
and the random variables are statistically dependent, which

implies that also and the no-outage event
are statistically dependent. Therefore, we propose to use the ap-
proximation (which is exact iff ), i.e.

(40)

which in the non-outage case is bounded as with

(41)

With (40), the event is approximately equal to the event
and, hence, (39) can be approxi-

mated for as

(42)

(43)
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where in the second line we again use the function defined
in (36).

A further benefit of using the approximation (40) is that
since the non-outage event

follows necessarily from
(see (41)). The function can again be
easily determined using a single Monte Carlo simulation, and
is independent of the parameters of interest (e.g., CSI accuracy
or operating SNR).

Inserting the above intermediate results into (38) leads to the
approximation

(44)

with

(45)

which can be obtained by numerical integration. For perfect CSI
it can be shown that and
hence the integration (45) is not required in this case.

Approximate Threshold Optimization: Inserting (37), (44),
and (45) into (20) leads to the bit error probability approxima-
tion

(46)

and the corresponding approximately optimal threshold

(47)

Once the functions and have been obtained by one
Monte Carlo simulation each, (46) and (47) can thus be easily
computed for arbitrary parameter choices.

APPENDIX B
PROOF OF LEMMA 1

To prove , we show that
, and .

Lower Bound: We define , which is
strictly positive due to our assumption that6 . By
the definition of the pseudo-inverse, it follows that ,
where denotes the row of and is the natural
basis vector. Thus, for any , we have

where denotes the element of . It follows that

(48)

6We note that a similar but more tedious proof can be given for the case where
� � �.

Since the lower bound is independent of , we also have

and thus a corresponding lower bound for :

(49)

for , where and where we used that
with . Since is -distributed

with degrees of freedom, we have (cf. [28])

(50)

Upper Bound: Inspired by [32], we view as the gen-
erator matrix of a -dimensional lattice in . The covering
radius of this lattice is defined as [33]

The dual lattice is generated by the matrix ; the length of its
shortest lattice vector, also called the first successive minimum,
equals [33]

Using [34, Th. 2.2], it follows that

(51)

We note that [34, Th. 2.2] applies to real-valued lattices, but that
(51) follows directly by considering one complex dimension as
two real valued dimensions.

The definition of the covering radius provides the following
upper bound on :

(52)

This upper bound is again independent of and hence also
applies to ; in view of (51), we thus obtain

(53)

Using this upper bound on , we have

(54)

where and where we again used that
. Applying [32, Lemma 3], to (54) shows that

(55)
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APPENDIX C
PROOF OF LEMMA 2

We establish that and
which implies the statement in

Lemma 2.
Upper Bound: An upper bound on is obtained as

where in the first inequality we used the smallest eigenvalue
of , denoted , and the second inequality exploits the
finiteness of and . It follows that

where in the second step we used [28, eq. (15)], and the obser-
vation that for the variance of is where

is independent of the nominal SNR.
Lower Bound: A lower bound on is given by

(56)

where denotes the eigenvector of associated to the
eigenvalue . Furthermore, the SNR-independent random
variable is defined as

where . Since is finite, the minimum of
is guaranteed to exist and furthermore if and only if
there is a such that . For any given , this
is a zero probability event due to the uniform distribution of
over the unit sphere [35]. It follows that there is some for
which . With (56) we hence obtain

(57)
where we used the statistical independence of and [35].
Applying [28, eq. (15)], to (57) finally yields
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