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Analysis of OBS Burst Assembly Queue with
Renewal Input

Tomasz Hołyński and Muhammad Faisal Hayat

Abstract—Ongoing research in Optical Burst Switching (OBS)
requires more in-depth studies both in theory and in practice
before the technology is realized. In OBS paradigm, traffic from
access networks is groomed at edge OBS nodes in the forms
of large chunks called bursts. This grooming called assembly is
crucial in analyzing the overall performance of OBS networks
as it affects the design of almost all major functions of OBS
nodes. The characteristics of assembled traffic and its effects
on OBS performance have been already extensively studied in
literature. In this work, the assembled traffic is studied using a
transform-based approach, since it is a natural way of analyzing
such processes where random variables are summed. The main
contribution of this paper is formulation of distributions of
burst length and burst inter-departure time in form of Laplace
transforms, which are valid for general independent lengths and
inter-arrival times of assembled packets. The results can be
subsequently inverted analytically or numerically to give full
densities or serve as moment generating functions for partial
characteristics. A simple method for the distribution of the
number of packets in a burst based on discrete Markov chain is
provided. Detailed analytical derivations with numerical results
are presented for Erlangian traffic and verified by simulations
to show good exactness of this approach.

Index Terms—Optical burst switching, burst assembly, hy-
brid assembly, performance modelling, queueing theory, Laplace
transform

I. INTRODUCTION

THERE is an ever increasing demand for transmission
capacity due to increased popularity of new applications

requiring large amounts of data exchange. Dense wavelength
division multiplexing (DWDM) has promised to cater the
needs of future Internet backbones providing huge bandwidth
capacities. From the first generation of optical networks with
point to point connections, through the second generation with
DWDM ring networks, now we are heading towards the third
generation with flexible mesh topologies. Therefore, optical
networks demand a real change in transfer mode of data as the
established packet switching is not realizable in optical domain
in the near future with the current state of technology. Optical
circuit switching in the form of wavelength-routed networks
also cannot provide scalability required to achieve real flexible
mesh networks.

Optical burst switching has been proposed as a new
paradigm a few years back [1] in attempts to pave the
way for an all-optical backbone switching infrastructure. It
incorporates prospects of both coarse-grained optical circuit
switching and fine-grained optical packet switching and is
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considered as implementable solution for future all-optical
networks.

Principles of OBS can be briefly summarized as follows.
The network is divided into two functional domains, the edge
and the core. At the edge, packetized traffic is buffered and
assembled into bursts consisting of many packets. As soon as a
burst is assembled, it is placed into a transmission queue and a
burst control packet is sent out of band over the network along
the path determined by a routing protocol. The burst control
packet configures switching connections in core nodes just for
the time of transmission of the incoming burst. Subsequently,
the burst is transmitted over the core without any nodal delays
and electronic conversion until it reaches an egress node where
disassembly finally takes place. Due to possibility of time
contention among different flows, bursts can be lost at the
core nodes.

The process of assembly results in a modified type of traffic,
a good understanding of which is crucial in practical engineer-
ing of OBS networks as it affects many design parameters and
functions of OBS nodes at both edge and core [2], [3], [4].
From the viewpoint of performance evaluation, characteristics
of this traffic are the main input parameters for the theoretical
analysis of core switches (burst losses, optimization of fiber
delay lines). Therefore, it is important to dispose with at least
approximations of probability distributions of time intervals
between bursts and burst length. In a predominant number
of studies on OBS core (e.g. [5], [6], [7], [8], [9]) these
distributions are assumed to be negative exponential. While
this is true for the inter-burst times, due to superposition of
many independent flows, it is rather unrealistic when burst
length is considered.

Since OBS is still in a pre-deployment phase, one does not
know how large on average bursts should be and what degree
of variability in their length can be tolerated in practice. Long
bursts require more time to be assembled which results in
greater delays for single packets. Moreover, they will certainly
suffer higher losses and degrade performance of the upper
layers due to the need of reordering of the packets delivered
out of sequence [10]. On the other hand, shorter bursts,
generated at higher rate, will cause more control traffic and
unnecessarily load the network.

The analytical tools that can be used to analyze assembly
process are queueing theory, renewal theory or some complex
models which can be evaluated numerically. Analyzing the
assembly process with queueing theoretical approaches is not
straightforward as it does not fall under classical queueing
discipline. It is because an OBS assembly queue is not strictly
a queueing system with a server but it acts rather like a delay
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element without a server and passes accumulated customers in
a batched manner when some criterion is met. Such behavior
may have an analogy but it is not completely mappable to
the batch service nor to gated vacation models. Therefore, we
devise a simple probabilistic technique based on observation of
the development of assembly of a single burst and determine
probabilities that the n-th packet will complete the burst.
Subsequently, referring to the trends from classical queueing
literature, for the distributions of interest we formulate the
solutions in the form of transforms.

Previous studies in this regard have analyzed the assembly
process in detail, with focus on the characteristics of assem-
bled burst lengths [11], [12], [13], the burst inter-departure
times [14], [13], its impact on different aspects of global
network performance, such as link-utilization and blocking
probability at intermediate nodes [3], [4], or a combination of
some of these aspects. However, to the best of our knowledge,
there is no study which have tried to analyzed this burstifica-
tion process with transform-based approach and general input
traffic conditions and only a few studies have paid attention to
the distribution of number of packets in burst and actual delay
distribution experienced by the packets especially for the most
favorite hybrid burst assembly. For example, Zapata et al. [15]
analyzed packet delays but only for non-hybrid mechanisms
and only average and maximum delays have been evaluated
but no other metrics, such as the variance, nor the actual delay
distribution. Rodrigo de Vega et al. [16] also analyzed the
packet delays and compute the delay of the first packet in the
burst, which is upper bound for a packet in burst but do not
mention the delay suffered by other packets in that burst and
they have also not extended their analysis for hybrid assembly.
Hernandez [17] used fixed packet lengths and Poisson arrivals
to find out delay distribution of each packet in a burst. To
our best knowledge, there is no study on the mentioned
probability distributions for general input and general packet
length. This work assumes this generality and aims at study
of two performance metrics that are most relevant for further
analysis of transmission queue and OBS core nodes, namely
burst length and inter-departure time in case of hybrid scheme.
At this stage of our development, we show exemplar solutions
where Erlang distributions of packet length and inter-arrival
time are assumed, mainly due to easiness of their transform
inversion. However, the method can be used also for more
complicated distributions, especially when powerful numerical
inversion techniques are applied [18], [19]. The study of the
delay of n-th packet can be also treated with this method.

The rest of paper is organized as follows. In Section II, the
OBS edge node architecture and burst assembly schemes are
briefly described. The analytical model for burst assembly is
presented in Section III. In Section IV numerical results with
simulations are discussed and Section V concludes the paper.

II. OBS BURST ASSEMBLY

Typically, the edge node consists of a classifier, burst as-
semblers, burst transmission queues, a routing and wavelength
assignment modules and schedulers as shown in Fig.1. Each
burst assembler module maintains one separate queue for each

Fig. 1. General architecture of an OBS edge node.

different destination/egress node. The classifier distributes the
incoming packets, with respect to each packet’s destination
address, into the respective queues of the burst assembly mod-
ules. Based on the burst assembly technique, burst assembler
module then assembles bursts consisting of packets headed
for a specific egress node. After a burst has been aggregated,
the corresponding control packet is generated and sent on the
control channel. The assembled bursts wait for transmission
in the electronic transmission buffers called burst transmission
queues. The decision about scheduling a wavelength channel
and time on which a burst is going to be sent is taken by
the scheduling unit at the edge node. There are three main
schemes that have been categorized in literature for burst
assembly: time-based assembly, length-based assembly and
hybrid assembly.

In time-based assembly [11], after receiving the first packet
in an assembler queue, a timer is started. Packets are collected
in the queue until a defined time-out expires. The collected
packets are then assembled into a burst and sent to the
transmission buffer. The timer is restarted when a new packet
is received in the queue. Therefore in time assembly, bursts are
produced in periodic intervals from a single assembler queue,
however, their sizes may vary depending on the arrival rate. In
length-based assembly [14], [20], packets are collected until
the total length of packets exceeds a defined threshold. The
last packet that makes the total length equal or greater than
threshold triggers the assembly of packets into a burst. There-
fore, this kind of assembly generates bursts of approximately
equal lengths but variable inter-departures.

The two mentioned have are simple to implement but have
the following drawbacks. Monitoring only the time results
in undesirably long bursts in high-load scenario, whereas

Fig. 2. Model of the hybrid assembly queue.
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huge packet delays arise in length-based assembly under low
load condition. These problems are overcome with the hybrid
mechanism that takes into account both criteria. On arrival of
the first packet, the timer is started. The burst is assembled
on the basis of the time-out or length exceedance depending
upon which event happens first, as schematically presented in
Fig. 2. In this work, we have considered the hybrid assembly
as it encompasses the two other strategies as special cases.

III. ANALYTICAL MODELLING

In this section, we develop an analytical model for hybrid
assembly in which we consider a single assembly queue. In
the model, packets destined to this queue arrive from a renewal
process with general gap distribution and the lengths of packets
are general independent random variables. The analysis is
based on the observation of arrivals of subsequent packets
and summation of their lengths to find probability that the
aggregate of n packets exceeds one of the thresholds. Because
of the thresholds, the involved distributions and their Laplace
transforms (LT) are subjected to truncations from the right,
which are here indicated by an auxiliary operator [...]∗.

First, we find the probability mass function (pmf) of the
number of the packets in a burst and derive general Laplace
transforms of burst length and inter-departure time. Then we
proceeds with evaluations in case lengths and arrivals are
Erlang distributed. The quantities and notation used are listed
below.

TABLE I
NOTATION USED IN THE ANALYSIS.

Symbol Description

L packet length (random variable)
TA packet inter-arrival time (random variable)
`o length threshold
to time threshold
fL(`) probability distribution function of packet length
fA(t) probability distribution function of inter-arrival time
ψ(s) Laplace transform of fL(`)
φ(s) Laplace transform of fA(t)
fL,n(`) pdf of the length of n aggregated packets
fA,n(t) pdf of the time up to (n+1)th packet arrival
ψn(s) Laplace transform of fL,n(`)
φn(s) Laplace transform of fA,n(t)
[ψ(s)]∗ Laplace transform of a truncated pdf
qn prob. that n aggregated packets are shorter than `o
rn prob. that time up to (n+1)th packet arrival is less than to
an, bn normalizing probabilities used for truncation of pdfs
pt prob. that a burst is assembled due to time criterion
p` prob. that a burst is assembled due to length criterion
πn pmf of the number of packets in a assembled burst
fBL(`) pdf of length of a assembled burst
fD(t) pdf of burst inter-departure, LT: φD(s)
fex(`) pdf of the part of the burst part which exceeds `o
ψBL(s) Laplace transform of fBL(`)
φD(s) Laplace transform of fD(t)
ψex(s) Laplace transform of fex(t)
φA(s) Laplace transform of burst assembly time

A. Model for general independent traffic
First observation to be made is that under assumption of

stationary renewal input and independence of packet lengths,

the burst assembly is a regenerative process. This happens
due to the fact the timer is reset upon arrival of a first packet
making the past realizations irrelevant for the way the current
burst is completed. That means that analysis of assembly of
a single burst is sufficient for characterization of the whole
process.

The development of hybrid assembly can be followed with
the help of a discrete Markov chain shown in Fig. 3. The state
number represents the number of packets currently aggregated
and the absorbing state stands for the assembly completion.

Pmf of the number of packets in a burst πn

Starting with the state no 1 (first arrival and timer reset),
the transition probabilities can be explained by the following
narration (Fig. 4). The burst will consist of only one packet if
either its length exceeds lo (with probability P{L > lo}) or
the time up to the next packet arrival is greater than to (with
probability P{TA > to}), as shown in Fig. 4a. Since both
events are not disjoint, the probability of their union is

p1 = P{L > lo}+ P{TA > to}
− P{L > lo}P{TA > to}.

With the probability (1 − p1), the burst will consist of at
least two packets. The same reasoning is repeated up to the
nth arrival, upon which one of the thresholds will be exceeded,
as depicted in Fig. 4b. Then, the probability πn that burst
comprises exactly n packets can be read out from the Markov
chain. Then

πn = pn

n−1∏

i=1

(1− pi), (1)

with pn expressed in general by

pn = (1− qn) + (1− rn)− (1− qn)(1− rn), (2)

whereby the auxiliary probabilities qn and rn are calculated
by the following integrals

qn =

`o∫

0

fL,n(`) d`, rn =

to∫

0

fA,n(t) dt. (3)

Derivation of the densities fA,n(t) and fL,n(`) requires sum-
mations of independent random variables that are equivalent to
multiplications of their Laplace transforms. The summations
related with occurrence of the nth packet is done in such a way
that the length of the nth packet (or the inter-arrival between
the nth and (n+1)-th packet) is added to the already aggregated

Fig. 3. Markov chain describing the assembly process
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Fig. 4. Examples of hybrid assembly with lengths and time thresholds: (a)
two possible realizations of assembly of a burst comprising one packet, (b)
assembly of a burst comprising n packets triggered by length exceedance.

portion (or elapsed time) which is truncated at lo (or to). Using
the Laplace transforms ψ(s) = L

{
fL(`)

}
, φ(s) = L

{
fA(t)

}
,

φn(s) = L
{
fA,n(t)

}
and ψn(s) = L

{
fL,n(`)

}
the summa-

tion can be expressed by the following recursive relations

ψ1(s) = ψ(s)

ψn(s) = [ψn−1(s)]
∗ψ(s) for n = 2, 3, ...,∞ (4)

φ1(s) = φ(s)

φn(s) = [φn−1(s)]
∗φ(s) for n = 2, 3, ...,∞, (5)

where the operator [...]∗ denotes the fact that the Laplace
transform is calculated from the density truncated at `o or to.
Understanding of Eq. 4 and 5 is supported by Fig. 5. Usage
of these relations can be greatly simplified by the observation
that [ψn−1(s)]∗ = [ψn−1(s)]∗ and [φn−1(s)]∗ = [φn−1(s)]∗

that leads to the non-recursive expressions

φn(s) = [φn−1(s)]∗φ(s) for n = 1, 2, ...,∞ (6)
ψn(s) = [ψn−1(s)]∗ψ(s) for n = 1, 2, ...,∞. (7)

Finally, calculation of the probabilities qn and rn requires ei-
ther analytical or numerical inversion of the transforms ψn(s)
and φn(s). Note that this operation needs to be performed only
on the intervals [0, `o] or [0, to], respectively. Knowledge of the
probabilities qn and rn enables formulation of the transforms
of burst length and inter-departure time.

Laplace transform of burst length ψBL(s)

Now, we are not interested in the probability for a concrete
number of packets but rather in finding the probabilities that
the assembly is completed by exceeding either of the length- or

Fig. 5. Description of hybrid burst assembly with Laplace transforms.

Fig. 6. Phase diagram for formulation of the Laplace transform of burst
length ψBL(s).

time threshold. We observe that in the former case the length
is composed by a constant portion lo with transform e−s`o and
a random exceeding part with transform ψex(s). In the latter
case, the burst is formed by sum of n packets with distribution
truncated at lo with the transform ψn(s). Considering arrivals
of subsequent packets, we employ the probabilities qn and rn
to construct a phase diagram for the Laplace transform of burst
length shown in Fig. 6. The final result is a weighted sum of
all possible ways the diagram can be traversed:

ψBL(s) =
∞∑

n=1

[ n∏

i=1

qi−1ri−1

]
(1− qn)ψex(s)e−s`o

+

∞∑

n=1

[ n∏

i=1

qiri−1

]
(1− rn)[ψn(s)]∗, (8)

whereby we define q0 = 1 and r0 = 1. The transform ψex(s)
is not easy to derive from the original packet distribution, but
if a burst consists of many packets, it can be successfully
approximated by the well-known transform of residual lifetime
interpreted in the length domain

ψex(s) ≈
1− ψ(s)

sE[L]
. (9)

If the probability that the burst consists of few packets is
relatively small, the effect of this approximation negligible.
Moments of the burst length can be computed in the standard
way

E[BLk] = (−1)k d
kψBL(s)

dsk

∣∣∣
s=0

. (10)

Laplace transform of burst inter-departure time φD(s)

The inter-departure time is equal to the sum of two periods:
the burst assembly time and the period separating the start
of the current timer and the departure of the previous burst.
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Fig. 7. Phase diagram for formulation of the Laplace transform of burst
assembly time φA(s).

Fig. 8. Two possible realisations of burst inter-departure time.

Formulation of the transform of the assembly time, φA(s), is
very similar to that of burst length and is shown by Fig. 7.

If a n-packet-burst is completed due to length criterion, with
probability 1− qn, its assembly time is a sum of n− 1 inter-
arrival times truncated at to( [φn−1(s)]∗ ). A burst completed
due to timer expiry with probability 1− rn, has obviously the
assembly time equal to the time threshold ( e−sto ). Duration of
the second period depends upon the fact whether the previous
burst departed due to length or time exceedance. In the former
case, the separating period is a full inter-arrival time, in the
latter it can be again approximated by residual life time
of TA( [φres(s)] ). Probabilities associated with both events
explained in Fig. 8 equal p` and pt, respectively.

p` =
∞∑

n=1

[ n∏

i=1

qi−1ri−1

]
(1− qn)

pt =
∞∑

n=1

[ n∏

i=1

qiri−1

]
(1− rn).

(11)

Then the transform of burst inter-departure time is

φD(s) = φA(s)
[
p`φ(s) + ptφres(s)

]
, (12)

where

φA(s) =

∞∑

n=1

[ n∏

i=1

qi−1ri−1

]
(1− qn)[φn−1(s)]∗

+
∞∑

n=1

[ n∏

i=1

qiri−1

]
(1− rn)e−sto , (13)

where again q0 = 1 and r0 = 1.

E[T kD] = (−1)k d
kφD(s)

dsk

∣∣∣
s=0

. (14)

All the above considerations are valid for general conditions.

B. Solutions for Erlangian traffic

In the sequel, packet length and inter-arrival time have
Erlangk and Erlangm densities, respectively.

fL(`) =
(kε)k

(k − 1)!
`k−1e−kε` ψ(s) =

(
kε

kε+ s

)k

fA(t) =
(mλ)m

(m− 1)!
tm−1e−mλt φ(s) =

(
mλ

mλ+ s

)m
,

where λ is the mean arrival rate and ε is reciprocal of the
mean packet length

λ =
1

E[TA]
ε =

1

E[L]
. (15)

Calculation of the probabilities qn, rn, πn

Subsequent derivations are shown for the length, that is their
concern the probabilities qn. The procedure is identical for
time and rn. To start with, we express the density resulting
from addition of n− 1 Erlangk variables as

fL,n−1(`) =
(kε)k(n−1)

(k(n− 1)− 1)!
`k(n−1)−1e−kε`. (16)

The Laplace transform of the truncated density fL,n−1(`) can
be calculated as follows 1

[ψn−1(s)]∗=

`o∫

0

1

an−1

(kε)k(n−1)

(k(n− 1)− 1)!
`k(n−1)−1e−kε`e−s`d`

=
1

an−1

(kε)k(n−1)

(kε+ s)k(n−1)
(17)

−
[
(kε)k(n−1)

an−1

k(n−1)−1∑

i=0

(`o)
ie−kε`o

i!(kε+ s)k(n−1)−i

]
e−s`o ,

1In this section, calculation of definite integrals of the type
∫ a
0 x

ne−bx dx
is required. Applying multiple integrations by parts, one obtains

∫ a

0
xne−bx dx =

n!

bn+1

[
1−

n∑

i=0

(ab)i

i!
e−ab

]

See for example [21] on page 670.
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where an−1 is the normalizing factor needed due to truncation
at `o

an−1 =

`o∫

0

(kε)k(n−1)

(k(n− 1)− 1)!
`k(n−1)−1e−kε` d`

= 1−
k(n−1)−1∑

i=0

(kε`o)
i

i!
e−kε`o . (18)

Then

ψn(s) = [ψn−1(s)]∗ψ(s) (19)

=
1

an−1

(kε)kn

(kε+ s)kn

−
[
(kε)kn

an−1

k(n−1)−1∑

i=0

(`o)
ie−kε`o

i!(kε+ s)kn−i

]
e−s`o

To find the probability qn according to Eq. 3, the inversion
of ψn(s) is needed on the interval [0, `o]. By observing that
the second complicated term in Eq. 19 has no contribution to
the inversion below `o (due to the transform shift theorem),
we invert only the first one:

fL,n(`)[0,`o] = L−1
{

1

an−1

(kε)kn

(kε+ s)kn

}

=
1

an−1

(kε)kn

(kn− 1)!
`kn−1e−kε` (20)

and finally

qn =
1

an−1

[
1− e−kε`o

kn−1∑

i=0

(kε`o)
i

i!

]
. (21)

By identical procedure we find rn together with the associated
normalizing factor bn−1.

rn =
1

bn−1

[
1− e−mλto

mn−1∑

i=0

(mλto)
i

i!

]
(22)

The pmf of the number of packets in a burst is now found by
Eq. 1 and 2.

Pdf of burst length fBL(`)

According to Eq. 8, this derivation involves the transforms
ψex(s) and [ψn(s)]

∗. The first one we approximate by the
transform of residual life which is:

ψex(s) ≈
1

k

k∑

j=0

[
kε

(kε+ s)

]j+1

(23)

and the second we readily obtain from Eq. 17 substituting
n−1 by n. After insertion of the transforms into Eq. 8, we can
obtain the pdf of burst length by means of simple analytical

inversion involving the shift property:

fBL(`)=

∞∑

n=1

[ n∏

i=1

qi−1ri−1

]
(1− qn)

×
[
k−1∑

j=0

ε
[
kε(`− `

o
)
]j

j!
e−kε(`−`o )u(`− `o)

]

+
∞∑

n=1

[[ n∏

i=1

qiri−1

]
(1− rn)
an

(kε)kn

(kn− 1)!
`kn−1e−kε`

]
,

(24)

where u(`) is the unit step function.

Pdf of burst inter-departure time fD(t)

This derivation is done by analogy to that of the burst length
pdf, but because of the multiplication of transforms in Eq.12
the final inversion gives rather complicated expression, Eq. 25.
However, there is no practical need for detailed knowledge
of this function. Usually, in an edge node, output streams of
many assembly queues are merged before they are directed to
the transmission buffer(s). Since the single departure stream
is nearly renewal, we infer that the total departure process
tends to a Poisson process as the number of merged streams
increases.

This effect was proved in simulation where a number of
independent assembly queues fed by uncorrelated renewal
inputs was implemented. Fig. 10 shows the results for 10
queues with nearly negative exponential density irrespectively
of the type of packet inter-arrival density assumed.

IV. NUMERICAL EXAMPLES

Fig. 11 shows how the number of packets in a burst varies
when configuration of thresholds is changed in case of purely
Poisson traffic. The probability mass is symmetrically concen-
trated around the mean. Fig. 12 depicts the situation when the
thresholds allow much more packets to be assembled. With

Fig. 9. Superposition of the departure streams from multiple assembly queues
in the edge node.
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fD(t) = p`

∞∑

n=1

[[ n∏

i=1

qi−1ri−1

]
(1−qn)

[
1

bn−1

(mλ)mn

(mk−1)!
t
mn−1

e
−mλt − (mλ)mn

bn−1

m(n−1)−1∑

i=0

tio
i!(mn−i−1)!

(t−to)mn−i−1e−mλ(t−to)u(t−to)
]]

+ p`pt

[
(λ)m

(m−1)!
e
−mλ(t−to)u(t−to)

]
+ pt

∞∑

n=1

[[ n∏

i=1

qi−1ri−1

]
(1−qn)

m∑

j=1

[
1

bn−1

(mλ)m(n−1)+j

(m(n−1) + j−1)!
t
m(n−1)+j−1

e
−mλt (25)

− (mλ)m(n−1)+j

mbn−1

m(n−1)−1∑

i=0

tioe
−mλto

i!(m(n−1)−i+j−1)!
(t−to)m(n−1)−i+j−1

e
−mλ(t−to)u(t−to)

]]
+ p

2
tλ

m−1∑

i=0

[
mλ(t−to)i

i!
e
−mλ(t−to)u(t−to)

]

Fig. 10. Simulation results of the superposition of inter-departures processes
from 10 independent assembly queues with thresholds lo=5 and to=5 for
different distributions of packet inter-arrival times TA, whereby ε=1 and λ=1

decreasing variance of the input distributions, the analyzed
pmf tends to be more and more deterministic.

In Fig.13 density of burst length is plotted for various
settings. All three pdfs exhibit discontinuities at the point
equal to the length threshold. The parts of the curves below
lo represent realizations of assembly due to time-out expiry.
The smoothly decaying peaks, which are approximated by
mixtures residual lifetimes of Erlang distributions, are slightly
inexact compared to simulations in its initial region but this
error vanishes rather fast along the tail.

Fig. 14 presents densities for relatively high number of
packets collected. If lo = 50 and to = 15, we have practically
only time-based assembly and expected manifestation of the
central limit theorem is observed regarding the pdf. In the
converse case, nearly no burst is smaller than lo resulting with
a sharp peak at this point.

V. CONCLUSIONS

We have provided a nearly exact analysis of hybrid burst
assembly. Although the output traffic preserves the renewal
properties of the input, the distributions of interest turned out
to be complex functions of the involved parameters. Neverthe-
less, they give an important insight into the characteristics of
the assembled traffic and could be approximated by simpler
tractable distributions. The presented results show mainly
that the assembled traffic is highly sensitive to the defined
thresholds and if their values are not properly adjusted, the
resulting large variances of lengths can severely degrade the

Fig. 11. Pmf of the number of packets in a burst for various values of
thresholds. Packet lengths and inter-arrival times exponentially distributed
with ε=1 and λ=1.

Fig. 12. Pmf of the number of packets in a burst for Erlangian traffic (length
and time) with different coefficients of variation, ε =1, λ=1, to=25, lo=25.

performance of OBS core nodes. Finally, the distribution of
burst length is very far from negative exponential as it is
commonly assumed in the literature of the subject.
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