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What is all about?

The theoretical understanding and practical prediction of micro-
magnetic phenomena is of utmost importance for the improve-
ment of existing and development of future magnetic based de-
vices like e.g. storage devices, sensors, or magnetic RAM. How-
ever, certain aspects do not need the practical development of
prototypes, but can also be well understood by means of numeri-
cal simulations. This relies on the mathematical modelling of mi-
cromagnetics. In physics, it is well-accepted that the dynamics
of micromagnetics is described best by the nonlinear Landau-
Lifshitz-Gilbert equation (LLG), where time evolution is driven by
the so-called effective field heff .

In [1], a numerical integrator is proposed for a simplified effec-
tive field, where only the so-called exchange energy is reflected.
In our generalization of [1], we further include the cristalline ani-
sotropy energy, the magnetostatic energy, the exterior Zeeman
energy, as well as the magnetostrictive energy. The latter coup-
les LLG with the conservation of momentum equation (CM) and
includes an additional nonlinearity. This coupling was first ana-
lyzed in [2], where a different algorithm was proposed. In our
work, we combine the approaches of [1] and [2]. Besides the
nonlinarities of LLG and CM, numerical difficulties arise from a
non-convex side constraint |m| = 1 in space-time for the magne-
tization and from a certain non-local, but linear integral operator
P involved for the computation of the demagnetization field.

The developed numerical integrator is linear implicit and treats
the known nonlinearities in an effective manner. The key features
of our integrator read as follows:

• First, the implicit part only deals with the higher-order
term stemming from the exchange energy, whereas the
remaining lower-order terms are treated explicitly. In par-
ticular, this includes the numerical computation of the
demagnetization field which is the most time and me-
mory consuming part of the simulation.

• Second, the integrator decouples LLG and CM. Overall
and besides the demagnetization field, this results in the
fact that only two linear systems per timestep have to be
solved.

• Finally and from utmost importance for reliable simulati-
ons, we prove that our integrator is unconditionally con-
vergent as time step-size k and mesh-size h tend to zero.
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LLG Equation

Let Ω denote a magnetic body and m : (0,τ)×Ω → R
3 with |m|= 1 be the magnetization.

With α > 0 the damping parameter, the non-dimensional formulation of LLG reads

mτ =
−1

1+α2 m×heff −
α

1+α2 m× (m×heff)

m(0) = m0 , ∂nm = 0.

The total magnetic field heff is given by

heff(m) = ∆m+DΦ(m)+Pm− f+hσσσ (m).

Here, Pm refers to the demagnetization field which is induced by the magnetostatic Max-
well’s equations, Φ is the anisotropy density, f is the applied field, and ∆m is the exchange.
The term hσσσ(m) denotes the contribution of the magnetostrictive energy which stems from
the conservation of momentum equation

ρutt −∇ ·σσσ = 0,

where σσσ denotes the stress tensor. The vector field u denotes the magnetic displacement
and ρ some material parameters.

Algorithm

• Input: initial m0
h ∈M h,Πhu(0),Πh∂t u(0), damping parameter α, parameter θ = 1

1. Find v j
h ∈ K

m j
h

such that for all ψψψh ∈ K
m j

h

α(v j
h,ψψψh)+

(

(m j
h×v j

h),ψψψh
)

=−
(

∇(m j
h+θkv j

h),∇ψψψh
)

+
(

hexplicit(m
j
h,u

j
h, f),ψψψh

)

2. Define m j+1
h ∈M h nodewise by m j+1

h (z) =
m j

h(z)+kv j
h(z)

|m j
h(z)+kv j

h(z)|3. Find u j+1
h ∈ Vh such that for all ϕϕϕh ∈ Vh

ρ(δ2u j+1
h ,ϕϕϕh)+

(

λλλeεεε(u j+1
h ),εεε(ϕϕϕh)

)

=
(

λλλeεεεm(m j+1
h ),εεε(ϕϕϕh)

)

• Output: discrete solutions v j
h ∈ K

m j
h
,m j

h ∈ Mh and u j
h ∈ Vh

Numerical Experiment
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Numerical Experiment: We consider a micromagnetic
cube with edge-length of 40nmconsisting of a uniaxial
material which is characterized by an exchange con-
stant A= 1 ·10−11 in [J/m] and an anisotropy constant
K = 3.9788 · 104 in [J/m3]. For the initial state, an in-
homogeneous magnetization parallel to the easy axis
e= (0,0,1)was chosen (top). In this example, the mag-
netostrictive effect is neglected and no external field is
applied. The five pictures from top to bottom illustrate
the dynamic behaviour of the magnetization.

Left: Micromagnetic body Ω with alignment of magne-
tization in equilibrium state (vortex state). The color
visualizes the direction of the magnetization relative to
the y-axis.

Right: Variation of the Gibbs Free energy from the be-
ginning of the simulation until equilibrium is reached
under consideration of various values for the damping
parameter α.

Innovations

Numerical Scheme:
• Including total magnetic field
• Time-splitting for more effective computation
• Only two linear systems to be solved per timestep

Analytical Result:
• Unconditional convergence result for introduced numerical scheme
• Effective treatment of magnetostatic energy
• No regularity assumptions on m
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