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What is all about?

The theoretical understanding and practical prediction of micro-
magnetic phenomena is of utmost importance for the improve-
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LLG Equation

Let Q denote a magnetic body and m : (0,T) x Q — R3 with |m| = 1 be the magnetization.
With a > 0 the damping parameter, the non-dimensional formulation of LLG reads

ment of existing and development of future magnetic based de-
vices like e.g. storage devices, sensors, or magnetic RAM. How-
ever, certain aspects do not need the practical development of R f;“::‘ e Mt
prototypes, but can also be well understood by means of numeri- o tepen

cal simulations. This relies on the mathematical modelling of mi-
cromagnetics. In physics, it is well-accepted that the dynamics
of micromagnetics is described best by the nonlinear Landau-
Lifshitz-Gilbert equation (LLG), where time evolution is driven by
the so-called effective field hgg.
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m(0) =mg, dnm=0.
The total magnetic field hes is given by
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In [1], a numerical integrator is proposed for a simplified effec- et (M) = AM + Db(m) + Pm —f -+ b (m).

tive field, where only the so-called exchange energy is reflected.
In our generalization of [1], we further include the cristalline ani-
sotropy energy, the magnetostatic energy, the exterior Zeeman
energy, as well as the magnetostrictive energy. The latter coup-
les LLG with the conservation of momentum equation (CM) and
includes an additional nonlinearity. This coupling was first ana-
lyzed in [2], where a different algorithm was proposed. In our
work, we combine the approaches of [1] and [2]. Besides the
nonlinarities of LLG and CM, numerical difficulties arise from a
non-convex side constraint |m| = 1 in space-time for the magne-
tization and from a certain non-local, but linear integral operator
P involved for the computation of the demagnetization field.

Here, Pm refers to the demagnetization field which is induced by the magnetostatic Max-
well’'s equations, @ is the anisotropy density, f is the applied field, and Am is the exchange.
The term h® (m) denotes the contribution of the magnetostrictive energy which stems from
the conservation of momentum equation

pui —0-0=0,

where o denotes the stress tensor. The vector field u denotes the magnetic displacement
and p some material parameters.

The developed numerical integrator is linear implicit and treats
the known nonlinearities in an effective manner. The key features
of our integrator read as follows:

® First, the implicit part only deals with the higher-order
term stemming from the exchange energy, whereas the
remaining lower-order terms are treated explicitly. In par-
ticular, this includes the numerical computation of the
demagnetization field which is the most time and me-
mory consuming part of the simulation.

Algorithm

 Input: initial mﬁ € Mp,Mpu(0), MKotu(0), damping parameter o, parameter 6 = 1

1. Find vrj] € ‘](mg'] such that for all g, € K’"L
Second, the integrator decouples LLG and CM. Overall avl +((mil xv) — —(O(mJ +6kv)). OWn) + (hayrpiar(mi ul f

and besides the demagnetization field, this results in the (Vi W) + (M > V), ) = = (O(m )> Bn) + (Rexpict (M U, ), W)
fact that only two linear systems per timestep have to be
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solved. 2. Define m}* € ar, nodewise by m!*(z) = %
. 1 mp, (2)+kvp (
Finally and from utmost importance for reliable simulati- 3. Find up"" € Vy, such that for all ¢, € Vi
ons, we prove that our integrator is unconditionally con-
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vergent as time step-size k and mesh-size h tend to zero. p(&2up ™, bn) + (A%e(u)).e(0n)) = (A%E™(m) "), €(0n))

« Output: discrete solutions v}, € ng1 .m}, € Mp and u}, € Vp

Numerical Experiment

equilibrium state for cube (edge-length: 40nm) total energies for different o

Numerical Experiment: We consider a micromagnetic
cube with edge-length of 40nmconsisting of a uniaxial
material which is characterized by an exchange con-
stant A= 1-10~ in [3/m] and an anisotropy constant
K = 3.9788-10% in [J/mP]. For the initial state, an in-
homogeneous magnetization parallel to the easy axis
e=(0,0,1) was chosen (top). In this example, the mag-
netostrictive effect is neglected and no external field is
applied. The five pictures from top to bottom illustrate
the dynamic behaviour of the magnetization.
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L eft: Micromagnetic body Q with alignment of magne-
tization in equilibrium state (vortex state). The color
visualizes the direction of the magnetization relative to
the y-axis.

Right: Variation of the Gibbs Free energy from the be-
ginning of the simulation until equilibrium is reached
under consideration of various values for the damping
parameter a.
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Innovations

References:
Numerical Scheme:
« Including total magnetic field
« Time-splitting for more effective computation
« Only two linear systems to be solved per timestep

Analytical Result:
« Unconditional convergence result for introduced numerical scheme
« Effective treatment of magnetostatic energy
« No regularity assumptions on m
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