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Chapter 7
Electronic Structure of Solids and Surfaces

with WIEN2k

Karlheinz Schwarz and Peter Blaha

Abstract Density functional theory (DFT) in various modifications provides the
basis for studying the electronic structure of solids and surfaces by means of our
WIENZ2k code, which is based on the augmented plane wave (APW) method.
Several properties, which can be obtained with this code, are summarized and the
application of the code is illustrated with four selected examples focusing on very
different aspects from electron-structure relations, complex surfaces or disordered
layer compounds to the dependence of the equilibrium lattice constants on the DFT
functionals.

Keywords Quantum mechanics * Density functional theory * Augmented plane
wave method » WIEN2k » Solids * Surfaces

7.1 Introduction

In many cases an understanding of materials on the atomic scale becomes an
essential requirement. This is true for modern devices in the electronic industry
or magnetic recording as well as for surface science and catalysis. When one comes
to atomic dimensions measured in A, all properties are determined (or critically
influenced) by the electronic structure governed by quantum mechanics. This holds
for solids, surfaces or molecules. One needs to consider a sequence of topics
from chemical composition (including defects or vacancies), atomic structure (with
the position of all atoms), the electronic structure (based on quantum mechanics)
analyzed in terms of convergence and parameters all the way to properties which can

K. Schwarz (&2) « P. Blaha

Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC,
A-1060 Vienna, Austria

e-mail: kschwarz@theochem.tuwien.ac.at; pblaha@theochem.tuwien.ac.at

1. Leszczynski and M.K. Shukla (eds.), Practical Aspects of Computational Chemistry I: 191
An Overview of the Last Two Decades and Current Trends,
DOI 10.1007/978-94-007-0919-5_7, © Springer Science+Business Media B.V. 2012



192 K. Schwarz and P. Blaha

be directly compared with experimental data (e.g. spectra). During the last decades
a large variety of theoretical methods have been developed, which all have their
advantages and disadvantages depending on the system in question.

We focus on the atomic scale, where one often starts with an ideal crystal that is
studied at zero temperature. The unit cell contains several atoms (with their nuclei
at specified positions) and is repeated with periodic boundary conditions. Quantum
mechanics governs the electronic structure that is responsible for properties such as
relative stability, chemical bonding, relaxation of the atoms, phase transitions, elec-
trical, mechanical, optical or magnetic behavior, etc. Corresponding first principles
calculations are mainly done within Density Functional Theory (DFT), according
to which the many-body problem of interacting electrons and nuclei is mapped
to a series of one-electron equations, the so-called Kohn-Sham (KS) equations.
For the solution of the KS equations several methods have been developed, with
the Linearized-Augmented-Plane-Wave (LAPW) method being among the most
accurate. During the last 30 years we have developed a computer code - WIEN2k -
that is now used worldwide to solve crystal properties on the atomic scale (see www.
wien2k.at). The major steps in the development during the last four decades were
described in detail in a recent review article [1].

Our presentation is oriented around that code. The paper is organized as follows:
Sect. 7.2 describes the quantum mechanical aspect, Sect. 7.3 summarizes the major
steps in the development of the augmented plane wave (APW) method and its
implementation in WIEN2k, Sect. 7.4 discusses various properties that are derived
from the electronic structure of a condensed matter system with illustrations using
selected examples of published research; Sect. 7.5 summarizes the role of theory
and gives a short conclusion.

7.2 Quantum Mechanics

The quantum mechanical treatment of systems on the atomic scale has been
discussed in many papers and thus can be omitted here. However, a few general
remarks are appropriate following [1]. Because electrons are indistinguishable
Fermions, their wave functions must be antisymmetric when two electrons are
interchanged leading to the phenomenon of exchange. In a variational wave-function
description (with one Slater determinant) this can be treated exactly with the Hartree
Fock (HF) approximation. The HF equations have the computational disadvantage
that each electron moves in a different potential. Exchange is treated exactly but
correlation effects, which occur because of the Coulomb interaction, are omitted
by definition. The latter can be included by more sophisticated approaches such
as configuration interaction (CI) or coupled cluster (CC) schemes [2] but such
refinements progressively require more computer time with a scaling as bad as N7,
where the system size is proportional to N, the number of electrons. Therefore such
highly accurate solutions can only be obtained for relatively small systems (atoms
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or small molecules), which are important test cases for finding a proper quantum
mechanical treatment. When the system size is significantly bigger (as often in
condensed matter applications), approximations are unavoidable.

The predominant scheme for calculating the electronic properties of solids
(and often of large molecules) is based on density functional theory (DFT), a
universal approach to the quantum mechanical many-body problem. It was shown
by Hohenberg and Kohn [3], and Kohn and Sham (4] that the key quantity is the
electron density p, which uniquely paramelerizes the variational principle for the
total energy E of the system. In DFT the system of interacting electrons is mapped
uniquely onto an effective non-interacting system with the same total density. In
practical DFT calculations exchange and correlation effects are included, but both
approximately. Due to a compensation of errors DFT is better than 'HF (due to the
inclusion of correlation) but worse since the exchange is only treated approximately
(leading to the self interaction error). From a numerical point of view an important
idea of Kohn-Sham [4] was to calculate the kinetic energy (a large quantity) of
non-interacting electrons (quasi particles) by introducing orbitals, which allows
computing this large number very accurately. The quantum mechanics is contained
in the exchange-correlation energy E,. and the corresponding potential V. that is
defined as the functional derivative with respect to the density. The exact functional
form of the exchange-correlation energy, and hence the potential V, is not known,
and thus one needs to make approximations. The results from quantum Monte
Carlo calculations for the homogeneous electron gas, for which the problem of
exchange and correlation can be solved exactly, led to the modern version of the
local density approximation (LDA) [5]. LDA works reasonably well but has some
shortcomings mostly due to its tendency to overbind, which often causes shortened
lattice constants relative to experiment. Modern XC approximations, especially
those using the generalized gradient approximation (GGA), often improve upon
LDA by introducing an extra term that depends on the gradient of the electron
density. For long time the Perdew-Burke-Ernzerhof (PBE) [6] version was believed
to be the “best” GGA, but now new types of GGAs have been developed which
perform better, at least for certain properties (as will be discussed in Sect. 7.4.4).
There is an extensive literature about DFT, which we do not attempt to cover here.
After LDA and GGA, meta-GGA functionals were proposed (for example in [7]),
which depend not only on the density and its gradient, but also on the kinetic
energy density 1. The main advantage of all these DFT schemes lies in the fact
that they allow calculating the electronic structure of complex systems containing
many atoms such as very large molecules or solids.

Besides wave-function based methods (HF, CI, CC) or DFT there is a third
category that became important recently, namely many-body physics, which can
handle correlation effects on a different level. Traditionally such schemes were often
based on parameters but now they can be combined with DFT results. For example
one can start with an LDA calculation and transform the basis set from a Bloch-
picture to a Wannier description (see for example [8]). In the latter the correlated
electrons can be described by the dynamical mean field theory (DMFT) which can
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account for the local correlation effects using a Hubbard U and hopping parameters
that were extracted from LDA results. Such combinations are called LDA + DMFT
as described in a recent review [9].

In general it can be said that theory has gained a lot by combining the expertise
from the three (previously separated) fields, namely wave-function based methods,
DFT, and many-body theory. All three have their strength and weaknesses but in a
combined effort one can gain new insight.

7.3 The Augmented Plane Wave Based Method and WIEN2k

In the present paper we focus on crystals and surfaces. We choose DFT as the
quantum mechanical treatment of exchange and correlation. This means that we
must solve the Kohn-Sham (KS) equations by means of a proper basis set. For this
purpose we use the augmented plane wave (APW) scheme, which originally was
proposed by Slater [10). The development of APW and its linearized version, which
led to the WIEN code [11] and its present version WIEN2k [12], was described in
detail in a recent review [ 1] and previous articles [13-15]. The main concepts are
summarized below:

The unit cell is partitioned into (non-overlapping) atomic spheres that are
centered at the atomic sites (region I) and an interstitial region (II), for which
different basis functions are used. For the construction of these functions the muffin
tin approximation (MTA) is used, i.e. the potential is assumed to be spherically
symmetric within each atomic sphere but constant outside. Plane waves are used in
region II. Each plane wave is augmented by corresponding atomic partial waves,
i.e. atomic-like solutions inside each atomic sphere (region I) consisting of a radial
function u; times spherical harmonics.

The energy dependence of the atomic-like radial functions can be treated in
different ways. In the original APW this was done by choosing a fixed energy
for each radial function, which led to a non-linear eigenvalue problem. In LAPW
this energy dependence of each radial basis function ug(r,E) is linearized (that is,
treated to linear qrder) according to Andersen’s prescription [ 16] by taking a linear
combination of a solution ug(r,E¢) at a fixed linearization energy E; (chosen at the
center of the corresponding band) and its energy derivative ity = dug/de computed
at the same energy. Each plane wave is joined continuously (in value and slope)
to the one-center solutions inside the atomic sphere, thereby defining the relative
weights of the uy and iy contributions. This LAPW basis set allows finding all
needed eigenvalues with a single diagonalization, in contrast to APW. The more
strict constraint (matching in value and slope) had the disadvantage that more PWs
were needed to reach convergence.

The LAPW method made it computationally attractive to go beyond the MTA.
[t was important to treat the crystal potential (and charge density) without any shape
approximation as pioneered by the Freeman group [17]. The potential and charge
density are expanded inside each atomic sphere into a radial part times lattice
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harmonics (a symmetry-adapted linear combination of spherical harmonics) and
as a Fourier series in the interstitial region. This scheme is termed a full-potential
calculation.

WIEN2k is an all-electron scheme. Core states are low in energy and the
corresponding KS orbitals (or densities) are (practically speaking) completely
confined within the atomic spheres and can be obtained using the spherical part
of the potential (but using a thawed core instead of a frozen core approximation).
Valence states are high in energy with delocalized orbitals which are responsible for
chemical bonding and form energy bands. However, between the core and valence
states for some atoms there might be so called semi-core states, which reside mostly
inside the spheres but have a “core-leakage" of a few per cent. For them Singh [18]
proposed adding local orbitals (LO) to the LAPW basis set in order to accurately
treat states with different principal quantum numbers (e.g. 3p and 4p states) while
retaining orthogonality. For further details see review [1]. The concept of LOs
fostered another idea, namely the APW plus local orbitals (APW + lo) method [19].
These local orbitals (lo) are denoted with lower case to distinguish them from the
semi-core LOs just discussed. In APW+lo, one goes back to the APW basis but
with the crucial difference that the radial wave functions are expanded at fixed
energies. This new scheme is significantly faster (up to an order of magnitude) while
keeping the convenience of LAPW [20]. The details of the three types of schemes
(APW, LAPW, APW-+lo) were described in [1, 15]. A combination of the latter two
schemes provides the basis for the WIEN2k program [12].

In systems with heavier elements, relativistic effects must be included. In the
medium range of atomic numbers (up to about 54) the so called scalar relativistic
scheme is often used [21]. It describes the main contraction or expansion of various
orbitals (due to the Darwin s-shift or the mass-velocity term), but omits spin-orbit
interaction. The latter becomes important for the heavy elements or when orbital
magnetism plays a significant role. In the present version of WIEN2k the core
states always are treated fully relativistically by numerically solving the radial Dirac
equation. For all other states, the scalar relativistic approximation is used by default,
but spin-orbit interaction (computed in a second-variational treatment [22]) can be
included if needed [23].

The computational aspects like parallelization (k-points or MPI), algorithms,
accuracy and efficiency were discussed in the review [1]. WIEN2k can treat all
atoms in the periodic table. The high accuracy of WIEN2k comes from a balanced
mixed basis set of plane waves and atomic functions, whose radial functions are
recalculated numerically in the new potential. This allows them (in each iteration)
1o expand or contract according to the potential and ionicity (charge state). The main
control of basis size convergence is done via a single parameter, RKy., the product
of the smallest sphere radius R times the largest plane wave vector Kpg,. Therefore
the convergence is easy to test. Integration in reciprocal space requires a proper
k-point mesh in the irreducible Brillouin zone (BZ) which needs to be checked for
convergence.
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7.4 Properties and Applications

When the electronic structure of a condensed matter system is calculated with
WIENZ2k several topics need Lo be considered. A short summary is given below but
the reader is referred to the review [1] for more references and details (especially
Sect. 6):

In a system with translational symmetry (a perfect infinite crystal) one makes
use of periodic boundary conditions and thus can expand the wave functions in a
plane wave basis set. The concept of a unit cell is appropriate for (nearly) perfect
single crystals, but a real crystal has surfaces and may have imperfections such
as impurities or vacancies. Such effects can approximately be treated with slabs
or supercells.

. KS eigenvalues with respect to the reciprocal k-vector can be represented as

band structure. The corresponding wave functions contain the information how
much various basis sets contribute to each state. In the APW framework this
can be done by using the partial charges qum, which define the fraction of the
corresponding total charge density (normalized to unity in the unit cell) that
resides in the atomic sphere t and comes from the orbital characterized by the
quantum numbers £m. The fraction from the interstitial regions is contained in
Qouw- These numbers help to interpret each state in terms of chemical bonding.
From all energy eigenvalues in the Brillouin zone the density of states (DOS)
can be calculated and again decomposed into partial DOS.

. The key quantity in DFT is the electron density. It contains the essential ingre-

dient for understanding chemical bonding. By computing difference electron
densities (with respect to superposed atomic densities) the bonding features
become more apparent. Another possibility is to use the topological analysis by
Bader [24] for example o define atomic charges within atomic basins, a relevant
quantity for charge transfer estimates.

. The electric field gradient (EFG) is a ground state property that is sensitive 1o

the asymmetry of the charge distribution around a given nucleus. By measuring
the nuclear quadrupole interaction (e.g. by NMR) the EFG can be determined
experimentally. This local probe is often essential for distinguishing between
different atomic arrangements.

. The total energy of the system is a crucial quantity for any given atomic

configuration. Often this can be a rather big number which nowadays can be
calculated with high precision. Total energy differences, for example, tell which
structure is more stable. The derivative with respect to nuclear coordinates yield
the forces acting on an atom. These forces are needed to optimize the atomic
positions towards an equilibrium geometry, which corresponds to a minimal total
energy and vanishing forces. In addition they can be used to calculate phonons.

. If a system is magnetic, the calculation must be carried out in a spin-polarized

fashion. Often a collinear arrangement of the magnetic moments like in an
(anti-) ferromagnet is assumed but there is the possibility to study non-collinear
arrangements.
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7. In connection with spectroscopy various properties can be calculated like x-ray
emission or absorption spectra (XES, XAS), optical spectra or photoelectron
spectra (UPS). The data for hyperfine interaction can be obtained from WIEN2k
(oo,

Since the WIEN2k program package is used worldwide by more than 1,850
groups many papers have appeared that make use of this program. Here we illustrate
from our own research how results obtained with WIEN2k can help to solve
interesting problems in material sciences.

7.4.1 Verwey Transition in YBaFe,0,

A perovskite ABOs (like SrTiOs) contains as the main building block the B atom
that is octahedrally coordinated by oxygen. An oxygen-deficient double perovskite,
however, has B with a pyramidal coordination, in which the sixth oxygen is missing.
One member of this group is YBaFe,Os whose crystal structure is well established
[25]. It is particularly interesting, because it shows a temperature induced phase
transition at about 309 K. At low temperatures it forms a charge ordered (CO)
state (with Fe?* and Fe** at the two crystallographic inequivalent sites) but above
the transition temperature a valence-mixed (VM) state (sometimes called mixed
valence) appears in which Fe has the formal oxidation state of Fe2** [26). Such
a change is called Verwey transition [27] as has originally been suggested for
magnetite Fe3 Oy, a system that is still often discussed. In YBaFe,Os the structure
changes from a strongly distorted orthorhombic to a nearly tetragonal symmetry.
With this structural change both the magnetic and conducting behaviour change
significantly. In the CO phase (with space group Pmma) the Fe?* and Fe** form
chains along the a direction and have an antiferromagnetic (AFM) arrangement
(Fig. 7.1 top).

A standard GGA calculation would lead to a metallic behavior and magnetic
moments that are much smaller than the experimental values. Therefore one must
go beyond GGA and include the local correlation effects (that are important for Fe
oxides) by means of a Hubbard U. Although this introduces a parameter that is not
strictly given on a first principles basis, a GGA+U calculation (with an effective
U of around 7 eV) gives a proper description of the system as discussed in detail
in [26]. A structural optimization of the atomic coordinates leads to different bond
length around Fe?* and Fe** (Fig. 7.1 bottom) in the CO phase, whereas they are
similar in the VM phase. In addition a gap opens up making it a semiconductor and
the magnetic moments obtained with GGA+U are in agreement with experiment.
The AIM charges (according to Bader’s atoms in molecules [24]) are +1.84 for
Fe'* and +1.36 for Fe?* in the CO phase but +1.52 in the VM phase. The origin
for this clear difference can be traced down to an orbital ordering which shows up in
the partial DOS associated with various Fe-d-orbitals. The hyperfine fields and the
electric field gradients are consistent with experimental data, provided a proper U



198 K. Schwarz and P. Blaha

Fig. 7.1 The charged-ordered (CO) phase of the oxygen-deficient double perovskite YBale;0s:
(top) orthorhombic unit cell with a chain of alternating Fe?t and Fe'™ ions along the a direction;
(bottom) the local coordination of the two iron sites giving the nearest neighbor distances as
optimized by a GGA+U calculation

is used. In summary one can say that in the CO phase the Fe?* is in a d® high-spin
configuration in which a single spin-down electron of d-xz symmetry is occupied
which triggers a cooperative Jahn-Teller distortion. The apparent strong electron-
lattice coupling cause in the VM phase (with its similar bond lengths) that the Fe
d-z? spin-down orbital (at the top of the valence band) become partly occupied.

Chemical bonding changes the total electron density only by small amounts and
thus the difference between the final SCF density and the superposition of [ree
atomic densities (the start of an SCF cycle) shows the main reorganization due 10
bonding. In such a difference electron density (see Figs. 8 and 9 of ref. [26]) the two
phases, CO and VM, clearly differentiate between Fe?* and Fe'" in the former but
not in the latter case.
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One numerical detail shall be mentioned, namely the magneto-crystalline
anisotropy, which is this difference in total energy when the magnetic moments
point in different crystallographic directions [100], [010] or [001], a question for
which spin-orbit interaction is essential. The lowest total energy is —115,578.24065
Ry, when the moments point in the y direction, while the other directions are about
0.4 mRy higher in energy; thus the difference is in the tenth decimal. This illustrates
which numerical precision is needed for such a quantity. For more details see the
original paper [26].

7.4.2 Nanomesh with h-BN on a Rh(111) Surface

When borazin is thermally decomposed on a Rh(111) surface a self-assembling
structure is formed, which Corso et al. called a nanomesh [28]. It consists of a
hexagonal boron nitride (h-BN) that binds to a Rh(111) surface. Originally these
authors described the structure with a double layer of BN where the top layer has
holes. However, DFT calculations [29] proposed a different atomic structure of
this surface, consisting of a single but highly corrugated layer of h-BN. There is
a lattice mismatch between h-BN and Rh(111) of about 8%, with the result that
13 x 13 unit cells of h-BN match 12 x 12 unit cells of the underlying Rh(111) with
a periodicity of about 3.2 nm. Such a system is a real challenge for theory, since
it is metallic and already a crude model of the surface contains many atoms. In
order to simulate this complex structure, a slab was constructed containing three
layers of Rh (corresponding to the three layers A, B, C of an fcc structure) and
h-BN layers on both sides (top and bottom) of the metal layers. This is done
for computational reasons to keep inversion symmeitry, which makes the matrices
real instead of complex. This supercell contains 1,108 atoms (and around 25.000
electrons), which makes the calculation rather demanding but feasible nowadays
(see Fig. 4 in [1]).

The structure optimization started with a flat h-BN layer but allowed the atoms
to relax, which led 1o a significant surface corrugation (Fig. 7.2). Due to the lattice
mismatch and the relative rigidity of h-BN there are regions with different bonding
situations. The preferred orientation for boron is a hollow site above three Rh atoms,
whereas nitrogen likes to be on top of a Rh atom (Fig. 7.3). This situation is almost
satisfied in the so called “low" region (Fig. 7.2 bluish region) where h-BN binds
strongly to the metals leading to short distances to the Rh sublattice. Otherwise
the more repulsive interaction between N and the surface cannot compensate the
weaker B attraction and thus the h-BN is further away from the surface leading to
the “*high” region (Fig. 7.2 yellow region). An analysis has shown that the B atoms
have predominantly attractive forces towards Rh (with bonding orbitals) whereas
for N the repulsive forces dominate (due to partial occupation of antibonding
orbitals). The lattice mismatch causes locally different lateral orientations of h-
BN with respect to the Rh-subsurface. The combination of these two scenarios
(with favorable and unfavorable bonding) caused a corrugation that can be seen
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Fig. 7.2 The corrugation of the hexagonal boron nitride layer in the h-BN/Rh(111) nanomesh
showing a 2 x 2 supercell. The “low” region (close to Rh) appears in blue but the “high” region
(further away from the Rh sublayer) are in yellow. The B atoms (visible in the front) are shown
with small but the N with large spheres (see also Figs. 4and Sin[1])

Fig. 7.3 The local atomic
arrangement of h-BN on
Rh(111) in the “low" region,
where N (in red) is about on
top of Rh (grey) and B (blue)
is in the hollow position
optimally binding to the three
Rh underneath. Further
details can be found in [29]

in experiment, e.g. by scanning tunneling microscopy (STM). Once the structure is
unraveled, other experimental data can be explored, for example X-ray absorption
spectroscopy, or N-1s core level shifts as discussed in [29, 30]. Some additional
discussions can be found in [1].

7.4.3 The Misfit Layer Compounds

Hexagonal transition metal dichalcogenites such as TaS; are layered compounds,
which easily can be intercalated for example with Li ions. When they are interca-
lated with a pseudocubic double layer such as PbS, they belong to the so called
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misfit layer compounds [31]. Because of the different crystal symmetries of the
iwo subsystems, the lattice constants can match only in one direction forming a
periodic structure (e.g. in the b direction). Perpendicular to this commensurate
direction there is an incommensurate lattice mismatch due to the ratio between
the two lattice constants, in our case between TaS; and PbS. This ratio can be
approximated with 4/7 leading to periodic boundary conditions. This means that
4 lattice constants of PbS match to a good approximation 7 of TaS; corresponding
(o the misfit layer compound (PbS), ;4TaS; as discussed in our paper and references
therein [32). These materials have interesting properties and are rather stable. The
main question that remained open was to explain what causes the stability. In this
context previous experimental studies proposed two possible binding mechanisms,
namely non-stoichiometry or metal cross substitution that should be responsible for
the stability.

This is an ideal starting point for theory, since one can try both schemes and find
out which is more likely to be correct or consistent with experimental details. The
idealized system (forced to be commensurate) contains 74 atoms per unit cell and
consists of alternating perfect layers of TaS; and double layers of PbS. First DFT
test calculations showed that the binding energy between the ideal layers of TaS; and
the PbS-double layer is nearly zero. Therefore one of the proposed mechanisms may
provide a clue for the stabilization and thus they need to be explored. Now disorder
comes into play, either in form of defects or when one substitutes Pb into TaS;
or Ta into PbS. With our WIEN2k we must enforce periodic boundary conditions
and thus artificially introduce some order. In order to be more realistic and avoid
artifacts (like rows of impurity atoms) an even larger supercell with 296 atoms was
used in some of the calculations. In such large supercells one cannot explore all
possible configurations of disorder. However, one can follow certain strategies. For
example if one puts 2 Ta atoms replacing Pb in PbS, then they can be close together
(clustering) or far apart (avoiding each other), or in the same PbS layer or in adjacent
layers. For each of the explored configurations one optimizes the atomic positions
(till the forces acting on all atoms vanish) and determines the corresponding total
energy. Different configurations can be compared by their total energy, leading to
an insight how the impurities prefer to distribute, For example, it turned out that it
is energetically more favorable to have the Ta impurities in the same PbS layer than
putting them in the adjacent layer. The computer experiments that were carried out
made use of the rules that have been learned from previous results. Configurations
which are likely to be unfavorable need not to be studied. This strategy reduces
the effort and makes the investigation of such a complicated system (with so many
atomic configurations) feasible. A representative configuration is shown in Fig. 7.4,
in which one sees (upon substitution) relatively little changes in the TaS; layer
but significant relaxations in the substituted PbS layer. This difference is caused
by the size change (small Ta vs. larger Pb) and the structural details between the
TaS; layer, in which only a small breathing of sulfur aloms around the large Pb is
possible. However, the small Ta atom can move a lot towards the sulfur leading to
large distortions of the pseudo-NaCl planes of PbS.
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Fig. 7.4 The large supercell representing the (PbS); 14 TaSy misfit layer compound containing 296
atoms. In the TaS> layer 4 Ta atoms are substituted by Pb and in the PbS double layers 12 Ta atoms
substitute the corresponding Pb atoms leading Lo a strong relaxation. For further details see [32]

From the calculated total energies one can conclude [32] that the metal cross
substitution alone cannot stabilize this compound whereas the nonstoichiometric
model works, when Ta substitutes Pb mainly in one of the PbS double layers.
This case shows large lattice relaxations (Fig. 7.4) which stabilize the misfit
layer compounds but are accompanied by charge transfer effects. In addition the
insulating behavior of PbS is lost in the stoichiometric compound, whereas Ta
doping leads to a charge transfer that brings the PbS layer closer to be an insulator.
For further details see [32]. A Ta impurity concentration of about x = 0.13-0.19
is energetically most favorable which is in excellent agreement with experimental
findings. In this case DFT calculations could find an explanation for the stability
and confirm one of the proposed mechanisms.
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7.4.4 Performance of Various GGA Functionals

In recent years several attempts were made to improve the performance of various
generalized gradient approximations. In this context one usually investigates small
" systems which can be well characterized as ideal crystals without any structural
uncertainties such as defects, impurities or non-stoichiometry. It is well known that
LDA gives too small lattice constants while the standard PBE version of GGA [6]
always leads to larger values than LDA but often also with respect to experiment.
By choosing crystals without structural uncertainties and a computational scheme
which is highly accurate (as results with WIENZ2K) one can test the quality of
functionals when compared with experimental data. Otherwise one would have a
combination of effects from structure over DFT to convergence of basis sets. In the
latter case one would not be able to come to firm conclusions.

We were involved in one of such investigations of GGA functionals and want to
summarize some results (see [33] and references therein). From the newly proposed
GGA functionals (in addition to the standard PBE [6]) we mention the functional
by Wu and Cohen (WC) [34], AMOS5 by Armiento and Mattssson [35] and PBEsol
[36]. In GGA the exchange correlation energy can be expressed in terms of an
enhancement factor F,.

EGOA[p] = f £ (1 (1)) Fre(ry (), $(r)d*r

which depends on the Wigner-Seitz radius ry , a measure of the electron density p(r),
ry = [3/(4np))'”
and the reduced gradient density s

s = |Vp| /23772 p*")

The variation of the (exchange only) enhancement factor Fy. with s is shown in
Fig. 7.5 for one example, namely r, = 0, but more cases are depicted in [33]. For
the chosen functionals there is a significant difference in the enhancement factors
for larger s but they are all smaller than that of PBE. Now one can analyze various
systems from metals, to insulators or covalently bonded systems and explore which
s-values are relevant, The detailed analysis has shown that it is not only the value
of the enhancement factor but also its derivative with respect to s and r, which
determine the equilibrium lattice constant. In addition it was found that in most
solids (in contrast to molecules) vales of s larger than 1.5-2.0 or values of r larger
than 4 bohr hardly occur. Let us illustrate this situation for the covalently bonded
system of diamond (see Fig. 7.6) which shows how the s value changes in the unit
cell. The surprising result is found that in the region of the covalent bond (between
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Fig. 7.5 The enhancement factors Fyc (for ry = 0 bohr) with respect to the LDA exchange energy
as a function of s, the reduced density gradient, is shown for the four functionals PBE. WC, AMOS,
and PBEsol. Additional plots for other rg values are given in [33]

L/

Fig. 7.6 A wo-dimensional plot of the reduced density gradient s is shown for diamond in the
(110) plane. The color coding indicating the value of s is specified in the insen
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the carbon atoms) s is small and thus all enhancement factors remain small so that
we are almost left with LDA. Large values of s appear in the range separating core
from valence states around all carbon atoms, but also in the interstitial region. These
are the important regions, in which the enhancement factors differ between the
functionals and thus these — rather than the bonding regions — are responsible for
the equilibrium lattice constant. A functional with a large enhancement factor in the
important region usually leads to larger lattice constants.

7.5 Summary and Conclusion

In this paper we discussed the status of quantum mechanical calculations focusing
on solids and surfaces. In the quantum mechanics section DFT was presented with
respect to the alternative approaches such as wave function based methods or many-
body physics. For the solution of the DFT Kohn Sham equations we use an adapted
augmented plane wave method implemented in our WIEN2k code, which can be
shortly summarized as a full-potential, all electron and relativistic code that is one
of the most accurate for solids and is used worldwide by more than 1,850 groups in
academia and industry.

In the spirit of Coulson (“Give me insight not numbers”) many properties and
detailed analyses are needed to solve complex material problems. For that purpose
WIEN2k provides many tools to compute a large variety of properties and results,
from energy bands, DOS, electron and spin densities, magnetic moments, optical
spectra, total energies, forces, EFG, hyperfine interactions, spin-orbit coupling etc.
Often several of these results are needed to explain the open questions.

In the four examples presented here different aspects were highlighted. In the
first case (Verwey transition) the unit cell is small and well defined but the electron-
lattice coupling (with a cooperative Jahn-Teller distortion) requires a high level
description (GGA + U) to get the physics right. In the nanomesh example the size
of the system (more than 1,100 atoms per unit cell) of a metallic system is a
challenge. For the misfit layer compounds we demonstrate another area, namely
performing computer experiments on disordered systems, which lead to strategies
that allow us to focus on the likely structures that may be present in the real
system. With such a scheme it became possible to describe the system and explain
the stability between the layers of the misfit compound. In the last example we
explore different GGA functionals in order to find out which system dependent
parameters are essential for obtaining lattice constants in good agreement with
experiment. In the latter case we restrict our efforts to very ideal crystals with small
unit cells. The chosen examples are just a small selection to illustrate what can be
obtained with the WIEN2k code. The used basis set (containing atomic orbitals)
allows interpretations in chemical terms, which can be an important advantage over
pseudo-potentials methods. The high accuracy is achieved partly by the numerical
basis (for the radial wave functions) but also by the fact that the convergence
(with the number of plane waves) can be controlled with one parameter (RKmas).
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Therefore DFT calculations with approximate functionals can provide extremely
useful information concerning the electronic structure of ordered crystal structures
and surfaces irrespective whether they can be prepared or not. Nowadays relatively
large systems can be simulated due to the increased computer power combined with
improved algorithms and efficient parallelization,
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