Business-Model-Driven Data Engineering Using
the REA-DSL

Dieter Mayrhofer and Christian Huemer

Business Informatics Group, Vienna University of Technology, Austria
{mayrhofer, huemer}@big.tuwien.ac.at

1 Introduction

The most prominent business ontology for accounting information systems is the
Resource-Event-Agent (REA) ontology developed by McCarthy, Geerts and others
[1]. REA is a widely accepted framework for the design of a conceptual model of
the accountability infrastructure of enterprise information systems. Originally, REA
targeted the resource flows within and between companies describing what is cur-
rently occurring and what has occurred in the past. This is known as the operational
layer. Later it was extended by a planning layer and a policy layer capturing what
should, could, or must be occurring sometime in the future [2, 3]. Today, REA may
be considered as a powerful business ontology capturing all relevant data to generate
the conceptual design of an Accounting Information System (AIS). However, we feel
that it does not deliver an appropriate representation of the business model which
can be understood not only by the I'T expert, but also by the business expert. Thus,
the use of REA in the design of AIS does not yet reach its full potential. We argue,
that an easy-to-understand REA notation will accelerate, streamline, and reduce the
costs of the AIS development process.

Consequently, we have developed a domain specific modeling language for the
REA concepts called the REA-DSL which aims at both (i) delivering an intuitive
REA notation and (ii) retaining the full expressiveness of the REA concepts. The
step we are conducting right now and covering in this paper is the incorporation of
properties and primary keys into our REA-DSL and the final automatic generation
of an Entity-Relationship-Diagram (ERD) for an AIS from the REA-DSL using our
tool.

2 REA-DSL

In [4,5] we have already introduced our domain specific language for REA called
the REA-DSL and formalized it as a meta model according to the MOF M2 layer
[6]. Tt covers the basic concepts of the REA ontology on the operational layer allow-
ing to model what event ”is happening” or "has happened”. Thus, the REA-DSL
comprises of four different views called the agents view (modeling economic agents),
resources view (modeling economic resources), value chain view (modeling value ac-
tivities), and operational view (modeling the REA economic exchanges/events in
detail). These artifacts allow for example to model sales and payment events for a
company.

In a further step we have incorporated the planning and policy layer of the
REA ontology into our REA-DSL [7] enabling to model what events ”could be” or
”should be”. Consequently, we presented a new REA-DSL view called the planning

view making use of the REA concepts of commitments and types. Additionally,
we also introduced the concept of bulk resources, where the individual resource is
not identifiable or traceable. With these additional concepts it is now for example
possible to model legally binding contracts (such as an order) for a future sale or
payment.

Property
Type: String RFID: INT
isPrimaryKey: boolean Color : VARCHAR

Name : VARCHAR
1= Type Properties

Taw : INT
Typification

+ObjectProperty /[1..* 1.* \ +TypeProperty

N
Vs

1 0.1
1 1 1 1
| Resource | | ResourceType |
Book FishingRod
+super | 1 +sub | 1 +super |1 1 +sub
> o O 1 Objctpopenis
Generalization TypeGeneralization used EOOLFAN BTl EeEi=
Type Properties
(a) Resource Meta Model (b) Resource Example

Model
Fig. 1. REA Resource View

Since we have finished adding the most prominent REA ontology concepts in
our domain specific language, the current attempt is to derive data models for an
AIS from our REA-DSL. Thus, we add the concepts of properties and primary keys
to our REA-DSL. In Figure 1(a) the meta model for the resource view is depicted.
One resource has exactly one typification relationship to one resource type and one
resource type may have one typification relationship to one resource, respectively.
Thus, there is a one-to-one typification relationship between resource and resource
type. In the object-oriented paradigm classes may comprise of static attributes (class
attributes) and non-static (regular) attributes. In the REA context it is required to
have one concept covering the regular attributes (object properties) and another
one covering the static properties (type properties). In a concrete model example
(cf. Figure 1(b)), the resource Product has the object properties RFID, Color, and
Name, which differ between each individual Product. However, the type property for
the resource type Product Type is Tax, specifying that the tax for a specific type of
products (e.g. Type Book 10%, Type Fishing Rod 20%) always remains the same.
Thus, one book might have the name ”Lord of the Rings” and another the name
”Back to the Future”, but every book must have the same tax of 10%. Each property
is specified by a name and a type. Additionally, the isPrimaryKey attribute specifies,
if the property is a unique identifying key (e.g. the RFID property).

As mentioned before, the planning view allows to model commitments for future
events. An example for an Order contract is depicted in Figure 2. In general, the
example specifies, that on the upper lane a Salesman commits to sell Fish and
Products with the help of Shop Assistants to the Customer in a future Sale event.
In return, on the lower lane the Customer commits to pay Cash to the Cashier in

a future Payment event. Due to space limitations, in the following we just elaborate
on the added properties in more detail.

Decrement

I
'
:
!
!
1
'
'
1
'
'
1
!
:
1
i
:
!
'
1
'
'
®
\

\
!
'
:
:
i
:
w

/
I

Sale
\
5

i 2t
SaleNr: INT
SaleDate: DATE
= Event Type Properties
REg\on VARCHAR
OrderNr INT
OrderDate : DATE

Salesman

s
N
N

' _',,a“"(
it ~
0
s
l

Salesman ShopAssistant Customer

Increment

Cash

-

.
o
o
=
3
m
2

.
N,
N,

@

PaymentNr: INT
PayDate : DATE

=l Event Type Properties

OrderNr: INT
OrderDate : DATE

Customer

Cashier Cusfomer

Fig. 2. REA Planning View

There are three property groups associated with events depicted as an hexagon:
commitment properties, event properties, and event type properties. Commitment
properties specify important information which need to be recorded at the time of
the commitment. In our example for the contract of the future Sale event this would
be the Order Number (primary key) and the Order Date when the Order is made.
The event properties are related to the actual event being made in the future. In
our example they capture the Sale Number (primary key) and the Sale Date when
the Sale event was actually happening. Last, the event type properties specify event
type specific properties. According to the example, there are different Sale Types
related to the Region the Sale is made in (e.g. Austrian Sale, US Sale). The payment
event has these three property groups as well with different properties.

3 REA-DSL to ER-Diagram

After adding properties and primary keys to our REA-DSL we have all important
concepts at hand to automatically generate an ERD from it. After modeling the
REA model with our REA-DSL tool, the mapping to the ERD is done by Microsoft
Visual Studio T4 Text Templating Engine. We have first results of a prototypical
mapping which are very promising. We created a REA-DSL model with a value
chain of six value activities which were refined in six planning views. After applying
the mapping on it we ended up with 102 tables in the ERD in respect to the REA
ontology. An excerpt of these automatically generated tables is given in Figure 3.

) FishType ¥
lasiopen

StoreTemersture INT
>

| Product v
RADINT

Dlor VARCHAR4E) |,
Name VARCHAR(4;
] SaleEventStoc kFlowFishTypa +

SaleCommitmentSpecifiesFishType v
4 m ype | SaleCommitmentReservesProduct ¥ o Nr INT

c::?; S SsleGommitmantCrdertr INT :E‘::;‘e':'_ W FihTpehame VARCHARIS)
: ProductRFID INT FishTwoeQuantity INT
FshTypeQuantity INT , > o
>
| SaleEventType v I
Neme VARCHAR(45)] saleEvent v
_] SaleCommitment v r'* Region VARCHAR(3S) |1 | @ SeleEuentTypeName VARCHAR(4S)
SskeEventTypeName VARCHAR(AS) fpj— 57) colingDusityTransierd INT
SakesmanEmployesld INT & SaleCommitmentQr derhr INT
QustomerCustomerd INT b — — —4€| & SslesmanEmployeeld INT _ SaleEventParticipateShop Assistant ¥
Crderhr INT # QustomerQustomer Id INT SaleEventSaleNr INT
CrderDat= DATE H—' "] salesman ¥ _‘ Sslel INT Shop fesistantEmplovesld INT

> SaleDste DATE >

I

| ShopAssistant ¥
Employesid INT

Ly + Employesid INT |1>—
>

_| customer ¥
| Cistomerld INT |

Name VARCHAR(45) 1
>

Fig. 3. Entity Relationship Diagram

References

1. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for Account-
ing Systems in a Shared Data Environment. The Accounting Review 57(3) (1982)
2. Geerts, G.L., McCarthy, W.E.: An Ontological Analysis of the Economic Primitives
of the Extended-REA Enterprise Information Architecture. International Journal of
Accounting Information Systems 3(1) (2002) 1 — 16
3. Geerts, G.L., , McCarthy, W.E.: Policy-Level Specification in REA Enterprise Informa-
tion Systems. Journal of Information Systems 20(2) (2006) 3763
4. Sonnenberg, C., Huemer, C., Hofreiter, B., Mayrhofer, D., Braccini, A.: The REA-DSL:
A Domain Specific Modeling Language for Business Models. In: Proceedings of the 23rd
International Conference on Advanced Information Systems Engineering (CAiSE 2011),
LNCS 6741, Springer (2011) 252-266
5. Mayrhofer, D., Sonnenberg, C., Hofreiter, B., Huemer, C.: A Domain Specific Model-
ing Language for REA. 5th International Workshop on Value Modeling and Business
Ontology (VMBO 2011), Ghent, Belgium (2011)

. OMG: Meta Object Facility (MOF) Core Specification, Version 2.0 (January 2006)

. Mayrhofer, D., Huemer, C.: Extending the REA-DSL by the Planning and Policy Layer
of the REA Ontology. In: Proceedings of the 24th International Conference on Advanced
Information Systems Engineering (CAiSE 2012), submitted to. (2012)

N

