
Inconsistency Management for Traffic Regulations

Harald Beck and Thomas Eiter and Thomas Krennwallner
Institute of Information Systems, Vienna University of Technology

Favoritenstrasse 9–11, A-1040 Vienna, Austria
{hbeck,eiter,tkren}@kr.tuwien.ac.at

Abstract

Smart Cities is a vision driven by the availability of govern-
mental data that fosters many challenging applications. One
of them is the management of inconsistent traffic regulations,
i.e., the handling of inconsistent traffic signs and measures
in urban areas such as wrong sign posting, or errors in data
acquisition in traffic sign administration software. We inves-
tigate such inconsistent traffic scenarios and formally model
traffic regulations. Based on this, we consider relevant reason-
ing tasks including consistency testing, diagnosis, and repair,
and present an implementation of the these tasks using answer
set programming. The results of this research may improve
existing governmental software maintaining traffic regulations.

1 Introduction
The advent of the World Wide Web and distributed systems
brought numerous new methods for intelligent management
of data and knowledge. With initiatives such as Open Govern-
ment Data,1 the idea of Smart Cities has been gaining interest
in research communities, with many innovative applications
in ecological and city planning areas. Local governments
manage their posted traffic signs and measures using software
tools, i.e., authorities enact rules how traffic on urban streets
and places should be regulated, and employees increasingly
maintain this information with the help of specialized soft-
ware. An important task is the management of inconsistent
traffic regulations, as illustrated next.

Example 1 Consider the T-junction shown in Fig. 1a. It con-
sists of three arms, each represented by two parallel lanes: u3

to u1 and v1 to v3, w2 to w1 and x1 to x2, and y1 to y3
and z3 to z1. We can turn from one arm to each other arm,
and may reverse between nodes that are connected by edges
with two arrows. The traffic signs at v2, y1, and y2 symbolize
a correct sign posting for a speed limit measure of 30 kmph,
indicated by the dashed blue path from v2 to y2. The effect
expressed by both the measure and the signs is that along the
edges (v2, v3), (v3, y1), (y1, y2), the maximal allowed speed
for any road user is 30 kmph. The recurrent start sign at y1 is
necessary, since road users coming from x2, turning into the
lane starting at y1, would otherwise be unaware of the speed

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://opengovernmentdata.org/

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30 30

(a) Correct sign posting for a speed limit measure

v1 v2 v3

w2

w1 x1

x2

y1 y2 y3

u1 u2 u3 z1 z2 z3

30 30

(b) Inconsistency: no recurrence of start sign at y1

Figure 1: T-junction with 30 kmph speed limit measure ()

limit. This situation is depicted in Fig. 1b. The effect of the
start sign at v2 can only be propagated to the arm starting
at y1, because y1 can also be reached from the arm ending
in x2. We get an inconsistent traffic regulation due to two
conflicts: the speed limit effect ends at y1 without an end
sign, and the end sign at y2 has no associated effect.

Such inconsistencies create problems in daily traffic. Of-
ficials are confronted with legal issues (e.g., challenging
of speeding tickets) when two dissenting speed limits are
announced. Even more delicate is the aspect of legal respon-
sibility in case of accidents caused by wrong sign posting.
Different from that, errors in the data acquisition in traffic
sign software may lead to wrong assumptions on the state
of traffic regulations. Tools that detect, prohibit, and correct
such errors are in need to help public administration with
their traffic management tasks.

In order to gain new insights from available sign posting
data, formal methods from knowledge representation and
reasoning proved to be key to attack issues that arise when
data is inconsistent (Poole 1994; Lucas 1997; de Kleer and
Kurien 2003). Many issues arise in the context of traffic reg-
ulations. Traffic measures, i.e., intended constraints given as

regulations on the traffic, may oppose the state of traffic sign
posting, which can be seen as real-world constraints that an-
nounce what is allowed on the street. One natural question is
how to find inconsistencies when combining traffic measures
and street signs. Such questions become even more complex
in dynamic environments, i.e., when so-called active traffic
management comes into play. For instance, variable-message
signs on motorways manage the traffic flow by varying speed
limits based on events like traffic congestions, or weather
conditions like fog or black ice. Contradicting speed limits
may be posted by operators of such message signs, leading
to aforementioned legal issues.

Finding such errors is not trivial in real life situations and
many subtle inconsistencies may occur. When an inconsis-
tency is found, one usually wants to diagnose and repair it.
To the best of our knowledge, there is no automated sup-
port for inconsistency finding in complex traffic regulations,
but the seemingly simple scenario in Example 1 shows the
need for (semi-)automatic tool support in traffic regulation
maintenance software. Different from the issues above is the
problem of modeling transportation and traffic in a formal
representation. Legal texts are ambiguous and often implic-
itly understood, and no single characterization has yet shown
to be advantageous over others.

This motivates this work with the following contribution:
• We analyze the problem domain and identify main con-

cepts and notions such as traffic signs, measures, effects,
and inconsistencies in traffic regulation orders.

• Building upon well-known literature in abductive reason-
ing and model-based diagnosis (Poole 1994; Lucas 1997;
de Kleer and Kurien 2003), we develop a formal model
using predicate logic for traffic signs and measures, and
introduce the notion of traffic regulation problem, the ba-
sis for reasoning tasks such as inconsistency detection,
diagnosis, and repair.

• We show how these specifications can be implemented
in an elegant way using answer set programming, which
gives an executable specification.
This work is embedded in an industrial context dealing

with specialized software, which is used by local government
departments and allows for the visualization and administra-
tion of traffic regulations. The results of this research may
assist to find inconsistencies and should give a clear advan-
tage over simple traffic sign acquisition and storage tools.

2 Domain Analysis
In this section we briefly analyze the domain of traffic regu-
lations, traffic measures and traffic signs.

A traffic regulation is a legal document that describes how
road users can make use of the street and how these usages
can be restricted by means of traffic signs. The legal act to
introduce new traffic signs, or remove existing ones, is a
traffic regulation order, which comes in form of a document
describing in natural language a traffic measure that has to
be taken to reach a desired effect, that is, a restriction of
road usage. This measure has to be announced by means
of traffic signs and becomes legally effective as soon as the
corresponding signs are posted on the street. We view road
markings as special cases of traffic signs.

The restrictions described by measures and signs include
speed limits, driving bans, parking or halting bans, prohibited
or mandatory driving directions, information about zones like
residential areas and pedestrian zones, motorways, and so on.
We base our work on the Austrian traffic regulation and its
potential measures and signs.2 However, we focus on general
aspects that are not bound to regional differences.
Inconsistencies. In general, a set of traffic regulation orders,
resp. the resulting measures and signs, can lead to conflicts
wrt. the traffic regulation. The aim of our work is to detect
such inconsistencies, to diagnose and to repair them.

For instance, in Austria it is not allowed that a motorway
overlaps with a residential area. In the perspective of traffic
signs, it means that, when driving on a motorway, the end
sign must precede the start sign of the residential area. In
addition to such illustrative cases, complications quickly arise
when many different kinds of restrictions are expressed.

What we understand by a conflict does not necessarily
stem from the traffic regulation, but can also come from sup-
plementary documents of expert knowledge such as traffic
planning experience. It is thus our aim to provide a system
that can detect different sorts of conflicts in a modular and
easily extendable way. Whenever a conflict is detected, we
want to provide the user with a diagnostic information, ex-
plaining which measures or signs caused it. Finally, we want
to offer a repair mechanism that suggests by which modifica-
tions compliance with the specification can be established.
Data Model & Architecture. To achieve these goals, we
first need a street model based on which we can express mea-
sures and signs, and the restrictions expressed by them. We
will view streets as directed graphs, where edges represent
the potential direction of traffic. Each edge will get a unique
label to discern whether it represents a part of a lane, a turn
over a junction or a U-turn. Any digital street map from which
this view can be generated can be used as potential database.

By an effect of both measures and signs we understand
the implicit restrictions they express. To reflect measures
and signs (from a database or user input) in the street graph,
we will use predefined labels on the edges (for measures)
and nodes (for signs). Similarly, we will represent arising
inconsistencies by associating nodes with specific conflict
labels. Both the mapping from measures and signs to effects
and from effects to conflicts will be established in a modular
way by means of logic formulas. The conflict labeling can be
used to visualize inconsistencies on a street map, followed
by user interaction in connection with diagnosis and repair.

3 Formal Model
In this section we formalize our data model and formulate a
traffic regulation probem based on it.

Definition 1 (Street graph) By a (street) graph we under-
stand a connected, labeled, directed graph G = (V,E, `)
of nodes V , edges E ⊆ V × V , and a labeling func-
tion ` that assigns each edge (v, w) ∈ E a unique la-
bel `(v, w) ∈ {left , straight , right , lane, uturn}.

2http://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=
Bundesnormen&Gesetzesnummer=10011336

We identify G with the set of atoms e(t, v, w), where t is
the label of the edge (v, w). Several assumptions about the
structure of these graphs are made. For instance, we intend
to model junctions by means of edges with labels left , right
and straight . Whenever (v, w) is such an edge, all incoming
edges (x, v) ∈ E to node v are labeled uturn or lane .

Example 2 (ctd.) Fig. 1a suggests how the edge labels ought
to be used. For instance, the edge (v3, y1) models the di-
rection straight ahead over a junction and thus gets the la-
bel straight . All other edges (vi, vi+1) and (yi, yi+1) are
labeled with lane. The incoming street from below has a
turn to the right starting at x2 and ending at y1, which
will be modeled by an atom e(right , x2, y1). Similarly, we
use e(left , x2, u3) for the left turn at x2. The edges with
arrows on both ends depict U-turns in both directions.

In the formulation of measures in traffic regulation orders
concepts like street names, addresses and cardinal points
are used to describe the intended topological dimensions.
We assume that for the description at hand, a preprocessing
(or specification) maps this scope to edges. We thus reduce
measure descriptions to sets of such “atomic measures.”

To describe measures, signs, their effects, as well as con-
flicts, we build upon disjoint sets of ground terms M, S, F
and C called the measure types, sign types, effect types and
conflict types, respectively. For instance, M may contain a set
of terms spl(k) for each speed limit value k that is needed,
e.g., spl(5), spl(10), . . . , spl(130) in Austria.

Definition 2 (Measures, Signs, Effects, Conflicts) Given
a street graph G, we define the following sets of atoms:
• Measures MG = {m(t, v, w) | t ∈ M, (v, w) ∈ E};
• Signs SG = {s(t, v) | t ∈ S, v ∈ V };
• Input IG = MG ∪ SG;
• Effects FG = {f(t, v, w) | t ∈ F, (v, w) ∈ E}; and
• Conflicts CG = {c(t, v) | t ∈ C, v ∈ V }.
For instance, to represent the prohibited case that a mo-
torway overlaps with a residential area at a node v we
might use c(overlap(motorway, residential–area), v).
Similarly, the fact that one is caught in a dead end or loop
at u can be represented as c(no-way-out, u).

Definition 3 (Scenario) Let G be a street graph, M ⊆MG

be a set of measures on G, and S ⊆ SG be a set of signs
on G. Then, Sc = (G,M,S) is called a scenario.

Example 3 (ctd.) In Fig. 1a, the dashed blue path from v2
to y2 symbolizes a speed limit measure of 30 kmph. We for-
malize this as a set of atomic measures {m(spl(30), v2, v3),
m(spl(30), v3, y1), m(spl(30), y1, y2)}. The depicted traffic
signs are defined at nodes as the set {s(start(spl(30)), v1),
s(start(spl(30)), y1), s(end(spl(30)), y2)}.
The meaning of both measures and signs is captured by a
mapping of the according languages to a common target
language of effects. To assist modular composition, we de-
fine XY = X ∪ {¬x | x ∈ Y \ X} as the closed world
operator applied to a set of ground atoms X relative to a
base set Y ⊇ X . We always use the according base set of
Definition 2, and thus leave out the subscript, e.g., M for a
set measures M on G abbreviates MMG

.

Definition 4 (Effect mapping) An effect mapping is a set P
of formulas in predicate logic that associates with each in-
put I ⊆ IG on a street graph G the set of atoms
FP (G, I) = {f(t, u, v) | P ∪G ∪ I |= f(t, u, v)} ,

called effects of I (on G).

We implicitly assume that effect mappings are well-designed,
i.e., they do not add new graph elements or new input and
that the ranges of terms are used appropriately. Based on
which effects (and conflicts) shall be defined, the exact logic
must be fixed. We note that first-order logic in general will
not suffice, as seen in Section 5. Logic programming offers a
suitable, more expressive alternative discussed in Section 6.

Example 4 The first-order sentence
∀k, x, y (m(spl(k), x, y) ⊃ f(max -speed(k), x, y))

of an effect mapping P captures the meaning of speed
limit (spl) measures. We informally describe when this
effect label is obtained by signs: First, an edge (x, y)
is labeled with max -speed(k), if an according start
sign s(start(spl(k), x)) is placed at x. From there, the effect
is propagated in the direction of traffic, i.e., along the edges
with label lane, until an end sign or a junction is reached.
For the latter case, let e(lane, u′, u) be the last edge before
the junction and e(straight , u, v) be the next edge in the di-
rection ahead. The effect continues after the crossroads on
the (unique) edge e(lane, v, w) only if another start sign is
posted on v, or no edge (x, v) with label left or right permit-
ted for traffic exists (and neither an end sign nor the start sign
for a different speed limit is there).

The effect mapping uses measures and signs on a graph to
derive effects. Likewise, these effect atoms will then be used
to infer conflicts by means of a specification.

Definition 5 (Conflict specification) A conflict specifica-
tion over an effect mapping P is a set Sp of formulas in
predicate logic that associates with each input I ⊆ IG on a
street graph G the set of atoms
CPSp(G, I) = {c(t, v) | Sp ∪G ∪ FP (G, I) |= c(t, v)} ,

called conflicts of I (on G).

Example 5 Fig. 1b depicts the situation in which the in-
tended speed limit is not sufficiently announced. Road users
coming from node x2, turning right into the lane start-
ing at y1 are not informed about the speed limit. Hence,
according to the sign posting, the max -speed(30) effect
cannot be associated with edge (y1, y2). Since we have
a max -speed(30) effect until node y1 but no end sign
mapped to it, we have a conflict which we may represent
as c(no-end(max -speed(30)), y1). Note that another start
sign for a different speed limit would be an implicit end
sign for the former. The explicit end sign at y2 would then
lead to a second conflict, as there is no “open” effect any-
more: c(no-such-to-end(max -speed(30)), y2).

Definition 6 (Traffic Regulation Problem) Let Sp be a
conflict specification over an effect mapping P , and Sc be
a scenario. Then, the pair Π = (Sp, P) is called a traffic
regulation and the pair (Π, Sc) a traffic regulation problem.

4 Reasoning Tasks
We now use the preceding definitions to specify some
practically relevant use cases in form of reasoning tasks.
We use the shorthand sc(G, I) for the scenario (G,M,S),
where M = I ∩ MG and S = I ∩ SG. By an update of an
input I on G we understand a pair (I−, I+), where I− ⊆ I
and I+ ⊆ IG \ I . In the sequel, we let T = (Π, Sc) be a traf-
fic regulation problem with a traffic regulation Π = (Sp, P)
and a scenario Sc = (G,M,S), and I = M ∪ S.
Definition 7 (Inconsistency) The conflicts of T are given
by C(T) = CPSp(G, I). If C(T) 6= ∅, we call T inconsistent.
Additionally, we call every set of measures or signs X ⊆ IG
on graph G inconsistent, if CPSp(G,X) is non-empty.

Given an inconsistent T , we are interested which part of
the input, i.e., which hypotheses, explain the conflict obser-
vations. Hence we define an abductive diagnosis in line with
(Poole 1989; Console and Torasso 2006).
Definition 8 (Diagnosis) For inconsistent T , a diagnosis of
a set of conflicts C ⊆C(T) is a set J ⊆ I , s.t. C ⊆CPSp(G, J).
Since I is always a trivial (but non-informative) diagnosis
for any set of conflicts, we are interested in (subset-)minimal
diagnoses. We omit a formal definition of Π serving the
forthcoming examples.
Example 6 (ctd.) The missing sign at y1 leads
to two conflicts. The minimal diagnosis for the
missing sign {c(no-end(max -speed(30)), y1)}
is {s(start(spl(30)), v2)}. Independently, the other
conflict {c(no-such-to-end(max -speed(30)), y2)} is
minimally explained by {s(end(spl(30)), y2)}.

Dually to diagnoses explaining the cause for inconsistency,
we next define repairs, which establish consistency for T .
Definition 9 (Repair) A repair for an inconsistent T is an
update (I−, I+) of I , if sc(G, (I \ I−) ∪ I+) is consistent.
Example 7 (ctd.) A minimal repair for the scenario in Ex-
ample 1 is (∅, {s(start(spl(30), y1)}).

For each of the definitions in this section, we immediately
obtain a reasoning task which requires the computation of
the respective concept. In Section 6 we will sketch how these
tasks can be implemented using answer set programming.
Relation between Measures and Signs. We now add to our
notion of consistency for traffic regulation problems a crite-
rion requiring measures and signs in a scenario to express the
same effects, i.e., FP (G,M) = FP (G,S). If this condition
holds, we say that measures and signs correspond.
Example 8 (ctd.) In the traffic regulation problem in Fig. 1b,
the alternative addition of a no-right turn sign on x2 is also
a minimal repair, since in this case, the node y1 can only be
reached from v3 (reversing at z1 along the U-turn (z1, y1)
is disregarded). Hence, another start sign at y1 is not neces-
sary and the effect propagation of the start sign at v2 con-
tinues through y1. However, the prohibition of traffic along
the edge (x2, y1) as supported by the no-right turn sign is
not supported by a corresponding measure. Therefore, the
addition of this sign is not a repair in a strict sense.

Based on this observation, we define:

Definition 10 (Strict Repair) A repair (I−, I+) for T is a
strict repair for T , if (G,M ′, S′) = sc(G, (I \ I−) ∪ I+)
and FP (G,M ′) = FP (G,S′).

By additional restrictions on repairs we obtain further prac-
tically relevant use cases. We say a repair (X−, X+) is X-
based, if X− ∪X+ ⊆ X .

Definition 11 (Adjustment) A sign adjustment for T ,
where M is consistent, is an SG-based repair (S−, S+)
for T , such that FP (G,M) = FP (G, (S \ S−) ∪ S+).

The definition of a measure adjustment similarly as-
sumes S to be consistent and the repair to be MG-based.
Adjustment is useful if one kind of information shall serve as
basis for the repair of the other.

Another relevant use case for data import is the generation
of measures or signs, given consistent data of the other kind.

Definition 12 (Generation) A sign generation for T ,
where M is consistent and S = ∅, is an SG-based re-
pair (∅, S+) for T , such that FP (G,M) = FP (G,S+).

A measure generation is defined analogously. The additional
reasoning tasks which we get from the definition of adjust-
ment and generation are special cases of the repair task. Re-
gardless of whether or which constraints are used, we can
rank repairs in different ways. The possibilities range from
generic preferences, like favoring deletions over additions, to
the encoding of very specific domain knowledge.

5 Case Study
In addition to our running example, we now examine a dif-
ferent problem: the creation of a loop like the one shown in
Fig. 2, which is induced by four mandatory left turns.

We consider loops as special dead ends which we want to
detect by deriving the conflict c(no-way-out, v) whenever
a node v has a way in, but no way out. We say a node v
has a way in, if it is predefined as in-node (by means of
an according label), or if it is reachable from an in-node.
Similarly, a node v has a way out, if it is a predefined out-
node, or an out-node is reachable is from v.

A node w is reachable from v, if (i) (v, w) is an edge,
where neither the node v is prohibited for traffic (e.g., through
a no-entry sign), nor the edge itself (e.g., through a mandatory
turn in a different direction), or (ii) if a node x is reachable
from v, from which w is reachable.

Example 9 The mandatory left turns in Fig. 2 induce a loop
along the nodes L = {a6, a3, b8, b5, c2, c7, d4, d1}. Respec-
tive in-nodes and out-nodes are not depicted and assumed
to be reachable from the nodes with dotted lines. For in-
stance, from a1, an out-node is reachable, and a2 is reach-
able from an in-node. Each mandatory left turn prohibits the
right turn, U-turn, and edge straight ahead over the junction.
E.g., the mandatory left turn at a6 prohibits moves along the
edges (a6, a7), (a6, a5) and (a6, a1).

We try to keep the street model as simple as possible. Revers-
ing along lanes is not a typical road usage. Therefore, we do
not model any intermediate nodes along streets (and thus no
U-turns within lanes), unless we need to represent a sign, or
the start or end of a measure. In reality, we could in principle

a1

a2

a3 a4

a5

a6

a7a8

b1

b2

b3 b4

b5

b6

b7b8

c1

c2

c3 c4

c5

c6

c7c8

d1

d2

d3 d4

d5

d6

d7d8

Figure 2: Loop caused by mandatory left turns

escape the loop in Example 9 by reversing somewhere along
a lane. Since this is not supposed to be necessary, we still
want to derive c(no-way-out, v) for all nodes v ∈ L.
Diagnosis & Repair. The unique minimal diagnosis for
each of these conflicts—which can be seen as one conflict
across many nodes—consists of all four mandatory left turns.
Note that additional signs that do not restrict the reachability,
like speed limits, would not change this diagnosis.

To repair the scenario, we may delete one of the mandatory
left turns on nodes a6, b8, or c2. Consider the case that we
delete the mandatory left turn at d4. The options to continue
to drive straight over the junctions towards node d7, as well
as turning right towards node d5, are not available due to the
no-entry signs. According to the street model, there is a way
out from node d4 via the U-turn to node d3, from which an
out-node node is reachable via nodes c8 and c3. As argued
before, it is reasonable to still classify the situation as loop,
since paths should not use U-turns. A road user arriving at d4
for the first time would not know that she will eventually
come back to node d4 (by taking the supposed path).
Challenges. Many conflicts will not be strictly illegal as
defined by the traffic regulatory orders or additional legal
documents, but arise from expert knowledge or common
sense. Consequently, both the inclusion and the kind of defi-
nition of many conflicts will be a matter of preference, and
shall in principle be configurable by domain experts.

Looking back at the example, one might have different
categories of loop conflicts like “strong loop” and “weak
loop,” where the latter allows for escapes via U-turns. In
this sense, Fig. 2 represents a strong loop, the repair where
the sign at d4 is removed represents a weak loop. Further,
the question which repairs should be proposed and how to
rank them, is very context-sensitive. For instance, we might
wish to warn road users about weak loops through a no-
through-road sign, but the ideal position to do so is obvious.
Alternatively, we could add mandatory U-turn signs before
junctions one has to eventually return to. While this might

often be the desired solution, it is formally not optimal, since
it restricts more than necessary.

6 Implementation
After we derive some desiderata from the aforementioned
observations we will present how the introduced reasoning
tasks can be implemented using answer set programming.

Since comprehensible specifications play a major role in
this problem domain, we demand that the implementation
should be declarative. An imperative way of programming
such rules will quickly lead to deeply nested conditionals
with intransparent dependencies. Further, we need a high
degree of modularity to enable changes to specifications inde-
pendent of the implementation of reasoning tasks. Since the
domain comprises many patterns with exceptions and special
cases, some sort of default reasoning would be desirable. For
instance, traffic is permitted in a certain direction, unless it is
explicitely prohibited.

Answer Set Programming (ASP) is a rule-based con-
straint programming methodology gaining increasing pop-
ulariy (Brewka, Eiter, and Truszczyński 2011). Efficient
solvers are available, such as DLV (Leone et al. 2006) and
Potassco (Gebser et al. 2011). ASP is based on the answer
set semantics (Gelfond and Lifschitz 1991).

We will now sketch how our reasoning tasks can be imple-
mented using (disjunctive) answer set programs, which are
sets of rules of the form

a1 ∨ · · · ∨ a` ← b1, . . . , bm,not c1, . . . ,not cn
over first-order atoms. Intuitively, given an interpretation as
a set of atoms, if all atoms bi hold, and none of the atoms ci
provably hold, then at least one of the atoms ai has to hold.
Answer sets are models that satisfy special conditions to rule
out self-supported situations in cyclic programs.

First, we show how the reachability relation of Section 5
can be naturally translated into ASP rules. Recall that we
wanted to label a node v with no-way-out, if it has a way in,
but not a way out. The rule

c(no-way-out, V)← way-in(V),notway-out(V).

says that if for some node V , way-in(V) is derivable
but way-out(V) is not, then we conclude c(no-way-out, V).
Note that ASP adopts the closed world assumption, enabling
such negation as failure.

We specify way-in and way-out recursively using reach,
which holds the reachability relation.

way-in(W)← way-in(V), reach(V,W).

way-out(V)← reach(V,W), way-out(W).

Reachability in turn is defined as follows:
reach(V,W)← e(T, V,W),not prohib-n(V),

not prohib-e(V,W).

reach(V,W)← reach(V,X), reach(X,W).

Assuming that effect definitions provide the predicates
prohib-n and prohib-e, these five rules in principle suffice
to classify dead ends of a graph given as a set of atoms that
represent its edges, as in the loop of Fig. 2. Note, however,
that this is just a naive implementation for illustration, com-
puting reach(V,W) for all possible pairs of nodes.

We now briefly illustrate the use of ASP to find, diagnose
and repair conflicts in our running example of Section 3.

Evaluation. Assume we are given the scenario (G,M,S)
as described in Fig. 1b with according edges of
form e(T, V,W). The measures are represented by facts
of form inputm(spl(30), X, Y), the signs are given
by inputs(start(30), v2) and inputs(end(30), y2)). For
brevity, we use predicates y and inputy to distinguish the
input from program-generated measures (y = m) and
signs (y = s); the resp. arity is clear from context. The
input creates an initial pool of available measures and signs
with rules of form

y(~X)← inputy(~X).

Whenever we have an atomic measure m(T, V,W), resp. a
sign s(T, V), we may use it or omit it:

usey(~X) ∨ ¬usey(~X)← y(~X).

With additional rules, effects of form f(T, V,W) must be
derived by measures and signs, in case they are used.

For every effect atom f(T, V,W) derived by a measure,
the same effect must be derived by signs. To detect potential
correspondence conflicts, we use supp(BY, f(T, V,W)) to
track the source BY of each effect, i.e., whether it is sup-
ported by a measure or a sign. One of two similar rules is:
c(no-s(T), V)← f(T, V,W),not supp(by-s, f(T, V,W)).

In order to evaluate the input, we use it with rules of form
usey(~X)← inputy(~X). (1)

In summary, we get a single answer set with the conflict
c(no-s(maxspeed(30)), y1), as f(maxspeed(30), y1, y2) is
not supported by a sign.

Diagnosis & Repair. Integrity constraints (written with ⊥
in the head) disallow answer sets that satisfy their bodies,
i.e., they express s. By dropping rules (1), we allow input to
be unused. We can diagnose a conflict by requiring that it is
derived, i.e., by prohibiting that it is not derived:

⊥ ← not c(no-s(maxspeed(30)), y1).

We now get multiple answer sets that all contain the
atom c(no-s(maxspeed(30)), y1, y2). The minimal one with
respect to the positive occurrences of the symbol use contains
only one such, namely use(m(spl(30), y1, y2)).

ASP solvers come with useful optimization features that
allow to express preferences. DLV for instance minimizes
the number of violated weak constraints in a program (dis-
tinguishable by :∼ from other rules), resulting in preferred
answer sets w.r.t. an optimization criterion. With the additions
of the following weak constraints, the aforementioned diag-
nosis is now the single one, as we require that explanations
of a certain conflict are minimal.

:∼ input(m(T, V,W)), use(m(T, V,W)).

:∼ input(s(T, V)), use(s(T, V)).

Implementing the repair task works similarly. We now con-
strain the usage of the input such that no conflict is derived,
by using the constraint ⊥ ← c(T, V). The optimization to
obtain a minimal number of deletions uses the two previous
rules above, where use is negated. We can also consider re-
pairs including the addition of new measures and signs which

then have to be introduced during the repair process. This can
be done by encoding domain knowledge about how measures
have to be announced.
Generation, Adjustment. If we replace the weak con-
straints for the penalization of measure modifications by
according constraints, we get sign adjustments by using the
same repair mechanism. If we additionally do not load the
given signs, we get sign generation, and so on.
Preference Handling. More sophisticated preferences can
be encoded in DLV, by using levels for penalties, which are
minimized by priority. This way we can, for instance, prefer
modifications of signs over modifications of measures, and
in further refinement, deletions over additions.

7 Conclusion and Outlook
To date, tools for advanced inconsistency management of
traffic regulations are lacking. We presented a logic-based
approach to this problem, which is especially relevant in
envisaged future dynamic regulation settings. We formalized
the notion of traffic regulation problem and considered major
reasoning tasks on it. We implemented them using answer set
programming, which serves as an executable specification.

Current and future work includes refining and enhancing
the prototype in cooperation with domain experts, as well
as integrating street data from relevant real-world scenarios
which are currently collected in an ongoing industrial project.
Based on the refined implementation, we will conduct an ex-
perimental evaluation to assess the viability of our approach
in practice. Initial experiments on a number of synthetic sce-
narios are encouraging.
Acknowledgements. Supported by PRISMA solutions EDV-
Dienstleistungen GmbH, and the Austrian Science Fund
(FWF) projects P20841 and P24090.

References
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–103.
Console, L., and Torasso, P. 2006. Automated diagnosis.
Intelligenza Artificiale 3(1-2):42–48.
de Kleer, J., and Kurien, J. 2003. Fundamentals of model-
based diagnosis. In SAFEPROCESS’03, 25–36. Elsevier.
Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. T. 2011. Potassco: The Pots-
dam answer set solving collection. AI Comm. 24(2):107–124.
Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databases. Next Generat.
Comput. 9(3–4):365–386.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV System for Knowledge
Representation and Reasoning. ACM TOCL 7(3):499–562.
Lucas, P. 1997. Symbolic diagnosis and its formalisation.
Knowl. Eng. Rev. 12:109–146.
Poole, D. 1989. Normality and faults in logic-based diagnosis.
In IJCAI’89, 1304–1310.
Poole, D. 1994. Representing diagnosis knowledge. Ann.
Math. Artif. Intell. 11:33–50.

