
REA-DSL: Business Model Driven
Data-Engineering
Dieter Mayrhofer, Christian Huemer

Institute of Software Technology and Interactive Sytems
Vienna University of Technology

Vienna, Austria
Email: {lastname}@big.tuwien.ac.at

Abstract—An accounting information system (AIS) manages
data about a company’s financial and economic status. The con-
tribution of this paper is closing the gap between the languages
used by business domain experts and IT-experts in analyzing
the relevant data. A well accepted approach scrutinizing an
accountability infrastructure is the Resource-Event-Agent (REA)
ontology. Although REA has been based on well-established
concepts of the accounting theory, its representation has not been
intuitive to domain experts. In previous work, we developed the
REA-DSL, a dedicated and easy-to-understand graphical domain
specific modeling language for the REA ontology. Evidently,
a model-driven approach requires to transform the REA-DSL
artifacts to code. In this paper we present the transformation of
the REA-DSL to a relational database for AIS. This approach
offers the advantage that a domain expert verifies the relevant
data in an ”accounting language”, whereas the IT expert is able
to work with traditional data base structures.

I. INTRODUCTION

Accounting information systems (AIS) provide business
professionals with accurate and reliable information about a
company’s financial and economic status. Furthermore, it al-
lows them to predict future cash flows and workloads and, con-
sequently, make decisions and take aligned actions. According
to Romney and Steinbart, an AIS is a system that collects,
records, stores, and processes financial and accounting data to
produce information for decision makers [1].

When designing an AIS, it is essential that the underlying
data structure and the user interface reflect the economic
phenomenas a company is based on. Thus, it is crucial that
business professionals who have the knowledge about these
economic phenomenas can unambiguously communicate the
requirements with the IT professionals, who are in charge
of designing and developing the AIS. Business ontologies
can serve as an unambiguous communication language by
providing a set of concepts and relations between them for
describing businesses and their economic actions.

The most prominent and well-accepted business ontology
language in the area of AIS is the Resource-Event-Agent
(REA) ontology developed by McCarthy and Geerts [2],
which is based on well established concepts of the economic
literature. It is based on the modeling of economic events on
the operational layer that result in an increment or decrement
of economic resources and economic agents carrying out these
events. Over the years REA has been extended by new con-
cepts – the planning and policy layer [3]. These layers provide

concepts to model commitments on events that are planned for
the future. Nowadays, REA is considered as a sophisticated
business modeling language for developing an AIS. However,
REA does not come with a dedicated graphical syntax, rather
it uses stereotyped class-diagrams that are not intuitive to
business users. Furthermore, REA misses an unambiguous
formalization of the class diagrams, since the stereotypes and
their relations are not defined by a UML profile. We argue, that
these limitations diminish the use of REA and that REA could
greatly benefit from a dedicated graphical representation like
e3-value [4] – another language for business modeling with a
dedicated focus on value exchanges – does.

Consequently, we took the challenge to create an unambigu-
ous and easy to understand domain specific language for REA
called the REA-DSL. In previous publications [5], [6] we have
formalized the REA-DSL by means of an underlying meta
model and an intuitive graphical representation with dedicated
stencils for all REA concepts. However, in its current state
the REA-DSL still misses indispensable concepts required for
the design of an AIS database scheme – i.e. properties and
primary keys. Consequently, we first extend the REA-DSL by
properties and primary keys.

Given these extensions, the REA-DSL is promoted to a tool
supporting the business experts and IT experts in capturing the
requirements for an AIS. Nevertheless, these models cannot be
read and processed by a database system. The IT professional
would still be required to manually transform the REA-DSL
to a relational model adhering to the REA ontology rules.
This task is error prone and time intensive – resulting in
additional costs for designing the AIS. Consequently, in the
second part of this paper we present a mapping between the
REA-DSL and a corresponding relation model. Similar to the
development of REA itself, we focus in this work on mapping
the REA operational layer and consider the planning and
policy layer mapping for future work. Additionally, our REA-
DSL tool implementation provides an automatic generation of
a relational model from the REA-DSL based on the proposed
mapping. This leads to a model-driven approach transforming
the REA-DSL artifacts to code. This approach offers the
advantage that a domain expert verifies the relevant data in
an ”accounting language”, i.e. the REA-DSL, whereas the IT
expert is able to work with traditional data base structures.

The remainder of the paper is structured as follows: In

Section II we present related work on REA. We illustrate our
REA-DSL by means of an example in Section III. Afterwards,
we introduce the extension of the REA-DSL by properties and
primary keys in Section IV. The core of the paper – Section
V – elaborates on the mapping rules between the REA-DSL
and the relational model. An evaluation is provided in Section
VI. A summary in Section VII concludes the paper.

II. RELATED WORK

In its beginnings REA was developed by William McCarthy
as an accounting framework where economic exchanges are
the central idea [2]. According to the acronym REA, the
main concepts are economic resources, economic events, and
economic agents. For readability issues we will drop the prefix
economic for the remainder of this paper. Basically, one or
more resources are exchanged between usually two (but in
theory also more) agents at well defined events. A cornerstone
of REA is also the concept of duality, which means that usually
one event (or in theory a set of events) is compensated by
another event (or set of events). An example on the instance
level may be: On the 19 March 2012 a sale (event) occurs,
where the salesman Joe (agent) with the help of the shop
assistants Mary and Wendy (agents) give 50 pounds
of tuna fish (resource) and a fishing rod (resource)
to their customer Fred (agent). The sale (event) is
compensated by the payment (event) which happens right
after Fred (agent) pays the amount of 700 Euros to the
cashier Mark (agent).

Evidently, REA does not model the individual instance
on M0, but analyses an enterprise on the model layer M1.
Accordingly, the REA model defines the schema for the above
mentioned instance from the perspective of the seller as
follows: sales and payments are in duality. A sale is
performed by exactly one salesman, a number of shop
assistants and an external customer. The sale leads
to a decrease of fish and additional products. The sale
is compensated by the increase in cash being part of the
payment which takes place between an external customer
and a cashier. In order to build this REA model, REA
provides the concepts of Resources, Events and Agents on
the meta model layer M2. Furthermore, the M2 layer covers
the concepts of duality (relationship between events), stock-
flows (relationship between event and resource) and participate
(relationship between event and agent).

In an AIS it is not only important to capture what is
happening or has happened, it is also important to record
what is planned or what contracts were made in order to
plan and predict future events which affect resources and
agents. Consequently, REA was extended by the planning
and policy layer [3], [7], [8] which allows to model policies
and commitments for the future events and typification of
resources, events, and agents. Types are very important for the
planning and policy layer but are also used by the operational
layer. In this work we focus on the operational layer mentioned
above and also consider typification concepts.

To extend the REA-DSL with properties and primary
keys we make use of common modeling practice in Entity-
Relationship (ER) modeling and refer to basic database liter-
ature [9], [10]. As for the mapping from the REA-DSL to the
relational model we also consulted the aforementioned books
as well as the hierarchy mapping strategies in [11]. In [12]
Poels compares REA with entity relationship (ER) diagrams
in terms of conceptual modeling of AIS. The empirical study
focuses on the perspective of the users who need to use
and understand the conceptual REA models (e.g. database
designers, system developers, information analysts, and AIS
end-users) and showed the effectiveness of REA modeling in
the area of AIS. However, we showed in [6] that our REA-
DSL was even more intuitive and easier to comprehend than
the original class based REA diagrams.

III. REA-DSL EXAMPLE

To understand the mapping between the REA-DSL and
the relational model we first provide a simple example of
the REA-DSL for the reader to get familiar with the main
concepts. The interested reader on the underlying meta-model
of our REA-DSL is referred to our publication [5]. On the
left side of Figure 1 an example of a value chain view for a
fish sale company called Sy’s Fish is depicted. This example
has also been used by McCarthy and Geerts [13]. A value
chain specifies the flow of resources between value activities.
A value activity is an activity that takes input resources to
create output resources that are by economic principles of
higher value to the company. Each value activity is further
detailed by a REA duality relationship as described in the
previous section.

The left hand side of Figure 1 shows the value chain
of Sy’s Fish. It covers the value activities: product buying,
fish buying, transport, truck acquisition, cleaning, selling, and
payroll. Resources - depicted by a drop - are usually created
by one value activity and may serve as input to other value
activities. For example, selling creates cash that is used as
input to most of the other activities.

Each of the value activities is refined by a duality model.
The duality model defines what events ”are happening” or
”have happened” and thus allows to model in detail what
agents and resources are involved in economic events. On
the right side of Figure 1 we picked the duality model of
the selling value activity as an example. It defines, that
in an event sale (depicted by a hexagon) an inside agent
salesman (depicted by a white stick figure) and multiple
shop assistants (depicted by a stack of stick figures)
sell the bulk resources fish (depicted by a dashed drop) and
the regular resource products (depicted by a solid drop)
to an outside agent customer (depicted by a black stick
figure). Regular resources (products) are uniquely identifiable
whereas bulk resources (fish) are not uniquely identifiable and
only the amount on hand can be stored. In return for the sale
event – according to the ”give and take” principle of economic
exchanges – the customer gives cash to the cashier in
the payment event.

Fig. 1. REA example

IV. REA-DSL EXTENDED: ADDING PROPERTIES AND
KEYS

In order to derive relational models from a REA-DSL
model, we first extend the main REA-DSL concepts agents,
resources, and events by properties and primary keys. In the
following, we use the concepts of resource and resource type to
demonstrate the extension by primary keys and properties. The
extension for agents and events follows the same principles.
Figure 2 shows the identifiable resource product and the
bulk resource fish that are compliant to the meta model in
the middle. The numbers in the description below reference
the numbers in Figure 2.

Resource
ResourceType

- QoHUnit: string [0..1]
- QoHDataType: int [0..1]

Property

- Name: String
- Type: String
- isPrimaryKey: boolean

Typification

0..1
1

1

1

1

+ObjectProperty 0..*

1

+TypeProperty0..*

1

2

3

4

5

Fig. 2. Resource/Bulk Resource Properties Meta-Model

The identifiable resource (1) on the left side is depicted by
a drop and contains two compartments: on top the object
properties compartment colored in green (2) and at the
bottom the type properties compartment colored in yel-
low (3). These compartments can contain multiple properties.
The instances of the object properties vary between each
individual product. However, there are also static properties
which stay the same for certain types of products. Thus,

REA distinguishes between resources with object properties
and resource types with type properties. For example, all
product types book or all product types fishing rods have the
same common tax percentage. On the other hand, each single
resource book or resource fishing rod has its own unique
RFID code. Therefore, the meta model specifies, that one
resource has exactly one typification relationship to exactly
one resource type and vice versa. Consequently, there is a
one-to-one relationship between the resource and the resource
type which are depicted by a common dashed drop in the
concrete syntax (1,3). In the object-oriented paradigm classes
may include static attributes (class attributes) and non-static
(regular) attributes. In the REA context it is required to have
one concept covering the regular attributes (object properties)
and another one covering the static attributes (type properties).
For example, an order for a car might just reference the
resource type (e.g., a Ferrari Type F40) containing the type
properties or the exact individual resource (e.g., the Ferrari F40
with the serial number XYZ10 and golden painting) containing
the object properties.

In our example, the resource product contains two object
properties RFID:INT and Name:VARCHAR as well as one
type property Tax:INT. Properties consist of a name and
a type. In the concrete syntax on the left side the name is
separated from the type by a colon (e.g. NAME:VARCHAR).
The flag isPrimaryKey signals, whether or not this property
is a unique identifier of the resource. Primary key properties
are tagged by a key symbol. In our example RFID:INT
is the primary key property for the resource product. The
type property Tax:INT applies to certain types of products.
Consequently, a certain type of product (e.g., books) will
always have the same tax applied on it (e.g., 7 %).

AT_EmployeeType

TypeName StartingWage

Cashier 0

Driver 0

A_Employee

EmployeeId TypeName Name Age

AT_DriverType

TypeName DriverClass

A_Driver

EmployeeId LicenseNr

A_Cashier

EmployeeId

1
2

3
4

5

P F P

PF PF PF

Fig. 3. Agent Mapping

On the right side of Figure 2 a bulk resource (resource type)
fish (4) is depicted. A bulk resource cannot be individually
identified. In our fish case, we can only record the amount
of a type of fish but cannot track each individual fish.
Thus, it is not possible to apply object properties for an
individual fish. Consequently, bulk resources may only
contain type properties (5). The fish bulk resource contains
the type property StoreTemp:INT. You can now record
for each type of fish the storage temperature (e.g., tuna 35
degrees Fahrenheit, carp 40 degrees Fahrenheit). Additionally,
a bulk resource (resource type) contains two additional fixed
properties: QoHUnit (Quantity on Hand Unit) as a string and
QoHDataType (Quantity on Hand Data Type) as an integer.
QoHUnit defines the unit of measurement (e.g., pounds as in
300 pounds of tuna). QoHDataType defines the data
type of the unit (e.g., data type double for pounds).

V. REA-DSL TO RELATIONAL MODEL MAPPING

In this section we create a model mapping between the
REA-DSL and a relational model to automatically generate a
relational model from the REA-DSL models in terms of SQL
statements. Still, the mapping and appearance of the relational
model could be fine tuned by flags and preferences set by the
IT professional at a latter stage. The generated SQL statements
are widely accepted and may be imported by many database
systems and database modeling tools. In our case we used the
free MySQL Workbench [14] to import and show the relational
model diagrams.

For educational purposes, we believe that the mapping is
best explained by using the concrete syntax of the REA-DSL
and the relational model. The exact mapping is described by
a pseudo-code.

General mapping rules. Agents and resources can have
generalization relationships in REA. For mapping the general-

ization hierarchies of the REA-DSL there are several common
approaches to a relational model in literature [9], [10], [11].
We decided to create a separate table for each super and sub
class where the sub class table references the super class table.
This allows us to either directly reference the super or sub class
which is needed by the REA concept events.

For all REA concepts with properties (i.e. agent, resource,
and event) the object properties (green compartments) and
type properties (yellow compartments) of the REA concepts
will always become columns of the corresponding tables.
Additionally, properties marked as isPrimaryKey and depicted
by a key symbol become the primary key column of the table.

Agent mapping. On the left side of Figure 3 an example of
an agent hierarchy is depicted. This generalization is consid-
ered to be complete and disjoint which is the most common
case in REA models. It shows the super agent Employee,
which can either be a Cashier or a Driver. On the right side
the corresponding relational model is shown with the mapping
indicated by the dashed arrows annotated by numbers between
the models. These numbers are also referred to in the following
text in brackets. The exact agent mapping rules are described
as pseudo code in Algorithm 1.

A primary key column is indicated by a ”P” in a circle
and a foreign key column by an ”F” in a circle. In a first
step, we need to create a table for the possible agent types.
Thus, each super agent (Employee) is mapped (2) to an agent
type table (AT_EmployeeType) with type property columns
(StartingWage). Additionally, an agent type table gets a
TypeName column which also becomes the primary key if
no specific primary key was specified in the type properties.
The sub agents of the generalization hierarchy on the left
actually specify, which types of employees are allowed. Thus,
the names of the sub agents get inserted into the agent type
table, in our case the sub agents Cashier and Driver.

RT_ProductType

TypeName Tax

Book 0

FishingRod 0

R_Product

RFID TypeName Name

RT_BookType

TypeName Genre

R_FishingRod

RFID Length

R_Book

RFID Used ISBN

1

2

3

4

5

P F

PF PF PF

P

Fig. 4. Resource Mapping

Algorithm 1 Agent Mapping Rules
1: for all Super Agents do
2: create Agent Type Table with the name <Agent.Name>Type;
3: - add column TypeName of type VARCHAR and make it the primary key;
4: - add all Type Properties as columns with the specified type;
5: - insert the name of each related Sub Agent into the table;
6: create Agent Table with the name <Agent.Name>;
7: - add all Object Properties as columns with the specified type;
8: - make the primary key object property the primary key column;
9: - create foreign key to the Agent Type Table;

10: end for
11: for all Sub Agents do
12: if Sub Agent has Type Properties then
13: create Agent Type Table with the name <Agent.Name>Type;
14: - add column TypeName of type VARCHAR and make it the primary key;
15: - make column TypeName a foreign key to its Super Agent Type

Table;
16: - add all Type Properties as columns with the specified type;
17: end if
18: if Sub Agent has Object Properties or generate all sub agent tables is true then
19: create Agent Table with the name <Agent.Name>;
20: - add all Object Properties as columns with the specified type;
21: - create same primary key as in Super Agent and make it a foreign key to

it;
22: end if
23: end for

In a second step, we create for each super agent an agent
table (1) which will hold all individual agents. In our example
we create an A_Employee table with all the object properties
Name, Age, and EmployeeId (primary key) as columns. An
additional column TypeName references the agent type table
AT_EmployeeType. Thus, an A_Employee row entry can
either be an AT_EmployeeType Cashier or Driver.

Each of the sub agents (Cashier and Driver) become

their own agent table (A_Cashier and A_Driver) with the
object properties columns (LicenseNr for A_Driver) (3,5)
regardles of having specific properties or not. Consequently,
each row entry for A_Cashier or A_Driver also has to
have a row entry in A_Employee. They reference their super
agent (Employee) with the primary key EmployeeId. If
a sub agent (Driver) also has type properties, a specific
agent type table (AT_DriverType) referencing the super
agent table (AT_EmployeeType) is created (4). Note, there
is no reference between A_Driver and AT_DriverType
since it is implicitly referenced through A_Employee and
AT_EmployeeType.

Resource mapping. The resource mapping (cf. Figure 4)
is similar to the agent mapping and thus, is just briefly
explained here. Due to space limitations we do not show the
resource mapping pseudo code here but refer to our web site
http://umm-dev.org/rea-mapping/.

The super resource (Product) becomes (2) a resource
type table (RT_ProductType) with the type property col-
umn Tax and the primary key column TypeName. The
sub resources Book and FishingRod become (3,4) row
entries. Furthermore Product also becomes (1) a resource
table R_Product with the object property columns RFID
and Name as well as a TypeName column referencing
the resource type table RT_ProductType. Each sub re-
source (Book and FishingRod) also become a separate
agent table (R_Book with columns Used and ISBN, and
R_FishingRod with column Length). If a sub resource

has type properties (Book) (5), a separate resource type table
(RT_BookType with column Genre) referencing the super
resource type table (RT_ProductType) is generated.

RB_FishType

TypeName QoH StoreTemp

Carp 0 0

Trout 0 0

RB_CarpType

TypeName CarpFamily
PF

P

1

2

Fig. 5. Bulk Resource Mapping

As mentioned earlier there are special resources called bulk
resources only containing type properties. According to the
mapping in Figure 5, the super bulk resource Fish is mapped
to the bulk resource type table RB_FishType (1) including
the type properties as columns (StoreTemp) and the primary
key column TypeName. Additionally, a quantity on hand
(QoH) column for storing the amount of the bulk resource is
created. All the sub bulk resources get inserted as row entries
into the super bulk resource table (RB_FishType). If a sub
bulk resource has specific type properties (e.g. CarpFimily
in Carp), a separate bulk resource table (RB_CarpType (2)
with CarpFamily column) is created referencing the super
bulk resource table (RB_FishType).

Duality mapping. So far we concentrated on the mapping
of the REA building blocks agents and resources. We already
learned that these building blocks are associated with events
in the duality model. In the duality mapping (cf. Figure 6 and
Algorithm 2) we focus on the mapping of events that are in
duality relationship according to the ”give and take” principle.

A duality model exists for each value activity of the value
chain. As an example for the mapping we take the Selling
duality as depicted on the right side of Figure 1. Figure 6
shows the mapping of the Selling duality (1) to a duality
table D_SellingDualityTransfer with the primary key
DualityId. Each event of the duality is mapped to an event
table. For the Sale event (2) an event table E_SaleEvent
is created with all the event properties (SaleNr and
SaleDate) as columns and the SaleNr as primary key. Fur-
thermore the SellingDualityTransferId column ref-
erences the duality it belongs to and SaleEventTypeName

Algorithm 2 Duality Mapping Rules
1: create Duality Table with the name

<PlanningModel.Name>DualityTransfer/Transformation
2: - table name either Tranfer or Transformation according to model type
3: - add DualityId as primary key column
4: - add foreign key ContractId to the ContractTable
5: for all Events do
6: create an Event Table
7: - add all Object Properties as columns with the specified type
8: - make the primary key object property the primary key column
9: - add foreign key to the Duality Table and the Event Type Table

10: - add foreign key to the Commitment Table which this event fulfills
11: for all Connected Agents (participations) do
12: if Single Agent then
13: foreign key to Agent Table and add minutes used if is inside agent
14: else if Multiple Agent then
15: create a EventParticipateAgents Table
16: - foreign key to Event Table and Agent Table
17: - add minutes used column if is inside agent
18: end if
19: end for
20: for all Connected Resources (stock-flows) do
21: if Single Resource then
22: foreign key to Resource Table and add minutes used if isUsed
23: else if Multiple Resource then
24: create a EventStockFlowResources Table
25: - foreign key to Event Table and Resource Table
26: - add minutes used column if isUsed
27: else if Single Bulk Resource then
28: foreign key to Resource Type Table and add minutes used if

isUsed
29: add quantity (of quantity type) column
30: else if Multiple Bulk Resources then
31: create a EventStockFlowResourceTypes Table
32: - add Id as primary key column
33: - foreign key to Event Table and Resource Type Table
34: - add quantity (of quantity type) column
35: - add minutes used column if isUsed
36: end if
37: end for
38: end for

references the event type of the Sale event (generated in the
planning mapping).

Single participating agents (Salesman and
Customer) are referenced directly from the event table
(SalesmanEmployeeId and CustomerCustomerId).
Additionally, for inside agents (Salesman) we also
record the time spent for this event in a separate column
(SalesmanMinutesUsed). Multiple participating agents
(ShopAssistant) become (5) their own participation
table E-A_SaleEventParticipateShopAssistant.
The table has columns for referencing the SaleEvent
and the ShopAssistant as well as the MinutesUsed.
Multiple resources (Product) become (4) their own stock-
flow table (E-R_SaleEventStockFlowProduct)
referencing the corresponding SaleEvent and
the individual Product. Multiple bulk resources
Fish also become (3) their own stock-flow table
(E-RB_SaleEventStockFlowFishType) referencing
the corresponding SaleEvent and the FishType.
Additionally to resources, for bulk resources a quantity
column is created (FishTypeQuantity). Notice, resources
can be marked as being used instead of being exchanged. In
such a case, also an additional column ”‘minutes used”’ is
generated.

The Payment event is mapped (6) to an event ta-
ble (E_PaymentEvent) in a similar way as the Sale

D_SellingDualityTransfer

DualityId ContractId

E_SaleEvent

Sale
Nr

Sale
Date

SellingDuality
TransferId

SaleEvent
TypeName

SaleCommitment
OrderNr

Salesman
EmployeeId

Salesman
MinutesUsed

Customer
CustomerId

E-RB_SaleEventStockFlowFishType

SaleEventSaleNr FishTypeName Id FishTypeQuantity

E-R_SaleEventStockFlowProduct

SaleEventSaleNr ProductRFID

E-A_SaleEventParticipateShopAssistant

SaleEvent
SaleNr

ShopAssistant
EmployeeId

ShopAssistant
MinutesUsed

E_PaymentEvent

Payment
Nr

Pay
Date

SellingDuality
TransferId

PaymentEvent
TypeName

PaymentCommitment
OrderNr

Cashier
EmployeeId

Customer
CustomerId

CashType
Name

CashType
Quantity

3

4

5

1

2

6

P

PF

PF

F

P

P

F F F F

F

F

PF

PF

F F F F F

P F F

Fig. 6. Duality Mapping

event. As an additional concept, the single bulk resource
Cash is directly added as column CashTypeName in
the payment event table referencing the CashType and a
CashTypeQuantity column storing the amount of Cash
being exchanged.

VI. MAPPING EVALUATION

For the creation of our REA-DSL and the mapping to the
relational model we followed the design science approach in
information systems by Hevner [15]. Our designed artifacts
are the REA-DSL consisting of a well-defined meta model
and a graphical representation as well as the mapping rules
for generating relational models. For designing the REA-DSL
we specifically followed the methodological steps defined by
Strembeck and Zdun [16]. Consequently, we started with (1)
the identification of elements in the REA ontology, (2) derived
the abstract syntax of the REA model in multiple revision
cycles, and (3) defined the behavior of the REA-DSL and its
elements. After we have reached a stable state, we defined (4)
the concrete syntax of the REA DSL and (5) implemented a
tool supporting the REA-DSL modeling. As a last step (6) we
automatically generate an IT artifact – i.e. the SQL statements

– by applying the mapping rules introduced in this paper on
the REA-DSL model.

Our evaluation is threefold: (i) the technical feasibility is
demonstrated by a tool implementation, (ii) a functional test
based on existing REA models is conducted, and (iii) expert
interviews are taken. In previous work [5], [6] we created the
REA-DSL designer tool which allows to model REA-DSL
models. In a first step we extended the tool with property
compartments and primary key tags. In a second step we
created T4 text templates [17] – a text template transformation
language introduced by Microsoft – which implement the
mapping rules presented in this paper. These T4 text templates
take the REA-DSL models as an input and automatically
generate relational models by the means of SQL statements
(compatible with MySQL). We took these SQL statements and
loaded them into the MySQL Workbench to get a graphical
representation of the relational model. An excerpt of the T4
text templates for agents (1), its SQL statements output (2) and
a relational graphical representation of the MySQL Workbench
(3) is shown in Figure 7. After applying the complete mapping
on the whole example presented in this paper, 73 tables
conforming to the REA ontology were generated.

As for the functional test, we took 32 REA-DSL examples

CREATE TABLE <#= a.Name #> (
 TypeName VARCHAR(45) NOT NULL REFERENCES <#= a.Name #>Type(TypeName),
 <#= primarykeyagentprop.Name #> <#= CleanType(primarykeyagentprop) #> NOT NULL,
 <# InsertAgentObjectProperties(a); #>
 PRIMARY KEY (<#= primarykeyagentprop.Name #>)
);

CREATE TABLE Employee (
 TypeName VARCHAR(45) NOT NULL REFERENCES EmployeeType(TypeName),
 EmployeeId INT NOT NULL,
 Name VARCHAR(45),
 Age INT,
 PRIMARY KEY (EmployeeId)
);

1

2

3

Fig. 7. T4 Template to SQL Statements to Relational Model

created in [6], extended them by properties and primary keys,
and run the automatic T4 text template mapping on them. This
resulted in 32 relational models which we successfully proved
valid against the REA ontology and its axioms.

Finally, we consulted various experts on our results. In
weekly conference calls with the founder of REA – William
McCarthy – we received valuable feedback which we applied
on the REA-DSL as well as on the mapping to the relational
model. Furthermore, we showed three REA experts and twelve
experts in conceptual modeling our REA-DSL models and the
generated relational models. Afterwards, we asked them for
the comprehensibility of the REA-DSL models compared to
the REA class-like representation and to check the relational
models for completeness and semantic correctness. All experts
mentioned that the REA-DSL models are more intuitive and
easier to understand and proved the derived relational models
as correct.

VII. SUMMARY AND FUTURE WORK

When it comes to modeling accounting information systems
(AIS) the Resource-Event-Agent ontology (REA) is a well-
accepted business modeling ontology. REA allows to model
the economic phenomena of a company within and outside its
borders on an abstract level. These phenomenas are specified
in REA by means of events exchanging resources between
agents. Thus, it is able to capture the economic activities of
the past and the present (e.g. a specific sale). However, the
REA ontology had no dedicated graphical representation and
therefore, was imprecise and hard to understand for business
experts. We overcame this by developing a domain specific
language for the REA ontology called the REA-DSL. This
language can be used by business experts and IT professionals
likewise to jointly create a conceptual model for an AIS in the
requirement phase.

Unfortunately, these models cannot be processed and read
by IT systems in order to automatically create database
structures. This leads to an error prone and time intensive
task for the IT professional of remodeling the REA-DSL
to a relational model, which can be understood by database
systems. Consequently, in this paper we present the extension
of the REA-DSL by database concepts (i.e. properties and
primary keys) and provide mapping rules to a relational model.
We incorporated the new concepts and an automatic relational
model generator based on the mapping rules into our REA-
DSL tool. The tool now supports a thorough and easy creation
of a relational database schema for AIS starting with the
modeling of a conceptual REA-DSL model. We argue, that

this fastens and streamlines the design of an AIS and at the
end saves money in the development phase.

In this paper, we concentrated on the mapping of the
operational layer of the REA-DSL [5]. In our paper [6], we
have extended the REA-DSL to capture the commitments of
the planning layer. Evidently, the planning layer has to be
transformed to a relational structure as well. Due to space
limitations, this mapping was out of scope for this paper
and will be described in future work. Furthermore, we want
to add configurations for the mappings in order to tune the
relational model creation (e.g. choosing the mapping strategy
for generalization hierarchies).

REFERENCES

[1] M. Romney and P. Steinbart, Accounting Information Systems. Pearson
Education, Limited, 2011.

[2] W. E. McCarthy, “The REA Accounting Model: A Generalized Frame-
work for Accounting Systems in a Shared Data Environment,” The
Accounting Review, vol. 57, no. 3, 1982.

[3] G. L. Geerts and W. E. McCarthy, “An Ontological Analysis
of the Economic Primitives of the Extended-REA Enterprise
Information Architecture,” International Journal of Accounting
Information Systems, vol. 3, no. 1, pp. 1 – 16, 2002. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6W6B-
45BV92C-1/2/104bd15205cf9667808ffb157ba8fcd5

[4] J. Gordijn and H. Akkermans, “E3-Value: Designing and Evaluating e-
Business Models,” IEEE Intelligent Systems, vol. 16, no. 4, pp. 11–17,
Jul–Aug 2001.

[5] C. Sonnenberg, C. Huemer, B. Hofreiter, D. Mayrhofer, and A. Braccini,
“The REA-DSL: A Domain Specific Modeling Language for Business
Models,” in Proceedings of the 23rd International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2011). LNCS 6741:
Springer, 2011, pp. 252–266.

[6] D. Mayrhofer and C. Huemer, “Extending the REA-DSL by the Planning
Layer of the REA Ontology,” in Proceedings of the 7th International
Workshop on Business/IT-Alignment and Interoperability (BUSITAL
2012). Springer, 2012, submitted to.

[7] G. L. Geerts and W. E. McCarthy, “The Ontological Foundations of
REA Enterprise Systems, Tulane,” March 2005. [Online]. Available:
http://www.msu.edu/user/mccarth4/tulane.doc

[8] G. L. Geerts, , and W. E. McCarthy, “Policy-Level Specification in
REA Enterprise Information Systems,” Journal of Information Systems,
vol. 20, no. 2, pp. 37–63, 2006.

[9] C. J. Date, An Introduction to Database Systems (8. ed.). Addison-
Wesley-Longman, 2003.

[10] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 6th
Edition. Addison-Wesley-Longman, 2010.

[11] L. Cabibbo and A. Carosi, “Managing Inheritance Hierarchies in Objec-
t/Relational Mapping Tools,” in Proceedings of the 17th International
Conference on Advanced Information Systems Engineering (CAiSE
2005), 2005, pp. 135–150.

[12] G. Poels, “Conceptual Modeling of Accounting Information Systems:
A Comparative Study of REA and ER Diagrams,” in Workshop on
Conceptual Modeling Quality, Lecture Notes on Computer Science (ER
2003), 2003, pp. 152–164.

[13] G. L. Geerts and W. E. McCarthy, “Modeling Business Enterprises
as Value-Added ProcessHierarchies with Resource-Event-Agent Ob-
ject Templates,” in In Business Object Design and Implementation.
Springer-Verlag, 1997, pp. 94–113.

[14] MySQL Workbench 5.2, Oracle, 2011,
http://www.mysql.com/products/workbench.

[15] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, 2004.

[16] M. Strembeck and U. Zdun, “An Approach for the Systematic Devel-
opment of Domain-Specific Languages,” Softw., Pract. Exper., vol. 39,
no. 15, pp. 1253–1292, 2009.

[17] T4 Text Template Transformation Toolkit, Microsoft, 2011,
http://msdn.microsoft.com/en-us/library/bb126445.aspx.

