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Wave equation with focusing power nonlinearity:{
∂2t ψ −∆ψ = |ψ|p−1ψ
ψ[0] = (f, g)

ψ : [0,∞)× R3 → R. 1 < p ≤ 3⇒ energy subcritical.

Known results

Local well-posedness in H1(R3)× L2(R3).

Fundamental self-similar solution (ODE blow up)

ψT (t, x) = (T − t)−
2

p−1 κ
1

p−1

0 , κ0 = 2(p+1)

(p−1)2
.

Blow up rate, F. Merle, H. Zaag (2003, 2005), 1 < p ≤ 3.

Any blow up solution blows up at the self similar rate (T − t)−
2

p−1 .

Family of self-similar solutions, P. Bizon et al. (2010), radial, p = 3, 7.

ψTn (t, r) = (T − t)−
2

p−1 un
(

r
T−t

)
.

Numerical experiments, P. Bizon, T. Chmaj, Z. Tabor (2004), radial,
p = 3, 5, 7 ⇒ Suggestion: ψT describes generic blow up behaviour.



Stability of the fundamental self-similar solution

Spherical symmetry, study problem in backward lightcone CT of blow up point
(T, 0). Consider small perturbations ψ = ψT + ϕ

ϕtt − ϕrr − 2
rϕr − p(ψT )p−1ϕ−NT (ϕ) = 0 in CT

ϕ[0] = (f, g)− ψT [0]

Local energy norm
Energy of free equation :

∫∞
0
r2[ϕt(t, r)

2 + ϕr(t, r)
2]dr ⇒ not well suited to

define local norm.

E(ϕ) =

∫ ∞
0

[rϕr(t, r) + ϕ(t, r)]2 + r2ϕt(t, r)
2dr

Local energy space (E(R), ‖ · ‖E(R))

‖(f, g)‖2E(R) :=

∫ R

0

|rf ′(r) + f(r)|2dr +

∫ R

0

r2|g(r)|2dr

‖(ψT (t, ·), ψTt (t, ·))‖E(T−t) = Cp(T − t)−
5−p

2(p−1) .



Main result (Donninger, S., 2012)

Fix ε > 0. Let (f, g) be radial initial data sufficiently close to ψ1 in the
local energy topology. Then there exists a T close to 1 such that{

∂2t ψ −∆ψ = |ψ|p−1ψ
ψ[0] = (f, g)

has a unique radial solution ψ : CT → R which satisfies

(T −t)
5−p

2(p−1) ‖(ψ(t, ·), ψt(t, ·))−(ψT (t, ·), ψT
t (t, ·))‖E(T−t) . (T −t)|ωp|−ε

for all t ∈ [0, T ) where ωp ∈ [−1,− 1
2 ].

⇒ The blow up described by ψT is stable.



Sketch of proof

First order formulation

ϕ1 = (T − t)
2

p−1 rϕt, ϕ2 = (T − t)
2

p−1 ∂r(rϕ).

Similarity coordinates (t, r)→ (τ, ρ)

ρ :=
r

T − t , τ := − log(T − t)

Operator formulation in local energy space H := L2(0, 1)× L2(0, 1){
d
dτ

Φ(τ) = LΦ(τ) + N(Φ(τ)) for τ > − log T
Φ(− log T ) = u

Φ : (− log T,∞)→ H.



Linear perturbation theory

Semigroup theory. L generates a C0-semigroup S : [0,∞)→ B(H). ⇒
well-posedness of linearized equation and growth estimate

‖S(τ)‖ ≤ eω̃pτ ∀τ ≥ 0, where ω̃p > 0.

Spectrum. σ(L) ⊂ {λ ∈ C : Reλ ≤ ωp} ∪ {1} for ωp ∈ [−1,− 1
2
].

Unstable eigenvalue. λ = 1, eigenvector g (symmetry mode) ⇒ instability
caused by time translation symmetry.

Spectral projection.

P :=
1

2πi

∫
Γ

RL(λ)dλ

rgP = 〈g〉, N := kerP is stable subspace, σ(LN ) = σ(L)\{1}. P commutes
with S(τ) and N is invariant under S(τ).

Linear time evolution.

‖S(τ)(1− P )f‖ .ε e(−|ωp|+ε)τ‖(1− P )f‖

for all τ ≥ 0 and f ∈ H and

S(τ)P f = eτP f .



Shifted solution. Ψ : [0,∞)→ H, Ψ(τ) := Φ(τ − log T )

Rewrite initial data. u ≈ (f, g)− ψT [0] →

U(v, T ) ≈ v + ψ1[0]− ψT [0], v ≈ (f, g)− ψ1[0].

Symmetry mode. T 7→ U(0, T ) ≈ ψ1[0]− ψT [0]

DTU(0, 1) = cpg.

⇒ g is tangent vector at T = 1.

Nonlinear perturbation theory

Duhamel formula.

Ψ(τ) = S(τ)U(v, T ) +

∫ τ

0

S(τ − τ ′)N(Ψ(τ ′))dτ ′ for τ ≥ 0

X :=
{

Ψ ∈ C([0,∞),H) : supτ>0 e
(|ωp|−ε)τ‖Ψ(τ)‖ <∞

}
.

Estimates for the nonlinearity. ⇒ Restriction 1 < p ≤ 3!. For u,v small

‖N(u)−N(v)‖ . (‖u‖+ ‖v‖)‖u− v‖.



Subtract element of unstable subspace rgP .

Ψ(τ) =S(τ)U(v, T ) +

∫ τ

0

S(τ − τ ′)N(Ψ(τ ′))dτ ′ − eτF(v, T )

Correction: F(v, T ) := P
(
U(v, T ) +

∫∞
0
e−τ

′
N(Ψ(U(v, T ))(τ ′))dτ ′

)
.

Banach fixed point theorem ⇒ existence of a unique solution for small initial
data (v small and T close to 1) with linear decay e−(|ωp|−ε)τ .

Erase correction by adjusting T .

U(0, 1) = 0⇒ F(0, 1) = 0⇒ extend this to neighbourhood.

For every small v there exists a T close to 1 such that F(v, T ) = 0 ⇒ the
original equation has a unique solution that decays like e−(|ωp|−ε)τ .

Transform back to original coordinates and variables.



Concluding remarks

Proof is basically along the lines of similar problem for wave maps
equation (Donninger,S., Aichelburg 2011, Donninger 2012).

⇒ suitable for energy supercritical problems.

Extension of above result for (NLW) to p < 5 straightforward.

Work in progress: p ≥ 5.

Thank you for your attention!
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