
Distrib. Comput. (2012) 24:299–321
DOI 10.1007/s00446-011-0147-3

Consensus in the presence of mortal Byzantine faulty processes

Josef Widder · Martin Biely · Günther Gridling ·
Bettina Weiss · Jean-Paul Blanquart

Received: 8 March 2010 / Accepted: 7 November 2011 / Published online: 19 November 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We consider the problem of reaching agreement
in distributed systems in which some processes may deviate
from their prescribed behavior before they eventually crash.
We call this failure model “mortal Byzantine”. After discuss-
ing some application examples where this model is justified,
we provide matching upper and lower bounds on the number
of faulty processes, and on the required number of rounds in
synchronous systems. We then continue our study by varying

J. Widder was supported by the Austrian FWF National Research
Network RiSE (S11403-N23), by the PROSEED project
(proj.no ICT10-050) of the Vienna Science and Technology Fund, by
NSF grant 0964696, and by the FWF project THETA
(proj.no. P17757). M. Biely was partially supported by the Austrian
BM:vit FIT-IT project TRAFT (proj.no. 812205). G. Gridling was
supported by the Austrian FWF project SPAWN (proj.no. P18264) and
the Austrian BM:vit FIT-IT project FAME (proj.no. 816454). The
work of Sect. 4 and parts of Sect. 6 was originally presented at the
37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2007.

J. Widder (B)
Formal Methods in Systems Engineering Group E184/4,
Technische Universität wien, Vienna, Austria
e-mail: widder@forsyte.tuwien.ac.at

M. Biely
Ecole polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland
e-mail: martin.biely@epfl.ch

G. Gridling · B. Weiss
Embedded Computing Systems Group E182/2,
Technische Universität wien, Vienna, Austria
e-mail: gg@ecs.tuwien.ac.at

B. Weiss
e-mail: bw@ecs.tuwien.ac.at

J.-P. Blanquart
Astrium Satellites, Toulouse, France
e-mail: jean-paul.blanquart@astrium.eads.net

different system parameters. On the one hand, we consider
the failure model under weaker timing assumptions, namely
for partially synchronous systems and asynchronous systems
with unreliable failure detectors. On the other hand, we vary
the failure model in that we limit the occurrences of faulty
steps that actually lead to a crash in synchronous systems.

Keywords Consensus · Byzantine fault ·
Distributed algorithm · Fault tolerance · Complexity

1 Introduction

In a distributed system subject to failures, consensus is the
problem of agreeing on a common value out of a set of pro-
posed values. Since consensus is fundamental for building
reliable distributed systems, it has been considered under
many different failure assumptions. One of the most studied
models are crash faults; see [1–3] for an overview. How-
ever, the applicability of positive results that are related to
crashes is limited as crash faults capture only a small num-
ber of causes that lead to abnormal behavior, such as power
outage or permanent disconnection of a node from the net-
work. A more general process failure model is the Byzan-
tine one, which does not postulate any assumption on the
behavior of faulty processes [4]. It captures all causes of
failure, ranging from arbitrary bit flips in memory to inten-
tional (malicious) causes like intrusions. However, Byzantine
behavior may be overly pessimistic if we consider non-inten-
tional faults, while the required redundancy—less than a third
of the processes may be faulty for consensus—may be too
expensive for many applications.

Additionally, the classic Byzantine assumption may be too
pessimistic in many practical systems where one finds mod-
ules that observe the behavior of components and may act
on these components—either automatically or by operator

123

300 J. Widder et al.

decision—in case of anomaly. This results in a modification
of the component failure mode as perceived by other com-
ponents of the system. In such cases, a component may not
fail once and for ever according to a single “static” failure
mode, but its faulty behavior follows some trajectory in the
set of possible failure modes.

In this paper we show that rather than considering the
worst case single failure mode exhibited by a component, it
can be fruitful to exploit some characteristics of its failure
mode trajectory. In particular, we consider failures which
eventually end as a crash, after some latency period where
a more pessimistic mode (up to arbitrary behavior) may
be exhibited. We call this behavior mortal Byzantine. Nest-
erenko and Arora [5] have introduced this kind of behavior
in the context of self-stabilizing dining philosophers under
the name “malicious crashes”.

After some motivation examples in Sect. 2, and general
definitions in Sect. 3, we give our technical contribution.
The technical part of our paper is divided into three sections.
In Sect. 4, we show that in synchronous systems, consensus
can be solved with less processes than in the classic Byzantine
case [6]: Our algorithm only requires a majority of correct
processes. We also show that a majority is necessary, i.e., our
algorithm is optimal with respect to the required number of
processes. If t is the upper bound on the number of crashes
during an execution, it is also known that consensus requires
t + 1 rounds [7]. We show that in the mortal Byzantine case,
with just a majority of correct processes, such a bound can-
not exist, i.e., no algorithm decides in a bounded number of
rounds in every execution. More precisely, we show that in
the case of just a majority of correct processes there are execu-
tions where processes cannot decide before faulty processes
have crashed. So we make explicit that there is a trade-off
between system size and liveness guarantees in the case of
consensus.

From the case of mortal Byzantine faults in synchro-
nous systems, several generalizations are possible. The two
approaches we discuss in the present paper are, on the one
hand, weakening the timing assumptions, and on the other
hand, parameterizing the failure model.

In Sect. 5, we shall therefore relax the timing assumption.
One classic way to solve consensus under relaxed timing
behavior is partial synchrony [8]. In Sect. 5.1, we give a
lower bound for partially synchronous systems which shows
that it is not possible to solve consensus if a third of the pro-
cesses are faulty. For a matching upper bound, we observe
that Dwork, Lynch, and Stockmeyer [8] provided a par-
tially synchronous algorithm solving consensus if less than
a third of the processes are Byzantine faulty. As the mortal
Byzantine fault model restricts the behavior of faulty pro-
cesses more than the (classic) Byzantine fault model, this
algorithm also works in our case, and provides the match-
ing upper bound. We thus show that in partially synchronous

systems nothing can be gained with respect to redundancy
if the failure model is restricted from Byzantine to mortal
Byzantine.

Another way to solve consensus with more relaxed timing
assumptions is the failure detector approach by Chandra and
Toueg [9]. With this approach, executions are considered to
be asynchronous, but processes have access to oracles that
provide information about the liveness of other processes.
For classic Byzantine failures, Doudou et al. [10,11] showed,
among other things, that consensus is impossible with classic
unreliable failure detectors (We will discuss their and related
approaches to circumvent this more thoroughly in Sect. 7).
For the mortal Byzantine model, we will (in Sect. 5.2) present
and prove correct a consensus algorithm based on ideas from
[8] and [9]; it requires that less than a third of the processes
are faulty. This algorithm is totally asynchronous, which con-
trasts the literature on failure detector based Byzantine con-
sensus.

The mortal Byzantine model, as described above, implies
that if a process commits just one fault (e.g., sends a mes-
sage with bad content) it crashes eventually. In the context of
long-lived applications where the failure model is enforced
by monitoring systems, eliminating a process due to one mis-
hap seems to be wasteful. We address this issue by refining the
failure model in the third major section, Sect. 6. More specifi-
cally,wedonot require thateveryfault committedbyaprocess
inevitably leads to a crash. Rather, we count such mishaps
and consider them just “potentially lethal.” Only when they
occur “too often” they are actually lethal and lead to a crash.

In more detail, we consider variations along two lines.
On the one hand, we distinguish what kind of faulty behav-
ior is actually potentially lethal, that is, whether all faults
may lead to eventual crash or just faults that are perceived
as two-faced behavior of the process. On the other hand, we
distinguish under what circumstances potentially lethal faults
actually lead to crashes: we distinguish when these faults sum
up towards some threshold during either the whole execution,
or just during a time window bounded in length.

Although these refined failure models are in the same spirit
as the mortal Byzantine fault model from the earlier sections,
they describe different fault behaviors, for instance, they need
not crash if they do not commit too many failures. Hence,
most of them are not comparable to the mortal Byzantine
assumption.

In the case of all faults being potentially lethal, we show
that resilience can be improved compared to mortal Byzan-
tine faults. If only two-faced behavior is potentially lethal,
we shall explain that a majority of correct processes is suf-
ficient for consensus. Hence, such models are relevant in
applications where one is willing to trade stronger assump-
tions on failure behavior against reduced system size, such
as for instance applications with stringent weight limitation
as in the space industry.

123

Consensus in the presence of mortal Byzantine faulty processes 301

Apart from the two generalizations we consider in this
paper, other approaches may of course also lead to interest-
ing results in this area. Notably, Bazzi and Herlihy [12] have
generalized our previous results to hybrid failure models, that
is, for synchronous systems where mortal Byzantine faults as
well as classic Byzantine faults may be present. In addition to
consensus, theyalsostudiedbroadcast, forwhich theyshowed
that it is solvable for any number of faulty processes. We will
review their results in Sect. 7 along with other related work.

2 Motivation

Often, space systems have to meet strong requirements in
terms of lifetime (without the possibility of repairing or
replacing faulty components with new ones) and in terms of
mass and volume—limiting the number of available redun-
dant units. Space systems are also characterized for some
missions by a strong prevalence of temporary faults; e.g., due
to radiation. Therefore, when a faulty behavior is observed,
it is usual practice to wait some time and assess more pre-
cisely its actual impact and recurrence characteristics, before
(or instead of) engaging strong reconfiguration and definitely
losing the failed component. In this example, the other com-
ponents of the system may observe a faulty behavior evolving
from maybe fully arbitrary to either correct or crash.

Note that the duration of this process may vary from very
short to very long times. On the one hand, short durations
occur when an automatic on-board mechanism—e.g.,
employing execution monitoring, temperature monitoring,
or power monitoring—can identify a high severity failure at
the first manifestation and switch off the component. While,
on the other hand, long durations may be encountered when
ground operators are in the loop to analyze trends in the
telemetry, before requesting some reconfiguration by tele-
commands. Between these two extremes, almost any possible
intermediate durations are possible. For instance, it is com-
mon practice that an on-board mechanism explicitly counts
the number of errors produced by a component in successive
computation cycles. When a given threshold is reached—and
the fault is considered permanent—the component is then
eventually shut down by this on-board mechanism.

The European automated transfer vehicle (ATV) is the
unmanned transport spacecraft which is launched towards
the manned International space station (ISS). The ATV com-
puter architecture contains, among other elements, a pool
of computing units with distributed voting and agreement
mechanisms at pool level. In addition, each computing unit of
the pool is provided with a set of self-checking mechanisms
(whose main aim is to provide some detection coverage for
common mode faults). A computing unit detected as faulty by
these self-checking mechanisms is reset into a silent mode,
and in particular does not participate in the following votes.

As a result of the combination of the vote and agreement
mechanisms at computer pool level and of the self-checking
mechanisms at the level of each computer unit of the pool,
it may happen that a computing unit—as seen from other
units—first appears faulty according to an arbitrary failure
mode, before appearing crashed.

Applying the separation of concerns principle [13], con-
sensus should work independently of the monitoring mech-
anism (or the human intervention). Consequently, solutions
to consensus should rest on an abstract definition of the fault
models that have to be tolerated, and this definition should
be given independently of the machinery that enforces it.
In the examples discussed above, an abstract description of
the behavior of faulty processes leads directly to the mortal
Byzantine failure model discussed in this paper.

3 General model and problem statement

Let Π be a finite set of processes which constitute the dis-
tributed system with |Π | = n. A distributed algorithm A
is a set of deterministic automata

(
Ap

)
p∈Π . An execution is

an infinite sequence of steps of A . In each execution, each
correct process p takes an infinite number of steps according
to Ap. Processes communicate by message passing.

We make the following assumptions for mortal Byzantine
faults: A process is faulty in an execution if it only takes
a finite number of steps in this execution. If p is faulty, its
behavior may deviate from its prescribed behavior Ap, but
p may send at most a finite number of messages. In every
execution, at most t processes are faulty.

In the following sections we will consider diverse kinds
of models which have additional assumptions. These will be
stated in the respective sections. Throughout the paper we
will, however, always consider the same variant of the con-
sensus problem. Every correct process has some initial value
v ∈ {0, 1} represented in its initial state. All states of a correct
process p can be partitioned into the three sets in which p has
not yet decided, p has decided 0, and p has decided 1. If dur-
ing an execution a correct process p is in a state where it has
decidedw, we require that in the remainder of the execution,
p is only in states in which it has decided w, that is, each
decision is irrevocable. Within the states there are halting
states which ensure that after a correct process p has reached
a halting state s, each step of p according to Ap results in p
being in s and no message is sent by p during this step. We
say that p halts if it reaches a halting state. Moreover, each
solution to the consensus problem must fulfill the following
requirements:

Agreement. No two correct processes decide differently.
Validity. If some correct process decides v, then v is the ini-

tial value of some correct process.

123

302 J. Widder et al.

Decision. Every correct process eventually decides.
Halting. Every correct process eventually halts.

As we consider binary consensus, our validity condition is
equivalent to “if all correct processes propose v, and a correct
process decides w, then v = w.” Discussions on multi-val-
ued consensus are given in Sect. 8.

4 Synchronous systems

In this section we consider the synchronous model of dis-
tributed computation in which the steps of correct processes
are organized in rounds. During each round, a correct pro-
cess sends a message to each process for the current round
according to its state, receives messages, and executes a state
transition according to its state, the received messages, and
its algorithm. A message sent by correct process p to correct
process q in round r is received by q in round r .

In the following analysis, we will denote by f r
q the con-

tent of correct process q’s local variable f (represented in
the state of q) at the end of round r . As part of a message,
we denote by “∗” an open value.

We will present and analyze our algorithm that solves con-
sensus in the presence of up to t < n/2 faulty processes in
Sect. 4.1. In Sect. 4.2, we will then show that it is optimal.

4.1 Algorithm

In the classic lower bound proofs [3,4] for consensus in
the presence of Byzantine processes one argues, informally
speaking, that for every algorithm that should solve consen-
sus, if there are at least a third of the processes faulty, then
there are situations in certain executions where a correct pro-
cess p “knows” that some other process is faulty, but p can-
not decide which one. The main idea of our algorithm is
that if p encounters such a case, it waits until the faulty pro-
cesses crash and the faulty values received can be removed.
So this dilemma can be overcome due to the different failure
assumption.

In more detail, our Algorithm 1 operates in phases con-
sisting of two consecutive rounds. In the first round of each
phase, correct processes send their proposed value and their
decision value (⊥ until processes decide) to all. Every correct
process p collects these in the vectors rcvpropp and rcvdecp.
Moreover, p checks whether some process q’s message was
missing in some round. If this is the case, q is removed from
p’s estimate of the set of alive processes πp, and the num-
ber f p of possibly alive faulty processes is updated. Entries
in vectors rcvdecp or rcvpropp which correspond to faulty
processes are set to † or ⊥, respectively.

In the second round of a phase, p sends rcvpropp and
rcvdecp to all. At the end of the second round, p checks
whether all vectors it received from processes in πp—that is,

processes that are not considered faulty—are equal. In this
case p tries to decide: it may decide on a value w if it has
received at least f p+1 messages stating that the sender pro-
posedw. Recall that f p is not constant (as t ≥ f p is the bound
on the number of faults) as when a process has been detected
as being faulty (if no message was received from this process
in some round), f p is decreased by 1. Additionally, p may
only decide w if it (or any other process in πp, cf. rcvdecp)
did not receive a message in the previous round sent by some
still alive process q stating that q has decided 1−w. There-
fore if a faulty (but still alive) process sends that it decided
w and another process sends it decided 1−w, it is impossi-
ble to decide in this phase. However, since faulty processes
eventually crash, their decision is removed (i.e., overwritten
with †) and will not be considered anymore; thereby, taking
a decision becomes possible again.

At the end of the second round, correct process p halts if
all processes are either detected as faulty (rcvdecp[i] = †) or
are known to have decided (rcvdecp[i] ∈ {0, 1}). Otherwise,
a new phase is started.

In the remainder of this section we prove that our algo-
rithm solves consensus by separately proving the required
properties. We commence with preliminary definitions, that
capture the round D in which the last process decides and
the round H the first process halts in. To avoid circularity in
the proofs we define D and H to be infinity for executions
where such rounds do not exist, that is any property that we
show to hold until one of these rounds will hold forever. We
show only later in Theorems 3 and 4 that in each execution
D and H are in fact finite.

Definition 1 (Last decision) We define D as the round in an
execution for which it holds that all correct processes have
decided by round D, and at least one correct process has
not decided in round D − 1. Further, d is one such correct
process.

Definition 2 (First halt) We define H as the maximum
round in an execution for which it holds that no correct pro-
cess has halted in some round less than H in this execution.

We start our analysis with some preliminary lemmas. First,
we make some statements about the decision value decisionp

which are quite obvious from code inspection:

Lemma 1 (Decision) If p is a correct process, then the fol-
lowing statements hold:

1. decision0
p = ⊥.

2. If decisionp is updated to value v, then v ∈ {0, 1}.
3. Variable decisionp is changed at most once.

Proof Statement (1) follows from the fact that decisionp is
initialized to ⊥ in line 5. For statement (2), we note that in
line 41, decisionp gets assigned the minimum value in W .

123

Consensus in the presence of mortal Byzantine faulty processes 303

Algorithm 1 Synchronous, mortal Byzantine tolerant consensus
Code for processes p if they are correct:
Variables
1: rp ← 0 // round number
2: πp ← Π // the set of processes that are not detected faulty by p
3: f p ← t // possible number of not yet detected faulty processes
4: propp ∈ {0, 1} // proposed value
5: decisionp ∈ {0, 1,⊥} ← ⊥ // initially ⊥
6: rcvpropp[n] ∈ {0, 1,⊥} // proposed value received from i in the current round
7: rcvdecp[n] ∈ {0, 1,⊥, †} // decision value received from i in the current round
8: c_propp[n][n] ∈ {0, 1,⊥} // the proposed values as seen by other processes
9: c_πp[n] // the set of alive processes as seen by other processes
10: c_decp[n][n] ∈ {0, 1,⊥, †} // the decided values as seen by other processes

11: repeat
12: if rp(mod)2 = 0 then
13: send (inform , propp , decisionp) to all
14: receive
15: for all i ∈ Π do
16: if no message from i was received in some round then
17: rcvdecp[i] ← † // i is faulty
18: rcvpropp[i] ← ⊥
19: πp ← πp \ {i}
20: f p ← t − |Π − πp|
21: else
22: if received (inform , propi , decisioni) from i in current round then
23: rcvpropp[i] ← propi
24: rcvdecp[i] ← decisioni
25: if rp(mod)2 = 1 then
26: send (echo , rcvpropp , πp , rcvdecp) to all
27: receive
28: for all i ∈ Π do
29: if received (echo , rcvpropi , πi , rcvdeci) from i then
30: c_propp[i] ← rcvpropi
31: c_πp[i] ← πi
32: c_decp[i] ← rcvdeci
33: else
34: c_propp[i] ← ⊥ // i is faulty
35: c_πp[i] ← ⊥
36: c_decp[i] ← ⊥
37: if decisionp = ⊥ ∧ ∀i, j ∈ πp : c_propp[i] = c_propp[j] ∧ c_πp[i] = c_πp[j] ∧ c_decp[i] = c_decp[j] then
38: W ← {w : w ∈ {0, 1} ∧ ∣

∣{ j ∈ πp : rcvpropp[j] = w
}∣∣ ≥ f p + 1 ∧ ∀i ∈ Π : rcvdecp[i] 	= (1− w)}

39: if |W | > 0 then
40: decide min W
41: decisionp ← min W
42: rp ← rp + 1
43: until ∀i ∈ Π : rcvdecp[i] 	= ⊥
44: halt

Inspection of line 38 reveals that only the values 0 and 1
can be in the set W . Statement (3) is a consequence of (2),
since the if-condition in line 37, which encloses the only
assignment to decisionp, can only evaluate to true as long
as decisionp = ⊥. So once line 41 has been executed, the
if-condition will evaluate to false in all subsequent rounds.

�

Now, we consider how a correct process is perceived by
another correct process p via the variables rcvdecp and πp.

Lemma 2 (Perception of decisions) If p and q both are cor-
rect processes, then the following statements hold:

1. If decisionr
q = ⊥, then rcvdecs

p[q] = ⊥ in all rounds
s ≤ r + 1.

2. if D is finite then D < H.
3. If q takes the decision v in round r, then rcvdecs

p[q] = v
in all rounds s with r < s ≤ D + 1.

4. If a message from process i does not arrive at p in round
r < H, then rcvdecs

p[i] = † and i 	∈ π s
p in all rounds

s > r .

Proof The variable rcvdecp is modified at two places in the
code, in line 17 and in line 24. Note that in any round r with
r(mod)2 = 0, either line 17 or line 24 is executed at each
correct process for each process.

123

304 J. Widder et al.

As q is correct, p will receive a message from q in
every round r until q halts, which cannot happen as long
as decisionr

q = ⊥. Thus, we can limit ourselves to consider-
ing line 24, where p takes over the value received from q and
q sends decisionr

q in line 13, it follows that rcvdecs
p[q] = ⊥

in all rounds s ≤ r . To prove (1), it thus remains to show
that this also holds for s = r + 1. To see this, consider that q
can only assign a new value to decisionq in rounds r where
r(mod)2 = 1 (line 41), but decisionq is only sent (and re-
ceived by p) in rounds r with r(mod)2 = 0. In other words a
change in decisionq can only propagate to p one round later.

To show (2), we observe that correct process p only halts
if there is no⊥ in the rcvdecp array, see line 43. Since we get
from (1) that rcvdecr

p[d] = ⊥ in all rounds r ≤ D, it follows
that no correct process halts before round H ≥ D + 1.

For (3), we again observe that if q has made decision
decisionq = v in round r (line 41), then this decision is sent
to all in round r + 1 (line 13) and taken over into rcvdecp[q]
in that same round (line 24). From Lemma 1 (3) we know
that once a correct process decides, it sticks to that decision.
We also know from (2) that no correct process halts before
round D + 1 such that it sends messages in all rounds until
D + 1 such that line 17 is not executed by a correct pro-
cess before round D. Consequently, rcvdecs

p[q] = v for all
rounds s, r < s ≤ D + 1.

Statement (4) is concerned with faulty processes. If r is
even, then the if-condition in line 16 will evaluate to true
and hence rcvdecr

p[i] will be set to † in line 17 and i will
be removed from πp in line 19. If r is an odd round, then in
round r + 1 the if-condition in line 16 will evaluate to true
and rcvdecr+1

p [i] = † will be assigned in line 17 and i will
be removed from πp in line 19. Since once the if-condition
evaluates to true for process i it does so for the remainder of
the execution, we have rcvdecs

p[i] = † for all rounds s > r .
Also note that no process is ever added to πp, thus that part
of the statement follows as well.
�

Lemma 3 (Failure detection) If p and q both are correct
processes, then the following statements hold:

1. q ∈ πr
p in all rounds r ≤ D.

2. |πr
p| > t in all rounds r ≤ D.

3. For each round r ≤ D no more than f r
p faulty processes

are in πr
p.

4. If process i crashes before round r, then i 	∈ π s
p in all

rounds s > r .

Proof To prove (1), we note that a process i is only removed
from πp if p did not receive a message from i in some round
(line 16 and line 19). By Lemma 2 (2), q does not halt before
round D and by simple code inspection we find that q sends a
message in every round until it halts in round H > D or later.

Consequently, messages from q must arrive in each round at
least until H , and thus q ∈ πr

p for all rounds r ≤ D.
(2) follows from (1), since in all rounds r ≤ D all correct

processes are in πr
p of every correct process p. By assump-

tion, |Π | ≥ 2t + 1. Therefore, |πr
p| > t .

To show (3), we note that initially πp = Π and f p = t
such that our statement holds by the assumed bound on the
number of (faulty) processes. By simple code inspection no
process is ever added to πp. If a process is removed from πp,
this is done in line 19 and f p is set to t−|Π−πp| in line 20.
Since by (1), up to round D no correct—i.e., only faulty—
processes are removed from πp, there cannot be more than
f r

p faulty processes remaining in πr
p.

Statement (4) follows directly from Lemma 2 (4).
�
Equipped with these basic facts, we can now start to con-

sider the consensus properties of the algorithm.

Theorem 1 (Validity) If a correct process decides on some
value v, then v was proposed by a correct process.

Proof By line 38, correct process p only decides in some
round r on a value v that was received by at least f r

p + 1
(inform , v , ∗) messages from distinct processes in πr

p in
round r − 1. By Lemma 3 (3), there are no more than f r

p
faulty processes in πr

p such that at least 1 correct process
must have proposed v.
�

After validity, we now turn our attention towards agree-
ment, for which we employ the following lemma.

Lemma 4 If two correct processes p and q both decide in
some round r, then both decide on the same value v.

Proof By line 38 and line 40, the decision value is a
deterministic function (identical at all correct processes) of
rcvpropr

s , π
r
s , f r

s , and rcvdecr
s for correct process s ∈ {p, q}.

We thus have to show that these four variables must have
identical values at correct processes p and q in some round r
in which both decide.

From Lemma 3 (1) it follows that q ∈ πr
p and p ∈ πr

q for
r ≤ D. Since both decide in line 40 in round r , line 37 must
have evaluated to true in this round at both processes. It fol-
lows that rcvpropr

p = rcvpropr
q , rcvdecr

p = rcvdecr
q , π

r
p =

πr
q , and thus f r

p = f r
q by line 20. From the deterministic

decision function, our lemma follows.
�
Theorem 2 (Agreement) No two correct processes decide
differently.

Proof By Lemma 4, two correct processes do not decide dif-
ferently if they decide in the same round. It remains to show
that a correct process q does not decide on a different value
from the value another correct process p has decided in some
earlier round.

123

Consensus in the presence of mortal Byzantine faulty processes 305

Assume by contradiction that a correct process p decides
on w ∈ {0, 1} in round r and some other correct process q
decides 1 − w in some round s > r . By line 38, for all i in
Π, rcvdecs

q [i] 	= w, but by Lemma 2 (3), rcvdecs
q [p] = w,

which provides the required contradiction.
�
As seen above, agreement and validity can be proven inde-

pendently of the rounds processes crash in. Unfortunately,
this is not true for liveness. However, as we will see in
Sect. 4.2 this is inherent to solving consensus in the pres-
ence of t mortal Byzantine processes, when n ≤ 3t . In our
analysis we hence have to use the round in an execution at
which the last faulty process crashes in order to show decision
(and halting) of our algorithm.

More precisely, we prove that if all faulty processes have
crashed and their messages are received, the system is in a
“clean” state such that the consistency checks in line 37 and
line 38 allow every correct process to reach a decision.

Definition 3 (Last crash) We define C as the minimum
round such that all processes that crash in an execution are
crashed by (i.e., before or in) round C and all messages sent
by faulty processes are received by round C .

From our system models it follows that in every execution
a finite C exists. All rounds r > C are clean rounds, i.e., no
messages by faulty processes are received in rounds r .

Theorem 3 (Decision) Every correct process eventually
decides.

Proof Let r be the minimal round for which it holds that
r > C and r(mod)2 = 0. If all correct processes decide
before round r we are done. So in the remainder of this proof
we consider only the case where at least one correct process
p does not decide before round r .

In the following we will show that every correct process
that does not decide before round r decides at the end of
round r + 1 by executing line 40. A correct process exe-
cutes line 40 only if the statement in line 37 evaluates to
true and if |W | > 0, where W is computed in line 38. In
Lemma 6, Lemma 7, and Lemma 8, we will show that these
two requirements are met.

Lemma 5 For any two correct processes p and q it holds
that rcvdecr+1

p = rcvdecr+1
q , πr+1

p = πr+1
q , f r+1

p = f r+1
q ,

and rcvpropr+1
p = rcvpropr+1

q .

Proof By Lemma 2 (4) correct processes consistently
detect all faulty processes and set the corresponding entries
in rcvdecp. By Lemma 2 (1) and (3), all correct processes
set the entries corresponding to correct processes in rcvdecp

identically. Thus, there is agreement on the vectors rcvdecp

at all correct processes p at the end of round r (and thus at
the beginning of round r+1). Similarly, by Lemma 3 (1) and
(4), πr+1

p and f r+1
p are identical at all correct processes p.

In round r , all correct processes also send their proposed
values to all, which are received by all correct processes p
who therefore set rcvpropp consistently.
�

Lemma 6 For every correct process that does not decide
before round r, it holds that line 37 evaluates to true in
round r + 1.

Proof In round r + 1, all correct processes p send (echo,
rcvpropr+1

p , πr+1
p , rcvdecr+1

p) to all. Since by Lemma 5 all
rcvpropr+1

p , rcvdecr+1
p , πr+1

p , and thus f r+1
p are identical,

line 37 evaluates to true at every correct process that does
not decide before round r .
�

So far, we have shown that every correct process p that
does not decide before round r reaches line 38 in round r+1.
In the following, we have to show that after executing line 38
in round r + 1 it holds that |W | > 0 at every p such that p
decides. To this end, we distinguish two cases: We consider in
Lemma 7 the case where at least one correct process decides
in a round before r+1, and in Lemma 8 the other case, where
no process has decided before.

Lemma 7 If at least one correct process decides before
round r, then for every correct process p that does not decide
before round r, |W | > 0 in round r + 1.

Proof By Theorem 2, all correct processes i that already
decided in earlier rounds decided on the same value w, and
thus rcvdecr+1

p [i] = w. By Lemma 3 (4), rcvdecr+1
p [i] = †

for all faulty processes i . By Lemma 2 (1), for correct pro-
cess i that has not decided yet, rcvdecr+1

p [i] = ⊥. It follows
that rcvdecr+1

p [i] 	= 1−w for all processes i . In order to show
that |W | > 0, it remains to show that there are more than f r+1

p

entries for w in rcvpropr+1
p [i] for processes i ∈ πr+1

p , i.e.,
correct processes i .

Assume process q has decided w in some earlier round s.
Due to line 38, it has received (inform , w , ∗) from � > f s

q
distinct processes in round s − 1. Out of these messages,
a ≤ f s

q are due to faulty senders and b = � − a are from
correct processes. Note that b > f s

q − a.
For correct process p in round r we know that it has re-

ceived b messages (inform, w, ∗) from distinct correct pro-
cesses (which have sent it via line 13). We also know that all
faulty processes are crashed before round r , which includes
those a faulty processes that helped q to reach its threshold.
If follows that f r+1

p ≤ f s
q −a < b and thus sufficiently many

(inform,w, ∗) messages were received. Thus, there are more
than f r+1

p entries for w in rcvpropr+1
p [i] for i ∈ πr+1

p and
thus by line 38, |W | > 0.
�

Lemma 8 If no correct process decides before round r, then
for every correct process p, |W | > 0 in round r + 1.

123

306 J. Widder et al.

Proof For all faulty processes i, rcvdecr+1
p [i] = †, and for

all correct process j, rcvdecr+1
p [j] = ⊥, by Lemma 3 (4)

and Lemma 2 (1), respectively. Thus, all entries in rcvdecr+1
p

at correct process p are either ⊥ or †, such that |W | > 0,
if there exists at least one value w for which holds that
|{ j ∈ πp : rcvpropp[j] = w}| ≥ f r+1

p + 1. According to
line 20, f p = t − |Π −πp| such that, since πp ⊆ Π , we get
|πp| = n − t + f p and by the assumption on the number of
processes (n− t > t) we get |πp| > t+ f p ≥ 2 f p. It follows
from Lemma 1 (2) that there are only two possible decision
values such that it follows that at least one must be proposed
by more than f r+1

p correct processes and thus |W | > 0.
�
Lemma 6 implies that every correct process p that does

not decide before round r executes line 38 in round r + 1.
By Lemma 7 and Lemma 8, p executes line 38 in round r+1
so that |W | > 0 and consequently every p decides in round
r + 1. Thus, every correct process decides at the latest in
round r + 1, and our Theorem 3 follows.
�
Theorem 4 (Halting) Every correct process halts.

Proof We have to show that the expression of line 43 even-
tually evaluates to true at every correct process p, i.e., that
eventually ∀i ∈ Π : rcvdecp[i] 	= ⊥.

By Theorem 3, all correct processes eventually decide.
After deciding—but before halting—they send their deci-
sion value via (inform , ∗ , decisionp) to all in every even
numbered round in line 13. The decisions are then written
into rcvdecp[i] in line 24 such that eventually for all correct
processes i, rcvdecp[i] 	= ⊥ at every correct process p (Note
that rcvdecp[i] is never reset to ⊥ for correct processes i if
it was set to some value once).

The faulty processes eventually stop sending messages
such that missing messages will be detected at every correct
process, and in line 17, rcvdecp[i] ← † will be set for every
faulty process i at every correct process p. Consequently, for
all processes i , eventually rcvdecp[i] 	= ⊥ at every correct
process p such that our lemma follows.
�
Corollary 1 Algorithm 1 solves consensus.

4.2 Lower bounds

One property of our algorithm is that it is guaranteed to decide
only when all faulty processes have crashed. We show that
given the number of processes it is inherently impossible
to bound the decision time. Our failure model restricts the
behavior more than the classic Byzantine model [4]. Thus,
algorithms that solve consensus in the classic model with
n > 3t within t+1 rounds [4] can be applied to our model as
well. In the following, we will show that when one reduces n,
it is not possible anymore to solve the problem in a fixed
number of rounds. We show that the round in which the last

correct process decides cannot be constant, but depends on
the failure pattern—a mapping of the set of faulty processes
to a set of integers representing the round number in which
the processes crash [14].

Theorem 5 In a system with up to t mortal Byzantine faults,
it holds for any integer c and for any deterministic algo-
rithm A that solves consensus for any n > 2t that there exists
at least one execution of A where the first faulty process
crashes in round c and at least one correct process decides
in some round r ≥ c.

Proof Consider by way of contradiction that a consensus
algorithm A exists where in every possible execution of A
in which faults occur, all correct processes decide before the
first faulty process crashes. At the time the correct processes
decide, the prefixes of these executions can be mapped one-
to-one to identical prefixes of executions of A in the presence
of classic Byzantine faults. Thus, A also solves consensus
with classic Byzantine faults contradicting the lower bound
by Lamport, Shostak, and Pease [4] of n > 3t .
�
Corollary 2 There is no correct deterministic algorithm that
solves consensus in the presence of up to t ≥ n/3 mortal Byz-
antine faults in a bounded number g(t) rounds, g being an
arbitrary function on the upper bound on the number of faulty
processes.

After considering the decision time, we now show that our
algorithm is optimal regarding the number of processes. We
show that no algorithm exists for 2t processes.

Theorem 6 There is no algorithm that solves consensus in
the presence of t mortal Byzantine faults if n = 2t .

Proof Consider by contradiction that such an algorithm A
exists. And further consider a fault free execution E of A in
which t correct processes propose 0 and t correct processes
propose 1. Let in this execution p be a correct process that
proposes w ∈ {0, 1} and decides 1 − w, and let it decide
in round r . Such a process p must exist as both values are
proposed by correct processes and only one can be decided
upon by the agreement property of consensus.

Now consider executions of A where p is correct and p is
one of t correct processes that propose w and the remaining
t faulty processes behave according to the algorithm at least
until round r but (wrongly) propose 1−w. There exists such
an execution Et that is at least up to round r for correct pro-
cess p locally indistinguishable from E . Thus p decides on
1−w in round r . After round r , all faulty processes crash such
that Et is an admissible execution in our model. However, A
violates validity in Et as p decides 1−w although it was not
proposed by any correct process in Et , which provides the
required contradiction to A solving consensus.
�

123

Consensus in the presence of mortal Byzantine faulty processes 307

5 Relaxed timing assumptions

5.1 Partially synchronous systems

In this section, we employ the basic round model introduced
in [8]. The model is a generalization of the synchronous
model relaxed with respect to reliability of communication.
It is assumed that if a correct process receives a message in
round r sent from a correct process, the message was sent
in round r , that is, the model is communication closed [15].
Further, it is assumed that in every execution there exists a
round GST (called, global stabilization time) such that for
all rounds r ≥ GST, a message sent by correct process p to
correct process q in round r is received by q in round r (As
a consequence of the definitions, messages sent before GST
may be lost).

Our failure assumption restricts behavior of faulty pro-
cesses more than the classic Byzantine assumption. Con-
sequently, in partially synchronous systems the algorithms
from [8], that solve consensus for n ≥ 3t + 1, solve consen-
sus also for mortal Byzantine faults. Using a standard parti-
tioning argument, we show that this redundancy is optimal
for mortal Byzantine faults.

Theorem 7 There exists no algorithm that solves consensus
among n = 3t processes in the basic round model in the
presence of up to t mortal Byzantine faults.

Proof We consider a system of 3t processes and separate
the processes into three disjoint sets A, B, and C such that
|A| = |B| = |C | = t .

Consider by contradiction that an algorithm A exists that
solves consensus in this system.

Let EA be an execution of A where all processes in C are
initially crashed and GSTA = 0. Further let all correct pro-
cesses propose 1 such that there is some round DA in which
the last correct process p ∈ A decides 1.

Similarly, let EC be an execution of A where all processes
in A are initially crashed and GSTC = 0. Further let all cor-
rect processes propose 0 such that there is some round DC

in which the last correct process q ∈ C decides 0.
We now consider the executions of algorithm A where

GST > max{DC , DA}, all processes in A and C are cor-
rect, and all processes in B are mortal Byzantine faulty and
crash only after round GST. We further restrict our analy-
sis to executions where processes within the sets A and C
have synchronous communication right from the beginning,
but communication between these two sets is asynchronous
until GST, i.e., no messages are received from processes in
the other set. Further, the faulty processes in B are perceived
by all processes in A ∪ C as if they would communicate
synchronously with them right from the start.

Now consider the execution E where all processes in A
propose 1 and all processes in C propose 0 and where in

each round up to GST the processes in A receive the same
messages from the processes in B as in EA and the processes
in C receive the same messages from the processes in B as
in EC . To A,E is indistinguishable from EA up to DA such
that they decide 1, while to the processes in C,E is indis-
tinguishable from EC such that they decide 0. This behavior
violates agreement and thus we have a contradiction to the
assumption that A solves consensus.
�

5.2 Asynchronous system with failure detector

In this section we consider the asynchronous model of com-
putation augmented with unreliable failure detectors intro-
duced by Chandra and Toueg [9]. We provide here only the
details of the model to the extent necessary for our paper; for
a more detailed definition, cf. [9].

For the failure detector approach, we assume that there is
a discrete global time N. As in the crash case defined in [9],
we consider failure patterns as function F : N → 2Π . We
only consider failure patterns where F(t) ⊆ F(t + 1) and∣∣⋃

t∈N F(t)
∣∣ < n/3.

If p 	∈ F(t) and p ∈ F(t+1), we say process p crashes at
time t + 1. A process that crashes is mortal Byzantine faulty
as defined in Sect. 3, i.e., it is allowed to behave arbitrarily
until it crashes, except that it may only send a finite number
of messages. A process that never crashes is correct.

Asynchronous computations are modeled as sequences of
steps that happen at certain times. During each step a correct
process p

– delivers at most one message previously sent to p,
– queries its local failure detector and receives a response

which is defined with respect to the time the step occurs,
– performs a state transition according to its algorithm,

the received messages and the response from the failure
detector, and

– possibly sends a message.

The system is asynchronous in that we do not assume any
bounds on the time between the send step and the receive
step of a message (message delays) or the time between two
steps (computing speeds), except that all these times have to
be finite for correct processes. If some process is in F(t), it
does not take a step at time t .

We limit ourselves here to failure detectors which respond
with a set of process identifiers that are suspected of having
crashed. Using this convention one can define the eventu-
ally perfect failure detector �P as in [9] via the following
properties:

Strong Completeness. There is a time from which onwards
every process that crashes is permanently suspected by
every correct process.

123

308 J. Widder et al.

Eventual Strong Accuracy. There is a time after which no
process is suspected before it crashes.

Aguilera et al. [16] devised an algorithm that solves con-
sensus in the presence of Byzantine faults under weak syn-
chrony assumptions. In their solution, they used consistent
unique broadcast (based upon [17,18]). Similarly, we use
consistent unique broadcast to ensure that faulty processes
are not perceived two-faced by correct processes. To ease
the presentation of the algorithm, we assume that the system
is equipped with consistent unique broadcast [16] that has
cubcast and cudeliver as broadcast and delivery primitives,
respectively. Under these primitives, messages have the form
(p, type, k, v) where

– p is the sender identifier,
– type is a message type identifier (e.g., ack, nack),
– k is a phase number, and
– v is a value.

As in the synchronous case, we denote by “∗” an open
value.

Definition 4 (Consistent unique broadcast) For consistent
unique broadcast the message system has to satisfy the fol-
lowing properties:

Totality. If a correct process p invokes cubcast with mes-
sage (p, type, k, v) then all correct processes eventually
invoke cudeliver for (p, type, k, v).

Unforgeability. If some correct process p does not invoke
cubcast with message (p, type, k , v) then no correct
processes ever invokes cudeliver for (p, type, k, v).

Relay. If a correct process invokes cudeliver for message
(p, type, k, v) then eventually all correct processes invoke
cudeliver for (p, type, k, v).

Uniqueness. For each p, type, and k every correct process
invokes cudeliver at most once for (p , type , k , ∗).

Implementations of this broadcasting primitive for asyn-
chronous systems even without failure detectors in the pres-
ence of up to t < n/3 (classic) Byzantine faults can be found
in [17,18]. Consequently, this primitive can also be imple-
mented in our setting.

5.2.1 The algorithm

Algorithm 2 is a variant of the classic Byzantine consensus
algorithm that Dwork, Lynch, and Stockmeyer [8] have intro-
duced in their seminal paper on partial synchrony. Moreover,
the algorithm uses some mechanisms introduced in the fail-
ure detector based (crash) consensus algorithm by Chandra
and Toueg [9].

We find it convenient to present the algorithm to consist of
two tasks. While the first task loops through phases each con-
sisting of four rounds, the second task performs jobs which
are independent of the round the first task is currently execut-
ing (For a complete implementation of the algorithm, addi-
tional tasks for implementing the consistent unique broadcast
may be required). We assume that these tasks are scheduled
fairly, e.g., in round robin.

The key idea is that in each phase a different process is
the coordinator. The coordinator tries to find a decision value
that is consistent with the validity requirement of consensus.
If such a value is found by a correct coordinator, it sends this
value via a decide message. A locking mechanism ensures
that no correct process that becomes coordinator in a later
phase will find a different value to decide, which ensures
agreement. After the system becomes stable (all faulty pro-
cesses have crashed and the failure detector provides reliable
information) every correct coordinator will find a value and
send the decide message. These messages are handled in
the second task, and eventually there are sufficiently many
of these messages in the system such that processes reach a
decision and halt. We now give a more detailed description
of the separate parts of the algorithm.

Each process p maintains two sets of values. The set
proposed p always keeps the value a correct process p is
certain at least one correct process has initially proposed
(required for validity). Initially, this set contains just the ini-
tial value of the process itself. For the locking mechanism,
the second set called acceptablep is used. It contains only
values from proposed p, and in case values are locked by p,
it contains only those locked by p.

During each phase the following happens: In Round 1,
all correct processes cubcast inform messages containing
their acceptable set. The processes wait for delivery of those
inform messages in Round 2 where the inform messages
are collected from all processes that are not suspected—i.e.,
the processes that are not in the failure detector output Dp.
Throughout the algorithm, Mp(v, φ) denotes the set of mes-
sages (q , inform, φ, acceptableq) delivered by process p
where v ∈ acceptableq (this set is maintained in the separate
Task 2). Note that due to false suspicions and the asynchrony,
inform messages broadcast in Round 1 of some phase can be
delivered in arbitrary rounds (belonging to arbitrary phases).
Only when the false suspicions stop occurring and the last
messages of all crashed processes are delivered—i.e., in the
stable period—it is ensured that the messages are delivered
in the round they were broadcast.

In Round 2 the coordinator tries to lock some value.
A value can be locked if at least n − t processes find the
value acceptable. If it finds such a value it broadcasts a lock
message, instructing the other processes that they should set
a lock on this value. If the coordinator does not find such a
value it broadcasts “I do not know”.

123

Consensus in the presence of mortal Byzantine faulty processes 309

Algorithm 2 Mortal Byzantine tolerant consensus algorithm
Code for processes p if they are correct:
Variables
1: lock p ← 0
2: rp ← 0
3: proposed p ← {vp}
4: acceptablep ← proposed p

Task 1
5: loop
6: rp ← rp + 1
7: φp ←

⌊
rp/4

⌋

8: cp ← (φp mod n)+ 1

9: if rp(mod)4 = 1 then
10: cubcast (p , inform , φp , acceptablep)

11: else if rp(mod)4 = 2 then
12: wait until cudeliver (q , inform , φp , acceptableq) from all processes q 	∈ Dp
13: if p = cp then
14: Vp ← {v : |Mp(v, φp)| ≥ n − t} // Coordinator tries to choose a value.
15: if Vp 	= ∅ then
16: w← min{v : v ∈ Vp} // There is a value that can be chosen.
17: cubcast (p , lock , φp , w)
18: else
19: cubcast (p , I do not know , φp)

20: else if rp(mod)4 = 3 then
21: wait until cudeliver (cp , lock , φp , w) or (cp , I do not know , φp) from cp or cp ∈ Dp
22: if cudelivered (cp , lock , φp , w) and |Mp(w, φp)| ≥ n − t then
23: send (p , ack , φp , w) to cp // The value chosen by the coordinator is consistent with the acceptable values.
24: else
25: send (p , nack , φp) to cp

26: else if rp(mod)4 = 0 then
27: if p = cp then
28: wait until received (q , ack , φp , w) or (q , nack , φp) from all processes q 	∈ Dp // Coordinator waits for feedback.
29: if received at least n − t (q , ack , φp , w) messages from distinct processes q then
30: send (p , decide , w) to all processes // Sufficiently many correct processes acknowledged, and will lock w.

31: proposed p ← proposed p ∪ {v : ∃φ |Mp(v, φ)| ≥ t + 1} // Update locks (done by all processes)
32: locked p ← {(φ,w) : φ ≤ φp and cudelivered((φ mod n)+ 1, lock, φ,w) and |Mp(w, φ)| ≥ n − t}
33: if locked p 	= ∅ then
34: lock p ← φ : (φ,w) ∈ locked p and ∀(φ′, w′) ∈ locked p : φ ≥ φ′
35: acceptablep ← {w} : (lockp, w) ∈ locked p
36: else
37: acceptablep ← proposed p

Task 2
38: loop
39: if cudeliver(q , inform , φq , acceptableq) then
40: ∀v ∈ acceptableq : Mp(v, φq)←Mp(v, φq) ∪ {(q , inform , φq , acceptableq)} // Bookkeeping
41: if ∃w : received (q , decide , w) from t + 1 distinct processes then
42: send (p , decide , w) to all processes
43: if ∃w : received (q , decide , w) from n − t distinct processes then
44: send (p , decide , w) to all processes
45: decide(w)
46: halt // halt all tasks

123

310 J. Widder et al.

In Round 3, each correct process waits for the cudeliver
of either a lock message or an I do not know message
from the coordinator, as long as the latter is not suspected
to have crashed. If a process receives a lock message, it
checks whether this message is acceptable for at least n − t
processes in the current phase. If so, it returns an acknowledg-
ment (ack) to the coordinator, otherwise a negative acknowl-
edgment is sent. Basically, by sending the ack message, a
correct process p tells the coordinator that it is going to lock
the value in the next round.

If a coordinator, during Round 4, receives sufficiently
many ack messages, it is certain that sufficiently many cor-
rect processes lock the value in the current phase and that
therefore no other correct coordinator can find a different
value in a later phase (That is, the current execution is univa-
lent [19]). Therefore, it sends a decide message. The decide
messages are used to propagate the decision and for reaching
a halting state eventually in Task 2 (see below).

At the end of Round 4 all processes update their locks.
This is necessary due to the inconsistencies that may oc-
cur in Round 3 due to unreliable failure detector informa-
tion. A lock can be set for a value v and a phase φ only if
the coordinator has broadcast lock for v and at least n − t
processes q found v acceptable at the start of the current
phase, i.e., they have sent (q , inform , φ , acceptableq)
messages, with v ∈ acceptableq . A correct process locks
the value for which the required messages were delivered,
and the associated phase number is maximal—see line 31

to line 37. In the proofs below, we often state that processes
lock some value. By this we mean that they execute line 34

and line 35 such that only one value is acceptable for them,
and the variable lock is set to the phase number as described
above.

Apart from maintaining the sets Mp(v, φ), Task 2 plays
a central role in the final stage of the algorithm which takes
care of deciding and halting. The mechanism used is basi-
cally echo broadcasting similar to [18]. More precisely, when
a correct process p has received at least t + 1decide mes-
sages for the same value from distinct processes, it is certain
that at least one correct process sent it and it can forward the
message to all other processes. Furthermore, when a correct
process p receives at least n−tdecide messages for the same
value from distinct processes, it is certain that (since n > 3t)
every other correct process will eventually receive at least
t + 1 such messages. Consequently, all correct processes
will eventually send this decide message, and thus every
correct process will eventually receive at least n − t such
messages. Thus, p can decide and halt, as all other processes
will eventually also reach this point and will decide and halt.
This explains why we can halt all other tasks (including those
implementing cubcast) at this point: no more messages from
process p are required for the other processes to reach a
decision.

5.2.2 Correctness proof

The proof of correctness follows the ideas in [8] and [16].
The proof of decision, however, is more involved than that in
[8] due to the asynchrony that eventually stops in the models
of [8] but remains in our model during the whole execution.
We start by showing simple properties that follow directly
from the properties of the broadcasting primitive.

Lemma 9 It is impossible for correct processes to lock two
distinct values in a phase φ if it belongs to a correct coordi-
nator q = (φ mod n)+ 1.

Proof Correct processes only lock a valuew when they have
added it to locked p before in line 32, that is, when they in-
voked cudeliver for a message ((φ mod n)+1, lock, φ ,w)
and they invoked cudeliver for (p , inform, φ , acceptablep)
messages broadcast by n − t distinct processes p with w in
acceptablep. From code inspection we see that correct coor-
dinators broadcast at most one lock message per phase. It
follows therefore from the unforgeability property of cubcast
that if the coordinator is correct, then only one such lock
message can be delivered per phase; the lemma follows.
�
Lemma 10 If at least t + 1 correct processes either halt
before reaching phase φ + 1 or have a lock on value w in
phase φ with a correct coordinator, no correct process will
lock value v = 1− w in any phase φ′ ≥ φ.

Proof For phase φ′ = φ the lemma is true by Lemma 9.
Assume by contradiction that there is a phase after φ where a
correct process locks 1−w and let φ′ > φ be the smallest of
these phases. By line 32 we must have |Mp(v, φ

′)| ≥ n − t
which is required to lock a value at any correct process p.
By our choice of φ′, at the beginning of phase φ′ the t + 1
processes still have a lock on w such that v 	∈ acceptable
or have already halted. Thus their messages do not show up
in Mp(v, φ

′), i.e., a distinct set of processes of cardinality
n− t must have sent messages for v. Summing up the sizes of
these sets we get (n − t)+ (t + 1). As this is strictly greater
than the number of processes n, we arrive at the required
contradiction.
�
Lemma 11 If some correct coordinator c sends a message
(c, decide, φ, w) and no other correct process has sent a
decide message in phases less than φ, then:

1. At least t + 1 correct processes lock w with phase num-
ber φ, or halt before reaching phase φ + 1.

2. The correct processes that lock w with phase number φ
will always have a lock on w from then on.

Proof A correct coordinator requires at least n− t acknowl-
edgments to its lock message to send (c, decide, r,w), among

123

Consensus in the presence of mortal Byzantine faulty processes 311

which are at least t + 1 sent by correct processes who have
received the coordinator’s lock message; let S′ be the set of
these processes. From line 41 and line 43 follows that as soon
as c has sent (c, decide, φ, w) to all, correct processes may
decide and halt at any time (after enough decide messages
have been exchanged what happens concurrently in Task 2).
To prove (1) let S be the subset of S′ of processes that do
not halt before they reach phase φ + 1. Since they have sent
an acknowledgment, by line 22 it follows for all p ∈ S that
|Mp(w, φ)| ≥ n − t , and (1) follows from line 32.

By Lemma 10, the processes in S′ do not lock another
value in later rounds such that line 34 and line 35 ensure that
w remains locked, which proves (2).
�
Theorem 8 (Agreement) No two correct processes decide
differently.

Proof Assume by contradiction that two correct processes
decide on different values.

From line 41 and line 43 it is evident that in order for a
correct process to decide on v at least one correct coordinator
must have sent a decide message for that value (in line 30).
Thus, in order for processes to decide on different values,
there must be two correct coordinators, say p and q, which
sent in line 30 decide messages for v and 1−v in phasesψp

and ψq . As each phase belongs to exactly one coordinator,
clearlyψp 	= ψq , so w.l.o.g. we assume thatψp < ψq . Now,
Lemma 11 tells us that there are at least t+1 processes which
have a lock on v in phaseψq , or halt before. That is, they will
cubcast (∗, inform,ψq, {v}) in the first round of phaseψq , or
halt before. By the properties of cubcast, q can therefore not
receive n − t inform messages for 1 − v, that is, it cannot
broadcast a lock message for that value, and thus will not
receive n − t ack messages. Thus it will not send a decide
message containing 1− v; a contradiction.
�
Theorem 9 (Validity) If a correct process decides on some
value v, then v was proposed by a correct process.

Proof By lines 31–37 it follows obviously that a value must
be in the set acceptablep of a correct process p in order to
be decided upon. Initially, only the initial value of p is in
acceptablep and only values broadcast by at least t + 1 pro-
cesses, i.e., by at least one correct process, are added.
�
Theorem 10 (Decision) Eventually, every correct process
decides.

Proof A correct process decides only in line 45, and thus
only if it has received n − t decide messages for some w.
Since n > 3t , it follows that at least t + 1 of these origi-
nate from correct processes, and that every correct process
will eventually receive these, causing them to send decide
messages for the same w. Thus, if one process decides, all
correct processes will receive n− t decide messages for the

same value, i.e., they will all decide. It is thus sufficient to
prove that one correct process decides.

To do so, suppose by way of contradiction that no process
decides. As a correct processes halts (line 46) only after it
has decided (line 45) no correct process ever halts.

Lemma 12 If no correct process ever halts, then for any cor-
rect process p the phase number φp grows without bound.

Proof Assume by way of contradiction that there is a pro-
cess and a phase, such that the process remains in this round
forever. Let φ be the minimum among all phases processes
remain in forever, and let p be a process which remains in φ
forever.

Inside the loop there are only three lines where processes
wait, namely line 12, line 21, and line 28.

If p is blocked in line 12, then there is a process q which
is never suspected from which no message is delivered. As
q is never suspected, it follows from completeness that q is
correct. As by minimality of φ, no correct process is blocked
before. Process q thus reaches round 4φ + 1 and eventu-
ally cubcasts the inform message in line 10. By totality, p
delivers this message eventually. A contradiction.

Therefore, no correct process is blocked in line 12 in
phase φ. With similar arguments one proves that p cannot
be blocked in line 21 and further that it cannot be blocked in
line 28 arriving at the required contradiction.
�

Let time τc be the minimal time such that no messages
broadcast (or sent) by faulty processes are delivered (or re-
ceived) after τc. Let τp be the minimal time such that all
faulty processes are crashed before τp, all crashes are de-
tected and no process is suspected before it crashes; in other
words, the system is stable from time τp on. As we assume
that no correct process decides, and Lemma 12 ensures that
phase numbers increase without bound, we are sure that no
correct process has halted by time max{τp, τc}. Unambig-
uously, we may thus define ψ to be the maximum phase a
correct process is in at time max{τp, τc}, and we define the
first stable phase φs = ψ + 1. Due to the definition of the
failure detector and the bounded number of faults, φs is finite
in every execution.

Lemma 13 If no correct process ever halts, and if there
exists an x such that for all correct processes p, we have
x ∈ acceptablep when they enter phase φ ≥ φs , and phase
φ belongs to a correct coordinator q = (φ mod n)+1, then
q sends (q , decide , φ , w) for some w to all. Moreover, for
all phases φ′ > φ, acceptablep = {w}.
Proof All correct processes p invoke cubcast for a message
(p, inform, φ, acceptablep) in line 10 and they invoke cu-
deliver for all inform messages broadcast during phase φ in
line 12 as there are no false suspicions anymore by the choice
of φs . Since there are at least n − t correct processes p with

123

312 J. Widder et al.

x ∈ acceptablep, the set Vq contains at least the value x .
Thus, q invokes cubcast for a message (q, lock, φ, w) for
some w in line 17 (note that the coordinator need not nec-
essarily propose x to be locked here). As q is not suspected
by any correct process p, each correct p invokes cudeliver
for this message and sends the acknowledgment message in
line23. Thus, q receives at least n−t ack messages and there-
fore sends a decide message in line 30, which concludes the
first part of our lemma.

For the second part, we note that since all correct pro-
cesses p have sent ack to message (q, lock, φ, w), they also
lock the value w for round φ, and thus by line 35 all correct
processes p set acceptablep = {w} before entering phase
φ + 1. Therefore, by the choice of φs , no other value will
ever be broadcast in round 1 in later phases and the second
part of our lemma is true.
�

Further we show that the assumption of Lemma 13 even-
tually holds. As with the beginning of phase φs the system
is stable, the failure detectors at all correct processes pro-
vide the same correct information. By line 12 and line 21,
any message broadcast in phases beginning with φs are thus
delivered in the phase they are broadcast. However, messages
broadcast before phase φs may be delivered at any time. Let
φt be the minimal phase such that before the first correct
process enters φt , all messages broadcast by phase φs are
delivered by all correct processes.

Lemma 14 If no correct process ever halts, there exists a
phase greater than or equal to φt such that in round 1 of this
phase, there exists some x such that for any correct process p,
the value x is in acceptablep.

Proof We distinguish two cases:

1. There is a correct process p, and a phase φ such that
before phaseφt , process p has delivered a ((φ mod n)+
1, lock, φ, ∗) message by the coordinator as well as the
at least n−t messages (∗, inform, φ, acceptable∗) broad-
cast by distinct processes. Let φ� be the largest phase for
which such messages where delivered and let w be the
associated value. By relay and the choice of φt all cor-
rect processes deliver these messages before phase φt

and (φ�,w) is contained in the locked sets of all correct
processes. Therefore, by phase φt , all processes add w
to acceptable in line 35 such that all correct processes
have the value w in acceptable when entering the phase
φt and our lemma holds in this case.

2. Otherwise, that is, there is no correct process that deliv-
ers a ((φ mod n) + 1 , lock , φ , v) message by the
coordinator and at least n − t messages (∗, inform,
φ, acceptable∗) broadcast by distinct processes before
φt . It follows that by the choice of φt , no value is ever
locked by any correct processes for any phase before

φt . As φt is a stable phase, every correct process waits
in line 12 until it has delivered inform message from
all correct processes. As there are at least 2t + 1 cor-
rect processes, and there are only two possible decision
values, there must be some v ∈ {0, 1} such that for any
correct process p, we have |Mp(v, φt)| ≥ t + 1. It fol-
lows that when a correct process p executes line 31 in
phase φt , then it adds v to proposed. As no value has
been locked before by the assumption of this case, each
correct process p executes line 37 in phase φt , and the
value v will be in acceptable at all correct processes in
the next phase. The lemma follows in this case.
�

Lemma 14 ensures that there is some phase φ ≥ φt and
a value x , such that x is in all sets acceptablep of correct
processes p when the phase φ is started. If phase φ ≥ φt

belongs to an already crashed coordinator, we easily observe
(as no more “old” messages are delivered) that at each correct
process, the value x remains in the set acceptable. However,
eventually a phase that belongs to a correct coordinator is
reached. We may thus apply Lemma 13 which ensures that a
correct coordinator q sends (q, decide, ∗,w) to all, and thatw
is locked by each correct process forever. Consequently, we
may repeatedly apply Lemma 13 for every phase belonging
to a correct coordinator after phase φs . As there are at least
n − t > 2t + 1 correct processes that will be coordinators,
they will all send a decide message (either in line 30, line 42,
or line 44) and eventually every correct process receives at
least n − t decide messages for the same value and decides
in line 45 which provides the required contradiction and thus
proves Theorem 10.
�
Theorem 11 (Halting) Eventually, every correct process
reaches a terminal state.

Proof By Theorem 10, all correct processes eventually de-
cide. By simple code inspection it follows that if a correct
process decides it halts. Thus, the theorem follows.
�
Corollary 3 Algorithm 2 solves consensus.

In the following section we shortly discuss that the axi-
omatic failure detector properties can be implemented in par-
tially synchronous systems even in the presence of mortal
Byzantine faults.

5.2.3 Lower bound

To show that our algorithm has optimal resilience, it is suf-
ficient to prove that the computational model this algorithm
rests on can be implemented under partial synchrony. As a
consequence, every lower bound for partially synchronous
systems is also valid in the asynchronous model with failure
detector, and in particular the lower bound from Sect. 4.2.

123

Consensus in the presence of mortal Byzantine faulty processes 313

The failure detector �P can be implemented in the basic
round model [8] even in the presence of mortal Byzantine
faults. Correct processes send heartbeats to all in each round.
If a process p does not receive a message from some pro-
cess q in round r , then p suspects q, while if a message is
received then p does not suspect q. After round GST, all mes-
sages from correct processes are received in the round they
were sent and thus no correct process will be suspected any-
more. Since faulty processes can only send a finite number
of messages, these messages will eventually all be received.
From then on, all faulty processes will be permanently sus-
pected. In other words, Eventual Strong Accuracy and Strong
Completeness hold.

It remains to show that the asynchronous model, or more
specifically, reliable channels, can be implemented in partial
synchrony. This is achieved in the basic round model [8] by
retransmission (via piggybacking) of every message that was
originally sent in round r in all rounds r ′ > r .

Hence, it is clear that the basic round model is stronger
(but not necessarily strictly stronger) than the asynchronous
model equipped with �P such that any lower bound for the
former carries over to the latter.

6 Refined failure models

We return to the study of synchronous systems, but now con-
sider slightly different failure models. The fault models we
consider here are again inspired by the concept of hardware
monitors, which observe the behavior of processes, can detect
(some) faults, and are able to remove a detected faulty pro-
cess from the system. In this section we assume that this
happens within a known bounded time. We will say a fault
is potentially lethal, if it is detected by some external means
which can cause the associated process to be shut down; a
fault is non-lethal, if it cannot cause the associated process
to be removed no matter how often it occurs.

Further, we distinguish two models of how often poten-
tially lethal faults may occur before the faulty process is shut
down. One in which the faults associated to a process accu-
mulate until a given threshold is exceeded, and another one
which allows a certain number of faults within a given time
period and only removes a faulty process if it creates too
many faults too closely together, i.e., within a given time
window.

(O) Bounded failure occurrence. After a process has exhib-
ited potentially lethal faults in a total of x > 0 rounds,
it fails within y rounds with 0 ≤ y <∞.

(R) Bounded failure rate. After a process has exhibited
potentially lethal faults within x > 0 out of z ≥ x
consecutive rounds, it fails within y rounds, with 0 ≤
y <∞.

Algorithm 3 Fault-tolerant full message exchange
Code for processes (ft_fme(vp) for process p):
Variables
1: k = x + y + 1 // number of message repetitions
2: vp // the own data to be sent
3: rcvp[n][k] // data received from i in k′-th send iteration
4: retval p[n] // data delivered for process i , 1 ≤ i ≤ n

5: for k′ = 1 to k do
6: send (vp) to all
7: receive
8: for all i ∈ Π do
9: if received (vi) by i then
10: rcvp[i][k′] ← vi
11: else
12: rcvp[i][k′] ← ⊥
13: for all i ∈ Π do
14: if ∃w : |{k′ : rcvp[i][k′] = w}| = k then
15: retval p[i] = w
16: else
17: retval p[i] = ⊥
18: return retval p

By choosing z = ∞ in (R), we get model (O), and so
(O) is a special case of (R). Both models allow a certain
number of faults to go unpunished and only remove a faulty
process after it exhibits “too many” faults. This allows tran-
sient faults, e.g., memory faults, caused for example by single
event upsets, to simply run their course; the afflicted process
is only removed if it does not recover by itself within a given
number of rounds. We do not concern ourselves with the
cause of such transient faults, although in practice this might
have significant impact on the fault detection and removal
logic, for example in case of corrupted messages.

By choosing which faults are detectable and thus poten-
tially lethal, one derives different failure models. We first
consider the models (O) and (R) when all faults are poten-
tially lethal in Sect. 6.1. Then in Sects. 6.2 we will investigate
how to solve consensus if only severe faulty behavior—asym-
metric faults—is potentially lethal.

Contrary to the previous sections, we need to restrict the
delivery of messages sent by a faulty process p to rounds
in which p is still alive.1 So after the hardware monitor has
removed the component (after at most y rounds), no more
messages from p may arrive at any correct process.

Based on these assumptions, we can cope with faulty pro-
cesses by repeating messages for a sufficient number of times
(i.e., by time redundancy). This allows us to devise a sim-
ulation that makes failures appear in a more restricted fail-
ure mode, e.g., as send omission in the following section.
Our fault-tolerant full message exchange primitive called
ft_fme(v) requires k = x+y+1 rounds; see Algorithm 3.

1 This is similar to the synchronous model of computation in [3]. Con-
trary, in the previous section we did not have to restrict the timing of
messages from and to faulty processes.

123

314 J. Widder et al.

The nature of the values exchanged is not specified, it can be
single binary values, but it can also be any other data type,
e.g., a set, depending on the algorithm using the primitive.

We observe from the code that if ft_fme(v) returns⊥,
in some sense a value fault is converted to an omission. We
shall thus use the convention that if ft_fme(v) returns ⊥
we say that no message (or value) has been delivered. In the
following section we will show that in fact less severe faults
can be simulated by this primitive on top of faults that obey
x, y, and z.

6.1 When all faults are potentially lethal

In this section, we will consider a system where every fault is
potentially lethal. This matches the contingency mechanisms
discussed in Sect. 2 (e.g., temperature monitoring or power
monitoring).

First we show that using ft_fme(v) in the models (O)
or (R), a faulty process is perceived as send omission faulty,
i.e., as if it would follow its algorithm as a correct process,
but omits to send at least one message during the execution.

Lemma 15 In the models (O) and (R), if all communica-
tion is done via the ft_fme(v) primitive, and all faults
are potentially lethal, then faulty processes appear omission
faulty (or crashed).

Proof Consider one instance of full message exchange, and
assume that at the end, correct processes p and q both de-
liver a value for faulty process f , i.e., retval p[f] 	= ⊥ and
retvalq [f] 	= ⊥. Since retvali [f] 	= ⊥ is equivalent to equa-
tion rcvi [f][k′] = rcvi [f][k′′] for all k′, k′′ ∈ {1, . . . , k}, it
follows that p and q have received k = x + y + 1 equal val-
ues retval p[f] and retvalq [f], respectively, from f . How-
ever, f can pollute at most x consecutive rounds, which may
be followed by at most y additional (possibly faulty) rounds
before f crashes. Thus, during one of the k = x + y + 1
rounds, process f must have followed the algorithm and
has sent correct messages to all processes. Let v f be this
correct value. Hence, there is an � such that rcvp[f][�] =
rcvq [f][�] = v f and thus retval p[f] = retvalq [f] = v f , so
both processes p and q deliver the same correct value v f for
faulty process f .

Of course, some or all correct processes may not deliver a
value at all, for example if the faulty process commits a send
omission fault.
�

From Lemma 15, we know that a faulty process may ap-
pear at most send omission faulty. It is well known that con-
sensus with t send omission faults can be solved with t + 1
processes [20] in t + 1 rounds, such that we obtain:

Theorem 12 If all faults are potentially lethal, consensus
with at most t faulty processes can be solved with n > t
processes.

Apart from achieving consensus with t < n faulty pro-
cesses, our fault models also allow a bounded algorithm exe-
cution time of k · (t + 1) = (x + y + 1) · (t + 1) rounds.

6.2 When only asymmetric faults are potentially lethal

In certain applications, the assumption that hardware mon-
itors can detect all kinds of faults (like in the previous sec-
tions) may be overly optimistic. In particular, detecting that
the content of a message deviates from what should have been
sent if the algorithm was followed, requires knowledge of the
actual algorithm executed, and which messages are supposed
to be sent. Moreover, for instance in the case of control sys-
tems, a message’s content may depend also on the state of
the environment. Hence, the detection of a faulty value may
be well beyond the scope of a simple monitor in such cases.
We will limit ourselves to broadcast based algorithms. Here
two-faced behavior might be detectable in certain systems,
and no knowledge about the content of “correct” messages
is required.

We will say that a process a commits an asymmetric fault
in round r if there is a correct process p that receives m from a
in round r and there is another correct process q which either
receives no message from a in round r or q receives m′ 	= m
from a in round r . We will now consider (O) if only asym-
metric faults are potentially lethal.

Note carefully that processes may send erroneous values
during the whole execution, and are not required to crash
if in each round they send the same value to each correct
receiver. Such a faulty behavior we will call symmetric fault
in the following. As symmetric faults are non-lethal, a lower
bound for symmetric faults is also a lower bound for the fault
assumption of this section. As in the proof of Theorem 6 no
asymmetric behavior was required to derive the result, with
a similar proof we obtain:

Theorem 13 There is no algorithm that solves consensus in
the presence of t ≥ n/2 symmetric faulty processes.

Corollary 4 If symmetric faults are non-lethal, consensus
with at most t faulty processes requires at least n > 2t pro-
cesses.

After this lower bound, we now turn our attention to algo-
rithms. We start with the following preliminary lemma.

Lemma 16 Under (O) or (R), if all communication is done
via ft_fme(v) and only asymmetric faults are potentially
lethal, then if two correct processes deliver the messages m
and m′ respectively in any round r, then m = m′.

Proof Assume that correct processes p and q both deliver
a value for a faulty process f . It follows from the code that
both p and q have received k = x + y + 1 equal values.

123

Consensus in the presence of mortal Byzantine faulty processes 315

Since asymmetric faults are potentially lethal, the same argu-
ments as those used in the proof of Lemma 15 imply that the
received values are the same and consequently we obtain that
retval p[f] = retvalq [f].
�

As symmetric faults are non-lethal, the value delivered by
the correct processes may now be faulty. Again, some cor-
rect processes may not deliver a message sent by a faulty
process at all. Conversely, it is easy to show that using the
ft_fme(v) primitive, the communication between correct
processes is reliable. This behavior corresponds to the com-
munication primitive Crusader agreement defined in [21]:

Definition 5 (Crusader agreement) Let c be a process that
sends a message to all other processes.

– All correct processes that do not explicitly know that c
is faulty agree on the same message.

– If c is correct, then all correct processes agree on the
message sent by c.

In this context a process explicitly knows that c is faulty
if ft_fme(v) returns⊥. However, we shall show next that
asymmetric behavior on theft_fme(v)-level, requires that
the sender commits a potentially lethal fault. To this end, we
introduce the notion of an unclean message exchange: we
say faulty process p causes an unclean message exchange, if
a correct process receives a message from p while another
one does not receive a message. If this is not the case, the
message exchange is clean. Considering ft_fme(v), each
time a faulty process p causes an unclean message exchange,
p commits a potentially lethal fault.

6.2.1 Bounded failure occurrence

Under model (O), each time a potentially lethal fault is com-
mitted counts towards the x bound. It follows that eventu-
ally there are no more asymmetric faults, and that eventually
all correct processes will receive the same messages in the
same round. That is eventually all message exchanges will
be clean. We will use this “eventually consistent” property
in Algorithm 4.

Lemma 17 In model (O), if a process causes x unclean mes-
sage exchanges, it will appear crashed in all subsequent full
message exchanges.

Proof From Lemma 16 we know that an asymmetric faulty
process f can at worst make one correct process p deliver
a message m for round r while another correct process q
delivers no message at all for r . To achieve this asymmetric
delivery, at least one of the k messages sent via ft_fme()
must have been due to a potentially lethal fault, thus f has
to commit at least one potentially lethal fault in round r and

Algorithm 4 Synchronous consensus under model (O) and
non-lethal symmetric faults
Code for processes (for process p):
Variables
1: vp ∈ {0, 1} // current value (initially the proposed value)
2: rp ← 0 // current round
3: rcvpropp[n] ∈ {0, 1,⊥} // value received from i , 1 ≤ i ≤ n
4: prune() // a function mapping all values

// not in {0, 1} to ⊥, 0 to 0, and 1 to 1.
5: repeat
6: rp ← rp + 1
7: rcvpropp ← prune(ft_fme(vp))
8: if |{i : rcvpropp[i] = 0}| ≥ |{i : rcvpropp[i] = 1}| then
9: vp = 0
10: else
11: vp = 1
12: until rp = x · t + 1
13: decide vp
14: halt

hence will fail within y rounds after the x-th such fault. Since
our fault-tolerant full message exchange requires x + y + 1
rounds, if the x-th potentially lethal fault was at the end of
full message exchange �, then process f will send at most y
messages in full message exchange � + 1. As the receivers
only receive at most y of the x + y + 1 expected messages,
none of the correct processes will deliver a value, and f
will appear crashed in this full message exchange and all
subsequent ones.
�

Our approach to solve consensus is thus to divide com-
putations in macro rounds, where in each macro round each
correct process initiates a ft_fme(v). As a consequence
of Lemmas 16 and 17, in order to solve consensus in model
(O) it is sufficient to provide a consensus algorithm for the
following failure model:

– there are at most t < n/2 faulty processes,
– processes communicate through a Crusader Agreement

primitive, and
– during an interval of x+1 (macro) rounds of the consen-

sus algorithm, faulty processes are perceived symmetri-
cally2 in at least one round.

In this model, we shall prove that Algorithm 4 achieves
consensus with t < n/2 faulty processes. The key idea of the
algorithm is to calculate a new propose value in each round
from the values received from all processes. This is done
sufficiently many times so that there is at least one round
in which all message exchanges are clean. In this round, all
correct processes will calculate the same value, which will
henceforth prevail in all remaining rounds. To this end, a
correct process p repeatedly sends its own value and collects

2 That is, either all correct processes receive the same message or no
message of the faulty sender is received by any correct process.

123

316 J. Widder et al.

the values from all processes in set rcvpropp. Process p then
sets its new proposed value vp either to the majority value in
rcvpropp, if it exists, or to 1 otherwise. After x · t + 1 such
iterations, the last calculated proposed value vp is used as the
decision value.

In the following we will prove that Algorithm 4 solves
consensus in the presence of up to t < n/2 faulty processes.

Theorem 14 (Decision and halting) Every correct process
decides and halts after algorithm round x · t + 1.

Proof This theorem follows from simple code inspection:
After round x · t + 1, the algorithm halts, and the value of vp

after this round is the decision value.
�
Theorem 15 (Validity) If some correct process decides v,
then v is proposed by some correct process.

Proof Since we are only considering binary consensus and
lines 8–11 clearly ensure that only 0 or 1 can be decided, it
suffices to show that when all processes have the same initial
value v, then v will be decided. Since processes are guaran-
teed to receive at least n − t values from correct processes
and n − t > t , we know that |{i : rcvpropp[i] = v}| >
|{i : rcvpropp[i] = 1 − v}| holds in all rounds. Therefore,
the check in line 8 will always prefer the correct processes’
value.
�
Theorem 16 (Agreement) No two correct processes decide
differently.

Proof It follows from Lemma 17, that a faulty process can
appear asymmetric faulty in up to x rounds before it crashes.
Therefore, as there are at most t faulty processes, correct pro-
cesses can receive inconsistent information in at most x · t
rounds. Thus, at least one of the x · t + 1 rounds is a clean
round. In a clean round, all correct processes have the same
set rcvpropp[i] and will therefore compute the same value,
which will henceforth win the majority in every subsequent
round and thus will be delivered as the decision value.
�
Corollary 5 Algorithm 4 solves consensus under (O).

6.2.2 Bounded failure rate

In the previous section, we discussed a consensus algorithm
which is based on the assumption that processes communi-
cate via Crusader agreement and that faulty processes can be
perceived asymmetrically at most for x rounds before they
crash. Since in the failure model with bounded failure rate
(R), asymmetric behavior leads only to a crash if it happens
at a too high density, we know from Lemma 16 that in this
section we have to deal with permanent faults, while com-
munication can still be done using Crusader agreement. Con-
sensus actually can be solved under these assumptions with

Table 1 Resilience of consensus in different systems

System All potentially lethal Only asym. potentially lethal

(O) t + 1 [20] 2t + 1 (Algorithm 4)
(R) t + 1 [20] 2t + 1 [22]

a majority of correct processes: The argument uses results
by Fitzi and Maurer [22]. They have shown that consensus
can be solved based on a special kind of multi-cast primitive
called two-cast channels:

Definition 6 (Two-cast channels) Among any triple of pro-
cesses and for any process among them, there exists a broad-
cast channel to the remaining two processes.

Fitzi and Maurer [22, Definition 4] then use this communi-
cation primitive to extend their result to primitives with other
consistency guarantees, one of which they call weak broad-
cast. As weak broadcast basically is just a reformulation of
Crusader agreement, and can thus be implemented with any
number of processes under our fault assumption, we obtain
that consensus is solvable with a minority of faulty processes
under model (R).

6.3 Discussion

Table 1 summarizes this section’s results with respect to resil-
ience for systems with known lifespan of faults. The table
contains pointers to the results in literature which we have
shown to apply to our failure models.

Clearly, systems benefit from a perfect hardware moni-
tor that can detect all faults, as in this case n > t processes
are sufficient, at the cost of increased message complexity.
If symmetric faults cannot be detected, though, the n > 2t
bound of Sect. 4 cannot be improved. Still, even though the
bound remains the same, the coverage of systems may be
improved: transient failures, which cause the algorithm of
Sect. 4 to fail, can now be handled as long as they only occur
in moderation.

Our solutions for consensus use the ft_fme(v) primi-
tive to implement macro rounds in which some of the faulty
behaviors are masked. In this way, we can solve consensus
with simple algorithms based on these macro rounds. A draw-
back of this approach is that our solutions are quite inefficient
with respect to the number of rounds. Whether more efficient
algorithms can be found is subject to future work.

The assumptions of certain faults which are non-lethal
is not easily comparable to the mortal Byzantine model of
Sect. 4.2. On the one hand, faulty processes may be alive
forever, given that they do not behave two-faced. On the
other hand, after behaving two-faced (too often), a faulty
process must crash within a fixed number of rounds, while

123

Consensus in the presence of mortal Byzantine faulty processes 317

in Sect. 4.2, a faulty processes was required to crash only
eventually.

7 Related work

The seminal work by Pease, Shostak, and Lamport [4,23]
considers consensus (or more precisely the closely related
Byzantine Generals problem) for synchronous systems with
arbitrary faulty processes. This combines, on the one hand,
highly optimistic [3, p. 5] timing assumptions with, on the
other hand, highly pessimistic fault assumptions to result
in the well-known n > 3t bound. Naturally, researchers
turned to investigating other timing assumptions and fault
types. Relaxing the synchronous system assumption led to
the well-known impossibility result by Fischer, Lynch, and
Paterson [19] for asynchronous systems and subsequently to
work on weak synchrony assumptions as the seminal paper
by Dwork, Lynch and Stockmeyer [8] and subsequent work
as [16,24,25]. Another approach was to augment the asyn-
chronous system with failure detectors [10,26,27]. Other
approaches aim at optimizing normal case behavior [28–30]
or consider more elaborate fault models in an effort to im-
prove fault resilience as, for instance, Byzantine faults with
recovery [31,32] or hybrid failure models [33–35].

Our results can be roughly divided into two domains,
namely, synchronous and non-synchronous systems. In the
case of synchronous systems, our approach aims at improv-
ing resilience by strengthening the fault assumptions. In the
other case, we explore in which cases something can be
gained from the failure model. We show that in partially
synchronous models nothing is gained compared to Byzan-
tine faults. In the asynchronous case we showed that unreli-
able failure detectors [9]—which were originally introduced
for crash failures only—can in fact be used to tolerate non-
benign faults as well, if the faulty processes eventually crash.
In contrast to most previous work in this area, we consider
failure mode trajectories, where components migrate from
one (severe) fault type to another (less severe) one, since such
models are not just of purely theoretical interest, but also of
practical use, as illustrated in the examples from Sect. 2.

In this paper we considered a variant of consensus that
is required to halt. As laid out in [1], in general, results on
deciding not necessarily carry over to halting, i.e., reaching
a terminal state in which no further messages are sent; cf.
[3,14]. In our context, the distinction is interesting, as we
have shown in Sect. 4.2 that if there is just a majority (i.e.,
2t < n ≤ 3t) of correct processes, there is no fixed num-
ber of rounds (in the synchronous model) that an algorithm
requires to decide in each execution. However, we showed
that our algorithms—including the asynchronous one in par-
ticular—solve the problem of reaching a terminal state as
well. This is an interesting property of our algorithms, which

is of practical interest in long running systems where it is
advantageous to be able to free the resources of halted pro-
cesses.

7.1 Synchronous systems

Our Algorithm 1 has some similarities to the EDAC algo-
rithm described in [1] and originally introduced in [36].
EDAC solves the early deciding consensus problem in the
presence of crash faults.

We have seen that the number of required processes for
synchronous consensus can be reduced to n ≥ 2t + 1, but
at the cost that the required decision time (more precisely
the number of rounds) cannot be bounded. Due to the latter
result, it might appear as if this model cannot be employed if
bounded decision time is required. However, following the
late binding principle [37] this is only true when the life time
of faults (e.g., the delay of the detection mechanism) in the
real system is not bounded. As our proofs reveal, if over all
executions the time in which faulty processes can pollute the
system is bounded, so is the decision time.

7.2 Asynchronous system with a failure detector

For crash faults, Chandra and Toueg [9] showed that consen-
sus can be solved in an asynchronous system, if it is enriched
with an oracle that provides processes in each step with a set
of processes that the oracle assumes to be faulty. In order for
this information to be useful to the asynchronous algorithm,
from some time on, the oracle has to provide reliable infor-
mation forever [38,39]. Chandra and Toueg also showed that
such oracles can be implemented in a generalization of the
partially synchronous systems of [8].

Later, Doudou et al. [10,11] observed that the failure
detector approach cannot be extended seamlessly to Byz-
antine faults. Instead, they proposed “gray-box” modules,
which they called muteness detectors, that allow to solve con-
sensus in the presence of Byzantine faults. Gray-box means
that information flow is not one-way anymore, as is the case
with the Chandra and Toueg solution of consensus where
the failure detector outputs the suspicions but takes no input
from the consensus algorithm. Rather, gray-box means that
the consensus algorithm itself has to provide the failure detec-
tor with information on faults (which is impossible for the FD
to get without knowledge of the consensus algorithm’s inter-
nals). Doudou et al. observe that this circularity is inherent to
the problem. In the solution they provide, the correctness of
both the failure detector and the consensus algorithm depend
on the synchrony assumptions of the partially synchronous
model.

Most of the existing work on asynchronous failure detec-
tor based Byzantine consensus [10,11,27,40–43] tries to
strengthen the system in more than one way. The solution

123

318 J. Widder et al.

of Doudou et al. adds synchrony assumptions at consensus
level as well as bidirectional communication between the
consensus and the failure detector module, and so do Fried-
man et al. [41] who refer to the solution of Doudou et al.
[11]. Kihlstrom et al. [43] enrich the system with authentica-
tion. Additionally, the failure detector implementation they
provide requires the special consensus algorithm proposed
in their paper as they observe certain consensus messages;
it is assumed that the consensus algorithm is round based
(This is another example of the circular dependency Doudou
et al. show to be problem inherent). Malkhi et al. [27] define
quiet processes via behaviors of processes given a certain
broadcast primitive that is implementable in asynchronous
systems. Implementing the failure detector they define, how-
ever, requires synchrony assumptions (partial synchrony) on
at least a subset of consensus messages (which may be given
in practical applications). None of the discussed consensus
algorithms is purely asynchronous.

Our approach is different from the ones that can be found
in the mentioned literature: We investigate failure detector
based consensus under a stronger fault model, namely the
mortal Byzantine model. For this we show that this failure
assumption allows to tolerate faults in a modular manner,
i.e., the failure detector implementation requires no knowl-
edge on the internals of the consensus algorithm. Moreover,
in sharp contrast to the consensus algorithms that were dis-
cussed above, our algorithm is purely asynchronous, i.e.,
there are no synchrony assumptions on consensus messages
and the relative execution speed of the processor running the
consensus algorithm. These nice properties, however, can of
course only be achieved due to our fault semantics being
stronger than in the presented related work. We assume that
Byzantine processes have to crash eventually, i.e., they only
take a finite number of steps. This eliminates the aforemen-
tioned circularity.

From a different, perhaps more practical viewpoint, the
mortal Byzantine model can be interpreted as a system with
Byzantine faults where some (external) part of the system can
reliably detect faults and can guarantee that faulty nodes will
eventually be silenced or crashed. This latter assumption is
the central difference to the failure detector based approaches
to tolerate classic Byzantine faults we have discussed above.
If this has to be implement within the system, our approach
only provides a different kind of layering, which allows an
asynchronous consensus algorithm.

There are several attempts to extend the failure detector
approach to other fault models, weaker than crash. Most
notable Aguilera et al. [44] and Delporte-Gallet et al. [45]
consider benign faults, that is, faults that do not lead to
corrupted states or messages. Aguilera et al. studied fail-
ure detector based consensus in the presence of crashes with
recovery. They classified processes into eventually up, even-
tually down, and unstable processes. Their approach was to

find failure detector definitions that are suitable for the crash-
recovery failure model; definitions that turned out to be rather
intricate. Delporte-Gallet et al. gave general transformations
for problem specifications, failure detectors, and algorithms.
Hence, they show that crash-tolerant algorithms can be trans-
formed such that they solve transformed problems using
transformed failure detectors. Whether such a general trans-
formation is also possible for mortal Byzantine faults is an
interesting open question and subject to future work.

The approaches of Aguilera et al. [44] and Delporte-Gal-
let et al. [45] generalize the liveness aspect of the faulty pro-
cesses that are originally [9] considered crash faulty only.
These approaches deal with failure models that do not ensure
that faulty processes terminate as a crash. In our work on
asynchronous systems with failure detectors, we still require
that processes crash, and our liveness properties are therefore
simpler than those in [44] and [45]. However, we focused on
“value faults” that can be seen as generalizations of the safety
aspect of process behavior.

7.3 Mortal Byzantine faults

Bazzi and Herlihy [12] have generalized our results [46] in
the synchronous case for hybrid failure models, namely for
systems where processes can exhibit both mortal Byzantine
and classic Byzantine faults. One could consider that this
models systems where only some of the Byzantine failures
are detected even if they are perpetually faulty and not just
for a few steps as in our models of Sect. 6. In more detail,
assuming m faulty processes are mortal and i faulty processes
are classic (immortal) Byzantine in a system of n processes,
they show that consensus is solvable in synchronous systems
if and only if n > 3i+2m. More precisely, they give an algo-
rithm for binary consensus that works with n > 3i+2m, and
they show that the Byzantine Generals problem [4] cannot
be solved with n = 3i + 2m. By setting i = 0, one observes
that in the more general hybrid setting they extend our results
regarding consensus solvability. For partially synchronous or
asynchronous systems, however, our lower bound result from
Sect. 5.1 suggests that using such a hybrid approach will not
lead to consensus algorithms with improved resiliency.

Bazzi and Herlihy [12] also investigated the problem of
broadcasting in the mortal Byzantine failure model (in the
absence of classic Byzantine faults). They discussed that if all
Byzantine processes are eventually detected one can solve a
weak form of terminating reliable broadcast if n > m. In this
weak form, processes are only required to deliver the broad-
caster’s value if all faulty processes have crashed before the
broadcast was initiated. Further they introduced a pipelining
mechanism, in which by repeatedly using this weak broad-
casting protocol, one can solve terminating reliable broadcast
(TRB), that is, the Byzantine Generals problem [4], without
any requirement on the number of mortal Byzantine failures.

123

Consensus in the presence of mortal Byzantine faulty processes 319

For classic Byzantine failures, the TRB and consensus
problems are usually considered to be equivalent, thus their
result seems to conflict with our 2t + 1 lower bound on the
number of processes. In fact it does not, as these two results
together give a very precise characterization on which safety
properties is harder to maintain in presence of mortal Byzan-
tine failures: recall that we only used the validity property of
consensus in the proof of Theorem 6; a property that requires
that in case all correct processes initially agree, their value
is the only legal decision value. It is in some sense evident
that this property requires a majority of correct processes. In
contrast, the validity property of TRB only requires a process
to decide on the value sent by one process (or to deliver no
value, in the case of a faulty broadcaster).

It is also worth mentioning, that this result shows that con-
sensus is harder than TRB with respect to resilience to mortal
Byzantine failures. As is observed in [9], the opposite is true
with respect to failure detectors (in the presence of benign
failures).

Nesterenko and Arora [5] study malicious crashes. The
assumptions on malicious crashes are basically the same as
for mortal Byzantine failures. However, their work is in a dif-
ferent context. On the one hand, they consider shared regis-
ters as communication medium which contrasts our message
passing models. On the other hand, they study a different
problem, namely, dining philosophers. Their solution uses
techniques from self-stabilization to ensure that the system
is able to recover or at least contain the disorder caused
by the malicious behavior and eventual crash of faulty pro-
cesses. The maximal distance from a faulty process to a pro-
cess that is affected by the fault is called the failure locality.
Clearly, ensuring total recovery of the system after all (mortal
Byzantine) faulty processes have crashed would amount to
guaranteeing failure locality 0, which is impossible to achieve
in asynchronous systems as the minimal failure locality of
any dining philosophers algorithm is known to be 2 [47].

Similarly, [48] studies self-stabilizing leader election in
rings in the presence of mortal Byzantine failures. In their
solution the failure locality depends on the number of arbi-
trary state changes a process may perform.

8 Discussions

We studied a fault model that seems to accurately describe
faulty behavior as experienced in certain practical applica-
tions. Our motivating examples were from the space domain,
but our fault model may also be used to describe human-
managed systems, where upon observing a deviation from
normal behavior by some computer, the operator shuts it
down. The model lies between crash model and Byzantine
model as faulty processes are allowed to behave Byzantine
until they eventually crash.

The notion of failure mode trajectory seems to be an inter-
esting issue for future work. We considered only the extreme
case where faulty processes may start to exhibit the most gen-
eral failure mode (Byzantine) and eventually converge to a
very benign fault, i.e., they crash. In the synchronous case, we
showed that n > 2t is necessary and sufficient to solve con-
sensus, and it is thus possible to tolerate more faults than in
the (classic) Byzantine case. In general, it should be possible
to devise more efficient solutions (e.g., regarding synchrony
assumptions or required number of processes) by replacing a
static fault model with a model where the behavior of faulty
processes converges towards some benign fault.

When considering failure mode trajectories, algorithms
typically have to be safe in the presence of the most severe
failure mode within the trajectory. Our synchronous algo-
rithm and our asynchronous algorithm are safe even in the
presence of (classic) Byzantine faults. In order to guarantee
decision, processes have to crash, however.

In the synchronous case, we also considered more refined
models where processes may exhibit a bounded number of
faults without ever crashing, but if they do exceed this bound,
they crash within a known number of rounds. These models
allow to deal with certain transient faults.

In this paper we considered only binary consensus, that
is, the set of possible decision values is {0, 1}. For the lower
bounds in this paper, this is a safe choice as considering
binary consensus gives stronger results than in the multi-
valued case.

Considering upper bounds, our asynchronous algorithm
can easily be adapted to solve multi-valued consensus by
changing the way the proper set is handled similar to [8].
There are also general techniques to extend algorithms for
binary consensus to solve the multi-valued version of the
problem. Most notably, for the Byzantine case there is the
synchronous algorithm by Turpin and Coan [49], which
requires n > 3t . As we only have n > 2t in the synchro-
nous case, the results by Turpin and Coan do not directly
imply that our binary consensus algorithms also provide an
upper bound result for multi-valued consensus. However, the
following simple arguments close this gap.

As mentioned in Sect. 3, an alternative to our Validity con-
dition that is also suitable for multi-valued consensus would
be to require “if all correct processes propose v, and a cor-
rect process decides w, then v = w.” We will now explain
how to achieve consensus with this Validity property when v
can be from a some set V with |V | > 2, based on our algo-
rithms. Processes start one instance of binary consensus for
each v ∈ V , and use 1 as initial value if v is their initial value,
otherwise they use 0 for the instance corresponding tov. After
a correct process has decided in all |V | instances, it decides
on the minimal v such that the binary consensus instance
corresponding to v decided on 1, or some default value if all
instances decided on 0. Agreement, Decision and Halting of

123

320 J. Widder et al.

this simple protocol follow directly from the corresponding
properties of the binary protocol. Moreover, when all pro-
cesses propose v then all correct processes propose 1 for
the instance corresponding to v, and 0 in all other instances.
According to the Validity property, our algorithms guarantee
the decision value of each instance is the initial value of some
correct process for that instance. Consequently, the processes
decide on 1 for the instance corresponding to v, and 0 for all
other instances. Clearly the decision value of our reduction
will be v, thus satisfying the Validity property given above.

This simple reduction needs |V | instances when the ini-
tial values are taken from the set V . An alternative approach
would be to instead reach agreement over every bit of the ini-
tial values, thus reducing the number of instances to log |V |.
Similar bit-per-bit approaches that work only for benign fail-
ures are used in the reduction algorithms in [50,51].

Authentication can be used “in practice” to reduce the
required number of processes [4]. In this paper, we have cho-
sen not to consider authenticated algorithms, because in addi-
tion to the lack of a formal definition of authentication in the
presence of Byzantine faults, and the disadvantage of com-
putational and communication overhead, there is also the
possibility that authentication can be broken.

Acknowledgments We are grateful to Danny Dolev for pointing out
[22] to us, and for enlightening us about the relation between Crusader
agreement and consensus. We thank Rida Bazzi and Maurice Herlihy
for valuable discussions on their results [12]. We also thank the anon-
ymous reviewers whose constructive comments helped to improve the
organization of the paper significantly.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Charron-Bost, B., Schiper, A.: Uniform consensus is harder than
consensus. J. Algorithms 51(1), 15–37 (2004)

2. Delporte-Gallet, C., Fauconnier, H., Horn, S.L., Toueg, S.:
Fast fault-tolerant agreement algorithms. In: Proceedings of the
24th ACM Symposium on Principles of Distributed Computing
(PODC’05), pp. 169–178. ACM Press, New York, USA (2005)

3. Lynch, N.: Distributed Algorithms. Morgan Kaufman Publish-
ers, San Francisco (1996)

4. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals prob-
lem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

5. Nesterenko, M., Arora, A.: Dining philosophers that
tolerate malicious crashes. In: Proceedings of the 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS’02),
pp. 191–198. Vienna, Austria (2002)

6. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs
for distributed consensus problems. In: Proceedings of the Fourth
Annual ACM Symposium on Principles of Distributed Computing,
PODC ’85, pp. 59–70. ACM, New York, USA (1985)

7. Fischer, M.J., Lynch, N.: A lower bound for the time to assure
interactive consistancy. Inf. Process. Lett. 14(4), 198–202 (1982)

8. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

9. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

10. Doudou, A., Garbinato, B., Guerraoui, R., Schiper, A.: Muteness
failure detectors: specification and implementation. In: Proceed-
ings 3rd European Dependable Computing Conference (EDCC-3).
Lecture Notes in Computer Science 1667, vol. 1667, pp. 71–87.
Springer, Prague, Czech Republic (1999)

11. Doudou, A., Schiper, A.: Muteness detectors for consensus with
Byzantine processes. In: Proceedings of the 17th ACM Sympo-
sium on Principles of Distributed Computing (PODC-17). Puerto
Vallarta, Mexico (1998)

12. Bazzi, R.A., Herlihy, M.: Enhanced fault-tolerance through Byzan-
tine failure detection. In: 13th International Conference on Princi-
ples of Distributed Systems (OPODIS), Lecture Notes in Computer
Sciences, vol. 5923, pp. 129–143. Springer (2009)

13. Dijkstra, E.W.: On the role of scientific thought. In: Selected Writ-
ings on Computing: A Personal Perspective, pp. 60–66. Springer,
New York (1982). (EWD 447)

14. Dolev, D., Reischuk, R., Strong, H.R.: Early stopping in Byzantine
agreement. J. ACM 37(4), 720–741 (1990)

15. Elrad, T., Francez, N.: Decomposition of distributed programs
into communication-closed layers. Sci. Comput. Programm. 2(3),
155–173 (1982)

16. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.:
Consensus with Byzantine failures and little system synchrony. In:
DSN ’06: Proceedings of the International Conference on Depend-
able Systems and Networks, pp. 147–155. IEEE Computer Society,
Washington, DC, USA (2006). doi:10.1109/DSN.2006.22

17. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast pro-
tocols. J. ACM 32(4), 824–840 (1985)

18. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms. Distrib. Comput. 2, 80–
94 (1987)

19. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

20. Perry, K.J., Toueg, S.: Distributed agreement in the presence of
processor and communication faults. IEEE Trans. Softw. Eng.
SE-12(3), 477–482 (1986)

21. Dolev, D.: The Byzantine generals strike again. J. Algorithms
3(1), 14–30 (1982)

22. Fitzi, M., Maurer, U.M.: From partial consistency to global broad-
cast. In: Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing (STOC), pp. 494–503 (2000)

23. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the
presence of faults. J. ACM 27(2), 228–234 (1980)

24. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: 3rd
Symposium on Operating Systems Design and Implementation
(1999)

25. Correia, M., Neves, N.F., Lung, L.C., Veríssimo, P.: Low com-
plexity Byzantine-resilient consensus. Distrib. Comput. 17, 237–
249 (2005)

26. Doudou, A., Garbinato, B., Guerraoui, R.: Encapsulating failure
detection: From crash to Byzantine failures. In: Reliable Software
Technologies—Ada-Europe 2002. Lecture Notes in Computer Sci-
ence 2361, pp. 24–50. Springer, Vienna, Austria (2002)

27. Malkhi, D., Reiter, M.: Unreliable intrusion detection in distrib-
uted computations. In: Proceedings of the 10th Computer Security
Foundations Workshop (CSFW97), pp. 116–124. Rockport, MA,
USA (1997)

28. Abd-El-Malek, M., Granger, G.R., Goodson, G.R., Reiter, M.K.,
Wylie, J.J.: Fault-scalable Byzantine fault-tolerant services.
In: 20th ACM Symposium on Operating Systems Principles
(SOSP’05), pp. 59–74 (2005)

123

http://dx.doi.org/10.1109/DSN.2006.22

Consensus in the presence of mortal Byzantine faulty processes 321

29. Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic
broadcast: Time-free Byzantine-resistant protocols without signa-
tures. Comput. J. 49(1), 82–96 (2006)

30. Martin, J.P., Alvisi, L.: Fast Byzantine consensus. IEEE Trans.
Dependable Secur. Comput. 3(3), 202–215 (2006)

31. Anceaume, E., Delporte-Gallet, C., Fauconnier, H., Hurfin, M.,
Le Lann, G.: Designing modular services in the scattered Byzan-
tine failure model. In: 3rd International Symposium on Parallel and
Distributed Computing (ISPDC 2004), pp. 262–269. IEEE Com-
puter Society (2004)

32. Anceaume, E., Delporte-Gallet, C., Fauconnier, H., Hurfin, M.,
Widder, J.: Clock synchronization in the Byzantine-recovery fail-
ure model. In: International Conference On Principles Of Distrib-
uted Systems OPODIS 2007. Lecture Notes in Computer Science,
pp. 90–104. Springer, Guadeloupe, French West Indies (2007)

33. Azadmanesh, M.H., Kieckhafer, R.M.: New hybrid fault mod-
els for asynchronous approximate agreement. IEEE Trans. Com-
put. 45(4), 439–449 (1996)

34. Biely, M.: An optimal Byzantine agreement algorithm with arbi-
trary node and link failures. In: Proceedings of 15th Annual IA-
STED International Conference on Parallel and Distributed Com-
puting and Systems (PDCS’03), pp. 146–151. Marina Del Rey,
USA (2003)

35. Thambidurai, P.M., Park, Y.K.: Interactive consistency with multi-
ple failure modes. In: Proceedings of 7th Symposium on Reliable
Distributed Systems, pp. 93–100 (1988)

36. Fischer, M., Lamport, L.: Byzantine generals and transaction com-
mit protocols. Technical Report 62, SRI International (1982)

37. Hermant, J.F., Le Lann, G.: Fast asynchronous uniform consensus
in real-time distributed systems. IEEE Trans. Comput. 51(8), 931–
944 (2002)

38. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure
detector for solving consensus. J. ACM 43(4), 685–722 (1996)

39. Charron-Bost, B., Hutle, M., Widder, J.: In search of lost time. Inf.
Process. Lett. 110(21), 928–933 (2010)

40. Baldoni, R., Hélary, J.M., Raynal, M., Tangui, L.: Consensus in
Byzantine asynchronous systems. J. Discret. Algorithms 1(2), 185–
210 (2003)

41. Friedman, R., Mostéfaoui, A., Raynal, M.: Simple and efficient
oracle-based consensus protocols for asynchronous Byzantine sys-
tems. IEEE Trans. Dependable Secur. Comput. 2(1), 46–56 (2005)

42. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Solving con-
sensus in a Byzantine environment using an unreliable fault detec-
tor. In: Proceedings of the International Conference on Principles
of Distributed Systems (OPODIS), pp. 61–75. Chantilly, France
(1997)

43. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault
detectors for solving consensus. Comput. J. 46(1), 16–35 (2003)

44. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and con-
sensus in the crash-recovery model. Distrib. Comput. 13(2), 99–
125 (2000)

45. Delporte-Gallet, C., Fauconnier, H., Freiling, F.C., Penso, L.D.,
Tielmann, A.: From crash-stop to permanent omission: automatic
transformation and weakest failure detectors. In: 21st International
Symposium on Distributed Computing (DISC). Lecture Notes in
Computer Science, vol. 4731, pp. 165–178. Springer (2007)

46. Widder, J., Gridling, G., Weiss, B., Blanquart, J.P.: Synchro-
nous consensus with mortal Byzantines. In: Proceedings of the
International Conference on Dependable Systems and Networks
(DSN’07), pp. 102–111. Edinburgh, UK (2007)

47. Choy, M., Singh, A.K.: Efficient fault tolerant algorithms for
resource allocation in distributed systems. In: Proceedings of the
Twenty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’92, pp. 593–602. ACM, New York, USA (1992)

48. Yamauchi, Y., Masuzawa, T., Bein, D.: Adaptive containment of
time-bounded Byzantine faults. In: 12th International Symposium
Stabilization, Safety, and Security of Distributed Systems (SSS
2010). Lecture Notes in Computer Science, vol. 6366, pp. 126–
140. Springer (2010)

49. Turpin, R., Coan, A.B.: Extending binary Byzantine agreement to
multivalued Byzantine agreement. Inf. Process. Lett. 18(2), 73–
76 (1984)

50. Mostefaoui, A., Raynal, M., Tronel, F.: From binary consensus
to multivalued consensus in asynchronous message-passing sys-
tems. Inf. Process. Lett. 73(5–6), 207–212 (2000)

51. Zhang, J., Chen, W.: Bounded cost algorithms for multi-
valued consensus using binary consensus instances. Inf. Process.
Lett. 109(17), 1005–1009 (2009)

123

	Consensus in the presence of mortal Byzantine faulty processes
	Abstract
	1 Introduction
	2 Motivation
	3 General model and problem statement
	4 Synchronous systems
	4.1 Algorithm
	4.2 Lower bounds

	5 Relaxed timing assumptions
	5.1 Partially synchronous systems
	5.2 Asynchronous system with failure detector
	5.2.1 The algorithm
	5.2.2 Correctness proof
	5.2.3 Lower bound

	6 Refined failure models
	6.1 When all faults are potentially lethal
	6.2 When only asymmetric faults are potentially lethal
	6.2.1 Bounded failure occurrence
	6.2.2 Bounded failure rate

	6.3 Discussion

	7 Related work
	7.1 Synchronous systems
	7.2 Asynchronous system with a failure detector
	7.3 Mortal Byzantine faults

	8 Discussions
	Acknowledgments
	References

