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ecessary Optimality Conditions for Improper
finite-Horizon Control Problems

rgey M. Aseev and Vladimir M. Veliov

Abstract The paper revisits the issue of necessary optimality conditions for infinite-
horizon optimal control problems. It is proved that the normal form maximum prin-
ciple holds with an explicitly specified adjoint variable if an appropriate relation
between the discount rate, the growth rate of the solution and the growth rate of the
objective function is satisfied. The main novelty is that the result applies to general
non-stationary systems and the optimal objective value needs not be finite (in which
case the concept of overtaking optimality is employed).

1 Introduction

Infinite-horizon optimal control problems arise in many fields of economics, in par-
ticular in models of economic growth. Typically, the utility functional to be maxi-
mized is defined as an improper integral of the discounted instantaneous utility on
the time interval [0,c0). The last circumstance gives rise to specific mathematical
features of the problems and different pathologies (see [4,7, 9,11,13)).

The contribution of the present paper is twofold. First we extend the version
of the Pontryagin maximum principle for infinite-horizon optimal control prob-
lems with dominating discount established in [3,4] to a more general class of non-
autonomous problems and relax the assumptions. Second, we adopt the classical
needle variations technique [12] to the case of infinite-horizon problems. Thus, the
approach in the present paper essentially differs from the ones used in [3,4,6]. The
needle variations technique is a standard tool in the optimal control theory. The ad-
vantage of this technique is that as a rule it produces (if applicable) the most general
versions of the Pontryagin maximum principle. Nevertheless, application of needle
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variations technique is not so straightforward in the case of infinite-horizon prob-
lems.

Another important feature of our main result is that it is applicable also for prob-
lems where the objective value may be infinite. In this case the notion of overtaking
optimality is adapted (see [7]). In contrast to the known results, the maximum princi-
ple that we obtain has a normal form, that is, the multiplier of the objective function
in the associated Hamiltonian can be taken equal to one.

2 Statement of the problem and assumptions

Let G be a nonempty open convex subset of R” and U be an arbitrary nonempty set
inR™. Let f:[0,00) xGX U R" and g:[0,00) x Gx U R!.
Consider the following optimal control problem (P):

J0)u()) = [P g(t,x(e),u(0)) dr — ma, (1
50) = f6,6(0),u(0), x(0) =0, @
u(t) e U. (3)

Here xo € G is a given initial state of the system and p € R! is a “discount” rate
(which could be even negative).

Assumption (A1): The functions f : [0,) x G x U — R" and g :[0,00) x G x
U — R together with their partial derivatives f,(-,-,-) and g,(-,-,-) are continuous
in (x,u) on Gx U for any fixedt € [0,), and measurable and locally bounded in ¢,
uniformly in (x,u) in any bounded set. !

In what follows we assume that the class of admissible controls in problem (P)
consists of all measurable locally bounded functions  : [0,00) — U. Then for any
initial state xo € G and any admissible control u(-) plugged in the right-hand side of
the control system (2) we obtain the following Cauchy problem:

(1) = f(t,x(0),u(r)),  x(0) = xo. “

Due to assumption (A1) this problem has a unique solution x(-) (in the sense of
Carathéodory) which is defined on some time interval [0, 7] with T > 0 and takes
values in G (see e.g. [9]). This solution is uniquely extendible to a maximal interval
of existence in G and is called admissible trajectory corresponding to the admissible
control u(-). :

If u(-) is an admissible control and the corresponding admissible trajectory x(-)
exists on [0,T] in G, then the integral

! The local boundedness of these functions of ¢, x and u (take ¢(-,-,-) as a representative) means
that for every T > 0 and for every bounded set Z C G x U there exists M such that llo@r,x,u)]| <M
for every r € [0,T] and (x,u) € Z.

i
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T
Ir(x()) 1= [P glt,x(e), ()

is finite. This follows from (A1), the definition of admissible control and the exis-
tence of x(+) on [0, T].

We will use the following modification of the notion of weakly overtaking opti-
mal control (see [7]).

Definition 1: An admissible control u,(-) for which the corresponding trajectory
x.(-) exists on [0,%0) is locally weakly overtaking optimal (LWOO) if there exists
6 > 0 such that for any admissible control u(-) satisfying '

meas{r > 0:u(t) #u,(t)} <6

and for every € > 0 and T > 0 one can find T' > T such that the corresponding
admissible trajectory x(-) is either non-extendible to [0, T') in G or

Iri (e (-)s s (-)) 2 I (x(-), u(-)) — €.

Notice that the expression d(u(-),u«(-)) = meas{r € [0,T] : u(t) # u.(t)} gen-
erates a metric in the space of the measurable functions on [O, T], T > 0, which is
suitable to use in the framework of the needle variations technique (see [2]).

In the sequel we denote by u,(-) an LWOO control and by x, (-) — the correspond-
ing trajectory.

Assumption (A2): There exist numbers it >0, r > 0, k > 0, B>0andc, >0
such that for every t > 0

() s (D] < cret;

(ii) for every admissible control u(-) for which d(u(-),u.(-)) < B the correspond-
ing trajectory x(-) exists on [0,%0) in G and it holds that

gt yus(O) <k (1+y]")  forevery y € co{x(t),x.(r)}.

Assumption (A3): There are numbers A € R, Y > 0 and ¢y > 0 such that for
every § € G with ||§ —xo|| <y equation (4) with u(-) = us(-) and initial condition
x(0) = ¢ (instead of x(0) = xo) has a solution x({;-) on [0,0) in G and

[16(830) = xu ()| < 2| — xo]| €™

The last two assumptions can be viewed as definitions of the constants U, r and
A, which appear in the key assumption below, called dominating discount condition.
Assumption (A4):
p>A+rmax{A,u}.

For an arbitrary 7 > 0 consider the following linear differential equation (the
linearization of (4) along (x.(-),u«(+)):
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() = feltsxa(0),ua(0)y(t), £20 )

with initial condition
¥(7) = yo. ©6)

In the next section we present necessary optimality conditions in the form of
Pontryagin’s maximum principle.

3 Main result

Due to assumption (A1) the partial derivative f;(-,x. (), u.(-)) is measurable and lo-
cally bounded. Hence, there is a unique (Carathéodory) solution ¥«() of the Cauchy
problem (8), (6) which is defined on the whole time interval [0,0). Moreover,

y:(t) = Ku(t,7)y4(7), 120, @)
where K.(+,-) is the Cauchy matrix of differential system (8) (see [10]). Recall that

Ki(t,7) =Y. ()Y (1), r,7>0,

where Y.(:) is the fundamental matrix solution of (8) normalized at r = 0. This
means that the columns y;(-), i = 1,...,n, of the n x n matrix function Y, (-) are
(linearly independent) solutions of (8) on [0, o) that satisfy the initial conditions

Y{(O) =05y bhj=L....n,
where |
Sy=1, i=l..n and &;=0, i#j, ij=1...n

Analogously, consider the fundamental matrix solution Z,(-) (normalized at t =
0) of the linear adjoint equation

&(t) = = [fe(t,xa (), e (0))]" 2(0). ®

Then Z'(¢) = [Ya(e)]*, £ > 0. ,
Define the normal-form Hamilton-Pontryagin function # : [0,00) x G x U x
R" — R! for problem (P) in the usual way:

’)f(tv-x7u7 W) =ep’g(t,x,u)+(f(t,x,u),q/), re [0,00), X € G7 uc Ua VIGR”‘

The following theorem presents the main result of the paper — a version of the
Pontryagin maximum principle for non-autonomous infinite-horizon problems with
dominating discount.

Theorem 1. Assume that (A1)-(A4) hold. Let u,(-) be an admissible LWOO
control and let x.(-) be the corresponding trajectory. Then
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ranyt > 0 the integral

L(t) = /tw e PSZ.(5)) 7" g (5, x4 (5), us(s)) ds 9)
nverges absolutely.
(i) The vector function y : [0,00) — R" defined by
V(O =Z.OL0). 120 (10)

is (locally) absolutely continuous and satisfies the conditions of the normal form
" maximum principle, i.e. y(-) is a solution of the adjoint system

lif(t):f%c(t,x*(f),u*(f),W(t)) (11)
and the maximum condition holds:

(1,5 (1), (1), W (1)) = sup (1, (1), u, y(1))- (12)

ucl

The proof of the above theorem employs approximations with finite-horizon
problems in which the solution of the adjoint equation can be defined explicitly.
The key point is to use the dominating discount condition (A4) to show locally
uniform convergence of the finite-horizon adjoint functions to an infinite-horizon
adjoint function for which the normal form maximum principle holds. The proof is
too long to be presented in this note, but it is available at
http://orcos.tuwien.ac.at/research/research_reports as Research Report 2011-06.

4 Comments

1. The dominating discount condition (A4) is easy to check for the so-called one-
sided Lipschitz systems. Namely, assume that in addition to (A1), the following
condition is satisfied for some real number A:

(ft,x,u) = f(e,y,u),x—y) <Allx—y|*  Vi>0,x,yeG,ucl. (13)

If we assume (for simplification) that the derivative ||g.(¢,x,u)|| is bounded when
t >0,x € G and u € U, then the dominating discount condition (A4) reduces to

p>A.

Notice that A can be negative in (13), in which case the last inequality may even be
satisfied for a negative number p. A model with A < p < 0 arising in capital growth
theory, to which our result is applicable will presented in a full-size publication.
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2. Another way of verifying the dominating discount condition (A4) is presented
in [3,4]. It involves calculation (or estimation from above) of the maximal element
of the spectrum of the homogeneous part of the linearized dynamics, provided that
the latter is regular (see e.g. [6] or [3,4] for the above terms).

In both cases discussed in points 1 and 2 in this section it is possible to prove
that, assuming boundedness of g, as in Point 1, the normal form of the maximum
principle is fulfilled with the unique bounded solution y/(t) of the adjoint equation.
The precise formulations and proofs will be given in a full size paper.
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