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Abstract The paper revisits the issue of necessary optimality conditions for infinite-

f,oriron optimi control problems. It is proved that the normal form maximum prin-

ciple holis with an 
""pii.itty 

specified adjoint variable if an appropriate relation

between the discount rate, the giowth rate of the solution and the growth rate of the

ob.;""tiu" function is satisfied. ihe main novelty is that the result applies to general

non-stationary systems and the optimal objective value needs not be finite (in which

case the concept of overtaking optimality is employed)'

1, Introduction

Infinite-horizon optimal control problems arise in many fields of economics, in par-

ticular in models of economic giowth. Typically, the utility functional to be maxi-

mized is defined as an impropei integral of the discounted instantaneous utility on

the time interval [0,-). The last circumstance gives rise to specific mathematical

features of the problems and different pathologies (see [4' 7' 9' 1 1' 13])'

Thecontributionofthepresentpaperistwofold.Firstweextendtheversion
of the Pontryagin maximum principle for infinite-horizon optimal control prob-

lems with dominating discouni 
"rtublith"d 

in [3,4] to a more general class of non-

autonomous problems and relax the assumptions. Second, we adopt the classical

needle variations technique [12] to the case of infinite-horizon problems' Thus, the

approach in the present pup"i 
"tt"ntially 

differs from the ones used in [3,4,6]. The

needle variations technique is a standard tool in the optimal control theory' The ad-

vanrage of this technique is that as a rule it produces (if applicable) the most general

versionsofthePontryaginmaximumprinciple.Nevertheless,applicationofneedle
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variations technique is not so straightfbrward in the case of infinite-horizon prob-
lems.

Another important feature of our main result is that it is applicable also for prob_
lems where the objective value may be infinite. In this case tirä notion of ouertäking
optimality is adapted (see [7]). In contrast to the known resulrs, rhe maximum princi-
ple that we obtain has a normal form, that is, the multiplier of the objective function
in the associated Hamiltonian can be taken equal to one.

2 Statement of the problem and assumptions

Let-G be a nonempty open convex subset of R" and u be an arbitrary nonempty setinRm.Let/: [0,*; xGx(Jp+Rt and g: [0,-; xGxU -Rl.'Consider the following optimal conrrol problem (p):

J(x(.),u(.)): f* ,-r,r1t,x(t),u(t))dr + max,

i(t) : f (t ,x(t), u(t)), x(0) : yo,

(l)

(2)

u(t) eU. (3)

Here 16 € G is a given initial state of the system and p e Rr is a ..discount,, 
rate

(which could be even negative).
Assumption (Al): The functions f ; [0,*; x G x IJ * Rt andg : [0,-) x G x

U '- Rt together with their partiat airtväti,vei f,(. , 
. ,.) and g,(. , , i orL continuous

in (x, u) on G x IJ for any fixed t e [0,*.), and measurabte oü,a' bcoily bounded in t,
uniformly in (x,u) in any bounded set. I

In what follows we assume that the crass of admissibre contrors in probrem (p)
consists of all measurable locally bounded functions a : [0,-) - U. ihen for any
initial state xs e G and any admissibre conrrol a(.) pruggeä in itre right-trand side of
the control sysrem (2) we obtain the following Caucny lroUlem:

i(t): f (t,x(t),u(t)), .r(0) :4. {4)

lue to assumption (Äl) this probrem has a unique solurionr(-) (in rhe sense of
carathdodory) which is defined on some time iniervar [0, z] wiitr r > 0 and takes
values in G (see e.g. [9]). This solution is uniquely extendible ro a maximal inrerval
of existence in G and is called admissible trajectory conesponding to the admissible
controla(.).

If a(') is an admissible conrror and the corresponding admissible trajectory x(.)
exists on [0, Z] in G, then the integral

I rhe local boundedness of these functions of r, x and a (take Q(.,.,.) as a representative) means
that for every r > 0 and for every bounded set Z c G xu rhere ;;isr; i/ such tirat ll|u ,x, u)ll s Mforevery I e [0,f] and (x,u) eZ.
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is finite. This follows fiom (Al), the definition of admissible conrrol and the exis,
tence of .r(') on [0,I]'

we will use the fbllowing modification of the notion of weakly overtaking opti-
mal control (see [7]).

Definition l: An admissible control u.(.) for which the corresponding trajectory
x*(.) exists on lo,*) is locally weakly overtaking optimar (Lwoo) if there exists
ö > O such that for any admissible control u(.) satisfuing

meas{r > 0 : u(t) I u.(t)} < 6

andfor every e> 0 andr >o one canfindrt > T such that the corresponding
admissible trajectory x(.) is either non-extendible to [0,TIl in G or

J7, (x*(.), u.(-)) 2 /r, (r(.), n(.)) - e.

Notice that the expression d(u(.),u.(.)): meas{r € [0,?nj : u(t) I rz_(r)] gen_
erates a metric in the space of the measurable functions on l0,Tl,T > 0, which is
suitable to use in the fiamework of the needle variations technique (see [2]).

In the sequel we denore by ,.(.) an LWOO control and by ,r_ (.) _ rhe correspond_
ing trajectory.

Assumption (Ä2): There exist numbersp > 0, r ) e r > 0, p ) 0 andcl ) 0
such thatfor every t ) O

(i) llx.(t)ll 3 clsLtt '

(ii)for every admissible control u(.) for which d(u(.),ü_(.)) < p the correspond_
ing trajectory x(.) exists on [0,*) in G and it hods that

llg,(t,y,u*(t))ll < r(t + llylll for every y e co{x(r),.r_(r)}.

Assumption (A3): There are numbers ), e Rt, ! ) o and c2 ) o such that for
every ( e G with ll6 - ro ll < y equation (4) with u(.) : u.(.) and initiat condition
-r(0) : ( (instead of.r(0) : xs) has a sotution x((;.) on [0,*1 in G and

llr(*t) - x- (r) ll < ,zll| * ,oil 
"^, 

.

- The last two assumptions can be viewed as definitions of the constants p, r and
1,, which appear in the key assumption below called dominating discount condition.

Assumption (A4):
p>L+rmax{l.,p}.

For an arbitrary r ) 0 consider the fbllowing linear differential equation (the
linearization of (4) along (r- (.), u. (.)) :

J7 (x('), u(.)),: fo' r-o' g1t,x(t), u(t)) dt
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any t >0 the integral

I. (t) : l,- r- " 12.{r)l - 
I g, (s,.r* (s), u- (s) ) ds

ttt(t) : Z.(t)1.(t), I > 0 (10)

is (locally) absolutely continuous and satisfies the conditions of the normaL form
maximum principle, i.r. VO is a solution of the adjoint system

v Q) : - -ff (t, x*(t), u.(t), tY(t))

and the maximum condition holds:

(ll)

ff (t, x * (t), u. (r ), V(r ) ) E sup,ff (t, x. (t), u, ty (t)).

Vr)0, x,y€G1u€U. (13)

(12)

The proof of the above theorem employs approximations with finite-horizon
problems in which the solution of the adjoint equation can be defined explicitly.
The key point is to use the dominating discount condition (A4) to show locally
uniform convergence of the finite-horizon adioint functions to an infinite-horizon
adjoint function for which the normal form maximum principle holds. The proof is

too long to be presented in this note, but it is available at

http://orcos.tuwien.ac.atlresearch/researchreports as Research Report 201 l-06,

4 Comments

1. The dominating discount condition (A4) is easy to check for the so-called one-
sided Lipschitz systems. Namely, assume that in addition to (Al), the following
condition is satisfied for some real number l.:

(f (t, x, u) - f (t,y,u),x - y) < Lll, - yllz

If we assume (for simplification) that the derivative llg,(t,x,u)ll is bounded when
t ) 0, x € G and u € U , then the dominating discount condition (A4) reduces to

p>)..

Notice that,l, can be negative in (13), in which case the last inequality may even be

satisfied for a negative number p. A model with ,1, < p < 0 arising in capital growth
theory, to which our result is applicable will presented in a full-size publication.




