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Abstract- The implementation of components and systems of 
building automation, in particular for HVAC systems and 
renewables, opens the possibility to increase the energy 
efficiency of (clusters of) buildings even further than originally 
intended. By additionally implementing different control 
strategies, it is possible to use the thermal storage capacity of 
buildings to improve their electrical characteristic in order to 
better meet the needs of the electricity grid. However, it is 
usually hard to obtain the thermal storage parameters of a 
building, because they need to be computed in complex thermal 
simulations. In this paper we present a way to quickly estimate 
an approximation thereof and feed it to strategies of different 
complexity, dependent on the free resources of the building 
automation installation. 

I. INTRODUCTION 

Building automation today provides the possibility to 
control functional buildings with different level of details [1]: 
room controllers allow maintaining indoor comfort in offices, 
control strategies are executed on automation level in 
substations and a building management system allows the 
building operator to get a complete overview of the building 
and its systems. While every manufacturer has its own 
solution to building operation, the general understanding is 
that it needs to be robust and maintain indoor comfort even 
during particularly hot or cold days. Therefore control 
strategies are designed in a way that will guarantee permanent 
comfort. Preferably the control strategies remain constant, 
possibly alternating between winter and summer operation, 
but without dynamic changes on a regular, e.g. daily, basis. 
The reason can be seen in the above mentioned robustness in 
order to guarantee constant comfort. 

Looking from a different perspective, an automated 
building is a system that provides three interesting properties: 
available degrees of freedom, considerable thermal storages 
and the ability to control the whole system using methods of 
information technology. This paper examines the possibilities 
of exploiting the degrees of freedom for the sake of 
optimizing energy efficiency. We propose three different 
approaches, examine their advantages and disadvantages and 
prove their feasibility with thermal simulations of existing 
buildings (see also [2]). 

The rest of this paper is organized as follows: chapter II 
gives an introduction about the three main goals of energy 
efficiency by adjusting the control strategies of the premises’ 
HVAC system (heating, ventilation, air condition) and 
renewables. Next, a quick first order approximation of the 
dynamic thermal building behavior is presented in chapter III. 

Chapters IV and V describe two ways of using the thermal 
model, a parameter optimization strategy and model 
predictive control, respectively. Finally, Chapter IV sums up 
and concludes the paper. 

II. ENERGY EFFICIENCY AND BUILDING CONTROLS 

Energy supply systems in a modern building have a 
considerable degree of complexity. Their design is influenced 
by different life cycle phases (e.g. planning and operation), 
industries (e.g. HVAC, shading and safety) and media (e.g. 
hot water and electricity). Building automation has significant 
impact on energy efficiency, which is by now also reflected 
in standardization activities e.g. in EN 15232 [3]. Installing 
and commissioning building controls is usually the last step 
in a long chain of phases during building construction and is 
done at the very end of the building phase (and usually 
recalibrated after some time of operation). Therefore, the first 
goal of controls is to get the building into operation and 
maintain indoor comfort. Given the limited time in this phase 
(between construction and operation) the solutions have to be 
based on existing templates and can only be slightly adapted 
to the system at hand. 

The control strategies in thermal systems like heating or 
cooling do not have strong requirements with regard to 
system dynamics: the processes in a building are very slow 
and are always lossy, which reduces their tendency to 
oscillate. Controls are linear, i.e. using P- or PI-controllers, 
although the system is often operated broadband where the 
linear model is not valid anymore. In order to prevent 
malfunction, the controls are therefore configured to be on the 
safe side: very slow dynamics in the linear controllers (i.e. 
small proportional and integral actions) to avoid oscillations 
in the presence of big delays (e.g. due to mass transport in 
long pipes), time schedules that guarantee the expected 
comfort at a certain time (by preheating or precooling well in 
advance) and set-points that ensure comfort even in the most 
remote room with the biggest losses to the outside. 

Due to reasons of reliability and safety buffers, energy 
systems are usually overengineered in order to deliver 
heating, cooling or air volume even if the building physics 
does not meet the original construction plan. 

All in all an automated building provides a control system 
that allows fine-grained control of energy consumption, 
energy systems that have the potential to provide flexibility in 
their operation, and a building that has the capability of 
storing thermal energy in its internal structures (e.g. concrete 
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walls, floors and ceilings). The building creates a 
consumption profile (and a production profile, given that 
renewable energy sources like photovoltaic or solar thermal 
systems are available) for electric energy (and thermal 
energy, if it consumes thermal energy from district heating). 
Today these consumption profiles are only determined by the 
internal processes of the building: heating, cooling, lighting, 
and internal loads. While some of the consumers like lighting 
are directly tied to user comfort and cannot easily be 
influenced, other consumers that are related to thermal 
processes can be modulated without the user noticing. These 
processes provide us with the necessary degrees of freedom 
for optimization. 

A. Energy Efficiency 
There are three main starting points for optimization with 

regard to energy processes, while the overall goal is to 
increase energy efficiency. This includes simple solutions like 
monitoring energy consumption in the different systems and 
detecting improvements, but also faults in the system (e.g. 
heating and cooling demand at the same time in different 
areas of the building, systems that are permanently running, 
broken valves, etc.). More complex approaches are described 
in the following chapters. 

B. Shaping the Electric Load Profile 
The second goal is the modification of the consumption 

profile. Today only the electric profile is of interest, because 
research on the thermal consumption profile (taken from the 
district heating network) is only at the beginning of exploiting 
flexibilities [4]. In the electric grid the building can be 
changed from a passive consumer into an active participant 
by modifying the consumption profile of selected consumers. 
This is an important contribution of turning the existing grid 
into a smart grid, which unites energy and information 
technology; other contributions to this development can be 
found in [5] and [6]. As said above, electric consumers 
involved in heating, cooling and ventilation are of main 
interest, lighting or the control of white goods pose more 
problems and less potential. The shaping of electric load 
profiles has two benefits: reduction of greenhouse gases and 
the possibility of cost savings for the end user. Seeing the 
current development of electricity consumption it is clear that 
the electric grid is about to reach its limits with regard to peak 
load capacity. During the morning and the evening electric 
consumption is considerably high; any reduction of electric 
consumption supports the grid and reduces the risk of power 
shortages. As soon as tariffs are available that let the user 
benefit from exploiting the possibilities to shift electric load, 
the user can reduce energy costs and thus benefits from the 
flexibility of the building. Furthermore, while band 
production of electricity is more environmental-friendly (e.g. 
hydropower plants), peak production has to be covered by 
fossil energy like gas turbines and thus increases the overall 
greenhouse gas emissions. Thus, reduction of peak load has a 
double benefit both for the electric grid and the carbon 
footprint (see also [7]). 

C. Integration of Renewable Energy Sources 
Just like the consumption of electricity can be shaped to fit 

the requirements of the electric grid, it can be adapted to 
support another goal, which additionally also supports the 
grid: when a photovoltaic system is installed on the building, 
electricity is produced according to the available sun 
radiation. Especially in residential buildings it is possible that 
the peak production (around noon) is bigger than the overall 
electrical consumption. The excess energy is fed back into the 
grid, resulting in additional load for the electric grid (this time 
in the other direction). Since the utility company needs to 
maintain a voltage level that must not exceed an upper 
boundary, a larger amount of photovoltaic systems can cause 
problems in the grid. Depending on the tariff scheme, feeding 
back electricity into the grid is not as cost-effective as 
consuming electricity directly in the building, and therefore a 
disadvantage for the building owner. Finally, increasing the 
production of renewable energy by photovoltaic systems is 
vital for maintaining energy supply in the near future, but 
must be achieved without causing problems in the electric 
grid. 

D. Building simulation 
We see that a building has multiple ways to be optimized. 

First, the overall efficiency can be improved by taking a 
closer look at the existing control strategies, then the thermal 
processes can be exploited to shift electric load in order to 
achieve optimization goals like peak load reduction or 
maximum consumption of self-produced electricity. 

Before these degrees of freedom can be exploited it is 
necessary to have an understanding of the system that is 
optimized. This is done by creating a physical model of the 
building and its energy systems. Common programs for 
thermal simulation are TRNSYS [8] or EnergyPlus [9], 
complex simulations including electric consumption can be 
programmed in the object oriented modeling language 
Modelica [10], with Dymola [11] being a software tool that 
supports Modelica. A thermal building model describes the 
dynamic thermal behavior with regard to losses through the 
envelope, gains by solar radiation and internal loads and 
derives the temperature distribution in the different thermal 
zones of a building. The energy systems of the building 
(heating, cooling, ventilation) modify the simulated indoor 
climate and can be modeled as simple energy sources (e.g. 
contribute the amount of energy that was lost during one 
simulation step so that the building maintains its equilibrium) 
or they can themselves have dynamic properties; also the 
controls can be included into the simulation (e.g. a PI-
controller maintaining room temperature). Using this model 
the electric consumption of the HVAC components can be 
simulated and thus the part of the electric consumption profile 
that can be influenced. By modifying the schedules and 
control strategies of heating, cooling and ventilation the 
electric profile can be adapted to meet the optimization goals. 
The following chapters describe three approaches how to 
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achieve the different optimization goals; the complexity and 
modeling effort rises with each of the approaches. 

 

III. FIRST ORDER APPROXIMATION OF BUILDING PHYSICS 

In order to facilitate load shifting of HVAC components it 
is important to know how the building, especially the room 
temperature, responds to stopping the supply with heating or 
cooling energy. In any case the comfort boundaries will be 
violated after some time and it is important to find the worst 
case, i.e. the shortest time when the building reaches a 
boundary. This is the time when the energy systems have to 
be switched on again to restore indoor comfort; it is also the 
longest possible duration for load shifting. 

For this situation the thermal simulation of the building can 
be reduced to modeling the heating up and cooling down of 
the building. The approach sketched in [2] and described in 
more detail in [12] and [13] and creates a first order thermal 
model, reducing the thermal simulation to a first order 
differential equation and thus a single time constant for 
cooling down and one for heating up. The differential 
equation is solved by an exponential function, shown for 
cooling in equation (1);  is the indoor room 
temperature,  the start temperature before the cooling 
process starts,  is the outside temperature, and  
the time constant of the building. 
  

  (1) 
  

The time constant  is the building specific, first-order 
approximation, which is an envelope for all thermal effects in 
one single constant. Deriving this constant is the crucial point 
in time efficient monitoring. The first order approximation is 
intended for situations, where a full-fledged thermal 
simulation is not possible, e.g. when the buildings of a district 
or a whole city shall be modeled. In this case it is important to 
get the time constant with as little effort as possible. While 
thermal building models do not take too many resources 
when running a simulation, the creation of thermal building 
models is quite tedious, since the geometry and all the 
materials have to be created in a 3D modeling tool. Within 
the project Building2Grid (funded by the Austrian Research 
Promotion Agency, project nr. 825545) a total of ten 
buildings in Salzburg, Austria, are examined in order to 
derive the time constants for heating and cooling. The 
buildings are therefore simulated in TRNSYS (Fig. 1 showing 
a Google SketchUp [14] model of a building that is imported 
into TRNSYS). 

The simulation shows the building dynamics when the 
heating supply is switched off. The resulting cool-down is 
then approximated by an exponential function, resulting in 
the time constant shown in Table I. In this table the 
simulation results for five of the ten buildings are listed, 
together with their specific annual heat energy demand. For 
better understanding the last column shows the timespan it 
takes the indoor temperature to drop for 2 °C (3.6 F). The 

simulations were done with an air exchange rate of 0.5 per 
hour (i.e. in one hour half of the total air volume is exchanged 
with outdoor air, which is a common value for residential 
buildings) and an outside temperature of -12 °C (10.4 F). 

 

 
Fig. 1. Building model for thermal simulation in TRNSYS. The model was 
created in Google Sketchup. 

The method is useful for large scale approximations of load 
shifting potentials. When upscaling it to district level or even 
city level, the TRNSYS simulation, which has been used here 
to create the time constants, can be omitted, thus saving the 
effort for creating the building models. Instead, the time 
constants are derived from existing building data. Today 
many buildings have an energy performance certificate that 
contains all the necessary data about the building structure to 
quickly derive the necessary cooling-down and heating-up 
dynamics. Strictly speaking the equivalent time constant 

, which includes all (nonlinear) effects of heat radiation, 
convection, and conduction depends on multiple parameters 
and is therefore not exactly a constant. Most importantly, the 
cooling-down strongly depends on the air exchange rate, 
which is one of the parameters in . Still the method is an 
important step to estimate the thermal building dynamics that 
are needed to exploit intrinsic thermal storages in buildings. 

 

TABLE I 

COOLING CASE OF 5 BUILDINGS IN SALZBURG, AUSTRIA 
Building 
type 

Year of 
construction 

Specific annual 
heat energy 
demand 
[kWh/m²a] 

Time 
constant 
cooling 
[h] 

Cooldown 
from 22 to 
20°C [h] 

Residental 1992 104 122 7,3 
Residental 1994 75 124 7,5 
Residental 1994 108 86 5,2 
Residental 2003 35 128 7,7 

Office 2009 20 206 12,4 

 

IV.OPTIMIZATION OF EXISTING CONTROL STRATEGIES 

Building automation on field level and automation level 
relies on a mix between linear controllers (mainly P- and PI-
controllers; PID-controllers are hardly used due to the relaxed 
dynamics in buildings) on field level and control strategies on 
automation level that are described in sequences of states. 
Until some ten years ago these states were programmed in 
different programming languages e.g. Structured Text, a 
language for Programmable Logic Controllers (PLCs), which 
is part of the IEC 61131-3 standard [15]. While PLCs are still 
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used in some systems, it is now more common to use 
graphical, block-based programming that is done by selecting 
predefined function blocks and connecting the inputs and 
outputs of the blocks. This way the creation of control 
strategies is reduced to selecting and connecting predefined 
(and pre-tested) blocks and parameterizing the blocks. Such a 
measure reliefs the programmer of debugging large amounts 
of code lines and reduces the likeliness of errors. There is 
usually a toolchain available that allows compiling and 
downloading the control strategies to the automation station, 
where it is executed during operation. The whole process of 
graphical programming speeds up the design and creation of 
control strategies and it also allows testing the program on a 
high semantic level. For off-site testing it is possible to 
simulate inputs and check the according behavior of the 
program. This allows to start commissioning with a program 
that is syntactically correct, but also can be checked for its 
basic semantics with a set of test inputs. 

Research takes advantage of the high semantic level of 
graphical programming by optimizing a few relevant 
parameters without the need to work with actual code – which 
would require much more complex analysis. The control 
strategies have some fundamental elements like criteria to 
switch a component on or off or set-points that a component 
needs to reach (e.g. by using a feedback controller). Modeling 
effort is reduced to a level of energy balances, where 
components produce or consume the expected amount of 
energy. The approach in project KOMBINE (funded by the 
Austrian Research Promotion Agency, project nr. 829718) is 
to model, simulate and optimize the control strategies of a 
pellets-stove with a storage tank that is supported by a solar 
thermal system. The stove produces domestic hot water for 
heating and tap water and the optimization goal is to reduce 
the biomass contribution and maximize usage of the solar 
thermal system. To do so a model of the control strategies is 
created that reflects the different states of operation e.g. 
igniting the pellets or running the solar thermal pump. The 
challenge is to model the physical system in a way that allows 
to derive production of hot water. Also the consumption is a 
critical factor, since the storage tank only has limited 
capacity: once the temperature in the tank is too low the user 
comfort would be violated, which has to be prevented by 
heating up the pellets stove. All system constraints and the 
physical properties of pellets stove and solar thermal system 
are modeled using TRNSYS and Matlab. The conditions for 
activating the pellets stove or the solar thermal pump as well 
as several set-points for the controlled system are determined 
from the solution of an optimization problem. Based on an 
objective function that regards usage of pellets and electricity 
consumption, the algorithm can optimize the simulated 
system based on a consumption profile that reflects average 
usage during winter, summer and the transitional periods. In 
order to save simulation time, not a whole year is simulated, 
but rather a selection of design days, reflecting the typical 
outside conditions for a geographical location (in this case for 
Austria, Europe). Selecting representative design days instead 

of simulating all days of a year is a common methodology in 
thermal simulation. The models that are used for the oven and 
the solar thermal system are validated in a test rig, so that the 
following optimization can rely on data about thermal 
production of pellets and solar thermal system. It is expected 
to get an improved set of parameters for the control strategy 
and possibly also recommendations on how to improve the 
system architecture.  

V. MODEL-BASED PREDICTIVE CONTROL 

Model-based predictive control (MPC) concepts have 
gained popularity within the research community as well as 
industry addressing different fields over the last decades 
when model based predictive control first appeared in the late 
1970s. In the area of building and buildings system control, 
MPC offers a good possibility to pursue the energy efficient 
control on the one hand and to deal with the slow thermal 
dynamics and system stiffness (i.e.: due to different dynamics 
within the controlled system) as well as time delays (i.e.: due 
to mass transport) on the other hand. MPC is finding 
recognition within building research increasingly. 

The energy efficient application of MPC in buildings has 
been successfully proven in e.g.: [16] and [17]. The authors 
of [17] report on theoretical energy savings between 16% and 
41% employing MPC concepts. Some other works such as 
[18] take explicitly advantage of weather forecast information 
and stochastic MPC to improve the energy efficient operation 
in room automation. The work [19] addresses several MPC 
strategies to perform HVAC system control to achieve higher 
thermal comfort and optimal HVAC system operation in the 
first place. 

The idea of the MPC approach is to use a physical model of 
the system to be controlled along with a predefined objective 
function which is minimized to obtain the (optimal) control 
signal acting on the real system. Hereby, the model of the 
controlled system serves as the basis to obtain the 
approximate future dynamic behavior of the system being 
subject to control. In order to account for the non-negligible 
model-plant mismatch, the receding horizon scheme is 
commonly employed allowing for the consideration of 
instantaneous state and disturbance information (including 
varying solar radiation and weather conditions in present and 
future as described in  [20]), thus providing the possibility to 
re-run the optimization routine and reduce the effect of 
model-plant mismatch. Fig. 2 shows the basic principle of the 
predictive control approach. 

An appropriate model of the system providing the 
information about system dynamics is a prerequisite for the 
actual controller design. There exists a variety of different 
approaches to system modelling suitable for the design of the 
predictive controllers in particular, see e.g.: [7]. State-space 
representation of the modelled system (e.g.: by using first 
principle approaches) is a common way to describe the 
physical system behaviour and to serve as the basis for the 
subsequent procedure of designing the predictive controller. 
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In general, the distinction is made between linear and 
nonlinear model based predictive control approaches. The 
former use a linear representation of the real system, 
therefore, usually addressing only a small proximity of the 
desired operating point. The latter, however, capture system-
inherent nonlinearities, allowing for the operation in a wide 
region around the desired operating point. This, in turn, is an 
asset, considering the fact that energy systems are often 
forced to operate away from the envisaged point of operation 
(e.g.: operating point of the system is shifted due to weather 
changes). 

 
Fig. 2. Basic principle of model based predictive control. 

Linear MPC shows advantages over the nonlinear approach 
mainly with regards to the computational time. Usually the 
optimization problem can be converted into a static quadratic 
problem which does not require much computational effort 
and usually yields a global optimum. Nonlinear MPC, 
however, can suffer from non-convexity which in turn 
complicates the optimization procedure and prolongs the time 
until convergence of the optimization problem is achieved. 

 
Fig. 3. Savings of electric consumption with MPC (lower curve) versus linear 

PI-controller (upper curve). 

The performance of the linear MPC approach is outlined in 
Fig. 3 where the energy consumption for a solar thermal 
HVAC system using centrifugal pumps as system actuators is 
analyzed. The incorporation of the MPC control concept for a 
10 hours daily operation cycle results in a lower electric 
energy consumption of approx. 5% in comparison to the 
conventional PI control. Hereby, the MPC control concept 

accounts for electric energy savings in the first place. Better 
performance could be achieved if nonlinear MPC is employed 
where the solar power gains are included in the optimization 
routine as well. In that case the control goal is not aiming at 
stabilization of certain temperature levels or desired values 
but at the maximization of available energy gains for storage. 

 

VI. CONCLUSION 

The combination of simulation and controls offers new 
possibilities in building automation. All the necessary 
prerequisites are available: buildings with intrinsic thermal 
storages, building automation for fine-grained control, 
modeling simulation tools for thermal simulation and the 
algorithms to optimize building operation in order to achieve 
increased energy efficiency, grid friendliness or other 
optimization goals. The three methods shown in this paper 
have different levels of complexity with regard to modeling. 
All three can increase the overall energy efficiency. While the 
first method gives a coarse worst-case estimation on how 
long an HVAC system can be suspended from operation 
before leaving acceptable indoor comfort levels, the second 
method provides a general way of optimizing control 
strategies in building automation. Finally, using MPC is the 
next logical step in building controls, because it enables the 
controller to foresee system behavior and adapt the control 
variables not only based on the current deviation between set-
point and the actual value, but based on an optimization of 
control variables within a defined prediction horizon. All 
three methods show that today the potential in increasing 
energy efficiency by means of building automation is 
available and can be exploited with some additional 
engineering effort. The next step has to be a real-world proof 
of the simulations in order to assess the actual energy savings. 
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