
On Formalizing EMF Modeling Operations with Graph Transformations

Petra Brosch, Sebastian Gabmeyer, Gerti Kappel
Vienna University of Technology, Austria

eMail: {lastname}@big.tuwien.ac.at

Martina Seidl
Johannes Kepler University Linz, Austria

eMail: martina.seidl@jku.at

Abstract

The development of software in accordance with the model-
driven engineering paradigm places model transformations
at a central position. Desirable yet contradicting properties
of model transformations are user-friendliness as offered by
by-demonstration approaches and formal conciseness as pro-
vided by algebraic graph transformations which is indispens-
able for verification tasks.

In this paper, we show how to unite the properties of the
two different approaches. We employ the state-of-the-art by-
demonstration environment Emo to prototype graph trans-
formations by embedding the operations obtained from Emo
in the formal framework of graph transformation theory.

Introduction

Model transformations are the core technology of model-
driven engineering (MDE) to convert, transform, generate,
and evolve software models. Their area of application ranges
from refactoring to translating between different modeling
languages to synthesizing program code, to name but a few
examples. Due to the central role of model transformations
in MDE a rich and diverse landscape of model transfor-
mation approaches has emerged over the last years, which
follow different, partly orthogonal design objectives in or-
der to effectively specify and realize modifications on mod-
els [CH06, MVG06].

As models may be viewed and treated as graphs, the al-
gebraic graph transformation theory [Roz97, EEPT06] may
be employed to describe model transformations in a formal,
declarative, and rule-based fashion. The algebraic graph
transformation theory provides a powerful framework, which
allows us not only to analyze systems of transformations with
respect to their, e.g., confluence and termination properties,
but also to define the precise semantics of model transforma-
tions as, for example, presented in [BET11].

The focus of by-demonstration based model transforma-
tion approaches lies on usability. This goal is achieved
by providing an easy-to-use environment, where the user
demonstrates the desired transformation with an example.
The approach offers the advantage that the bulk of the trans-
formation specification is automatically generated based on
this demonstration; so, the user may focus on fine tuning the
derived specification with little to no programming effort.

We aim to combine the two approaches with the intention
to develop a by-demonstration environment, which gener-
ates executable, algebraic graph transformations. Verifica-
tion mechanisms inherent in the formal framework of graph
transformation can then be used to reason about the proper-

ties of the model transformation. The by-demonstration tool
EMF Modeling Operations (Emo) is used as a starting point
for this task. It was chosen (a) due to its usage of Ecore, a
popular implementation of the Essential Mof standard1, (b)
due to the open source availability of its implementation, and
(c) for reasons of familiarity with the platform.

In this paper, we formally describe how to express Emo’s
transformation concepts with algebraic graph transforma-
tion theory based on the double-pushout (DPO) approach.
Therefore, we first revisit Emo, before we present its for-
malization illustrated by the Pull-Up Field refactoring. We
review related work and conclude with future work.

EMF Modeling Operations

Emo provides a by-demonstration environment to de-
velop in-place model transformation for Ecore-based mod-
els [BLS+09]. In the following, we review Emo’s features.
For the details, we kindly refer to [BLS+09].

Model transformation by demonstration. To specify
a model transformation, which in Emo’s parlance is called
an operation, the user constructs the so-called initial model.
The initial model contains all but no more than the neces-
sary elements that need to be present in a model to which
the operation shall be applied. Emo stores a snapshot of
the initial model once the user has specified all necessary el-
ements. Next, the user demonstrates the intended transfor-
mation on the initial model by either adding new elements,
or by deleting and modifying existing ones. The model re-
sulting from these modifications is called the revised model.
Analogous to the initial model, the revised model contains
all but no more than the necessary elements that need to
be present in a model after the operation has been applied
to it. Emo carries out a state-based comparison between
the initial and the revised model. This comparison lists all
matching elements (matches) and the differences (diffs) be-
tween the two models. While the diffs list all those elements
that have been modified, added, or deleted by the operation,
the matches identify all elements that have been preserved.
Therefrom, Emo automatically derives an executable oper-
ation. Hereby, it generates a so-called precondition template
for each element in the initial model and a so-called post-
condition template for each element in the revised model. A
template stores the type of the model element for which it was
generated. Automatically derived OCL conditions describe
each of the element’s admissible attribute values. Thus, to
apply an operation to a model the type of each precondition

1http://www.omg.org/spec/MOF

1



template must be matched by some element and each of the
template’s conditions must be satisfied by a corresponding
attribute of the matched element. In the resulting model all
postcondition templates need to match a model element of
corresponding type with adequate attribute values.

The automatically generated OCL conditions are usually
too restrictive. Hence, in a post processing step Emo re-
moves all OCL conditions of those attributes which are ini-
tialized to a string literal. This is done before the generated
operation is returned back to the user. The user may then
refine the templates of the generated operation manually by
means of relaxation, enforcement, and deactivation of exist-
ing conditions or by introducing additional ones.

Emo is implemented as an Eclipse plug-in2 that offers a
graphical interface and is able to integrate any editor gener-
ated by the Graphical Modeling Framework (GMF), within
which the initial and the revised model may be created and
edited. Alternatively, XMI serializations of initial and re-
vised models produced by external tools can be loaded. So
the specification of the model transformation can be done in
the modeler’s favorite editor without any programming ef-
fort what fosters user-friendliness. Language independence
is given by using Ecore on the metamodel level.

Specification defects and EMO operations. Even
EMO operations are not immune to bugs. Consider the
following example. Given a metamodel describing a simple
UML-like class diagram that consists of named classes and
associations. Associations are defined by two association ends
and a name. An association end has a multiplicity and may
either be a composition end or plain. A constraint on the
metamodel states that if an association end is set to a compo-
sition end then the other association end must be plain. For
instances of this metamodel we define model transformation
for the following use case: a modeler wants to select from the
set of associations those whose name is set to has and alter
their association end to a composition end if its multiplic-
ity is set to one. A modeler employing a by-demonstration
approach may start with an initial model consisting of two
classes and an association with name has and an association
end with multiplicity one. During the demonstration of the
transformation the association end with multiplicity one is
changed to a composition and an initial transformation is
generated.

Figure 1 depicts on the left hand side three models to
which the above specified model transformation is applied
and displays the results on the right hand side. The applica-
tion of the transformation to the first two models yields the
intended result. The application to the third model surfaces
an error in the model transformation as it can be applied
twice resulting in a model that violates the well-formedness
constraint of the metamodel, which states that only one as-
sociation end may define a composition. To fix this problem
the preconditions of the model transformation need to be
strengthened. To detect problems of this kind, verification

2http://www.modelversioning.org/emf-modeling-operations

Figure 1: Application of Introduce Composition on 3 models

techniques like model checking can be consulted. Therefore,
a formal model of EMO’s transformation concept is required.
In this paper, we provide such a model based on algebraic
graph transformations.

Formalizing EMO Operations

In this section we formalize Emo’s transformation process
and its underlying concepts using the algebraic graph trans-
formation theory which is briefly3 reviewed in the following.

Algebraic graph transformation theory

The algebraic graph transformation theory offers a set of
formal, mathematically founded techniques to manipulate
graphs in a declarative and rule-based fashion. Following
the notions of term rewriting, a graph rewriting rule consists
of a left-hand side (LHS) and a right-hand side (RHS), which
are both defined in terms of graphs. A rewriting rule may
be applied to a graph, called the host graph, if a subgraph
matching the rule’s LHS is found in this graph. Therefore,
the LHS may be viewed as defining the precondition of the
rule, while the RHS depicts its postcondition. The modifi-
cations performed by a rule are implicitly derived from the
differences between the LHS and the RHS. The application
of a rule to a host graph is straight forward [Hec06]: After
finding an occurrence of the LHS in the host graph, all nodes
and edges of the LHS, which are not part of the RHS, are
removed, while all nodes and edges of the RHS not part of
the LHS are added to the host graph.

A graph G = (GN , GE , srcG, tarG) consists of a set GN
of nodes, a set GE of edges, and source and target functions
srcG : GE → GN and tarG : GE → GN that map the source
and the target of each edge e ∈ GE to a node n ∈ GN .

A mapping between the nodes and edges of two graphs is
called a graph morphism. A graph morphism f = (fN , fE) :
A→ B between graphs A and B is defined as tuple (fN , fE)
where fN : AN → BN describes the mapping between the
nodes of A and B, and fE : AE → BE describes the map-
ping between their edges. A graph morphism f : A → B
is structure-preserving if the source and the target of each
edge is preserved by the morphism, e.g., srcB ◦ fE(e) =
fN ◦ srcA(e) for all e ∈ AE .

A double-pushout (DPO) graph rewriting rule or graph
production4 p is defined as a span of graphs L ← K → R,

3For more information on the algebraic graph transformation theory
the reader is kindly referred to [Roz97] and [EEPT06].

4We will use the terms (graph) rewriting rule and (graph) production
interchangeably.

2



which consists of a left-hand side L, a right-hand side R,
a so-called interface graph K, and morphisms l : K → L
and r : K → R. Here, the interface graph obtains its name
from the fact that it consists of all nodes and edges that are
present in both L and R, i.e., K = L ∩ R. The elements of
K are thus preserved by the production.

A production p transforms a host graph G into its derived
graph H if there exists a match of nodes and edges from L
to G. A match is thus a graph morphism m : L→ G. Once
such a match is found the production may be applied to G
by constructing two so-called pushouts (hence the name). A
pushout constructs a graph X as the union of two graphs B
and C which are “glued” together along a common subgraph
A. That is, X is constructed in such a manner that all
elements of B and C, which have a common pre-image in A,
are added to X, and all other elements present in either B
or C are attached to this common subgraph. When a DPO
production is applied to a graph G at a match m, a graph
D is derived in such a manner that graph G is a pushout
object of L and D with common subgraph K. Then, graph
H is derived as a pushout object from graphs R and D with
common subgraph K.

One distinguishing feature of graph transformation theory
is the duality principle asserting for each construction the
existence of an inverse, i.e., a dual construction. The dual of
a pushout is a pullback. A pullback constructs a graph A as
the intersection of those elements of two given graphs B and
C which have a common image in X.

To control the admissible structure of graphs a type graph
may be defined. A graph is called an instance graph of a type
graph if it conforms to the type graph’s structure. A type
graph is in fact the graph-theoretic equivalent to a meta-
model in MDE. Further extensions are necessary to repre-
sent EMF models as graphs and to describe transformations
of EMF models with algebraic graph rewriting rules. These
are presented in [BET11]:

• Attributes are used to associate additional information
with nodes and edges. The value of an attribute is rep-
resented by a data node, which is connected to a node
or an edges by means of a node-attribute or an edge-
attribute edge, respectively. The valid values of a data
node are described by its domain, which is usually spec-
ified as a Σ-(term-)algebra, possibly many-sorted and
allowing variables (see, e.g., [EEPT06]).

• Inheritance relations may be used to establish type hier-
archies. A type graph with inheritance is an extension of
an attributed type graph and has a set I of inheritance
edges and a set A of abstract, non-instantiable nodes.
Attributed type graphs with inheritance may reuse the
existing theory of attributed type graphs if the inheri-
tance hierarchy is flattened out [dLBE+07].

• Composition or containment relations allow us to build
composite objects from a set of constituting parts such
that the life cycle of the parts is bound to the composite

pε: G D H

L0 B1 K0 B2 R0

pτ: L K R

g h

m0 n0

l0 r0

m n

l r

k

(PB1) (PB2)(PB3)

(PO1)(PO2) (PO3)

Figure 2: Deriving a template graph production pτ from pε

objects’ life cycle. An attributed type graph with inher-
itance is extended by a set C of containment edges to
support composition. To ensure that a graph transfor-
mation is consistent w.r.t. composition additional con-
straints need to be taken into consideration, e.g., a
production may not introduce any containment cycles
(see [BET11]).

• Multiplicities on edges and nodes may be realized by
so-called graph constraints as shown in [TR05].

With these extensions it is possible to describe EMF mod-
els as attributed, typed graphs with inheritance, composi-
tion, and multiplicities. As a result we can specify produc-
tions that transform such graphs and we are thus able to
describe model transformations of EMF models with alge-
braic graphs productions as shown in the following.

Derivation of a graph production

In the following we describe the derivation steps performed
by Emo to construct an operation from a formal point of
view. We show that the steps necessary to derive an opera-
tion from an initial model, a revised model, and their differ-
ences allows us to construct a DPO graph rewriting rule that
precisely captures the transformation semantics of the Emo
operation. In what follows we decompose the steps that are
performed by Emo to construct an operation from a demon-
stration. In this way, we obtain a graph rewriting rule of the
form L← K → R where L and R represent the graph-based
equivalents of Emo’s pre- and postcondition templates. The
derivation of a DPO production based on an Emo operation
is depicted in Fig. 2.

Algebraic construction of the example production.
Emo derives a model transformation on the basis of a state-
based comparison between the initial and the revised model.
We denote the initial model by G and the revised model by
H. We first construct a graph rewriting rule G ← D → H
where D denotes the interface graph of G and H. By def-
inition, an interface graph contains all elements which are
preserved by the graph rewriting rule. Thus, D = (DN , DE)
is constructed in such a way that DN = GN ∩ HN and
DE = GE ∩ HE . To identify elements which are present

3



in both G and H we use the results of the state-based com-
parison that, besides highlighting the differences, also identi-
fies the elements of the initial model that are still present in
the revised model. In this way, the state-based comparison
induces a partial function match from G to H that identi-
fies the common elements of graphs G and H. We define
match formally by match: G → H and denote by match(p)
the application of match to an element p ∈ G which returns
an element q ∈ H or undefined if match(p) is not defined.
Note that the state-based comparison does not match two
different elements from the initial model to the same ele-
ment in the revised model. Consequently, no two elements
in G, for which match is defined, are mapped to the same
element in H and the implication ∀p1, p2 ∈ G. p1 6= p2 =⇒
match(p) 6= match(p) always holds. The interface graph
D is constructed such that for each element p′ in the set
G′ = {p ∈ G|match(p) ∈ H} a unique element r′ ∈ D is
created and g(r) = p′ and h(r) = match(p′) for morphisms
g : D → G and h : D → H. Then, D consists of all elements
in G ∩H and morphisms g and h are injective. We now ob-
tain a DPO graph production pε : G ← D → H, called the
example production.

Construction of the template graphs. Next, we con-
struct the so-called template graphs L0 and R0, which host
the initial set of pre- and postcondition templates, respec-
tively. Recall that Emo constructs exactly one precondition
template for each element in the initial model. Similarly, it
constructs exactly one postcondition template for each ele-
ment in the revised model. This construction induces injec-
tive morphisms m0 : L0 → G between the initial model and
the precondition template graph, and n0 : R0 → H between
the revised model and the postcondition template graph.
Note that a template differs from an element contained in
either the initial or the revised model only in the range of al-
lowed values which may be assigned to its attributes: While
attributes in the initial or revised model may be assigned con-
stants or literal values only, the attributes in the template
may contain arbitrary OCL expressions. We use a higher-
order, multi-sorted term algebra with variables to represent
OCL expressions, which may be assigned to attributes of the
a template. Note, however, that if we restrict the assignable
values of an attribute in the initial and the revised model
to constant and ground terms, i.e., terms without variables,
we do not need to introduce two distinct value domains, but
simply use the mentioned term algebra.

In fact, we can use the very same term algebra to represent
the set of assignable values for the attributes in the initial and
the revised model if we restrict the set of assignable values
to constant and ground terms, i.e., terms without variables.

The use of a term algebra as our value domain requires
two additional morphisms to describe the instantiation and
the evaluation of terms. We use an assignment morphism
to describe the assignment of concrete values to variables of
a term, thus producing a ground term. An evaluation mor-
phism is then used to interpret the operations of a grounded

pε: G D H

pτ: L K R

L′
0 B′

1 K′
0 B′

2 R′
0

p′τ: L′ K′ R′

g h

m k n

δ′L δ′R

l r

m′

δL

n′

δRδK

l′ r′

(PB1) + (PO2) (PB2) + (PO3)

(PB4) (PB5)(PB6)

(PO4)(PO5) (PO6)

Figure 3: Refining the template graph production pτ to p′τ

term which is then evaluated. Roughly spoken, the assign-
ment and the evaluation morphism are equivalent in effect
to term unification and term simplification, respectively. For
example, suppose a term s(s(x)) where x is some integer
value, which is assigned to x 7→ 0 and results in the ground
term s(s(0)), and s(.) is interpreted as the successor func-
tion; then the term evaluates to s(s(0)) = s(1) = 2. Note
that the assignment and the evaluation morphism establish
a mapping between terms assigned to attributes and thus
become part of an (attributed) graph morphism that maps
nodes, edges, and attributes between two attributed graphs.

Extraction of the template graph production. Fi-
nally, we extract a DPO production from the span of graphs
L0 → G ← D → H ← R0. In a first step, we perform two
pullback constructions, (PB1 ) and (PB2 ), and obtain the in-
termediate template graphs B1 and B2. The third pullback
construction (PB3 ) creates graph K0 as the intersection of
B1 and B2.

The sequence of pushouts (PO1 )–(PO3 ) constructs the
template graphs L, K, and R. This allows us to define the
template graph production pτ : L ← K → R which repre-
sents the initial, executable operation automatically gener-
ated by Emo. However, this construction by itself does not
add any real value as up until now pτ is equivalent to pε
except that the attribute values are no longer restricted to
constants and ground terms (this will become clearer after
working through the example in the next section).

Refinement of the template graph production. How-
ever, since attributes are no longer restricted to constants
and ground terms, we are now able to formally describe the
refinements that a user may introduce by means of relax-
ation, enforcement, deletion, or addition of conditions.

A refinement of a template graph A is a refined graph A′

such that there exists an injective morphism δ : A′ → A,
called the refinement morphism. The identity morphism
idA : A → A is a trivial refinement morphism. The refine-
ment of a template graph production pτ : L ← K → R re-
sults in a refined production p′τ : L′ ← K ′ → R′ if there exist

4



injective refinement morphisms δL : L′ → L, δK : K ′ → K,
and δR : R→ R′.

A refinement p′τ of pτ is constructed according to Fig. 3.
In fact, the construction of a refinement is similar5 to the
previously explained derivation of pτ from pε. Starting from
a template graph production pτ : L ← K → R the user
introduces and provides a set of refinements to either L, R,
or both. These refinements are represented by graphs L′

0

and R′
0, which are injectively mapped to L and R by δ′L :

L′
0 → L and δ′R : R′

0 → R. With a sequence (PB4 )–(PB6 ) of
pullbacks we construct the intermediate graphs B′

1, B′
2, and

K ′
0. Finally, the subsequently performed pushouts (PO4 )–

(PO6 ) construct the graphs of the refined template graph
production p′τ : L′ ← K ′ → R′.

Due to the compositionality of pushouts and by requiring
refinement morphisms to be injective we thus ensure that
no refinement results in a refined template graph production
p′′τ : L′′ ← K ′′ → R′′ for which there exists either (a) no
morphism m′′ : L′′ → G, or (b) no morphism n′′ : R′′ → H,
or (c) both. In other words, a refinement must not result in a
production that is unable to transform the initial model G to
the revised model H. The restriction to injective morphisms
ensures the soundness of this refinement construction.

The Pull-Up Field Refactoring

For the purpose of this example (see Fig. 4) we will use
a simple metamodel/type graph6 that describes the valid
structure of class diagrams. The metamodel consists of Class
and Attribute types. Classes may be organized in inheritance
hierarchies. An inheritance relationship is visualized as an
open arrow pointing from the subclass to the superclass. A
class contains zero or more attributes which is realized as
a composition relation and visualized by a diamond-shaped
arrow head starting at the container element. Classes and
attributes are identified by their name. Moreover, attributes
have a type.

The model transformation we want to implement is a sim-
plified version of the Pull-Up Field refactoring (PUFR) which
works as follows: Given a class hierarchy with a set SUB of
classes all having in common (a) an attribute ATT of equiv-
alent name and type and (b) a superclass SUP, pull ATT up
to SUP and delete all occurrences of ATT from the classes
in SUB. For the sake of simplicity we will restrict our imple-
mentation of the PUFR to two subclasses, and we will not
check if SUP already contains an attribute whose name is
equivalent to that of ATT, but whose type differs from that
of ATT (in which case the PUFR should not be applied).

The demonstration of the Pull-Up Field refactoring within
Emo is straight forward. First, the initial model (cf. with
graph G in Fig. 4) is created with three classes c1, c2, and

5Intuitively, the similarity between the construction of a derivation
and the construction of a refinement seems only natural if the derivation
of pτ from pε is viewed as the first refinement step.

6In this section we will use the terms metamodel and type graph,
model and graph, and (graph) production and model transformation
interchangeably.

c3, named “Person”, “Student”, and “Teacher”, of which the
first is the superclass of the latter two. Classes “Student”
and “Teacher” both have an attribute a1 and a2, named
“Address” of type String. Now, we delete attribute a2 and
the composition relation between class c2 and attribute a1.
Attribute a1 is now pulled up by creating a composition re-
lation between c1 and a1 (cf. with graph H in Fig. 4). Upon
completion of these modifications Emo performs the state-
based comparison between the initial and the revised model,
which identifies the preserved elements as shown in graph D
in Fig. 4. The automatic generation of the pre- and post-
condition templates results in intermediate graphs L0 and
R0. Note that Emo’s post-processing step removes all string-
valued attributes and replaces them by variables. Variable
values are assigned dynamically during the matching phase
and thus act as a wildcard expression, which is indicated by
the ’∗’.

Next, we refine the automatically generated operation
which will allow us to pull up fields of arbitrary, but equiva-
lent type, i.e., the set of fields eligible for pull-up is no longer
restricted to fields with type String. This is achieved by in-
troducing a variable for the type value of attribute a1 and re-
quiring the type value of attribute a2 to be equivalent to that
of attribute a1 with the expression a2.type = a1.type. Fur-
ther, we need to constraint the name value of attribute a2 to
be equivalent to the name of attribute a1 with the expression
a2.name = a1.name. We include these refinements into graph
L′
0
7 and leave graph R unchanged, hence, R = R′

0. Then,
the final template graph production p′τ : L′ ← K ′ → R′

(displayed in the last row of Fig. 4) is derived from the span
L′
0 → L← K → R← R′

0.

The advantage of having a graph rewriting representation
of the PUFR model transformation becomes obvious if we
want to analyze, e.g., its confluence properties with other
graph rewriting rules, for example, a Move Field refactoring.
In [MTR05], Mens et al. perform such an analysis of common
object-oriented refactorings represented as graph rewriting
rules with the critical pair analysis feature of Agg.

Related Work

In the following, we first compare out derivation and re-
finement procedure to the minimal rule extraction tech-
nique. Next, we discuss related model transformation by-
demonstration (MTBD) approaches. And finally, we survey
approaches supporting the specification of graph transforma-
tions.

Extraction of a minimal rule. In [BHE08] Bisztray et
al. present the minimal rule extraction technique that, given
an injective span G← D → H of graphs, produces the min-
imal graph production pµ : L ← K → R that transforms G

7Note that due to space constraints graphs L′
0, B′

0, K′
0, B′

2, and R′
0

are shown collapsed, yet contain the same information as graphs L′
0,

K′ (for graphs B′
0, K′

0, B′
2), and R′, respectively.

5



Figure 4: Derivation and refinement of a graph transformation for the Pull-Up Field refactoring

6



to H. They employ this technique to efficiently verify archi-
tectural refactorings, i.e., given two versions G and H of a
graph, to decide if the graph H is still semantically correct.
Instead of verifying the entire graph, which might turn out to
be expensive, only the set of changes is verified to ascertain
the validity of the graph H. With the minimal rule extrac-
tion technique the minimal set of modifications required to
transform graph G to graph H is extracted automatically
into a graph production. The construction used to extract
the set of graphs equivalent to L0, B1, B2, and R0 in Fig. 2
is called an initial pushout (see [EEPT06]). Note that this
technique may only capture the actual modifications, but
does not guarantee that the extracted production captures
all necessary pre- and postconditions.

Although their extraction technique appears similar to our
derivation and refinement construction, a subtle, yet impor-
tant difference may be observed. While our approach can
assume that the initial and the revised graph contain all but
no more than the necessary elements (as those are provided
by the user), the minimal rule extraction technique does not
have this information. Hence, in case of the minimal ex-
tracted rule, it might become necessary to add additional
elements to the automatically extracted rule. In case of our
rule derivation and refinement technique no additional ele-
ments are allowed to be added due to the restriction of the
refinement construction to ensure its soundness.

Model transformation By-Demonstration. Since
graphs and models are referred to visual languages, graph
rewriting systems are classified as visual programming
languages [BMTS99]. The history of visual programming
languages is as old as computers with graphics displays.
Early representatives provided basic icon rewriting facilities
by matching identical occurrences of a LHS pattern and
replacing it with a copy of the RHS pattern. This straight-
forward procedure advanced the technique of programming
by-demonstration, as for example done in [SCS94].

More recently, the language independent by-
demonstration approaches Emo [BLS+09] and MT-
Scribe [SWG08] have been presented independently. In
contrast to Emo, the transformations of MT-Scribe are not
derived by a state-based comparison of initial and revised
model, but by recording the changes. We conjecture that our
work can also be used for characterizing MT-Scribe provid-
ing a canonical form for directly comparing the concepts of
Emo and MT-Scribe. Closely related to MTBD are so-called
model transformation by-example (MTBE) approaches as
presented in [BV09, WSKK07]. In contrast to MTBD where
the transformation is demonstrated once, MTBE derives the
transformation iteratively from a set of examples. Based
on inductive logic, Balogh and Varró [BV09] introduced a
technique to derive graph transformation rules from a set
of user-defined mappings between source and target models,
whereas Wimmer et al. [WSKK07] generate ATL rules.

Specification of graph transformations. Several model
transformation tools use graph transformations as the un-
derlying theoretical framework. In the following, we shortly
discuss a non-exhaustive selection of recent approaches.
AGG [Tae04] implements the algebraic graph transformation
approach in a visual environment, i.e., the transformations
are directly performed on the abstract syntax graph of a
model. Baar and Whittle [BW07] use the concrete graphical
syntax of modeling languages for QVT. In order to directly
use a modeling language as pattern language, certain changes
to the metamodel are necessary. However, these changes ren-
der existing graphical editors useless. VIATRA2 [VB07] of-
fers a model transformation framework supporting the entire
life cycle of model transformations. In order to control the
execution of the transformations, VIATRA2 combines graph
transformation with abstract state machines. Further, the
graph patterns can be represented in the concrete syntax of
the source and target language. Henshin [ABJ+10] provides
a single-panel editor offering an integrated view of the LHS
and the RHS rule. Also the Fujaba [GZ02] environment rep-
resents both sides of a rule in one model and uses the concept
of storyboards to schedule the execution of rules. The Visual
Modeling and Transformation System (VMTS) [LLMC05] of-
fers not only a framework for designing visual languages, but
also a model transformation tool for the metamodels of the
thereby specified languages following the DPO approach. For
details, we kindly refer to [TEG+05]. Whereas several ap-
proaches exist to visually specify graph transformations not
only in the abstract, but also in the concrete syntax of the
used modeling language, no direct MTBD approach has been
realized so far which directly relies on graph transformations.

Conclusion

The requirements on modern model transformation ap-
proaches are manifold, including user-friendliness for efficient
specification and application of such transformations as well
as formal conciseness for verification purposes. In this pa-
per, we showed how the by-demonstration approach Emo
and graph transformations complement one another in order
to fulfill both of these requirements.

In fact, we exploited the theoretical framework of graph
transformations to conceptually align the operations created
with the by-demonstration environment Emo to algebraic
graph productions. Yet, our approach supports the generic-
ity of modern graph rewriting systems which are not bound
to any particular modeling language and facilitates the reuse
of existing modeling editors without any extensions.

We provide a prototypical implementation of our ap-
proach, named emo2ggx8, which transforms Emo opera-
tions to the ggx input format of the Agg tool suite. In
a first step, this allows us to test Emo operations within
Agg and analyze, for example, the confluence properties of
multiple operations with Agg’s critical pair analyzer.

8http://www.modelevolution.org/prototypes/emo2ggx

7



In future work, we plan to integrate more advanced con-
cepts of Emo like iterations and negative application con-
ditions in the presented formal framework. Furthermore,
this work yields the bases for further improvements of by-
demonstration approaches with respect to configurability
and verification of the derived transformations. Techniques
like critical pair analysis can be used to analyze if the applica-
tion of two Emo operations interfere and potential problems
can be detected before they actually occur.

Acknowledgments This work was partially funded by
the Vienna Science and Technology Fund through project
ICT10-018 and by the fFORTE WIT Program of the Vienna
University of Technology and the Austrian Federal Ministry
of Science and Research.

References

[ABJ+10] T. Arendt, E. Biermann, S. Jurack, C. Krause,
and G. Taentzer. Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transforma-
tions. In Proc. of MODELS 2010. 2010.

[BET11] E. Biermann, C. Ermel, and G. Taentzer. Formal
foundation of consistent EMF model transfor-
mations by algebraic graph transformation. Soft-
ware and Systems Modeling, pages 1–24, 2011.

[BHE08] D. Bisztray, R. Heckel, and H. Ehrig. Verifica-
tion of Architectural Refactorings: Rule Extrac-
tion and Tool Support. ECEASST, 16, 2008.

[BLS+09] P. Brosch, P. Langer, M. Seidl, K. Wieland,
M. Wimmer, G. Kappel, W. Retschitzegger, and
W. Schwinger. An Example Is Worth a Thou-
sand Words: Composite Operation Modeling
By-Example. In Proc. of MODELS 2009, 2009.

[BMTS99] R. Bardohl, M. Minas, G. Taentzer, and
A. Schürr. Application of Graph Transforma-
tion to Visual Languages. In Handb. of Graph
Gram. and Comp. by Graph Trans. 1999.

[BV09] Z. Balogh and D. Varró. Model transformation
by example using inductive logic programming.
SoSym, 8(3):347–364, 2009.

[BW07] T. Baar and J. Whittle. On the Usage of Con-
crete Syntax in Model Transformation Rules.
In Perspectives of Systems Informatics, volume
4378 of LNCS, pages 84–97. Springer, 2007.

[CH06] K. Czarnecki and S. Helsen. Feature-based sur-
vey of model transformation approaches. IBM
Systems Journal, 45(3):621–645, 2006.

[dLBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig,
U. Prange, and G. Taentzer. Attributed graph
transformation with node type inheritance. The-
oret. Comp. Science, 376(3):139–163, 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fund. of Alg. Graph Trans. Springer, 2006.

[GZ02] L. Geiger and A. Zündorf. Graph Based Debug-
ging with Fujaba. ENTCS, 72(2):112, 2002.

[Hec06] R. Heckel. Graph Transformation in a Nutshell.
ENTCS, 148(1):187–198, 2006.

[LLMC05] T. Levendovszky, L. Lengyel, G. Mezei, and
H. Charaf. A Systematic Approach to Metamod-
eling Env. and Model Transformation Systems in
VMTS. ENTCS, 127(1):65–75, 2005.

[MTR05] T. Mens, G. Taentzer, and O. Runge. Detecting
Structural Refactoring Conflicts Using Critical
Pair Analysis. ENTCS, 127(3):113–128, 2005.

[MVG06] T. Mens and P. Van Gorp. A taxonomy of model
transformation. ENTCS, 152:125–142, 2006.

[Roz97] G. Rozenberg, editor. Handbook of Graph Gram-
mars and Computing by Graph Transformation:
Volume I . World Scientific Pub., 1997.

[SCS94] D. C. Smith, A. Cypher, and J. Spohrer. Kid-
Sim: Programming Agents without a Program-
ming Language. Com. ACM, 37(7):54–67, 1994.

[SWG08] Y. Sun, J. White, and J. Gray. Model Trans-
formation by Demonstration. In Proc. MoDELS
2008. 2008.

[Tae04] G. Taentzer. AGG: A Graph Transformation En-
vironment for Modeling and Validation of Soft-
ware. In Proc. of AGTIVE, 2004.

[TEG+05] G. Taentzer, K. Ehrig, E. Guerra, J. De Lara,
L. Lengyel, T. Levendovszky, U. Prange,
D. Varro, and S. Varro-Gyapay. Model transfor-
mation by graph transformation: A comparative
study. In Proc. Workshop Model Transformation
in Practice at MODELS’05, 2005.

[TR05] G. Taentzer and A. Rensink. Ensuring Struc-
tural Constraints in Graph-Based Models with
Type Inh. In Fund. App. Soft. Eng. 2005.

[VB07] D. Varró and A. Balogh. The model transforma-
tion language of the VIATRA2 framework. Sci.
Comput. Program., 68(3):214–234, 2007.

[WSKK07] M. Wimmer, M. Strommer, H. Kargl, and
G. Kramler. Towards Model Transformation
Generation By-Example. Hawaii International
Conference on System Sciences, 2007.

8


