
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

The Journal of Systems and Software 86 (2013) 551– 566

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

A posteriori operation detection in evolving software models

Philip Langera,∗, Manuel Wimmerb, Petra Broscha, Markus Herrmannsdörferc, Martina Seidld,
Konrad Wielanda, Gerti Kappela

a Business Informatics Group, Vienna University of Technology, Austria
b Software Engineering Group, Universidad de Málaga, Spain
c Institut für Informatik, Technische Universität München, Germany
d Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

a r t i c l e i n f o

Article history:
Received 20 January 2012
Received in revised form
26 September 2012
Accepted 26 September 2012
Available online 23 October 2012

Keywords:
Model evolution
Model refactoring
Model comparison

a b s t r a c t

As every software artifact, also software models are subject to continuous evolution. The operations
applied between two successive versions of a model are crucial for understanding its evolution. Generic
approaches for detecting operations a posteriori identify atomic operations, but neglect composite opera-
tions, such as refactorings, which leads to cluttered difference reports.

To tackle this limitation, we present an orthogonal extension of existing atomic operation detection
approaches for detecting also composite operations. Our approach searches for occurrences of composite
operations within a set of detected atomic operations in a post-processing manner. One major benefit is
the reuse of specifications available for executing composite operations also for detecting applications of
them. We evaluate the accuracy of the approach in a real-world case study and investigate the scalability
of our implementation in an experiment.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

As every software artifact, also software models (Bézivin, 2005)
are subject to continuous evolution. Knowing the operations
applied between two successive versions of a model is not only
crucial for helping developers to efficiently understand the model’s
evolution (Koegel et al., 2010), but it is also a major prerequi-
site for model management tasks, such as model co-evolution
(Herrmannsdoerfer et al., 2009; Mens, 2008) and model versioning
(Brosch et al., 2010; Koegel et al., 2010). In general, we may dis-
tinguish between two categories of operations. The first category
includes atomic operations, such as additions, deletions, updates,
and moves. The second category comprises composite operations
(Sunyé et al., 2001) consisting of a set of cohesive atomic oper-
ations, which are applied within one transaction to achieve one
common goal. The most prominent class of such composite opera-
tions are refactorings introduced by Opdyke (1992). As reported in
Herrmannsdoerfer et al. (2009), Mens (2008), Brosch et al. (2010)
and Koegel et al. (2010), the detection of applied refactorings is
a crucial prerequisite for automating model management tasks.
However, composite operations are not limited to refactorings;
they may be used to implement any kind of in-place model transfor-
mation for a specific purpose, such as model completion (Sen et al.,

∗ Corresponding author.
E-mail address: langer@big.tuwien.ac.at (P. Langer).

2010), refinement (Ruhroth and Wehrheim, 2012), and evolution
(Meyers and Vangheluwe, 2011).

Identifying the applied composite operations is a challenging
task. One way to acquire the set of applied composite operations
is to use operation recording (Herrmannsdoerfer and Kögel, 2010;
Lippe and Oosterom, 1992); that is, the execution of operations
is tracked within the modeling environment while they are per-
formed. Although this leads to a precise operation log (Mens, 2002),
there are several drawbacks. Most importantly, such approaches
strongly depend on the modeling environment and only those oper-
ations are detectable that are supported by the modeling editor.
A set of manually applied atomic operations, having together the
intent of a composite operation, which is indeed frequently hap-
pening in practice (Murphy-Hill et al., 2009), cannot be identified,
because no explicit command has been issued in the modeling envi-
ronment. Finally, in a usual setting, the evolution of models is stored
in terms of revisions in version control systems; consequently, the
recorded operation logs (Mens, 2002) are not available.

In the absence of an operation log, the applied operations
have to be detected a posteriori using state-based model compari-
son approaches using either generic model comparison algorithms
(Brun and Pierantonio, 2008; Kelter et al., 2005; Lin et al., 2007;
Schmidt and Gloetzner, 2008) or language-specific comparison
algorithms (Kolovos, 2009; Xing and Stroulia, 2005). Whereas cur-
rent generic approaches only support detecting atomic operations,
some language-specific approaches also allow for detecting com-
posite operations; but only for one specific modeling language. In

0164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jss.2012.09.037

Author's personal copy

552 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

addition, the specifications for executing composite operations (e.g.,
Henshin, Arendt et al., 2010 and EMO, Brosch et al., 2009) and the
implementation of the algorithms for detecting applications of them
have to be kept consistent manually.

To tackle these limitations, we propose to reuse existing spec-
ifications for executing composite operations also for detecting
applications of them. In particular, we realize the detection of
composite operations a posteriori by extending existing model com-
parison tools with an additional phase. Our detection process
takes two inputs. The first input is a difference model containing
the applied atomic operations obtained from existing comparison
tools. The second input is a set of composite operation specifi-
cations, which are preprocessed automatically to explicate their
difference pattern needed for detecting applications of them. In the
first step of our three-step detection process, the difference model
is scanned for occurrences of composite operations’ difference pat-
terns. To consider the semantics of composite operations (Kniesel
and Koch, 2004; Cornélio et al., 2010), the second and third step
check the considered models regarding the composite operations’
pre- and postconditions, respectively. The final output is a differ-
ence model enriched with composite operations’ applications that
aggregate the atomic operations they consist of.

The benefits of our approach are the following. Our approach
does not rely on any editor-based operation tracking; thus, it is
independent of the used modeling environment. As a further con-
sequence, our approach is also capable of detecting applications
of composite operations, even if they have been performed manu-
ally by applying their comprised atomic operations. Our approach
is designed to be metamodel-agnostic. As the implementation of
our approach is based on the Eclipse Modeling Framework (EMF)
(Steinberg et al., 2008), it is applicable to any Ecore-based model-
ing language, such as UML, any domain-specific modeling language
(Gray et al., 2007), and even to Ecore itself which allows to apply the
approach not only to models but also to metamodels. Our approach
does not require for additional detection rules. On the contrary,
the set of detectable composite operations is derived automati-
cally from specifications for executing composite operations. Thus,
already existing executable operation specifications can be reused
directly from previous work (Brosch et al., 2009) or new composite
operations may be defined easily using existing operation specifi-
cation tools (e.g., Arendt et al., 2010; Brosch et al., 2009) without
having to keep the detection rules consistent with the specifica-
tions for their execution. Finally, any kind of composite operations
are supported, being either used for refactoring or for any other
purpose.

This paper is organized as follows. In Section 2, we provide an
overview on the prerequisites of our approach and discuss the
present gap between specifications for executing composite opera-
tions and for detecting applications of them as well as how this gap
can be bridged. Our approach for detecting applications of compos-
ite operations is presented in Section 3. In Section 4, we evaluate the
correctness and completeness of our implementation and inves-
tigate the scalability and performance of our implementation in
Section 5. In Section 6, we survey related work and in Section 7,
we conclude with a short summary and possible extensions of the
presented work.

2. From atomic operations to composite operations

In this section, we first introduce the prerequisites for our
detection approach by outlining briefly the metamodeling stack
and illustrating the power of metamodeling frameworks, which
constitute the basis for processing models using generic, language-
independent algorithms.

M
3

M
2

M
1

«instanceOf »

Meta-metamodel
(e.g., Ecore)

Metamodel
(e.g., UML)

Diff

Metamodel

Operation

Specification

Metamodel

A Model
(e.g., Class

Diagram V1)

Diff Model
(e.g., V1àV2)

Operation

Specification
(e.g., Extract Superclass)

Legend

Model

Fig. 1. Metamodeling stack.
Adopted from Bézivin and Gerbé (2001).

2.1. Prerequisite: metamodel-agnostic processing of models

In an endeavor to establish a commonly accepted conceptual
framework for the rapidly growing number of domain-specific
modeling environments, the Object Management Group (OMG)
released the specification for Model Driven Architecture (MDA)
(Object Management Group, 2005), standardizing the definition
and usage of (meta-)metamodels resulting in a metamodeling stack
as depicted in Fig. 1. The meta-metamodel level M3 manifests the
role of a common meta-modeling language. The metamodel level
M2 contains any metamodel defined with the meta-metamodel to
represent a modeling language’s abstract syntax in terms of meta-
classes and their structural features. The model level M1 contains
models being instances of metamodels, such as a concrete UML
class diagram or business process model.

A very useful property of this metamodeling stack is that every
model is a direct instance of its respective metamodel and an indi-
rect instance of the meta-metamodel. This property is leveraged
by current metamodeling frameworks, such as EMF, for providing
the means for processing all models uniformly by applying model
processing mechanisms based on the M3 level. In particular, by
using a reflection mechanism, similar to the reflection mechanism
of programming languages, the metamodeling frameworks allow
to process models generically without considering the M2 level.
For instance, in EMF, every model element is an instance of EObject,
which provides methods for accessing the object’s feature values,
its metaclass, etc.

We base our approach on two types of such metamodel-agnostic
tools. First, generic model comparison tools use the reflection
power of the underlying metamodeling framework for comparing
models, irrespectively of their metamodel. The detected differ-
ences are represented in terms of Diff Models (M1) conforming to
a Diff Metamodel (M2). Second, we consider tools for specifying
and executing composite operations. Usually, such tools introduce
their own Operation Specification Metamodel (M2) to define compos-
ite operations (M1). To support the specification of operations for
any modeling language, these tools have to be independent from
the modeling languages’ metamodels. However, as concrete com-
posite operations are specific to a modeling language, the operation
specification metamodel usually introduces a template concept:
thereby, templates in operation specifications refer to the meta-
classes of the specific modeling language’s metamodel to restrict
the applicability of a composite operation to specific model element
types. Thus, the tools themselves are metamodel-independent,
whereas concrete operation specifications are designed for a spe-
cific modeling language.

2.2. Gap between difference models and operation specifications

Current model comparison tools apply a two-phase process: (i)
correspondences between model elements are computed by model
matching algorithms (Kolovos et al., 2009), and (ii) a model diffing
phase computes the differences between two models from the

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 553

Fig. 2. Gap between diff models and composite operation specifications.

established correspondences. For instance, EMF Compare (Brun
and Pierantonio, 2008) – a prominent representative of model
comparison tools in the Eclipse ecosystem – is capable of detecting
the following types of atomic operations:

• Add: A model element only exists in the revised version.
• Delete: A model element only exists in the origin version.
• Update: A feature of a model element has a different value in the

revised version than in the origin version.
• Move: A model element has a different container in the revised

version than in the origin version.

An example for a generic diff model comprising solely atomic
operations between two versions of a UML class diagram is depicted
in the upper half of Fig. 2. More specifically, this figure shows
an origin model and a revised model in the concrete syntax, as
well as in the abstract syntax in terms of a UML object diagram.
Between the origin model and the revised model, the refactoring
Extract Superclass has been applied among other atomic operations.
In the course of the applied refactoring, the new superclass Vehicle
is introduced for the two existing classes and all common prop-
erties contained by the existing classes are pulled up to the new
superclass.

Author's personal copy

554 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

Fig. 3. Bridging diff models and operation specifications.

From these two model versions, all applied atomic operations
can be derived using a state-based model comparison. The obtained
diff model is depicted in the middle of Fig. 2, which comprises a
set of diff elements representing one addition of the new class,
two updates for setting the new class as the superclass of both
existing classes, two moves of the original properties of class Bike,
and the deletion of the pulled-up properties of class Car. Besides
the refactoring, other atomic operations have been performed in
this example: the class Car has been renamed to Automobile and
the property fuel has been deleted. In the absence of a recorded
operation log, the only way for humans to reconstruct the applied
composite operations, e.g., the refactoring Extract Superclass, is
to reason about the obtained atomic operations in combination
with the origin model and revised model which is a cognitive
challenge even for small examples. As reported in Brosch et al.

(2010), Herrmannsdoerfer et al. (2009), Koegel et al. (2010) and
Mens (2008), working only on this level does not scale.

To address this issue, a more concise view of model differences
is required that aggregates the atomic operations into composite
operation applications such that the intent of the change is becom-
ing explicit. Existing solutions (Hartung et al., 2010; Küster et al.,
2008; Xing and Stroulia, 2006) only provide language-specific oper-
ation detection algorithms. However, due to the plethora of existing
modeling languages, this is an unfavorable solution. The situation
could be improved significantly when reusing existing specifications
of composite operations, which presently only allow for their auto-
matic execution, also for the detection of their applications by using
a generic detection approach.

Model transformations (cf. Czarnecki and Helsen, 2006 for
an overview) are the current technique of choice for specifying

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 555

Specifica�on
Opera�on

Specifica�onSpecifica�on
Opera�on

Specifica�onSpecifica�on
Opera�on

Specifica�onModel
Inpu t

DiffModel

Specifica�on
Opera�on

Specifica�onSpecifica�on
Opera�on

Specifica�onSignature
Opera�on
SignatureSignature

Inpu t
Signature

Preselec�on

Opera�on
Specifica�on

Opera�on
Specifica�on

Occurrence

Poten�al
Opera�on

Occurrence

[diff mat ches][no di ff mat ch]

Derive Precondi�on
Binding

Precondi�on
Bindin g

Evalu ate Binding

Opera�on
Specifica�on

Opera�on
Specifica�onBindin g

Vali d
Precondi�on

Bindin g

[invalid]

Derive Postcondi�on
Binding

Post condi �on
Bindin g

[invali d] [valid][valid]

Occurrence
Refac toring
OccurrenceOccurrence
Refac toring
OccurrenceOccurrence

Opera�on
Occurrence

«foreach» «foreach»

Occurrence
Opera�on

Occurrence

Evalu ate Binding

DiffMod el
Prep rocessing

1 2 3

Fig. 4. Composite operation detection process: (1) Diff pattern matching, (2) precondition matching and (3) postcondition matching.

executable composite operations. In particular, composite opera-
tions are specified by rules stating the operation’s preconditions,
postconditions, and actions that have to be executed for applying
the operation. An example operation specification is depicted
using graph transformation syntax (Heckel, 2006) in the lower
part of Fig. 2 for the refactoring Extract Superclass. The left-hand
side (LHS) represents the precondition of the operation and the
postcondition is specified in the right-hand side (RHS). Please
note that graph transformations are a declarative specification
approach; thus, the operation’s actions are implicitly defined by
the LHS and RHS. The precondition of the example operation states
that only equally named properties may be pulled up to the new
superclass. Additionally, the operation should be applicable for
a set of properties and it should enable to extract the superclass
for a set of classes. Therefore, so-called iterations (also referred to
as multi-objects in the literature) are used. Iterations indicate that
more than one object may be bound to one element in the pre-
conditions (e.g., t4) such that all matching objects are transformed
equally when executing the composite operation. Thanks to the
iteration concept, the transformation rule is capable of pulling up
multiple properties matching t2 and deleting all equally named
properties matching t4 contained by classes matching t3.

Current execution engines for model transformations provide
means for executing composite operation specifications, but they
do not support detecting occurrences of them. Additionally, oper-
ation specifications are not designed to be matched directly with
diff models produced by current model comparison frameworks.
Thus, there is a gap between these two worlds.

2.3. Bridging difference models and operation specifications

To bridge the mentioned gap, we propose to automatically gen-
erate an intermediate structure from operation specifications as
shown in Fig. 3. This intermediate structure extends composite
operation specifications by making explicit their comprised atomic
operations. These atomic operations form the operation’s diff pat-
tern, which can be matched with a diff model obtained from model
comparison tools. If a match of a diff pattern is found in a diff model,
we proceed with evaluating the pre- and postconditions on the ori-
gin and revised models, respectively, and if these conditions are
fulfilled, an occurrence of the respective composite operation is
reported.

For making the diff pattern explicit, we compute a diff model
by diffing the LHS and RHS of the transformation rules. Advanced
constructs of graph transformation rules, such as iterations, posi-
tive and negative application conditions, are not considered as they
are checked in the subsequent evaluation of the pre- and postcon-
ditions. Producing a diff pattern using model comparison requires
that the LHS and the RHS of transformation rules be represented
by “pure” models (i.e., direct instances of the modeling language’s
metamodel) and not as models conforming to a transformation lan-
guage metamodel as is often the case (cf. Section 2.1). Therefore,
we apply a dedicated transformation to translate the LHS and RHS
of the transformation rules to pure models. This transformation is
the inverse of the transformation used in Kühne et al. (2009) for
generating a language-specific transformation language out of a
modeling language. More precisely, the LHS and the RHS of a trans-
formation rule comprise templates, which possess a type, a variable,
links to other templates, conditions on attribute values in the LHS,
actions for setting attribute values in the RHS, as well as a flag,
which defines whether the template represents an iteration or not.
As shown in Fig. 3, these templates are easily transformable to pure
objects. Moreover, an ID that corresponds to the template variable
(e.g., t1) is assigned to each object for preserving the trace between
LHS and RHS objects, which is important for the comparison pro-
cess. Having generated pure models, existing model comparison
tools can be used to derive an explicit diff pattern representing the
minimal set of atomic operations the composite operation consists
of. The computed diff patterns now close the gap between operation
specifications and diff models.

3. A posteriori composite operation detection

In this section, we discuss our approach for detecting composite
operations by first giving an overview of the entire process and,
subsequently, present each phase of the process in detail.

The composite operation detection process is depicted in Fig. 4
in terms of a UML activity diagram. This process has two inputs
and consists of three phases. The first input is the diff model called
input diff model containing the atomic operations that have been
applied. Secondly, our process takes as input an arbitrary number
of operation specifications comprising also their explicit diff pat-
terns. In the first phase of the process, the operation specifications’
diff patterns are exploited for efficiently preselecting all composite

Author's personal copy

556 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

Fig. 5. Example for preselection.

Diff Element Map Derived Precond ition Bind ing

Template Model elements

t1 o1, o4

t2 o2, o3

t3 o1, o4

t4 o5, o6, o7

Vali d Precond ition Bind ing

Template Model elements

t1 o1

t2 o2, o3

t3 o4

t4 o6, o7

Derive

Precond ition

Bind ing

Evaluate

Bind ing

Precondi tion Matchin g

Diff Pattern Inpu t Dif f

od1 id2, id6

od2 id2, id6

od3 id1

od4 id3, id4

od5 id5, id8 , id9

Fig. 6. Example for precondition matching and evaluation.

operations that potentially have been applied between the two ver-
sions of a model. Therefore, the input diff model is searched for occur-
rences of the diff patterns. As diff patterns abstract from details of
the transformation specifications, such as pre- and post-conditions,
these parts have to be considered in the subsequent phases. Thus, in
the second and third phase, for each potential composite operation
occurrence, the pre- and postconditions of the composite opera-
tion are evaluated, respectively. If both are valid, an application of a
composite operation is at hand and added to the output list of oper-
ation occurrences. In the following, the three phases are described
in detail by using the running example introduced in Section 2.

3.1. Phase 1: diff pattern matching

This phase checks whether the diff patterns of the given opera-
tion specifications are contained by the input diff model.

Diff model preprocessing. In a first step, the input diff model and
the diff patterns of all operation specifications are translated into
so-called signatures, which are referred to as input signature for
the diff model and operation signatures for the diff patterns. These
signatures contain the relevant information of the diff elements
in an easily processable format. In particular, the signature repre-
sents, similar to method signatures in programming languages, the
operation kind and the metamodel types it affects.

Example: If a UML class has been added, the corresponding sig-
nature has the form of Add(UML:Class) (cf. Fig. 5a). Thus, this
signature encodes the type of the atomic operation and the used
metamodel type. Please note that in the implementation of our
approach, additional information, such as the type of the new par-
ent and sibling diff elements, is encoded in the signature to increase
the matching precision. In this paper, we omit this additional infor-
mation for the sake of readability.

Preselection. The preselection of potentially applied composite
operations is accomplished based on the input signature and the
operation signatures. The applied procedure for realizing the prese-
lection is depicted in Algorithm 1. This algorithm adds all operation
signatures to the preselection (cf. line 1 in Algorithm 1). Subse-
quently, it iterates through all operation signatures and checks
whether each of its elements is contained in the input signature
(cf. lines 3 and 4 in Algorithm 1). If at least one element is missing,
the respective operation has obviously not been applied entirely
and, hence, is removed from the preselection. All operation signa-
tures that remain in the preselection after the algorithm terminates
constitute potential operation occurrences. After the preselection,
a so-called diff element map is created for storing the correspon-
dences between the elements of the input diff model and the diff
patterns. The preselection together with the diff element map is
handed over to the next phase.

Algorithm 1. Preselection based on diff patterns

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 557

Example: The input diff model and the diff pattern from the
operation specification are preprocessed and translated into the
signature format (cf. Fig. 5a and c). The preselection (cf. Algorithm
1) is applied to these signatures, reporting one potential opera-
tion occurrence, and the diff element map is built (cf. Fig. 5b). For
instance, the first two diff elements in the diff pattern representing
the update of the superclass feature (cf. od1 and od2) match with
two diff elements (cf. id2 and id6) in the diff model.

3.2. Phase 2: precondition matching

For each potential operation occurrence, the preconditions are
checked.

Derive precondition binding. The evaluation of conditions is
costly. Thus, we check the conditions, which are organized in terms
of templates (cf. Section 2), only for those model elements that have
been modified according to the diff pattern. Therefore, we first
compute a so-called derived template binding. A template binding
maps the respective model elements to their corresponding tem-
plates. The derived template binding is created based on the diff
element map and by exploiting the reference from diff elements to
the affected model elements. Therefore, we collect for each diff ele-
ment in the diff pattern the corresponding precondition template,
and for each input diff element the affected element of the origin
model. Based on this information, the bindings from elements in
the origin model to templates used in the transformation rules are
established.

Example: The derived precondition binding in Fig. 6 is com-
puted as follows. The diff element od1 in the diff pattern affects
the template t1 (cf. Fig. 3). According to the diff element map, od1 is
mapped to the diff elements id2 and id6 from the input diff model.
These two diff elements in turn affect the model elements o1:Bike
and o4:Car in the origin model, respectively. Thus, a binding of
template t1 to these model elements is created. The same proce-
dure is repeated, until all diff elements in the diff pattern have
been processed, except diff pattern elements representing addi-
tions (e.g., od3). These are only of interest for the postcondition
templates as we see later.

Evaluate precondition binding. The derived precondition bind-
ing is evaluated using a condition evaluation engine that has to
fulfill the following requirements. First, it must be capable of detec-
ting all valid bindings among a set of candidates contained in the
derived precondition binding, whereas multiple bindings to one
template are only allowed if iterations are attached to the respec-
tive template. Second, since one operation specification may have
been applied multiple times, the evaluation engine must unfold
the derived precondition binding into separate valid bindings for
each single potential application. Third, the engine must be capa-
ble of completing bindings for templates which have no candidate
assigned yet. This is necessary for templates acting as preconditions
only, i.e., they do not perform actions in the transformation.

During the evaluation, certain model elements may be rejected
as they do not fulfill the conditions and the diff element map is
updated accordingly. Mapped diff elements that affect rejected
model elements are removed such that the map ultimately con-
tains only diff elements that are relevant in the potential operation
occurrence currently under consideration.

Example: The derived precondition binding depicted in Fig. 6
has to be evaluated. At this moment, the classes o1:Car and o4:Bike
are bound to templates t1 and t3. During the condition evaluation,
however, these multiple bindings can be resolved because the prop-
erties o2:speed and o3:horsePwr that are bound to template t2 must
be contained by the object bound to template t1; this is only fulfilled
by class o1:Car. Thus, o4:Bike is rejected for template t1. The same
applies to the multiple bindings of template t3. Moreover, the prop-
erty o5:fuel is bound to the template t4, as it is a valid model element

according to the diff element map. However, the condition evalu-
ation engine rejects this object, because the precondition t4.name
= t2.name fails as there is no property object for template t2 hav-
ing the name fuel. The result of this phase is the valid precondition
template binding depicted at the right side of Fig. 6. Although there
are two templates (t2 and t4) having more than one bound model
element, these bindings are valid, because these two templates rep-
resent iterations. Finally, the diff element map is cleaned according
to the rejected objects leading to the cleaned version depicted in
Fig. 7.

3.3. Phase 3: postcondition matching

For each valid precondition binding, we now evaluate the post-
conditions.

Derive postcondition binding. Apart from the fact that the post-
condition binding links postcondition templates and elements in
the revised model, the derivation works analogously to the pre-
condition binding derivation. Note that this derivation is based on
the cleaned diff element map; thus, only diff elements are consid-
ered that affect model elements fulfilling the preconditions. As we
now deal with postconditions, we have to consider templates rep-
resenting additions that have been ignored in the previous phase.

Example: Based on the cleaned diff element map, we directly
obtain unique bindings in the derived postcondition binding for all
templates that already existed in the precondition binding (cf.
Fig. 7). However, we further have to derive the bindings for the
additional template t5, which represents the addition of a model
element. Thus, all model elements of the type Class that have been
added in the revised model are selected. According to the diff model
of our example, this applies only to o8:Vehicle.

Evaluate postcondition binding. The derived postcondition bind-
ings are evaluated using the condition evaluation engine as
described before for the preconditions. If a valid binding is found,
a composite operation occurrence is added to the diff model.

Example: The shown derived postcondition binding can be val-
idated successfully; thus, an occurrence of Extract Superclass is
reported.

3.4. Iterative composite operation detection

In several scenarios, multiple composite operations are applied
sequentially to overlapping parts of the model which may result
in dependencies between the operations themselves. For instance,
consider the example depicted in Fig. 8. One developer first applies
the composite operation Specialize Superclass by changing the
superclass of C to B. Subsequently, the same developer performs
the composite operation Pull Attribute by moving the attribute att
from class C to its new superclass B. When considering only the
origin model Vo and the revised model Vr, our approach is only capa-
ble of detecting the first composite operation Specialize Superclass
because the preconditions of the second operation Pull Attribute are
not fulfilled as in Vo the class B is not a superclass of C.

To address this limitation, we apply an iterative composite oper-
ation detection. Therefore, we leverage the fact that the operation
specifications for detecting applications of composite operations
are the same as the specifications for executing them automatically.
Consequently, we apply all detected composite operations (which
are detected between Vo and Vr) to Vo leading to a new origin model
denoted with V ′

o in Fig. 8 and re-start the operation detection pro-
cess again to the new scenario V ′

o → Vr . Thereby, we first apply
the model differencing algorithm for computing the atomic opera-
tions to V ′

o and Vr, and subsequently, search again for occurrences
of composite operations in the resulting diff model as presented
above. This iterative process is repeated (V ′′

o → Vr , V′′′
o → Vr, . . .)

until a fixpoint is reached.

Author's personal copy

558 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

Diff Element Map [clea ned] Derived Postcond ition Bind ing

Template Model elements

t1 o1

t2 o2, o3

t3 o4

t5 o8

Vali d Postcond ition Bind ing

Template Model elements

t1 o1

t2 o2, o3

t3 o4

t5 o8

Derive

Postcond ition

Binding

Evaluate

Binding

Postcondi tio n Matchin g

Diff Pattern Inpu t Dif f

od1 id2

od2 id6

od3 id1

od4 id3, id4

od5 id8, id9

Fig. 7. Example for postcondition matching and evaluation.

Fig. 8. Iterative composite operation detection.

Coming back to the example shown in Fig. 8, this iterative pro-
cedure now enables also the detection of Pull Attribute because the
preconditions of this composite operation, which restrict class B
being a superclass of C, are fulfilled in the new origin model V ′

o.

3.5. Implementation

We implemented the presented approach based on EMF. Thus,
models conforming to any modeling languages defined in Ecore
are supported. The state-based model comparison for deriving
the atomic operations is realized by an extension of EMF Com-
pare Brun and Pierantonio (2008). In particular, we replaced EMF
Compare’s heuristic matching component by an own component,
which makes use of universally unique identifiers (UUIDs). Based
on the UUIDs, also significantly modified and moved model ele-
ments can be matched uniquely, which finally leads to a more
precise set of detected atomic operations. For the specification and
execution of composite operations, we integrated our prototype
with our in-place transformation tool EMF Modeling Operations1

(EMO) (Brosch et al., 2009), which basically implements the
concepts of graph transformations. In EMO, the pre- and postcon-
ditions are expressed using the Object Constraint Language Object
Management Group (2010) (OCL). For finding valid template bind-
ings, an adaptation of Ullmann’s graph pattern matching algorithm
(Ullmann, 1976) is used. However, in contrast to Ullmann’s algo-
rithm, we do not enumerate all potential binding combinations
in a tree in advance; we rather apply a recursive backtracking
algorithm, which dynamically selects the next model elements
to be evaluated. For evaluating whether model elements fulfill
the respective conditions, we integrated EMF’s implementation of
OCL.2

In EMO, it is straightforward to generate a diff pattern from an
operation specification, because each specification comprises an

1 http://www.modelversioning.org/emf-modeling-operations.
2 http://www.eclipse.org/modeling/mdt/?project=ocl.

explicit LHS and RHS model, for which the diff pattern is directly
computable using EMF Compare. This is the main reason why we
have chosen EMO for our prototypical implementation of the oper-
ation detection approach.

4. Case study

We performed a positivist case study (Lee, 1989) based on real-
world models and their evolution to evaluate the accuracy of our
approach. In particular, following the guidelines for conducting
empirical explanatory case studies Runeson and Höst (2009), we
applied our approach to detect composite operations that have
been performed in the course of the evolution of models coming
from a public open source project.

4.1. Research questions

The study was performed to quantitatively assess the complete-
ness and correctness of our approach when applied to a real-world
scenario. More specifically, we aimed at answering the following
research questions:

1. Operation specifications versus detection rules. Can operation
specifications for executing the operation, in general, also be
reused for detecting applications of the respective operation or
is any information missing for properly detecting them?

2. Correctness. Are the detected operation applications correct in
the sense that all reported applications have really been applied?
If our approach reports incorrect applications of composite oper-
ations, what is the reason for these failures?

3. Completeness. Are the detected operation applications complete
in the sense that all actually applied composite applications
are correctly detected; or does our approach miss to detect
applications? If the set of detected operations applications is
incomplete, what is the reason for missed applications?

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 559

4.2. Case study design

Requirements. As an appropriate input to this case study, we
require EMF-based models that already have an extensive evolu-
tion history. Besides, we do not only need to be equipped with all
intermediate versions of these models, we further require the infor-
mation on the actual composite operations that have been applied
in the course of the models’ evolution; otherwise, we would not
be able to compare the results obtained by our approach with
the actual correct set of the composite operation applications. To
accomplish an appropriate coverage of different detection scenar-
ios, the evolution of these models should comprise scenarios having
a small set of applied atomic operations but also scenarios having
a large number of atomic operations applied at a time. Moreover,
there should be scenarios that comprise only a few applications
of composite operations, as well as scenarios comprising a higher
number composite operations that have been performed at once.
Finally, the evolution should comprise a large number of different
types of composite operations to avoid distorting the results.

Setup. We chose to analyze the extensive evolution of Ecore
metamodels coming from the Graphical Modeling Framework3

(GMF), an open source project for developing graphical modeling
editors. As Ecore metamodels are EMF-based models themselves,
they serve as a valid input to assess our approach. In our case
study, we considered the evolution from GMF’s release 1.0 over
2.0 to release 2.1 covering a period of two years. For achiev-
ing a broader data basis, we analyzed the evolution of three
metamodels, namely the Graphical Definition Metamodel (GMF Graph
for short), the Generator Metamodel (GMF Gen for short), and the
Mappings Metamodel (GMF Map for short). The respective meta-
model versions had to be extracted from GMF’s version control
system and, subsequently, manually analyzed to determine the
actually applied composite operations between successive meta-
model versions. These two steps have already been done in the
course of a case study for evaluating COPE (Herrmannsdoerfer
et al., 2009). As a consequence, the manually determined set of com-
posite operations is unbiased in relation to our case study, because
the information on applied operations has been independently
collected. Moreover, metamodel/model co-evolution, which was
actually the purpose of gathering the data in the first place for eval-
uating COPE, is in fact one major application field of our operation
detection approach. Thus, comparing the operation applications
obtained by our approach with the gathered data of the original
evaluation of COPE constitutes a perfect base for assessing the
accuracy for one of the intended use cases.

Additionally, we had to manually specify all composite opera-
tions that have been applied across all metamodel versions using
EMO. In total, 32 different types of composite operations have been
applied; however, we had to create 48 operation specifications,
because EMO does not support to specify generic operations using
abstract metaclasses, as they are foreseen in COPE. For instance, the
operation Push Feature has been realized by two distinct operation
specifications; one for pushing attributes and one for pushing refer-
ences. Having created the operation specifications, we developed
a program that automatically performs the operation detection
with all revisions of the models and compares the results with
the expected results represented in the operation history from the
COPE case study. The input data and the results are available online
at our project website.4

Characteristics of the input data. The evolution of three differ-
ent models provides a relatively large set of revisions, atomic

3 http://www.eclipse.org/modeling/gmf.
4 http://www.modelversioning.org/index.php?option=com content&view=

article&id=64.

operation applications, and composite operation applications. In
total, the evolution of the considered models comprises 45 revi-
sions that involved at least one composite operation; we omitted
revisions, to which only atomic operations have been applied. Over-
all, in the course of the models’ evolution, 141 composite operations
and 342 atomic operations have been applied, whereas one tran-
sition between two revisions (called commit hereafter) contains
on average five atomic operations and two composite operations.
Thereby, we encountered several different types of commits. As
depicted in Fig. 9, most of the commits comprise between 1 and
14 atomic operations and between one and eight composite oper-
ations. Nevertheless, the evolution also includes commits having
between 15 and 35 atomic operations and one commit, which com-
prises even 52 atomic and 26 composite operations. Please note
that the model elements in the investigated models exhibit univer-
sally unique identifiers (UUIDs). In the model comparison phase
for obtaining the atomic operations, these UUIDs help significantly
to find corresponding model elements more precisely across the
successive model versions, in comparison to the use of similarity-
based matching heuristics. We decided to use UUIDs in this case
study to avoid affecting the results of this study by the selection of
specific similarity-based matching heuristics (Kolovos et al., 2009).

Measures. To assess the accuracy of our approach, we compute
the measures precision and recall (Olson and Delen, 2008) originally
stemming from the area of information retrieval. When applying
precision and recall in the context of our study, precision denotes
the fraction of correctly detected composite operations among the
set of all detected operations (i.e., how many detected operations
are in fact correct). Recall indicates the fraction of correctly detected
composite operations among the set of all actually applied compos-
ite operations (i.e., how many operations have not been missed).
These two measures may be thought of as probabilities: the pre-
cision denotes the probability that a detected operation is correct
and the recall is the probability that an actually applied operation
is detected. Thus, both values may range from 0 to 1, whereas a
higher value is better than a lower one. The precision and recall
may be further combined into the so-called f-measure in terms of a
harmonic mean (F = 2 · (precision · recall)/(precision + recall)).

4.3. Results

The results of our case study are depicted in Table 1. In the upper
area, we show the results grouped by the three considered models.
In the lower part, the results are grouped by type of composite oper-
ation. Overall, using our iterative operation detection approach,
we were able to correctly detect 99 composite operations among
all 141 composite operations (i.e., around 70%), whereas only two
composite operations have been incorrectly detected, which leads
to a precision of around 0.98. It is worth noting that the evolu-
tion history of these three models is very different. GMF Graph was
extensively modified within only one large revision comprising 52
atomic operations and 26 composite operations, which lead to a
quite low recall of 0.5 (i.e., only 13 of the 26 composite operations
could be detected). On the contrary, GMF Gen was subjected to 40
revisions, some comprised a large number of atomic operations
and some only a low number. Thus, the evolution of this model is
a very representative mixture of different scenarios for the detec-
tion of composite operations leading to a precision of 0.98 and a
recall of 0.73. The evolution of the third model under consideration,
GMF Map, contained four revisions and in the course of each revi-
sion at maximum three composite operations have been applied.
Using our approach, we could identify all applied composite oper-
ations correctly.

Looking at the results grouped by the type of composite oper-
ation, we can see that the two most occurring operation types,
Rename and Delete Feature, have largely been detected correctly.

Author's personal copy

560 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

Fig. 9. Distribution of operations per commit.

These composite operation types are, however, comparatively
small in terms of comprised atomic operations; thus, the detec-
tion is easier. Nevertheless, also for the larger composite operation
types such as Extract Superclass or Specialize Supertype, we achieved
good results. However, there are several composite operation types,
whether they are small or large, which our approach could not
detect at all (e.g., Specialize Reference Type and Pull Feature).

4.4. Interpretation of the results

Research question 1. The overall f-measure of 0.82 across
all considered models and commits is very promising. As
the operation specifications used in this study have been

created using EMO just as we would create them for exe-
cuting them, we may already answer the first research ques-
tion and conclude that, in general, it is possible to reuse
the same operation specifications also for detecting them
a posteriori.

Research question 2. Especially, the precision obtained by our
approach is de facto perfect. Nearly all detected composite opera-
tion applications are correct. The reason for the lost 2% in precision
in GMF Gen is actually not because the two indicated occurrences of
the operation Delete Feature are incorrect. In fact, the reason is that
the composite operation Flatten Hierarchy has not been detected and
in the course of this operation, two features (containment refer-
ences) have been deleted. Thus, not detecting the larger composite

Table 1
Results of the case study.

expected # correct # wrong Precision Recall f-measure

Case study
GMF Graph 26 13 0 1.00 0.50 0.67
GMF Gen 107 78 2 0.98 0.73 0.84
GMF Map 8 8 0 1.00 1.00 1.00

Overall 141 99 2 0.98 0.70 0.82

Composite operation
Collect Feature 4 0 0 0.00 0.00 0.00
Combine Feature 1 0 0 0.00 0.00 0.00
Delete Feature 18 17 2 0.89 0.94 0.91
Drop Opposite 1 0 0 0.00 0.00 0.00
Extract and Group Attribute 1 0 0 0.00 0.00 0.00
Extract Subclass 1 1 0 1.00 1.00 1.00
Extract Superclass 9 9 0 1.00 1.00 1.00
Flatten Hierarchy 1 0 0 0.00 0.00 0.00
Generalize Attribute 1 0 0 0.00 0.00 0.00
Generalize Reference 6 4 0 1.00 0.67 0.80
Imitate Supertype 1 0 0 0.00 0.00 0.00
Inline Superclass 3 2 0 1.00 0.67 0.80
Make Abstract 1 0 0 0.00 0.00 0.00
Make Containment 1 1 0 1.00 1.00 1.00
Make Feature Volatile 6 6 0 1.00 1.00 1.00
Move Feature 3 0 0 0.00 0.00 0.00
New Opposite Reference 14 9 0 1.00 0.64 0.78
Operation to Volatile 3 2 0 1.00 0.67 0.80
Propagate Feature 1 1 0 1.00 1.00 1.00
Pull Feature 3 0 0 0.00 0.00 0.00
Pull Operation 3 2 0 1.00 0.67 0.80
Push Feature 7 2 0 1.00 0.29 0.45
Push Operation 1 0 0 0.00 0.00 0.00
Remove Supertype 1 1 0 1.00 1.00 1.00
Rename 29 27 0 1.00 0.93 0.96
Replace Class 2 2 0 1.00 1.00 1.00
Replace Enum 4 4 0 1.00 1.00 1.00
Replace Inheritance 3 2 0 1.00 0.67 0.80
Replace Literal 1 1 0 1.00 1.00 1.00
Specialize Reference Type 4 0 0 0.00 0.00 0.00
Specialize Supertype 6 5 0 1.00 0.83 0.91
Volatile To Opposite 1 1 0 1.00 1.00 1.00

Overall 141 99 2 0.98 0.70 0.82

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 561

Gen Express ion-

Interpreter

V 1.229

Gen Express ion-

Provide rBase

…

required Plug inIDs

…

Gen Express ion-

Provide rCon taine r

…

providers

*

Gen Express ion-

Interpreter

V 1.229'

Gen Express ion-

Provide rBase

requ ired Plug inIDs

…

…

Gen Express ion-

Provide rCon taine r

…

providers

*

Gen Express ion-

Interpreter

V 1.230

Gen Express ion-

Provide rBase

…

…

Gen Express ion-

Provide rCon taine r

required Plug inIDs

…

providers

*

Pull Featu re:

Move att ribute
requiredPluginIDs from

sub class to supe rclass

Collec t Featu re:

Move att ribute
requiredPluginIDs from

targe t class of referen ce
providers to its sou rce

Move att ribute requiredPluginIDs
from GenExpressionInterprete r
to GenExpressionProvider-
Container

Fig. 10. Overlapping sequence of composite operations (from GMF Gen).

operation caused the “incorrect” detection of two smaller opera-
tions that are part of the missed larger operation.

Research question 3. Although the precision is very satisfying,
the recall values are rather low for some commits and operation
types. For investigating the causes for these low recall values, we
analyzed the missed operation applications in more detail. Our
first guess that the low recall values are caused by the complex-
ity and size of the respective composite operation type could not
be verified by analyzing the resulting data. Several large com-
posite operations having complex pre- and postconditions could
be detected without any issues and the data representing the
size of the operation types does not seem to correlate with the
recall values of their detection. Admittedly, the sample size is
quite low for arguing the statistical independence of these two
variables though because there are some types of operations
for which we only have one or two expected but no detected
applications.

After a more detailed analysis of the specific cases, in which
expected applications could not be detected, we identified the
actual cause for the low recall values: overlapping sequences of
composite operation applications. More specifically, the impact
of overlapping sequences of composite operations on the opera-
tion detection is twofold. First, one preceding operation may enable
the applicability of a succeeding operation by manipulating the
model such that the preconditions of the succeeding operation are
fulfilled which was not the case before applying the preceding
operation. Second, one succeeding operation may hide a preced-
ing operation by invalidating the postconditions of the latter. The
first case is addressed using our iterative detection approach.
This works, however, only if at least the preceding composite
operation can be detected between the original and the revised
version; otherwise, the preceding operation is unknown and, thus,
no intermediate model state can be computed. Unfortunately, in
many scenarios it is not possible to detect the preceding applica-
tion, because of the second case.

Consider an example from the GMF Gen model evolu-
tion, a subset of the operations applied between revision
1.229 and 1.230 (cf. Fig. 10). In this revision, the devel-
oper first applied a Pull Feature by shifting the attribute
requiredPluginIDs from GenExpressionInterpreter to its superclass
GenExpressionProviderBase. The resulting intermediate state is
shown in V 1.229’ in Fig. 10. Subsequently, the developer applied
the composite operation Collect Feature by again shifting the same
attribute over the reference provides from this reference’s target
to its source class GenExpressionProviderContainer. However, when
only considering the state of the model depicted in V 1.229 and
V 1.230, as done by our approach, only one atomic operation can
be detected, which is the move of attribute requiredPluginIDs from
GenExpressionInterpreter to GenExpressionProviderContainer. As a
consequence, neither the preconditions of Collect Feature nor the
postconditions of Pull Feature match the origin state in V 1.229 and
the revised state in V 1.230, respectively.

The correlation between the number of applied (i.e., expected)
composite operations and the recall value can also be statistically
shown based on the data gathered in our study. More precisely, we
computed the relative number of composite operation applications
of each commit; that is, the number of expected composite oper-
ations in one commit divided by the number of model elements
in the respective model, and compared it to the achieved recall
values for the corresponding commit. Although the sample size is
relatively small, we obtained a Pearson’s correlation (Rodgers and
Nicewander, 1988) of around −0.67 between these two variables.
Our interpretation of this correlation is as follows: the more com-
posite operations have been applied within one commit, the more
likely it is that composite operations are sequentially overlapping
with the consequence that the overlapping composite operations
cannot be detected. This, as a result, leads to a lower recall value.
The relationship between the number of applied composite opera-
tions to the recall value is depicted in Fig. 11. Please note that, for
the sake of readability, we grouped equal numbers of composite

Author's personal copy

562 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

Fig. 11. Recall versus number of applied composite operations.

operations per model element and averaged the respective recall
values within one group in this graph. The black solid line depicts
the linear regression (i.e., the estimated trend), whereas the coef-
ficient of determination R2 is around 0.62.

4.5. Threats to validity

As we investigated real-world models and their evolutions,
considered a quite large number different types of composite oper-
ations, and compared the achieved results of our algorithm with
the expected results that have been obtained manually for a dif-
ferent purpose, we believe that the computed precision and recall
values constitute a valid basis for drawing the above conclusions.
One potential threat is, however, that we considered only one mod-
eling language (Ecore). The precision and recall might be affected
when applying the presented algorithm to models that conform
to different modeling languages, although we do not see any spe-
cific reason for that, because our algorithm makes no assumptions
about the modeling language as it processes models and evolutions
generically.

5. Performance evaluation

We also explored the scalability and performance of our
approach. In particular, we investigated the effects of an increas-
ing model size and an increasing number of concurrently applied
atomic operations on the runtime of our algorithm. Therefore, we
conducted an experiment based on purposive synthetic scenarios,
which have been created using our tool called Ecore Mutator.5 Please
note that we separated the performance evaluation from the case
study presented in Section 4 to have more control about the charac-
teristics of the investigated scenarios to isolate the effects of these
characteristics on the required runtime.

5.1. Setup

For assessing the scalability of our approach, we measured the
required runtime to detect composite operations in four detection
scenarios, which contain (i) five, (ii) two, (iii) one, and (iv) zero com-
posite operation occurrences. For these scenarios, we measured the
steady state performance6 of our implementation while, on the one
hand, stepwise increasing the size of the evolving models and, on
the other hand, stepwise increasing the number of concurrently
applied atomic operations. Thereby, we isolate the effects on the
runtime when the size of the model increases or the number of

5 http://code.google.com/a/eclipselabs.org/p/ecore-mutator.
6 A program is run repeatedly until the execution time of each run stabilizes.

concurrently applied atomic operations increases. The experiment
was conducted using an Intel® CoreTM2 Duo with 2.53 GHz running
Ubuntu 11.04. The input data and the results are available online
at our project website.7

5.2. Results

Increasing model size. The results of our experiment for increas-
ing the model size are illustrated in the left-hand side graph in
Fig. 12. In this graph, we depicted the overall runtime required for
the four detection scenarios, as well as the runtime required for
comparing the models (dashed gray line). When stepwise increas-
ing the model size for all four detection scenarios from 127 to
2117 model elements, whereas keeping the number of concurrently
applied atomic operations constantly at around 60, the increase
in runtime is largely equal to the increase of the runtime needed
for the model comparison. Especially in the scenario, in which
no composite operation has been applied, the overall runtime for
every evaluated model size is constantly around 100 milliseconds
(ms) higher than the time required for only obtaining the atomic
operations. However, for detecting five applications of composite
operations, the runtime of our approach grew from 543 ms for the
smallest model to 745 ms for the largest model.

Increasing number of atomic operations. The results of our exper-
iment for increasing the number of concurrently applied atomic
operations are depicted in the right graph in Fig. 12. The time
required for comparing the models is represented by the dashed
gray line as a reference. In this experiment, we used a rather large
model consisting of 2117 model elements as a basis. The range
of concurrently performed atomic operations has been increased
stepwise from 118 to 459 applied operations. To determine cor-
rectly that no composite operation has been applied among 118
atomic operations, the algorithm needed only 550 ms. More pre-
cisely, the composite operation detection took additional 320 ms to
the time needed for the detecting of atomic operations. However,
when 459 atomic operations have been concurrently applied, the
runtime was 2688 ms, which are additional 1411 ms in comparison
to the time required for obtaining the atomic operations. A simi-
lar increase of runtime was measured for the other scenarios. The
required runtime increased to 1269 ms for finding five composite
operations among 118 atomic operations and 4101 ms for detecting
the same composite operations among 459 atomic operations.

We also measured the share of the runtime that each phase
accounts for. The model comparison causes on average 34.54% of
the runtime, whereas the preselection accounts for 41.69% and the
condition evaluation had a share of 23.77%. However, please note
that these shares vary strongly because of the different characteris-
tics of the respective detection scenario. For instance, in scenarios
having a low number of atomic and composite operations, the share
of the preselection time is much lower.

5.3. Interpretation

What we can learn from this experiment is that the runtime of
our approach only slightly depends on the model size but grows
overproportionally with increasing numbers of atomic operations.

The growth of the overall runtime with increasing model size is
mainly caused by the model comparison, which certainly depends
on the model size. The additional time required for detecting com-
posite operations is because of the condition evaluation potentially
has to evaluate more model elements, if the considered model
contains more elements. Nevertheless, thanks to the preselection

7 http://www.modelversioning.org/index.php?option=com content&view=
article&id=64.

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 563

Fig. 12. Operation detection runtime.

phase based, the model elements to be evaluated in the condition
evaluation are kept at a minimum: only those model elements are
checked that have been affected by atomic operations. The positive
effect of the preselection phase can be observed when comparing
the scenario depicted in the left graph of Fig. 12 at 1224 model ele-
ments on the x-axis with the other scenarios in this experiment
(127 elements, 609 elements, 1618 elements, and 2117 elements).
We applied atomic operations randomly alongside the composite
operations in all scenarios. In the scenario with 1224 model ele-
ments, however, we “accidentally” applied a diff pattern that is sim-
ilar to a composite operation specification. Thus, the preselection
phase reported a potential occurrence and the algorithm proceeded
with the evaluation of the preconditions before the potential occur-
rence could be finally discarded based on the failing preconditions.
As a result, we observe an additional increase of the runtime with
1224 model elements in comparison to the other scenarios.

Our approach significantly depends on the number of concur-
rently applied atomic operations. The more atomic operations have
been applied, the larger is the search space to be examined for find-
ing diff patterns. Furthermore, having a large number of atomic
operations, it is more likely to encounter a matching diff pattern,
which forces the algorithm to perform the evaluation of the pre-
and postconditions.

In summary, we argue that the runtime of our approach is satis-
fying. When considering the potential fields of applications of our
approach, which are, among others, mining of model repositories
and model versioning, we face diverging performance require-
ments. Mining of model repositories may pose a very large number
of atomic and composite operations potentially causing longer
runtimes. For instance, the time required for processing the 45 revi-
sions and 342 atomic changes in the GMF case study (cf. Section 4)
was around 2 min. Luckily, runtime is usually not a crucial crite-
rion in such scenarios. On the contrary, in model versioning, a fast
execution time has high priority, as it would cause developers to
wait while they check in their models. Fortunately, the number of
operations applied between two successively modified revisions of
one model is rather small: on average, one commit had five atomic
and two composite operations in the GMF case study.

5.4. Threats to validity

In this experiment, we investigated the impact of the models’
size and of the number of applied changes on the performance of
our algorithm. As we used generated synthetic models and random
atomic operations, the validity of the experiment’s results might be
affected by the characteristics of the synthetic models and the ran-
dom selection of atomic operations, as well as how they relate to
the five composite operations that have been applied. In particu-
lar, if we had used composite operations that only transform model
elements of certain types that are not instantiated often, the algo-
rithm would perform much better. The same is true for the type

of atomic operations: if the random atomic operations are not
involved in the used composite operations, the chance for finding
diff patterns is very low. To counteract this threat, we generated
models exhibiting a constant ratio of model element types that are
involved in at least one composite operation to those that are not
involved in a composite operation. Throughout all models in this
experiment, this ratio is constantly around 5:2, which means that
two out of five model element could potentially be involved in a
composite operation application. Moreover, we ensured that the
randomly applied atomic operation types are normally distributed
across all applied atomic operations.

6. Related work

Several approaches recently emerged to detect composite oper-
ation applications in different technical spaces. Most of them are
designed for detecting refactorings in object-oriented (OO) pro-
grams, but there are also some dedicated approaches for high-level
specifications such as models and ontologies.

OO programming. The easiest way to capture applied refactor-
ings is to track their execution in the development environment.
Such approaches are often referred to as operation-based version-
ing/merging (Lippe and Oosterom, 1992). Refactoring tracking is
realized by Dig et al. (2008), Ekman and Asklund (2004) and Robbes
(2007). All these approaches highly depend on the used develop-
ment environment. Furthermore, manually performed refactorings
are not detectable and refactorings which have been made obso-
lete by successive changes might be wrongly indicated. State-based
refactoring detection mechanisms aim to reveal refactorings a pos-
teriori. For instance, Dig et al. (2006) propose an approach to detect
applied refactorings in Java code. They first perform a fast syntac-
tic analysis followed by a semantical analysis. A similar approach
is followed by Weissgerber and Diehl (2006). After preprocessing
and syntactical analysis have been conducted, conditions indicat-
ing the application of a refactoring are evaluated. A heuristic-based
approach is presented in Demeyer et al. (2000) in which a com-
bination of various software measures as indicator for a certain
refactoring is used. For instance, a decrease in a method’s size,
among other measures, is used to indicate that the refactoring Split
Method has been applied.

Refactoring detection in code artifacts is in general more chal-
lenging than in model artifacts. In models, relationships between
the model elements are usually explicitly available in form of direct
references represented by an address or an ID. In code, elements
usually have no persistent address or ID and, therefore, have to
be matched using name- and content-similarity measures. On the
other hand, when detecting model refactorings, we face a mul-
titude of different modeling languages. Consequently, there is a
plethora of different refactorings and diverging implementations

Author's personal copy

564 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

of the same refactoring. Hence, hard-coded detection strategies for
a pre-defined set of refactorings are not a desirable solution.

Model engineering. To the best of our knowledge, three
approaches exist for detecting composite operations in evolving
software models a posteriori.

First, there is the approach by Xing and Stroulia (2006) for detec-
ting refactorings in evolving software models which is integrated in
UMLDiff. Refactorings are expressed by change pattern queries used
to search a diff model obtained by a state-based model comparison.
Although, the general goal of UMLDiff is comparable to ours, there
are several major differences. First, UMLDiff is tailored to a fixed
modeling language, namely a subset of structural UML diagrams
while our approach is applicable for any modeling language. Sec-
ond, to add further composite operations, users of UMLDiff have to
develop new queries which is an additional burden compared to
simply reusing existing specifications available for executing the
composite operations. Here a major benefit of our approach is also
the guaranteed consistency between executing composite opera-
tions and reporting their applications, since only one specification
exists which is used for both purposes. Third, UMLDiff only allows
to query the diff model, but no complex pre- and post-conditions
for the original and revised models are regarded. Finally, UMLDiff
lacks support for iterative composite operation detection due to the
fact that only detection rules are used, but no execution rules are
available to produce the intermediate model versions.

Second, the approach by Vermolen et al. (2011) copes with the
detection of complex evolution steps between different versions
of a metamodel. They use a diff model comprising primitive oper-
ations as input and calculate on these basis complex operations.
The approach is tailored to the core of current metamodeling lan-
guages, but follows a similar methodology as UMLDiff. However, a
specific feature is the detection of masked operations, i.e., opera-
tions hidden by other operations, by defining additional detection
rules. Nevertheless, the approach is again dedicated to one sin-
gle modeling language and does not allow to reuse the operation
specifications used for execution for the detection process.

Third, Küster et al. (2008) calculate hierarchical change logs
for process models. The authors apply the concept of Single-
Entry–Single-Exit fragments to calculate the hierarchical change
logs after computing the correspondences between two process
models. Thereby, several atomic changes are hidden behind one
compound change. The difference to our work is twofold. First, we
consider the detection of composite operations comprising changes
cross-cutting the whole model, i.e., we are not restricted to reason
only about one hierarchy branch, and second, our approach is lan-
guage independent, thus we are not restricted to process models.

Ontology engineering. There is widely related work in the field
of ontology engineering. Hartung et al. (2010) present an approach
for generating so called semantically enriched evolution mappings
between two versions of an ontology. Evolution mappings can be
seen as diff models which comprise atomic as well as composite
operations. Their goal is to produce a minimal diff model by using a
rule-based system for minimizing the atomic operations by aggre-
gating them to composite operations. The approach is tailored to
an ontology language as well as to a small set of composite opera-
tions such as moving, splitting, and merging concepts by providing
specific detection rules. Finally, they apply aggregation functions
to further shrink down the size of the diff model by combining
composite operations, which is in our approach supported by using
iterations in the transformation rules.

In summary, the presented approach of this paper is the first
generic solution that allows the reuse of specifications for execution
composite operations also for detecting applications of them. All
other approaches are either based on operation tracking or they
are restricted to a dedicated language and pre-defined composite
operations, which have to be re-formulated as detection rules.

7. Conclusion

In this paper, we introduced a third phase for model compar-
ison approaches for aggregating atomic operations to composite
operations. Our approach is language independent and allows to
reuse existing composite operation specifications used for execu-
tion purposes. We support an iterative detection process to find
a form of overlapping operation sequences. The feasibility of our
approach has been demonstrated in terms of an EMF-based imple-
mentation, which supports Ecore-based modeling languages and
composite operation specifications developed with EMO. To evalu-
ate the accuracy of our implementation, we conducted a real-world
case study. Thereby, we showed that all detected composite oper-
ation applications are correct and that approximately 70% of all
expected applications could be found.

Possible extensions. Although, the general performance of the
approach showed a high potential, some of the investigated sce-
narios indicated potential limitations. In the following, we discuss
these limitations and sketch some possible extensions to address
them.

Fuzzy diff pattern matching. When state-based model compari-
son is applied, only the effective atomic operations are obtained. For
instance, if a model element has been updated and subsequently
deleted, only the deletion of the model element is detected. How-
ever, there might exist scenarios, in which a composite operation
has been performed, although succeeding atomic operations hide
essential elements of a composite operation’s diff pattern. To enable
our approach to support such scenarios, we plan to consider atomic
operation kinds that potentially hide other operations as “joker”.
For instance, a deletion of a model element can be considered to be
an update and a move of the same model element in the diff pattern
checking phase. If such a strategy is applied, the recall is increased
by lowering the precision.

Partial condition evaluation. In our approach, a composite opera-
tion occurrence is reported if, and only if, all pre- and postconditions
are valid. With this strategy, a very high recall is obtained as can
be seen in the case study. However, in some scenarios, it might
happen that atomic operations have to be performed first to obtain
valid preconditions before a composite operation can be applied.
Analogously, it is possible that succeeding operations lead to failing
postconditions of preceding composite operations. Our condition
evaluation engine supports loosening the strictness of conditions
in a way that a partial condition validity (to a certain threshold) can
be proven. Of course, this strategy would increase the number of
detected composite operations, but also leads to imprecision.

Composite composite operations. Currently, our approach only
uses one level for aggregating operations by combining atomic
changes into composite ones. However, this may be extended to
allow for aggregating composite operations into larger composite
operations and so on. One promising way seems to be the precalcu-
lation of potentially combinable composite operation specifications
on the basis of their pre- and postconditions. For instance, if the
preconditions of composite operation A fit to postconditions of
composite operation B, A potentially might be executed after B. If
a valid combination is revealed, both operation specifications can
be automatically merged to create a new “composite composite
operation”. For limiting the search space of combinable composite
operations, we may use the critical pair analysis comparable to how
it has been done in Mens (2006).

Acknowledgements

This work has been partially funded by the Austrian Science
Fund (FWF) under grant J 3159-N23 and by the Vienna Science and
Technology Fund (WWTF) through project ICT10-018.

Author's personal copy

P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566 565

References

Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.,2010. Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Proceedings
of the International Conference on Model Driven Engineering Languages and
Systems (MoDELS’10), vol. 6395 of LNCS. Springer, pp. 121–135.

Bézivin, J., Gerbé, O.,2001. Towards a precise definition of the OMG/MDA frame-
work. In: Proceedings of the International Conference on Automated Software
Engineering (ASE’01). IEEE, pp. 273–280.

Bézivin, J., 2005. On the unification power of models. Software and Systems Modeling
4 (2), 171–188.

Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Retschitzegger,
W., Schwinger, W.,2009. An example is worth a thousand words: composite
operation modeling by-example. In: Proceedings of the International Conference
on Model Driven Engineering Languages and Systems (MoDELS’09), vol. 5795 of
LNCS. Springer, pp. 271–285.

Brosch, P., Kappel, G., Seidl, M., Wieland, K., Wimmer, M., Kargl, H., Langer, P., 2010.
Adaptable model versioning in action. In: Tagungsband der Modellierung 2010,
vol. 161 of LNI, GI, pp. 221–236.

Brun, C., Pierantonio, A., 2008. Model differences in the eclipse modeling framework
UPGRADE. The European Journal for the Informatics Professional 9 (2), 29–34.

Cornélio, M., Cavalcanti, A., Sampaio, A., 2010. Sound refactorings. Science of Com-
puter Programming 75 (3), 106–133.

Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (3), 621–646.

Demeyer, S., Ducasse, S., Nierstrasz, O., 2000. Finding refactorings via change metrics.
In: Proceedings of the Conference on Object-oriented Programming, Systems,
Languages and Applications (OOPSLA’00), ACM, pp. 166–177.

Dig, D., Comertoglu, C., Marinov, D., Johnson, R.,2006. Automated detection of refac-
torings in evolving components. In: Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’06), vol. 4067 of LNCS. Springer, pp.
404–428.

Dig, D., Manzoor, K., Johnson, R.E., Nguyen, T.N., 2008. Effective software merging
in the presence of object-oriented refactorings. IEEE Transactions on Software
Engineering 34 (3), 321–335.

Ekman, T., Asklund, U., 2004. Refactoring-aware versioning in eclipse. Electronic
Notes in Theoretical Computer Science 107, 57–69.

Gray, J., Tolvanen, J., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J., 2007. Domain-
specific Modeling. In: Handbook of Dynamic System Modeling. CRC Press.

Hartung, M., Gross, A., Rahm, E., 2010. Rule-based generation of diff evolution
mappings between ontology versions. Computing Research Repository (CoRR)
abs/1010.0122.

Heckel, R., 2006. Graph transformation in a nutshell. Electronic Notes in Theoretical
Computer Science 148 (1), 187–198.

Herrmannsdoerfer, M., Kögel, M., 2010. Towards a generic operation recorder for
model evolution. In: Proceedings of the International Workshop on Model Com-
parison in Practice @ TOOLS’10, ACM.

Herrmannsdoerfer, M., Benz, S., Juergens, E.,2009. COPE – automating coupled evo-
lution of metamodels and models. In: Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’09), vol. 5653 of LNCS. Springer, pp.
52–76.

Herrmannsdoerfer, M., Ratiu, D., Wachsmuth, G.,2009. Language evolution in
practice: the history of GMF. In: Proceedings of the International Conference
on Software Language Engineering (SLE’09), vol. 5969 of LNCS. Springer.

Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.,2009. Explicit trans-
formation modeling. In: Models in Software Engineering, vol. 6002 of LNCS.
Springer, pp. 240–255.

Küster, J.M., Gerth, C., Förster, A., Engels, G.,2008. Detecting and resolving process
model differences in the absence of a change log. In: Proceedings of the Interna-
tional Conference on Business Process Management (BPM’08). LNCS, Springer,
pp. 244–260.

Kelter, U., Wehren, J., Niere, J.,2005. A generic difference algorithm for UML models.
In: Software Engineering. LNI, GI, pp. 105–116.

Kniesel, G., Koch, H., 2004. Static composition of refactorings. Science of Computer
Programming 52, 9–51.

Koegel, M., Herrmannsdoerfer, M., von Wesendonk, O., Helming, J., Bruegge, B., 2010.
Merging model refactorings – an empirical study. In: Proceedings of the Work-
shop on Model Evolution @ MoDELS’10.

Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., Joern, D.,2010. Comparing
state- and operation-based change tracking on models. In: Proceedings of the
Enterprise Distributed Object Computing Conference (EDOC’10). IEEE Computer
Society, pp. 163–172.

Kolovos, D., Di Ruscio, D., Pierantonio, A., Paige, R., 2009. Different models for
model matching: an analysis of approaches to support model differencing. In:
Proceedings of the International Workshop on Comparison and Versioning of
Software Models @ ICSE’09, IEEE.

Kolovos, D.,2009. Establishing correspondences between models with the epsilon
comparison language. In: Proceedings of the International Conference on Model
Driven Architecture-Foundations and Applications (ECMDA-FA’09), vol. 5562 of
LNCS. Springer, pp. 146–157.

Lee, A., 1989. A scientific methodology for MIS case studies. MIS Quarterly, 33–50.
Lin, Y., Gray, J., Jouault, F., 2007. DSMDiff: a differentiation tool for domain-

specific models. European Journal of Information Systems 16 (4), 349–
361.

Lippe, E., Oosterom, N.V.,1992. Operation-based merging. In: Proceedings of the 5th
Symposium on Software Development Environments. ACM, pp. 78–87.

Mens, T., 2002. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering 28 (5), 449–462.

Mens, T.,2006. On the use of graph transformations for model refactoring. In:
Proceedings of the International Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE’05), vol. 4143 of LNCS.
Springer, pp. 219–257.

Mens, T., 2008. Introduction and roadmap: history and challenges of software Evo-
lution. In: Software Evolution. Springer, Berlin Heidelberg, pp. 1–11.

Meyers, B., Vangheluwe, H., 2011. A framework for evolution of modelling languages.
Science of Computer Programming 76 (12), 1223–1246.

Murphy-Hill, E., Parnin, C., Black, A.,2009. How we refactor and how we know it. In:
Proceedings of the International Conference on Software Engineering (ICSE’09).
IEEE, pp. 287–297.

Object Management Group, Model-driven Architecture (MDA),
http://www.omg.org/mda/specs.htm).

Object Management Group (OMG), 2010. Object Constraint Language (OCL), Version
2.2, http://www.omg.org/spec/OCL/2.2

Olson, D., Delen, D., 2008. Advanced Data Mining Techniques. Springer.
Opdyke, W.F., 1992. Refactoring object-oriented frameworks. Ph.D. thesis. Univer-

sity of Illinois at Urbana-Champaign.
Robbes, R., 2007. Mining a change-based software repository. In: in: Proceedings

of the Workshop on Mining Software Repositories (MSR’07), IEEE Computer
Society, pp. 15–23.

Rodgers, J., Nicewander, W., 1988. Thirteen ways to look at the correlation coeffi-
cient. The American Statistician 42 (1), 59–66.

Ruhroth, T., Wehrheim, H., 2012. Model evolution and refinement. Science of Com-
puter Programming 77 (3), 270–289.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14 (2),
131–164.

Schmidt, M., Gloetzner, T.,2008. Constructing Difference tools for models using the
SiDiff framework. In: Companion of the International Conference on Software
Engineering. ACM, pp. 947–948.

Sen, S., Baudry, B., Vangheluwe, H., 2010. Towards domain-specific
model editors with automatic model completion. Simulation 86 (2),
109–126.

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E., 2008. Eclipse Modeling Frame-
work 2.0. Addison-Wesley Professional, Boston, Massachusetts.

Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M.,2001. Refactoring UML models. In:
Proceedings of the International Conference on the Unified Modeling Language
(UML’01), vol. 2185 of LNCS. Springer, pp. 134–148.

Ullmann, J., 1976. An algorithm for subgraph isomorphism. Journal of the ACM 23
(1), 31–42.

Vermolen, S., Wachsmuth, G., Visser, E., 2011. Reconstructing complex meta-
model evolution. Tech. Rep. TUD-SERG-2011-026, Delft University of
Technology.

Weissgerber, P., Diehl, S., 2006. Identifying refactorings from source-code changes.
In: Proceedings of the International Conference on Automated Software Engi-
neering (ASE’06), IEEE, pp. 231–240.

Xing, Z., Stroulia, E.,2005. UMLDiff: an algorithm for object-oriented design differ-
encing. In: Proceedings of the International Conference on Automated Software
Engineering (ASE’05). ACM, pp. 54–65.

Xing, Z., Stroulia, E.,2006. Refactoring detection based on UMLDiff change-facts
queries. In: Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE’06). IEEE, pp. 263–274.

Philip Langer is a postdoctoral researcher in the Business Informatics Group
at the Vienna University of Technology. His research is focused on model
evolution, model transformations, and model execution in the context of
model-driven engineering. For further information about his research activ-
ities, please visit http://www.big.tuwien.ac.at/staff/planger or contact him at
langer@big.tuwien.ac.at.

Manuel Wimmer is a postdoctoral researcher in the Business Informatics Group
at the Vienna University of Technology. Currently, he is on leave as research asso-
ciate at the University of Málaga. His research interests comprise Web engineering,
model-driven engineering, and model management. For further information about
his research activities, please visit http://www.big.tuwien.ac.at/staff/mwimmer or
contact him at wimmer@big.tuwien.ac.at.

Petra Brosch is a postdoctoral researcher at the Business Informatics Group of the
Vienna University of Technology. Her research interests include various topics in
the area of model-driven engineering, especially model evolution, model versioning,
and model transformation. In her PhD thesis, she worked on conflict resolution in
model versioning with special emphasis on enabling merge support directly in the
concrete syntax of models and recommending conflict resolution patterns.

Markus Herrmannsdoerfer works as a research assistant at the Software & Sys-
tems Engineering group of Prof. M. Broy at Technische Universität München. His
academic interests include model-driven engineering, language engineering and
language evolution. He received a PhD degree from Technische Universität München
under the supervision of Prof. M. Broy, working on evolutionary metamodeling.

Martina Seidl holds a PhD in computer science and works at the Business Infor-
matics Group of the Vienna University of Technology and the Institute for Formal
Models and Verification of the Johannes Kepler University Linz. Her research inter-
ests include various topics from the area of model evolution and model versioning,

Author's personal copy

566 P. Langer et al. / The Journal of Systems and Software 86 (2013) 551– 566

automated reasoning with special focus on the evaluation of quantified Boolean
formulas as well as software verification.

Konrad Wieland is technical consultant at LieberLieber GmbH. He studied Business
Informatics at the Vienna University of Technology from 2003 to 2009. From 2009
to 2011, he worked as research assistant at the Business Informatics Group (Vienna
University of Technology) in the area of model versioning and collaborative conflict
resolution. He received the PhD degree from the Vienna University of Technology
in 2011.

Gerti Kappel is a full professor at the Institute of Software Technology and Inter-
active Systems at the Vienna University of Technology, heading the Business
Informatics Group. Until 2001, she was a full professor of computer science and
head of the Department of Information Systems at the Johannes Kepler University
of Linz. She received the Ms and PhD degrees in computer science and business
informatics from the University of Vienna and the Vienna University of Technol-
ogy in 1984 and 1987, respectively. Her current research interests include model
engineering, Web engineering, as well as process engineering.

