A Runtime Model for fUML"

Tanja Mayerhofer, Philip Langer, and Gerti Kappel
Business Informatics Group
Institute of Software Technology and Interactive Systems
Vienna University of Technology, Austria

{mayerhofer, langer, gerti}@big.tuwien.ac.at

ABSTRACT

With the introduction of f{UML, an OMG standard defin-
ing the operational semantics of a subset of UML and the
conforming virtual machine, UML models can be used not
only for informal design sketching but also for completely
building executable systems. Although this has been an im-
portant step for UML, the full potential of having executable
UML models, such as enabling runtime analysis and adapta-
tion, cannot be realized using the standardized virtual ma-
chine due to the lack of the adequate means for accessing im-
portant runtime information and controlling the execution of
UML models. In this paper, we aim at establishing the nec-
essary basis to overcome this limitation. Therefore, we intro-
duce extensions of the standardized fUML virtual machine
in terms of a dedicated trace model, an event model, and a
command API. We provide an open-source implementation
of the proposed extensions, as well as a model debugger for
UML models based on this implementation to demonstrate
the feasibility of the presented concepts.

1. INTRODUCTION

Executable models are necessary for bridging the gap be-
tween design time models and the running application. To
be executable, the semantics of a model has to be specified
precisely and completely. Unfortunately, the semantics of
many modeling languages is specified only informally lead-
ing to imprecision and ambiguity. For a long time, this was
also true for UML, the most adopted modeling language in
industry [6]. However, UML has evolved recently from a de-
scriptive language that can only be used for informal design
sketching to a prescriptive language that can also be used as
a programming language if desired [9]. This transition was
enabled by the introduction of the f{UML! standard.

fUML contributes a formal definition of the operational se-
mantics of a key subset of UML 2 in terms of a well-defined

*This research has been partly funded by our industry part-
ner LieberLieber Software GmbH.

"http://www.omg. org/spec/FUML/Current

virtual machine for executing UML models. In essence, this
subset consists of the key parts of UML activities and class
diagrams, which are considered sufficient for describing the
semantics of the remainder of UML. Although this is a ma-
jor step towards the utilization of executable UML models,
the full potential of UML model execution cannot be ex-
ploited, because the standardized virtual machine lacks in
providing the means for runtime observation, analysis, and
execution control. Moreover, it is currently unclear how
the runtime information of executable UML models can be
obtained from the virtual machine and how it may be repre-
sented adequately in terms of a runtime model. As a result,
important applications of models at runtime [1], such as con-
trolling, observing, and adapting the behavior of a system
at runtime, cannot be realized using fUML so far.

To address this limitation, we propose a trace model for
fUML, which enables the runtime analysis of executed UML
models establishing the basis for runtime adaptation. Fur-
thermore, we propose an event model and a command API,
which enable to observe and control the model execution
process during runtime. We implemented these proposed
functionalities by extending the fUML reference implemen-
tation? and developed a model debugger for UML models to
demonstrate the feasibility and sufficiency of our approach.
The remainder of this paper is structured as follows. In Sec-
tion 2, we summarize related work regarding model execu-
tion and runtime models. Our proposed trace model, event
model, and command API for f{UML are introduced in Sec-
tion 3 and Section 4. In Section 5, we discuss the validation
of the proposed artifacts and conclude with an outlook on
future work in Section 6.

2. RELATED WORK

In this section we give an overview on existing approaches for
specifying the semantics of UML enabling the execution of
UML models. Further, we address existing work regarding
the usage of traces as runtime models.

UML semantics. Approaches for specifying the semantics
of a modeling language can be classified according to three
categories: denotational, translational, and operational se-
mantics [3]. For formalizing the semantics of UML, re-
markable approaches have been suggested in the past. One
prominent example for a denotational approach is the Sys-
tem Model introduced by Broy et al. [2]. The translational
semantics approach has been, for instance, applied by Mel-
lor and Balcer [8] with the introduction of Executable UML.

2http://fuml .modeldriven.org

The fUML standard is the latest attempt to standardize the
semantics of UML using an operational semantics approach.
As fUML is promoted by OMG, it seems to be promising to
become widely adopted.

Trace models. To enable runtime analysis, trace models
are used to represent the execution trace of programs. There-
fore, various trace formats have been proposed [5]. However,
those formats focus on traditional programs and, hence, can-
not be used to capture the execution trace of UML models,
because the runtime concepts of programs, such as method
calls and routine calls, cannot be transferred directly to run-
time concepts of UML models. Moreover, the essential run-
time concepts of UML activities, such as token flows, are
not represented in existing trace formats. As runtime mod-
els should be as close to the problem space as possible [1], we
argue that a dedicated trace model for fUML is necessary to
capture the execution of UML models adequately and pre-
cisely.

In the domain of software modeling, the usage of model-
based traces (or traces in general) has been proposed al-
ready to serve as runtime models enabling to reason about
the execution, as well as dynamic analysis and adaptation.
Most of these approaches assume that the running appli-
cation is realized by generated code. In this scenario the
runtime information available on the code level has to be
mapped to the more abstract model level. Maoz [7] pro-
posed an approach to derive the required mapping code
automatically from models and weave it into the applica-
tion code using aspect-oriented programming. A similar ap-
proach was developed by Vogel et al. [10], who proposed
to use model transformation techniques to synchronize the
runtime information with the models that provide different
views on the running system. Another approach was taken
by Ghezzi et al. [4], who proposed to extract formal models
from the runtime behavior of a running application. As the
fUML virtual machine interprets the models directly, neither
an extraction of behavior models nor a mapping of code-level
runtime information to the model level is necessary.

3. TRACE MODEL

Traces record the execution of a system and provide an ab-
stract representation of its runtime behavior. Thereby, a
trace provides the information necessary for analyzing a sys-
tem’s execution, which constitutes the crucial basis for sev-
eral applications, such as dynamic adaptation [1]. To enable
these important applications for executable UML models, we
elaborated a dedicated trace metamodel capable of recording
the model execution carried out by the fUML virtual ma-
chine. Thereby, we aimed at fulfilling the requirement that
a recorded trace provides sufficient information for compre-
hending, reconstructing, and replaying an execution. For
instance, a trace model should be expressive enough to al-
low answering the following questions.

1. Input/output relationship: Which inputs have been
provided for the execution of an activity node / activity
and which outputs have been produced?

2. Chronological order: In which chronological order have
the activity nodes of an activity been executed?

3. Logical order: In which logical order have the activ-
ity nodes of an activity been executed? In other words,
the executions of which activity nodes have enabled the
execution of another specific activity node?

Activityl: Add a new student to a lecture

student :

New student : Student Student
[] (| Instantiate student [| -~ lectures :Lecture [0..4]
studentName : name : |+| object : - name :String
String

Student

result :
value : Student
Lecture

lecture :
Lecture |
—

Lecture Activity2: Instantiate student
- title :Stri result :
title :String CreateObject Student
Create student . object :
Studen
AddStructuralFeatureValue
Setname result: |student:
name - value :
String

String

Figure 1: Example of a UML activity

4. Edge traversal: Across which edge has an input for the
execution of an activity node been provided?

For illustrating our elaborated trace metamodel, we use the
UML activity example depicted in Figure 1. In this example
the UML activity Activityl: Add a new student to a lecture
first instantiates an object of the class Student by calling the
activity Activity2: Instantiate student (which also initializes
the name attribute of the Student object with a given String
value), adds a given Lecture object to its list of lectures and
provides the Student object as activity output.

Figure 2 depicts our elaborated trace metamodel for captur-
ing traces of the execution of UML activities by the f{UML
virtual machine. The metaclasses colored white represent
model elements of the executed UML activity itself. A
Trace contains a list of ActivityExecutions that repre-
sent the execution of UML activities. An ActivityExecu-
tion consists of a chronologically ordered list of Activi-
tyNodeExecutions, which represent the execution of activ-
ity nodes. A CallActivityNodeExecution is a special kind
of an ActivityNodeExecution that represents the call of a
behavior that may cause the execution of another activity.
ActivityExecutions, as well as ActivityNodeExecutions,
can have inputs and outputs represented by the metaclasses
ParamterInput / ParameterOutput and Input / Output,
respectively. ParamterInputs and ParameterQOutputs ref-
erence ObjectTokenInstances that carry ValueInstances
containing Values, such as String values or objects. Note
that the ValueInstances refer to deep copies of the Values
to maintain a self-contained copy of the input and output
data. UserParameterInput is a subtype of ParameterIn-
put that is used to represent the input provided by the user
when starting the execution of activities. Inputs and Out-
puts of ActivityNodeExecutions can additionally refer to
ControlTokenInstances representing the control flow.

To exemplify the usage of this trace metamodel, Figure 3
shows an excerpt of the trace resulting from the execution
of the activity example introduced in Figure 1. This ex-
cerpt only includes details about the execution of the activ-
ity Activity2. Using this trace, the before stated questions
regarding its execution can be answered as follows.

1. Input/output relationship. The inputs and outputs of
an execution are recorded through the metaclasses Input /
Output for the execution of activity nodes, as well as Param—
terInput / ParameterQOutput for the execution of activities.

student :
Student

Student

fUML::Syntax::Activities::
IntermediateActivities:: Activity

+/predecessor
logical *

+/successor

*

0..1 /|\ +callee

UserParameterinput

fUML::Syntax::Activities::
IntermediateActivities::
ActivityParameterNode

*| ParameterOutput

fUML::Syntax::Actions::

fUML::Syntax::Activities::
IntermediateActivities::

+/successor

=S| ActivityNodeExecution

ActivityNode
0.1
chronological ~ +/predecessor
0.1
fUML::S.yntax::C.UmmonBeh.awors:: CallActivityNodeExecution
BasicBehaviors::Behavior 1 *

BasicActions::InputPin

fUML::Syntax::Actions::
BasicActions::OutputPin

0.1

fUML::Syntax::Activities::
IntermediateActivities::
ActivityEdge

1
+/traversedEdge

fUML::Semantics::Classes:: Valuelnstance ObjectTokenInstance
Kernel::Value 1 1

ControlTokenInstance

S E

Figure 2: Trace metamodel

In the trace excerpt we can see that the execution of the
activity node Create student had no inputs and the object
v2 of the type Student as output (la). The execution of
the activity Activity2 had the String value v1 “Alice” as in-
put (1b) and produced an object v3 of the type Student for
which the property name was set to “Alice” as output (1c).

2. Chronological order. The chronological order of activ-
ity node executions is captured using the derived reference
chronological. This reference can be derived from the or-
der in which the ActivityNodeExecutions are contained by
the corresponding ActivityExecution. The following OCL
expression is used to derive the chronological predecessor.
context ActivityNodeExecution::chronologicalpredecessor :
ActivityNodeExecution def:
if self.activityExecution.activityNodeExecution—>
index0f (self) < 1
then self.activityExecution.activityNodeExecution—>
at(self.activityExecution.activityNodeExecution—>
index0f (self) — 1)
else null
endif

Using this OCL expressions, we can derive that the execu-
tion of the activity node Create student is the chronological
predecessor of the execution of the node Set name (2).

3. Logical order. The logical order of activity node exe-
cutions can be derived from the input/output relationships
between them and is recorded in the trace using the derived
reference logical. The execution of an activity node is the
logical predecessor of the execution of another activity node
if it provides some input to it. The following OCL expression
derives the logical predecessor of an activity node execution.
context ActivityNodeExecution::logicalpredecessor :
ActivityNodeExecution def:

ActivityNodeExecution::allInstances()—>select(a |

a.output.tokenInstance—>select(t |
self.input.tokenInstance—>includes(t))—>size() > 0)

In our example the execution of the node Create student is
the logical predecessor of the execution of the activity node
Set name because it provides the object v2 as input (3).

4. Edge traversal. Tokens transport the values that have
been generated as output of an activity node execution to
the (logical) successor nodes via activity edges. The infor-

mation concerning the edge that was traversed by a token
is represented by the derived reference traversedEdge and
can be obtained by the following OCL expression.
context TokenInstance::traversedEdge : ActivityEdge def:
ActivityEdge::alllnstances()—>select(e |
(e.source = Output::alllnstances()—>select(o |
o.tokenInstance—>includes(self)).outputPin) and

e.target = Input::alllnstances()—>select(i
g P
i.tokenInstance—>includes(self)).inputPin))

Based on this OCL expression, we can derive for our example
that the object token instance ot2 carrying a Student object
traversed the object flow edge edgel from the output pin
opl “result” of the action Create student to the input pin
ip1 “object” of the action Set name (4).

4. EVENT MODEL AND COMMAND API

Based on a trace model (cf. Section 3), it is possible to an-
alyze the runtime behavior of activities. However, for al-
lowing to observe and control the execution during runtime,
an event model and a command API are required in addi-
tion. The main requirement for an event model is that each
change of the runtime state triggers a corresponding event
to enable observing applications to react accordingly. Be-
sides, to provide a flexible way to control the execution, we
require a rich but minimal set of commands.

For classifying the possible types of events, we introduce the
event metamodel depicted in Figure 4. TraceEvents inform
about the state of the execution. ActivityEvents indicate
the start (ActivityEntryEvent) and the end (Activity-
ExitEvent) of an activity execution. Accordingly, Activity-
NodeEvents signalize the start (ActivityNodeEntryEvent)
and the end (ActivityNodeExitEvent) of the execution of
an activity node. In addition to these entry and exit events,
we introduce SuspendEvents indicating that the activity ex-
ecution was suspended. An activity execution is suspended
either if the activity is executed step-wise and an execution
step was completed, or if a breakpoint, which was set for a
specific activity node, was hit during the activity execution.
In the former case a SuspendEvent is issued and in the latter
a BreakpointEvent. ExtensionalValueEvents notify about
the creation, destruction, and modification of extensional
values (i.e., objects and links) and FeatureValueEvents de-
note the modification of an extensional value’s feature value.

t:Trace

ael:

ActivityE: ition

name = "Activityl"

al :Activity

pl:
ActivityParameterNode

name = "student”

<

t

ae2:

ActivityExecution

outparam ;.
ParameterOutput

¢

name = "Activity2"

a2 :Activity

3

logical

+/predecessor

2

chronological

+/successor

\l/ +/predecessor

+/successor\l/

p2:
ActivityParameterNode

name = "name"

<

inparam :
Parameterinput

el:

ActivityNodeExecution

n1:CreateObjectAction

name = “Create student"

e2:

ActivityNodeExecution 9 AddStructuralFeatureValueAction

name = "Set name"

n2:

<—

Y

I —

otl: 01 :Output op1 :OutputPin i1 :Input i2 :Input 02 :Output
ObjectTokenlInstance name = "result" |_
/]
i i +source \
vil :Valuelnstance ot2: ipl :InputPin ip2 :InputPin op2 :OutputPin ot3:

ObjectTokenlInstance

name = "object"

name = "value"

name = "result"

ObjectTokenInstance

@ ® +/travérsedEdge
1b 4 ;|/

+arget
1c

vi2 :Valuelnstance

v1 :StringValue

edgel :ObjectFlow

cl:Class +types v3 :Object

vi3 :Valuelnstance

name = "Student"

value = "Alice" name = "Student"
+featureValues \l/
la @
cl:Class +types v2 :Object pl:Property +feature | fvl :FeatureValue |+values| v4 :StringValue

name = "name" value = "Alice"

Figure 3: Example of a trace model (excerpt)

To allow applications to receive the notifications about the
event occurrences, we provide an observer interface Execu-
tionEventListener that needs to be implemented. Listen-
ers can register at the f{UML execution environment realized
by a class called ExecutionContext, which manages regis-
tered listeners and provides them with execution events.
Besides enabling applications to receive events regarding
the state of activity executions, we also introduce a dedi-
cated command API to be used for controlling the execution,
which is again provided by the class ExecutionContext. An
excerpt of the available commands is depicted in the follow-
ing listing and discussed below.
void execute(Behavior activity, Object context,
ParameterValueList input)
void executeStepwise(Behavior activity, Object context,
ParameterValueList input)

void nextStep(int executionID, ActivityNode node)
void resume(int executionID)

To start the execution of an activity, the commands execute
and executeStepwise can be used. The execute command
triggers the execution of the activity until either a break-
point is hit or the end of the activity is reached. Using the
command executeStepwise, the activity execution can be
carried out step-wise. In this case the execution is suspended
not only if a breakpoint is hit, but also after the completion
of each execution step. The first step in an activity execution
is completed, when the initially enabled nodes of the activity
have been determined. This is indicated by a SuspendEvent.
A SuspendEvent provides an ezecutionID that identifies the
current execution of the activity. This is necessary because
the same activity can be executed several times in parallel.
This executionID can be further used to continue the partic-
ular activity execution using the commands nextStep and

resume. The command nextStep instructs the virtual ma-
chine to trigger the execution of the next enabled activity
node. As multiple activity nodes can be enabled at the same
time, it is possible to provide a specific node to be executed
in the next step. As the command nextStep only performs
a single step, a SuspendEvent is triggered directly after the
activity node has been executed. If this is not desired, the
command resume can be used to continue the execution with
the provided ezecutionID until either a breakpoint is hit or
the execution terminates.

Further, we introduced methods that enable the manage-
ment of breakpoints, as well as the retrieval of information
about an activity execution, such as the current enabled
nodes and the current trace.

Figure 5 exemplifies the sequence of events and commands
exchanged between the ExecutionContext and an Execu-
tionEventListener using the execution of the activity in-
troduced in Figure 1. The listener starts the execution of
the activity Activity! using the command executeStepwise.
Consequently, the context starts the execution of the activ-
ity, determines the initially enabled nodes of the activity,
and informs the listener about this by raising an Activity-
EntryEvent, as well as a SuspendEvent. The Activity-
EntryEvent informs the listener about the start of the exe-
cution of the activity Activity! and provides the executionID
that identifies this execution. The SuspendEvent indicates
the completion of an execution step and carries the informa-
tion about the nodes that were enabled in the last step. In
our example only one node was enabled, namely the action
New student. As stated before, the SuspendEvent informs
about the suspension of the activity execution and indicates
that the listener can now use the commands nextStep or
resume to continue the execution. In the example, the lis-

Event

timestamp :long

+parent | ~

[17

TraceEvent ExtensionalValueEvent

-

executionID :int type :ExtensionalValueEventType

Kernel::ExtensionalValue

fUML::Semantics::Classes::

A A +extensionalValue
. 1
ActivityEvent fUML::Semantics::Classes::
FeatureValueEvent ..
A Kernel::FeatureValue

1 +activity +featureValue

ActivityEntryEvent

fUML::Syntax::Activities::

IntermediateActivities::Activity «enumeration»

ActivityExitEvent

ExtensionalValueEventType

CREATION
DESTRUCTION
TYPE_ADDED
TYPE_REMOVED
VALUE_CREATION

+nodel

fUML::Syntax::Activities::
IntermediateActivities::ActivityNode

ActivityNodeEvent
ActivityNodeEntryEvent

0.* 1

+newEnabledNodes +node VALUE_CHANGED

VALUE_DESTRUCTION

ActivityNodeEXxitEvent
shendEvent Kernel::Element

BreakpointEvent Breakpoint
+breakpoint 1

Figure 4: Event metamodel

fUML::Semantics::Classes::

+location 1

tener uses the nextStep command to instruct the context
to perform the next execution step. This triggers the exe-
cution of the New student node that calls the activity Ac-
tivity2. Accordingly the context delivers an ActivityNode-
EntryEvent informing about the start of the execution of the
activity node New student, an ActivityEntryEvent inform-
ing about the start of execution of the activity Activity2,
as well as a SuspendEvent informing about the suspension
of the execution and the new enabled node Create student.
Again the listener uses the command nextStep resulting
in the execution of the enabled node Create student. An
ActivityNodeEntryEvent tells the listener that the execu-
tion of this node started, the ActivityNodeExitEvent in-
forms about the completion of the execution of this node,
and the SuspendEvent indicates the completion of the execu-
tion step. After the ActivityEntryEvent, an Extensional-
ValueEvent is issued, which informs the listener about the
creation of a new object of the type Student.

S. VALIDATION

In this section, we report on our investigations concerning
the feasibility and sufficiency of the proposed trace model,
event model, and command API for f{UML. In particular, we
aim at answering the following research questions.

1. Feasibility: Is it feasible to obtain the necessary infor-
mation from the fUML reference implementation for cre-
ating the trace model and the event model, and is it pos-
sible to extend the fUML reference implementation for
realizing the presented set of commands for controlling
the execution of UML activities?

2. Trace model: Is the information provided by the trace
model a sufficient basis for reasoning about the runtime
and for identifying the steps that lead to a specific exe-
cution state of a UML activity?

3. Event model: Are the provided events and the informa-
tion they carry sufficient for observing the state changes
thoroughly during the execution of a UML activity?

4. Command framework: Is the set of commands suffi-
cient for controlling the activity execution flexibly?

newEnabledNodes = {Set name}
executionID = 185244352

context listener
:ExecutionContext :ExecutionEventListener
T X T
| executeStepwise | activity = Activityl
|< | input = {studentName = "Alice" : StringValue,
| ActivityEntryEvent | lecture = lecture : Object (type = Lecture)}
t P activity = Activityl
| SuspendEvent | executionlD = 347356060
k P jocation = Activityl
| | newEnabledNodes = {New student}
| | executionlD = 347356060
| nextStep |
& | executionlD = 347356060
| ActivityNodeEntryEvent |
node = New student
: . >‘| executionD = 347356060
h ActivityEntryEvent
| P activity = Activity2
| s JE t | executionID = 185244352
uspendEven
| p >| location = Activity2
| | newEnabledNodes = {Create student}
| | executionlD = 185244352
| nextStep !
g executionlD = 185244352
| i |
ActivityNodeEntryEvent
| y! Y >| node = Create student
| . | executionID = 185244352
| ExtensionalValueEvent
| >: lya‘}e:CTu%ATtlogb t(Student)
- . value = student : Object (type = Student
| ActivityNodeExitEvent | Ject (yp
node = Create student
I >| executionID = 185244352
| SuspendEvent |
I P> location = Create student
| |
I

Ce |
Figure 5: Example of an event/command sequence

Research Question 1. We assessed the feasibility by cre-
ating a prototypical implementation of the proposed trace
model, event model, and command API based on the ref-
erence implementation of the standardized fUML virtual
machine. Although the reference implementation offers a
complete virtual machine for f{UML-conforming activities, it
currently neither provides the means for accessing the run-
time information during the execution of a UML activity nor
does it allow for controlling the execution. To establish the
basis for this functionality, we had to extend the reference
implementation. We used AspectJ to weave the necessary
extensions into the original code without altering it. Nev-
ertheless, by leveraging these extensions, we succeeded in
realizing the means for building the trace model, for issuing
events whenever a state change of the runtime model oc-
curred, and for step-wise execution. The source code of our
implementation is available at our project website®.

Research Questions 2—4. The application domains of run-
time models are very diverse. As a consequence, it may
depend on the specific application whether runtime models
may be considered sufficient or not. However, one applica-
tion domain that demands for very precise runtime informa-
tion, that depends heavily on event notifications during the
runtime, and that requires a powerful mechanism for con-
trolling the execution is debugging. Thus, we chose to assess
the sufficiency of the proposed artifacts by implementing
a debugger for UML models based on our extended fUML
virtual machine. This implementation, which is available
on our project website, is integrated with the Eclipse Debug
framework? and allows debugging activities created with the
Papyrus diagramming editor®.

A debugger usually depicts the state of the program being
debugged in terms of threads, stack frames, and variables.
A thread is a sequence of actions that may execute in parallel

3http://www.modelexecution.org
‘http://www.eclipse.org/eclipse/debug
Shttp://www.papyrusuml .org

with each other. In the context of fUML, multiple activity
nodes may be enabled at the same time, for instance, if the
control flow of an activity exhibits fork nodes. Hence, we
consider each concurrently enabled node to run in an own
thread. For deriving the currently running threads, we may
obtain the enabled nodes of a suspended activity execution
easily from the ExecutionContext. However, a new enabled
node does not always constitute a new thread, because the
node activation may also result from resuming an already
existing thread. To obtain this information, the trace model
can be used, which contains for each enabled node an in-
stance of ActivityNodeExecution having Inputs. If an ex-
isting thread concerns the logical predecessor of this Activ-
ityNodeExecution instance, this thread may be updated to
the new enabled node. If it has several predecessors for
which threads exist, one of them may be updated and the
others are terminated. If we do not find a corresponding
thread or all corresponding threads have been assigned to
other enabled nodes already, we create a new thread.

A stack frame represents the runtime context of a suspended
thread, which is in our context the current activity node be-
ing executed. A stack frame may have child stack frames
that represent nodes that called the activity where the cur-
rent node resides in. For deriving the stack frame hierar-
chy, we again make use of the trace model by navigating
from the instance of ActivityNodeExecution representing
the execution of the current node to its containing instance
of ActivityExecution and check whether this Activity-
Execution refers to an CallActivityNodeExecution instance
using the reference caller. If this applies, we add a child
stack frame, which indicates that the current activity node
is executed in the context of an activity that has been called
from another node. This procedure can be repeated until
the upper most activity execution is reached.

A wvariable denotes data values that are in the scope of the
current stack frame. In the domain of activities, variables re-
fer to values that reside on input pins. Hence, obtaining the
variables is easily possible by looking up the ActivityNode-
Execution instance representing the current enabled node
and read the ValueInstances of the ObjectTokenInstance
via the referenced Input instance.

Apart from depicting the current state of a suspended execu-
tion, a debugger should empower users to step-wise resume
a suspended execution using the commands step into, step
over, step return, resume, and terminate. In the context of
fUML, step into and step over should cause the execution of
the next node in the currently selected thread. However, if
this node is a call action, step into should cause the thread
to suspend directly before the first node of the called activ-
ity is executed, whereas step over should execute the entire
called activity and suspend after the call action itself has
been executed. Accordingly, step return should execute the
entire current activity. This can be realized easily using the
proposed event model and command API. Therefore, we call
nextStep repeatedly until a certain event is issued. For in-
stance, in the case of step return, nextStep is called until an
ActivityExitEvent for the current activity is received. The
commands resume and terminate, as well as breakpoints, are
supported directly by the command API.

In summary, we conclude that the proposed trace model,
event model, and command API are sufficient for building
a debugger offering all the functionality that is required for
step-wise executing activities, as well as for inspecting the

current state of a suspended activity execution. Moreover,
we argue that the trace model contains much more details,
which build a solid basis also for other tools that rely on
runtime information of activity executions, such as runtime
analysis and adaptation.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension of the standardized
fUML virtual machine in order to enable accessing impor-
tant runtime information and controlling the execution of
UML models. Therefore, we introduced a dedicated trace
model acting as a basis for reasoning about the execution
of a model, an event model for observing state changes dur-
ing the execution, as well as a command API providing the
means for controlling the execution flexibly. With these ex-
tensions, we aim at establishing the basis for exhausting
the full potential of having executable UML models, such
as enabling runtime analysis and performing adaptations at
runtime. We provide an open-source implementation of the
proposed extensions and of a model debugger based on this
implementation to demonstrate the feasibility of the pre-
sented concepts. In future work, we plan to validate the
usefulness of the proposed extensions more thoroughly by
building more sophisticated runtime analysis tools based on
our implementation. In particular, we aim at developing
techniques for validating whether changes applied to exe-
cuted UML models invalidate existing traces, as well as for
testing the behavior of a model based on execution traces.

7. REFERENCES

[1] G. S. Blair, N. Bencomo, and R. B. France. Models@
run.time. IEEE Computer, 42(10):22-27, 2009.

[2] M. Broy, M. V. Cengarle, H. Grénniger, and
B. Rumpe. Definition of the system model. In UML 2
Semantics and Applications, pages 61-93. Wiley, 2009.

[3] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B.
France, and G. Karsai. Challenges and directions in
formalizing the semantics of modeling languages.
Computer Science and Information Systems,
8(2):225-253, 2011.

[4] C. Ghezzi, A. Mocci, and M. Sangiorgio. Runtime
monitoring of functional component changes with
behavior models. In Proc. of MODFELS’11, pages
152-166, 2012.

[6] A. Hamou-Lhadj and T. C. Lethbridge. A metamodel
for the compact but lossless exchange of execution
traces. Softw. Syst. Model., 11(1):77-98, 2012.

[6] J. Hutchinson, J. Whittle, M. Rouncefield, and
S. Kristoffersen. Empirical assessment of MDE in
industry. In Proc. of ICSE ’11, pages 471-480, 2011.

[7] S. Maoz. Model-based traces. In Proc. of
MODELS’08, pages 109-119, 2009.

[8] S. J. Mellor and M. J. Balcer. Ezecutable UML: A
foundation for model-driven architecture. Addison
Wesley, 2002.

[9] B. Selic. The less well known UML. In Formal
Methods for MDE, volume 7320 of LNCS, pages 1-20.
Springer Berlin / Heidelberg, 2012.

[10] T. Vogel, S. Neumann, S. Hildebrandt, H. Giese, and
B. Becker. Incremental model synchronization for
efficient run-time monitoring. In Proc. of
MODELS’09, pages 124-139, 2010.

