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Abstract—In this paper, we propose a human daily activity
recognition method that is used for Ambient Assisted Living.
The proposed system is able to learn a user’s activities using
the data from motion and door sensors. We extract low level
features from the sensor data and feed the features to a model
that combines support vector machines (SVMs) and conditional
random fields (CRFs) to give accurate recognition results. We
propose to combine SVM and CRF classifiers in a hierarchical
model which results in better accuracies and can also make use
of high level features. We conducted experiments and presented
the effectiveness and accuracies of the proposed method.

I. INTRODUCTION

Human activity recognition using sensor data has been a
key problem for designing smart environments that are able
to provide health monitoring and assistance to elderly people.
The development of such technologies is becoming more
important as the portion of elderly people gets bigger in society
especially for developed countries such as in Europe [1].

Smart environments that are capable of activity recognition
[2]–[6] and assistive technologies for the disabled [7], [8] has
been designed. In the scope of ATTEND (AdapTive scenario
recogniTion for Emergency and Need Detection) project, we
are working on a system that is capable of activity recognition
using a network of sensors installed in the living environment.
The project also aims to detect unusual activities in the
environment such as the falling of a person or a person not
waking up in the morning as usual. In summary ATTEND has
four main goals:

• User friendly: The system should be easily deployed and
able to adapt to the environment automatically with a
simple interface.

• Comfortable: The system should be as non-intrusive as
possible without limiting user activities in any way.

• Accurate: The system should give high recognition results
about user activities and give an alert in case something
unusual occurs.

• General: The system should assume no knowledge about
neither the living environment nor the location of the
sensors.

In order to achieve these goals, we created a human activity
recognition model that only uses information from door and
movement sensors. Thus, our model does not rely on wearable
sensors in decision making. In addition to that, the deployment
of the system only requires placement of movement and
door sensors to the living area. In order to achieve accurate

results, we created an algorithm that hierarchically builds and
combines conditional random fields (CRFs) and support vector
machines (SVMs). The designed system learns the topology
of the living environment and relates actions with places
gradually with time. So, the designed system adapts itself
according to the the user’s behavior and the topology of the
living environment. All in all, the output of ATTEND will
be a product that can easily be bought and deployed with
little expert knowledge. In Sec. II we talk about SVMs and
CRFs and explain why they are good candidates for classifier
combination; in Sec. III we describe the features we use
for decision making; we explain the algorithm to create a
hierarchical model in detail in Sec. IV; and finally in Sec. V
we present the experiment results and conclude the paper with
Sec. VI.

II. BACKGROUND

SVM and CRF classifiers have been shown to be good
candidates for classifier combination [9]–[11]. Essentially, we
first use SVMs to learn to predict the labels of individual
input sequence data items. Then, we use a CRF to predict
the sequence of all output labels, where the input to the CRF
is the outputs of the SVMs applied to the inputs along with
the inputs to the SVM (The details are explained in Sec.IV).
This two-stage method gains high accuracy from two com-
plementary strengths: margin-maximization approaches can
be more accurate than likelihood-maximization approaches as
discriminative classifiers, and learning correlations between
neighboring output labels helps resolve ambiguities.

Conditional random fields (CRFs) [12] have been initially
proposed for natural language processing but since then they
have been used to solve many other research questions includ-
ing human activity recognition [13]–[16]. CRFs are undirected
graphical models that are capable of labeling sequential data.
Given a sequence of labels, Y , and an observation sequence,
X , CRFs represent P (Y |X). Unlike HMMs, which model the
joint probability P (Y,X) and which are generative models,
CRFs are discriminative models. This feature of CRFs allow
for incorporating complex features without violating indepen-
dence assumptions. In our work we used the implementation
of CRFs from [17].

Support vector machines are max-margin classifiers and
they have been used for a wide area of classification tasks [18].
We used the SVM package LIBSVM for the implementation
of SVMs [19]. Using LIBSVM one can produce probability
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estimates for given input. We use these probability estimates
as an input to CRF during training and testing.

III. FEATURE EXTRACTION

The features that we use to classify human activities can
be grouped into two categories. The first set of features
can be generated directly using sensor data. Those are low-
level features that represent the amount of movement, a door
open/close activity etc. The second set of features are high
level features that require both knowledge of the environment
and the activities that are performed. That is to say, the features
in the second set depend both on the topology of the house
and the resident’s daily routine. Those features cannot be
extracted initially since there is no initial knowledge about
the environment. We discuss these features in more detail in
the following sections.

A. Low-level Features

We extract four types of features in this category:
• Topology features
• The time of the day
• The information from movement sensors
• The information from door and movement sensors
In order to extract topology features we discover the rela-

tionship between movement sensors. Movement sensors send
a ’1’ if there is a movement and send nothing otherwise.
The minimum sending time between two consecutive ’1’ is
3 seconds. In order to find the topology of the house, firstly
we discretize the time of day into 3 second intervals. So, for
instance, a minute is represented by a vector of length 20 for
a movement sensor. Secondly, for each time interval and for
each movement sensor we set a 1 if there is a message from the
sensor or set it to zero otherwise. Essentially, in this scheme,
each movement sensor is represented by a vector, v, which has
a length proportional to the considered time interval. Then, we
compute the distances between these created vectors. In order
to compute the distance between two vectors, (v1, v2), while
also supplying a window length, w, we use Alg 1. Basically,
the algorithm finds the minimum distance between two vectors
allowing a vector to be shifted by a window length while
considering only the 1’s. In our experiments we set w = 3,
allowing nine seconds intervals for two 1’s to be considered
similar.

After computing the distances between all the movement
sensors, we use Alg. 2 to compute the final topology of the
house. As a result of this algorithm we create a connected
graph to represent the house. That is, we create a graph in
which there is a path between any two vertices.

We extract a single feature from the created topology which
is either a 1 or 0 for each 3 seconds. This feature is 1 if the
found location of the person changes from the previous time
interval and 0 otherwise. This feature helps in deciding if the
person is moving in the house. Doing so much work to extract
only a single feature might look like to much work to do
however, the created topology is later utilized when extracting

Algorithm 1 Compute distance between movement sensors.
1: minDist← Inf
2: len← length(v1)
3: for i = −w to w do
4: v3 ← shift(v1, i)
5: similarity ← 0
6: for j = 1 to len do
7: if v3(j) == v2(j) and v3(j) == 1 then
8: similarity ← similarity + 1
9: end if

10: end for
11: dist← 1/similarity
12: if dist < minDist then
13: minDist← dist
14: end if
15: end for
16: return minDist

Algorithm 2 Find topology.
1: V ← count of movement sensors
2: E ← empty list
3: G← Graph(V, E)
4: while G is not connected do
5: (V1, V2) ← nearest vertices that are not already con-

nected
6: E ← E + (V1, V2)
7: G← Graph(V, E)
8: end while

high level features. Two sample topologies found using the
described algorithm is illustrated in Fig. 1

Using the time of day, we create 24 features. In order
to produce these features, for a specific time we com-
pute the distance of the time to all hours of a day.
For instance, at 1am the extracted features take values
(1, 0, 1, . . . , 11, 12, 11, 10, . . . , 3, 2). So, the time of day fea-
tures take on values in range [0-12] and are of length 24.

The features from motion sensors are extracted using simple
filters. They represent total movement and the total change
in movement for specific time intervals. As described earlier,
we create a vector for each movement sensor to represent
the sensor readings. In order to compute total movement
for a specific time interval, we count the total number of
sensor responses and we do this for varying window lengths.
These features help the model identify the level of movement
at a specific time interval. In order to compute the total
change in movement, we count the total number of sensor
responses before and after the specified time interval and take a
difference. We then sum the absolute values of the differences
to compute the total change in movement. These features help
the model identify whether or not a person is moving around
the house. We use varying window lengths in order to compute
these features: (1, 3, 5, . . . , 11). Increasing window length acts
as a smoothing factor while computing the features.
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(a) Flat I (b) Flat II

Fig. 1. Topologies discovered using the described topology finding algorithm for two different flats.

The feature that we compute from the door and movement
sensors together is aimed to find when the person goes out.
This feature is turned on if there is change in one of the door
sensors, and there is less than a pre-specified number, d, of
movement sensor messages after that event. So, for example,
if a door is closed at time t, and there is m movement sensor
messages after that event in a certain time interval, we use
Eq. 1 to compute this feature. Note that, if a door is closed
and this feature has a positive value, the value of this feature
is continuously updated for following time intervals. If the
feature is 0 then the following time intervals are also set as
zero.

f(x) =

{
1− (m/d) if m ≤ d is even
0 otherwise

(1)

Currently, the system uses only the door sensor at the
outside door. Notice that the system is not given which sensor
is placed at the outside door and the model has to discover it.
So, in fact, the door sensors other than the outside door sensor
are making the problem more complicated but these are still
kept in case more features are extracted using door sensors.

B. High level features

The high level features require knowledge about the topol-
ogy and the activities performed. These features aim at relating
the locations with specific activities. So, for instance, the
corridor of the house should be related with moving most of
the time, or similarly the living room should be related with
activities. Although we can learn the topology of the house
using movement sensors, the action labels cannot be computed
without having an initial model.

Moreover, the type of activity might change dependent on
the time of the day. For instance, the bedroom is related
to sleeping in the night whereas in the morning after the
person wakes up it might be related to another type of
activity. In order to take this into account we divide each
day into 4 intervals each having 6 hours: Morning (6:00-
12:00), Afternoon (12:00-18:00), Evening (18:00-24:00) and
Night (24:00-6:00).

In order to extract these features, we adopted the approach
presented in [13]. In the paper, Liao et al. build a hierarchical
CRF to find important places and activities of a person using
GPS data. We explain how we construct a hierarchical CRF
for activity recognition in Sec. IV. After creating a hierarchical
model, the extracted high level features are the same length as
the count of pre-determined activities. In our model we used 5
labels for activities, namely: Outside, Sleeping, Moving, Activ-
ity and Undetermined. These labels are described in Sec. V-B.
After creating an initial model, we use the discovered topology
along with the model to create an activity distribution for each
sensor and for each four of the time intervals of the day.

In Fig. 2, the discovered place-action distributions are
illustrated. As displayed in Fig. 2a, the model successfully
discovers that bedroom is related with sleeping in the night and
in the morning whereas the place is related with other actions
in the afternoon and in the evening. Similarly, as illustrated in
Fig. 2b, the corridor is related with moving most of the time.
Moreover, the model successfully relates the outside door with
outside activity as can be seen in Fig. 2c. It is important for
the model to find out when the person goes out. If the model
cannot predict that the user is outside, and since there is no
sensor activity when the user goes out, the system might raise
a false alarm which is inconvenient for the user. Lastly, the
living room is displayed in Fig. 2d and this place is related
with activity most of the time as it is the case.

Depending on the time of the day and the location of the
person, the corresponding activity distribution is extracted as
high level features. For instance, if it is night time and the
person is in the bedroom, we use the first row of Fig. 2a as
high level feature which indicates that the person is probably
sleeping.

IV. HIERARCHICAL CRF MODEL

We have no previous knowledge of the location that the
system is going to be deployed and more importantly we do
not have any labeled actions so we cannot extract the high
level features in the initial phase of the deployment. In order
to use the high level features, we create a hierarchical model
in which an initial model is used as an input.
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(a) Bedroom (b) Corridor (c) Outside door (d) Living room

Fig. 2. The extracted high level features. As displayed in Fig. 2a, the bedroom is related with Sleeping in the night and in the morning whereas it is related
with Moving and Activity in the afternoon. The corridor is displayed in Fig. 2b and it is related with Moving most of the time. It is observed that the model
could also locate the outside door as illustrated in Fig. 2c. Finally, the living room, Fig. 2d, is almost always related with Activity whereas it is related to
Moving in the night which makes sense because the person passes through the living room when going to toilet.

In order to create a hierarchical model, we first use the
training set and extract the sensor features, Fsen. The features
extracted represent every 3 second interval. Then, we train an
SVM classifier using the labeled training data. We employed
a radial basis kernel and the parameters of the SVM are
learned through 5-fold cross validation on the training data.
These parameters are fixed and kept constant throughout the
experiments. Then, we test SVM on the training data to get a
probability, Fsvm, for each training instance. Next, Fsvm and
Fsen are concatenated to create the updated set of features,
F , and these features are used as input to CRF. That is, each
SVM output for a 3 second interval is used just like any other
feature and all features are used to train the CRF classifier.
The CRF model has a simple chain structure where each node
has an edge with its previous and next neighbor. Each node is
used to make a decision for a 3 second interval and a chain
contains 1200 nodes. So, essentially a chain instance is used
to make predictions for one hour.

Given the initial SVM and CRF, the algorithm we use to
create a hierarchical model on test data is displayed in Alg. 3.
As a first step, Fsen is extracted and the SVM is used to make
predictions for each test instance to create Fsvm. Then, the test
data are labeled, Lupdate, using the CRF and the concatenated
set of features, F = [Fsen, Fsvm].

The core of our algorithm starts at line 9 of the Alg. 3 where
in each iteration we create a more refined model. We start the
iteration by saving the previously found labels. After that step,
the high level features, Fhigh, is created using the topology
and the found labels. The sensor features are concatenated with
high level features to create hierarchical features, Fhier. At
line 13, an updated SVM is created using Fhier and Lupdate.
So essentially in the algorithm not only the CRF but also the
SVM changes with each iteration. The algorithm continues by
creating Fsvm using the updated SVM on the test data. All
the extracted features are then collected, F = [Fhier, Fsvm]
and the updated CRF is built using F and Lupdate. We use
the updated CRF model again on the test data and update the
labels with the new results. This iteration continues until either
the maximum number of iterations is reached or the predicted
labels do not change.

Algorithm 3 Build hierarchical model.
1: SVM ← The initial SVM
2: CRF ← The initial CRF
3: Fsen ← Sensor features
4: Fsvm ← Test SVM on test data
5: F ← [Fsen, Fsvm]
6: Lupdate ← Test CRF with F
7: Init maxIter
8: iter ← 0
9: repeat

10: Linit ← Lupdate

11: Fhigh ← High level features with topology and Lupdate

12: Fhier ← [Fsen, Fhier]
13: SVM ← Train SVM with Fhier and Lupdate

14: Fsvm ← Test SVM on test data
15: F ← [Fhier, Fsvm]
16: CRF ← Train Hierarchical CRF
17: Lupdate ← Test CRF with F
18: iter ← iter + 1
19: until iter < maxIterandLinit 6= Lupdate

V. EXPERIMENTS

A. Experimental setup

The flats we used in the experiments are displayed in Fig. 1.
The first flat contains 8 motion and 8 door sensors whereas
the second flat contains 7 motion and 6 door sensors. For each
flat we recorded and labeled 4 days of activities. The collected
data is discretized by 3 second intervals. Thus, for each flat
there are 115200 (4 ∗ 24 ∗ 60 ∗ 60/3) instances.

B. Data annotation

In order to annotate the data we created an annotation tool
where the user could select one of the 5 annotations available
in the interface for each time interval. An illustration of the
interface is given in Fig. 3. The available labels are:

1) Outside
2) Sleeping
3) Moving
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Fig. 3. The interface that is used for data annotation. The user can select
one of the available labels for each time interval.

TABLE I
TWO-FOLD CROSS VALIDATION RESULTS ON THE TRAINING DATA. THE
ROWS REPRESENT THE PERFORMANCE OF THE SYSTEM ON THE FOLDS.

SVM Result(%) CRF Result(%) Hierarchical Model Result(%)

74.40 85.96 86.56

83.97 80.72 81.08

4) Activity
5) Undetermined
Most of the labels are self explanatory other than the last

label, Undetermined. Although there is no unusual event in
the data, the user can select this label if there is no movement
for some time and the person is not outside. We also want to
detect these cases in case an emergency occurs.

C. Experiment Results

In order to test the hierarchical model, we first experimented
with how the model performs for the same flat where the
performance is defined as the proportion of the activities found
by the model that are in par with the labeled data. We did
a two-fold cross validation on the training data of the first
flat for that purpose. That is, we split the labeled data for
the first flat into 2 halves and firstly used the first half for
training and the second for testing, secondly we used the
second half for training and the first half for testing. The results
of this experiment is given in Tab. I. The first line of the table
shows the result of this experiment. In the first test, the SVM,
CRF and hierarchical model achieve an accuracy of 74.40%,
85.96% and 86.56% respectively. As can be seen classifier
combination and creating a hierarchical model achieves higher
results for the first test. The second cross validation result is a
bit different: The SVM classification gives the highest result in
this test. However, on the average the hierarchical model gives
the best accuracy and building a hierarchical model always
improves the CRF accuracy.

In our second test, we trained and tested our algorithm using
different flats. In order to do that, we used the first flat for
training and the second flat for testing. We again split the
training data into two and trained two models and tested them
both on the second flat data. The test results are displayed in
Tab. II. As can be seen, in both tests the hierarchical model
gives the best accuracies on the test data.

TABLE II
ACCURACIES USING THE FIRST FLAT FOR TRAINING AND THE SECOND

FLAT FOR TESTING. ROWS REPRESENT THE ACCURACIES USING THE FIRST
AND THE SECOND HALF OF THE TRAINING DATA.

SVM Result(%) CRF Result(%) Hierarchical Model Result(%)

83.56 86.84 87.70

81.68 82.52 83.78

Fig. 4. The test accuracies plotted against iterations when building the
hierarchical model.

We also plotted how the accuracy of the hierarchical
model changes with each iteration of the algorithm. The
accuracy/iteration plots are displayed in Fig. 4. As described in
Sec. IV, while building the hierarchical model, the algorithm
makes iterations and refine the model with each iteration. We
set the maximum number of iteration to 10 during experiments.
As can be seen in the figure, in the first test, the accuracy of the
hierarchical model increases with the first iteration while the
accuracy drops a bit with more iterations. On the contrary,
in the second test, the accuracy of the hierarchical model
increases constantly with increasing number of iterations.

We also visualized the decisions made by the model for
the experiment given in Tab. I. The visualization is displayed
in Fig. 5 where each color represents a different label. The
respective colors for Outside, Sleeping, Moving, Activity and
Undetermined are dark blue, light blue, light green, orange
and dark red. In these figures the x axis represents time and
time is discretized in 1 hour intervals where the model makes
a decision for every 3 seconds. Thus, the maximum x value
in the figures is 1200. The y axis represents consecutive hours
and 30 hours of decisions are displayed in the figures. Notice
that, although there is no unusual activity in the experiments,
in the groundtruth labeling there is a time interval that is
labeled as Undetermined (dark red) by the user. The reason for
that is lack of activity in movement sensors for a long period
of time. The same time interval is labeled as Activity by our
model. That makes sense because there is a little time interval
in the groundtruth data that is labeled as Undetermined and
the model might ignore this label during testing. In order to
better deal with situations like that synthetic alarm situations
can be created.
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(a) Groundtruth (b) Model Results

Fig. 5. The visualization of test results. Each color in the figure represents a different label. The respective colors for Outside, Sleeping, Moving, Activity
and Undetermined are dark blue, light blue, light green, orange and dark red. In Fig. 5a the groundtruth labeling done by the user is displayed whereas in
Fig.5b the decisions made by the model are displayed for the same time interval.

VI. CONCLUSION

In this paper, we described a human activity recognition
system. There are few remarks that can be made about the
system. Firstly, although the system is not given any informa-
tion about the environment the model successfully recovers the
topology of a new flat and relates the locations with specific
activities. This is achieved using a topology finding algorithm
along with the creation of a hierarchical model. The model
achieves accurate results through hierarchically building SVM
and CRF classifiers in decision making. As discussed earlier,
the combination of SVM and CRF classifiers yield better
results since they provide orthogonal information.

Secondly, the designed system relies only on information
from door and movement sensors and not wearable sensors.
This design is user friendly and comfortable since once the
sensors are placed in the living environment the user of the
system does not need to worry about forgetting to wear a
sensor anymore. The system learns the living environment and
user’s habits automatically in time. Moreover, the deployment
of the system requires little effort and expert knowledge.

Thirdly, as we demonstrated in the experiments section, the
model generalizes well to a flat that is completely different
than the flat used for training. That is made possible through
the use of low level features that generalize well to different
flats and a successful topology finding algorithm. The high
level features are only extracted during building of the hierar-
chical model and they provide more specific information about
locations. These features allow the model to relate places with
activities which also add to the performance of the model.
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