
Taking the Pick out of the Bunch −
Type-Safe Shrinking of Metamodels∗

Alexander Bergmayr1, Manuel Wimmer2, Werner Retschitzegger3, Uwe Zdun4

1Vienna University of Technology, Austria
2Universidad de Málaga, Spain

3Johannes Kepler University Linz, Austria
4University of Vienna, Austria

1bergmayr@big.tuwien.ac.at, 2mw@lcc.uma.es
3retschitzegger@cis.jku.at, 4uwe.zdun@univie.ac.at

Abstract: To focus only on those parts of a metamodel that are of interest for a specific
task requires techniques to generate metamodel snippets. Current techniques generate
strictly structure-preserving snippets, only, although restructuring would facilitate
to generate less complex snippets. Therefore, we propose metamodel shrinking to
enable type-safe restructuring of snippets that are generated from base metamodels.
Our approach allows to shrink a selected set of metamodel elements by automatic
reductions that guarantee type-safe results by design. Based on experiments with 12
different metamodels from various application domains, we demonstrate the benefits of
metamodel shrinking supported by our prototypical implementation build on top of the
Eclipse Modeling Framework (EMF).

1 Introduction

With the adoption of Model-Driven Engineering (MDE), more and more modeling lan-
guages are defined based on metamodels. Large metamodels such as the current UML
metamodel rely typically on complex structures which are challenging to grasp. For in-
stance, manually identifying the effective classifiers and features of a certain diagram type
in the metamodel requires much effort. The UML classifier Class transitively inherits
from 13 other classifiers and provides 52 structural features which shows that even putting
the focus only on one classifier can already be challenging. Allowing one to snip out a
subset of a metamodel would relieve one from the full complexity imposed by the base
metamodel. For instance, this would be beneficial for automating model management
tasks by formulating model transformations on metamodel subsets instead of their base
metamodels [SMM+12].
However, if the extraction of an effective metamodel subset is aspired, we are not only

∗This work is co-funded by the European Commission under the ICT Policy Support Programme, grant no.
317859.



confronted with the selection of classifiers and features of the base metamodel, but also
with their reduction to actually shrink the number of classifiers or generalizations. Such
reductions can be useful because the design structure of the base metamodel may not be
necessarily a good choice for the extracted metamodel subset. It has to be noted that a
naive reduction of classifiers may lead to inconsistencies such as (i) broken inheritance
hierarchies, (ii) missing feature containers, and (iii) dangling feature end points which
require special attention in the shrinking process.
In this work, we propose an approach to automatically shrink metamodels. The result
of shrinking a metamodel is what we call a metamodel snippet. A metamodel snippet is
considered as a set of metamodel elements, i.e., classifiers and features, originally defined
in the base metamodel. We provide refactorings to restructure initially extracted metamodel
snippets. Thereby, we enable the reduction of metamodel elements that may become
obsolete by a restructuring and enhance the understandability of metamodel snippets. For
instance, consider the reductions of deep inheritance hierarchies that may not be necessarily
required for a metamodel snippet. Applying reductions to metamodel snippets distinguishes
our approach from some recent work [SMBJ09, KMG11, BCBB11] that generate strictly
structure-preserving results. Reductions enable metamodel snippets with a lower number of
classifiers and features, and flatter inheritance hierarchies. Our proposed reductions are type-
safe in the sense that extensional equivalence1 between extracted and reduced metamodel
snippets is guaranteed by design. Our approach relies on 4 operators: (i) Select to define
the initial set of classifiers and features, (ii) Extract to generate a structure-preserving
metamodel snippet, (iii) Reduce to shrink the metamodel snippet, and (iv) Package to
compose all elements into a metamodel snippet that can be used as any other metamodel.
The structure of this paper is as follows. In Section 2, we introduce our metamodel shrinking
approach. A prototype has been implemented based on the Eclipse Modeling Framework2

(EMF) that is presented in Section 3. We critically discuss the results of applying our
prototype for 12 metamodels in Section 4. A comparison of our approach to related work is
presented in Section 5, and finally, lessons learned and conclusions are given in Section 6.

2 Metamodel Shrinking

Our proposed metamodel shrinking approach relies on OMG’s MOF3 abstraction level
and is therefore metamodel agnostic. A metamodel snippet MMsnippet is produced by
applying our approach to a base metamodel MMbase as shown in Fig. 1.

We propose a 4-step metamodel shrinking process. Each step is accompanied by a dedicated
operator. The Select operator identifies based on a set of models Minput all metamodel
elements MEs, i.e., classifiers and features, required to produce these models. However, a
selection of metamodel elements driven by collecting only directly instantiated classifiers
may not be sufficient. Indirectly instantiated classifiers, and thus, the classifier taxonomy
need to be additionally considered to end up with a valid MMsnippet. This is exactly the

1A metamodel defines a collection of models, i.e., extensions, that conform to it [VG12].
2http://www.eclipse.org/modeling/emf
3http://www.omg.org/mof



MMsnippet

A
A A

B

(ii) (iii)(i) (iv)D E
D E D E

A

B

D E

Bad
Smell

Type‐safe
restructuring

A

MMbase

BC

D E

MinputMinput
PackageExtractSelect Reduce

MEsselected MEsextracted MEsreduced MEspackaged

Figure 1: Overview of metamodel shrinking approach

task of the Extract operator. The operator produces a set of connected metamodel elements
that strictly preserves the structure of the base metamodel. Subsequently, the Reduce
operator shrinks the result of the extraction step. To achieve a reduction of metamodel
elements, we apply well-known refactorings [Opd92, HVW11] to the extracted MMsnippet.
In this way, deep inheritance hierarchies without distinct subclasses are reduced. Indicators
for refactorings are often referred to as ‘bad smells’. For instance, in Fig. 1, we assume that
class B ‘smells bad’, because it does not contain any feature for its subclasses. By removing
the class and linking its subclasses directly to its superclass, the smell is eliminated. Finally,
the Package operator serializes the reduced set of metamodel elements into a persistent
metamodel. In the following subsections, we discuss these 4 steps in more detail.

2.1 Selection of required metamodel elements

In the selection step, all classifiers and features of interest are determined. This explicit set
of metamodel elements shall be by all means part of the metamodel snippet. We support
the selection step by allowing models as input for the Select operator. They serve as a basis
to automatically identify the required metamodel elements to represent them. A potential
model for selecting metamodel elements is sketched in Fig. 2.

Figure 2: Class diagram of ‘PetStore Navigability’ application scenario



The UML class diagram shows an excerpt of the ‘PetStore’ scenario as introduced by Sun.
The idea is to create a metamodel snippet of the UML metamodel that is effectively required
to express the ‘PetStore’ class diagram. We use this scenario throughout the remaining
sections as a running example.

2.2 Extraction of selected metamodel elements

Since the explicitly selected set of metamodel elements may not be sufficient, implicit
metamodel elements that glue them together need to be additionally identified. We call
these elements implicit, as they are computed from the explicit set of metamodel elements
produced by the Select operator. The Extract operator traverses the base metamodel and
produces an enhanced set of metamodel elements by addressing (i) explicitly selected
metamodel elements, (ii) the inheritance closure of explicitly selected classes, (iii) classes
that serve as container of explicitly selected inherited features, and (iv) features contained
by implicitly selected classes. As a result, an initial metamodel snippet is produced.
Considering the excerpt of our example in Fig. 3, Class was explicitly selected as
the ‘PetStore’ class diagram contains Class instances. For instance, Encapsulated-
Classifier and StructuredClassifier were implicitly added in addition to the
explicit selection as they are in the inheritance closure of Class. They are considered
as a means to provide a connected set of metamodel elements decoupled from the base
metamodel. The decoupling is achieved by removing features of classes which reference
classes not contained in the set of selected metamodel elements. In our example, 32 features
were removed in the extraction step. In the reduction step, implicitly selected metamodel
elements are potential candidates for becoming removed again.

<<component>>
Select

MMbase [1..1] MMbase [1..1]

MEsselected [1..*]

MEsinitial ... Initial set of metamodel elements
MEsselected ... Selected set of metamodel elements
MMbase ... Base metamodel Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property

role

owned
Attribute

Se
le
ct
O
pe

ra
to
r 

re
al
ize

d 
as
 c
om

po
ne

nt

Ap
pl
yi
ng

 S
el
ec
t‐

Ex
ce
rp
t 

of
 o
ur
 ru

nn
in
g 
ex
am

pl
e Explicitly selected

MEs:
Class, Property
role, part,
ownedAttribute

MEsinitial [1..*]

superClass

Note: Features role, 
part, ownedAttribute
are contained by 
StructuredClassifier

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property

role

owned
Attribute

Explicitly selected
MEs:
Class, Property
role, part,
ownedAttribute

superClass

Note: Features role, 
part, ownedAttribute
are contained by 
StructuredClassifier

Figure 3: Extracted metamodel elements of our example

2.3 Reduction of extracted metamodel elements

This step aims to shrink the initial metamodel snippet. Manually identifying useful reduc-
tions is cumbersome when the number of involved metamodel elements is overwhelming
and interdependencies between these reductions need to be considered. For instance, in
our example, 101 metamodel elements were extracted from which 34 were reduced by



applying 27 refactorings as a means to achieve a type-safe restructuring. The Reduce opera-
tor indicates extracted metamodel elements for reduction according to a given reduction
configuration RC. Such a configuration can be adapted to control the result of the Reduce
operator. We introduce two concrete reduction configurations depicted in Fig. 4.

OCL expressions for conditions:
fSet is assumed to be the collection of all selected features
c1: context Classifier def if fSet‐>exists(f|self.ownedAttribute‐>includes(f)) then 'k' else 'r' endif
c2: context Feature def if self.lower>=1 or self.isDerived=true then 'k' else 'r' endif
c3: context Feature def if self.lower>=1 then 'k' else 'r' endif

Legend for table cells: 
k...keep metamodel element
r...reduce metamodel element
c...conditional reduce

OCL expressions for metamodel elements:
cSet is assumed to be the collection of all selected classifiers
Concrete Class: : context Classifier inv self.isAbstract=false
Abstract Class: : context Classifier inv self.isAbstract=true
Type outside selection: : context Feature inv cSet‐>includes(self.type)=false 

Reduction
configuration

Co
nt
ex
t

Metamodel element

m
in
im

al

ex
ac
t

ex
te
ns
iv
e

Cl
as
si
fie

r

Explicitly selected concrete Class k k k

Implicitly selected concrete Class k k k

Explicitly selected abstract  Class k k k

Implicitly selected abstract Class k c1 r

Explicity or implicity selected Datatype k k k

Explicitly or implicitly selected Enumeration k k k

Fe
at
ur
e Explicitly selected Property k k k

Implicitly selected Property k c2 c3

Property with type outside selection r r r

OCL expressions for conditions:
fSet is assumed to be the collection of all selected features
c1: context Class def if fSet‐>exists(f|self.ownedAttribute

‐>includes(f)) then 'k' else 'r' endif
c2: context Feature def if self.lower>=1 or self.isDerived=true

then 'k' else 'r' endif
c3: context Feature def if self.lower>=1

then 'k' else 'r' endif

Legend for table cells:
RC … Reduction Configuration
k...keep 
r...reduce
c...conditional reduce

OCL expressions for metamodel elements:
Concrete Class: : context Class inv not self.isAbstract
Abstract Class: : context Class inv self.isAbstract

RC

Extracted metamodel element
ex
ac
t

ex
te
ns
iv
e

Cl
as
si
fie

r

Explicit concrete Class k k

Implicit concrete Class k k

Explicit abstract  Class k k

Implicit abstract Class c1 r

Explicit/implicit Datatype k k

Explicit/implicit Enumeration k k

Fe
at
ur
e Explicit Feature k k

Implicit Feature c2 c3

Figure 4: Exact and extensive reduction configuration (RC)

The reduction of deep inheritance hierarchies in a metamodel snippet is the rationale behind
the exact configuration. Implicitly extracted classifiers in the shape of abstract classes, e.g.,
EncapsulatedClassifier or StructuredClassifier in our example, are in-
dicated for reduction. Considering the UML metamodel, Class originally inherits from
EncapsulatedClassifier which inherits from StructuredClassifier that
in turn inherits from Classifier. They are all well justified in the context of the base
metamodel, but may not be as important for metamodel snippets. In our example, the
context was narrowed to UML’s data modeling capabilities. As a result, Encapsulated-
Classifier is indicated for reduction when applying the exact reduction configuration
as shown in Fig. 5.

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property
role

owned
Attribute

Re
du

ce
 O
pe

ra
to
r 

re
al
ize

d 
as
 c
om

po
ne

nt

LCsselected ... Selected set of Language Constructs
LCsreduced ... Reduced set of Language Constructs
MMbaseML ... Meta‐model of original Modeling Language

<<component>>
Reduce

LCsselected [1..*]

MMbaseML [1..1] MMbaseML [1..1]

LCsreduced [1..*]

<<component>>
MinimalReduce

<<component>>
ExactReduce

<<component>>
ExtensiveReduce

Reduced 
Language 
ConstructsAp

pl
yi
ng

 E
xt
en

si
ve
Re

du
ce

‐
Ex
ce
rp
t o

f o
ur
 ru

nn
in
g 
ex
am

pl
e

superClass

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property
role

owned
Attribute

Re
du

ce
 O
pe

ra
to
r 

re
al
ize

d 
as
 c
om

po
ne

nt

MEsselected ... Selected set of metamodel elements
MEsreduced ... Reduced set of metamodel elements
RC … Reduction configuration
MMbase ... Base metamodel

MEsselected [1..*] MEsreduced [1..*]

Reduced 
metamodel
elementsAp

pl
yi
ng

 E
xt
en

si
ve
 R
ed

uc
e
‐

Ex
ce
rp
t o

f o
ur
 ru

nn
in
g 
ex
am

pl
e

superClass

<<component>>
Reduce

MMbase [1..1] MMbase [1..1]

RC [1..1]

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part

Connectable
Element

Property
role

owned
Attribute

Metamodel 
elements 
indicated for 
reductionsuperClass

Figure 5: Metamodel elements indicated for reduction with extensive RC of our example

Similar to reducing implicitly selected classifiers, features with these characteristics are
candidates for reduction except they are defined as being required or derived. While
the rationale for the former exception is obvious, derived features are kept to avoid loss
of information due to their calculated instead of user-defined value. The superClass



feature of Class is an example in this respect.
In contrast to the exact reduction configuration, the extensive reduction configuration in-
dicates derived features for reduction. Since we did not apply UML’s generalization
concept for classes in our example, the superClass feature was reduced by the extensive
reduction configuration. Rather than keeping implicitly selected abstract classes that serve
as feature containers, in the extensive reduction configuration the intension is to reduce them
without exceptions. Both EncapsulatedClassifier and StructuredClassi-
fier are, thus, indicated for reduction in our example.
However, indicating metamodel elements for reduction is only half the way to obtain a
useful metamodel snippet since naively reducing classes may lead to inconsistencies. We
encountered three possible inconsistencies in our approach: (i) broken inheritance hierar-
chies, (ii) missing feature containers, and (iii) dangling feature end points. In our example,
the generalization relationship of Class needs to be relocated, and the feature role
requires a new container and a new type when the indicated classes are actually reduced.
To overcome these unintended effects, we conduct a type-safe restructuring by relying on
well-known object-oriented refactorings [Opd92] adapted to the area of (meta)modeling
[HVW11]. In Fig. 6, we introduce refactorings for the restructuring of metamodel snippets.

Excerpt of Selection

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

Excerpt of Reduction Expert of Repairing
1

Inheritance
upward

part

Connectable
Element

*Note: Features role, 
part, ownedAttribute
are contained by 
StructuredClassifier

Classifier with
Property

A

B

C

Push down
Feature

Specialize
Feature
Type

Pull up
Inheritance

C

A A

B

a : Type
B

a : Type B

A

C

B

C

Reduced
Classifier Generalization Reduced

GeneralizationAssociation

Property

role

owned
Attribute

Class

Classifier

part

role

owned
Attribute

Property

2

3

1 2 3

Feature
downward

Type
downcast

*Note: Features role, 
part, ownedAttribute
are now contained by 
Class

Classifier Reduced Classifier 
with Property

Class

Encapsulated
Classifier

Structured
Classifier

Classifier

Behaviored
Classifier

part Property

role

owned
Attribute

Connectable
Element

Reduce Classifier Generalization Reduced Generalization AssociationClassifier

Problem:
Broken inheritance hierarchy

Problem:
Dangling feature  end point

Problem:
Missing feature container

Figure 6: Refactoring techniques for type-safe metamodel restructuring

They achieve (i) relocating generalization relationships by pulling up the relationship ends
to super-superclasses, (ii) moving features if their base containers were reduced by pushing
down features from superclasses to subclasses and (iii) reconnecting dangling feature end
points by specializing feature types from superclasses to subclasses. These refactorings
are, by design, type-safe since they operate on the inheritance hierarchies imposed by the
base metamodel and respect type substitutability [GCD+12]. Refactorings are considered
as events triggered by the need to usefully conduct indicated reductions on the metamodel
snippet.
Pull up inheritance. This refactoring enables relocating generalization relationships. A
relationship end that would be a dangling reference as a result of reducing classes which lie
in between of other classes in the inheritance hierarchy has to be relocated. Such a gap in
the inheritance hierarchy is closed by pulling up the relationship end to the least specific
superclasses of the reduced class.
In our example, the generalization relationship of Class needs to be relocated as Class
indirectly specializes Classifier and both classes are kept after the reduction. As a
result, Class inherits from Classifier serving as the replacement for the more spe-



cific classes EncapsulatedClassifier and StructuredClassifier as shown
in Fig. 7. The indicated reduction for Classifier is relaxed because several subclasses
such as Association or Datatype inherit features contained by Classifier. A
reduction of Classifier would lead to duplicated features in the corresponding sub-
classes. We decided to prevent such an effect as from an object-oriented design perspective
this is not desirable.

Classifier

part
Property

role

owned
Attribute

Re
pa

ir 
O
pe

ra
to
r 

re
al
ize

d 
as
 c
om

po
ne

nt

MEsreduced ... Reduced set of metamodel elements
MEsrepaired... Repaired metamodel elements
MMbase ... Base  metamodel

2Feature
downward

Class

<<component>>
Repair

MMbase [1..1] MMbase [1..1]

MEsrepaired [1..*]Inheritance
Upward

Refactoring

Feature
Downward
Refactoring

Type
Downcast
Refactoring

MEsreduced [1..*]

Ap
pl
yi
ng

 R
ep

ai
r‐

Ex
ce
rp
t 

of
 o
ur
 ru

nn
in
g 
ex
am

pl
e

1Inheritance
upward

3Type
downcast

Classifier

part
Property

role

owned
Attribute

2Push down
Feature

Class

1Pull up
Inheritance

3Specialize
Feature Type

Figure 7: Refactored metamodel elements of our example

Push down feature. This refactoring supports moving features from one to another container
by going down the inheritance hierarchy. Features for which a new container is required are
moved down to the most generic subclass. This could lead to reverting back to a previously
reduced container to avoid duplicated features (cf., Classifier). Reduced containers
become in such a situation reintroduced.
In our example, the features part, ownedAttribute and role are moved to a con-
tainer compatible with StructuredClassifier since this class was reduced.
Specialize feature type. This refactoring addresses reconnecting dangling references of
associations or compositions between classes. Similar to the push down feature refactoring,
the most generic subclass is selected for the type specialization.
In our example, the feature role needs to be reconnected to a type compatible with
ConnectableElement. As a result, the type of feature role is changed from Con-
nectableElement to Property. Searching for the most generic subclass may lead
to a similar situation like for the push down feature refactoring, i.e., the reintroduction of
previously reduced classes.

2.4 Packaging of metamodel snippet

To enable dedicated modeling tools to work with metamodel snippets, the metamodel snip-
pets need to be materialized. The Package operator takes the result of the Reduce operator
and reconciles the shrinked set of metamodel elements into a serialized MMsnippet.
In Fig. 8, the complete result for our example is shown, i.e., the part of the UML metamodel
required to express the ‘PetStore’ model. We applied the extensive reduction configuration
which resulted in 22 classifiers and 45 features. Overall, 8 different classes were actually
instantiated as indicated by the dashed framed classifiers in Fig. 8. Using only this set



of classes would require to inject the same features multiple times in different classes
which would lead to a metamodel snippet with poor design quality. Thus, by applying the
proposed refactorings, we can find an effective trade-off between a carefully selected set of
classes and design quality.

Element
NamedElement

RedefinableElement

Classifier

Namespace PackageableElementTypedElement

LiteralSpecification

LiteralInteger

LiteralUnlimited
Natural

AssociationDataType

Property

Class

Package

Model

ownedElement: Element
owner: Element

type: Classifer member: NamedElement
ownedMember: NamedElement

feature: Property
attribute: Property
isAbstract: Boolean
package: Package

redefinitionContext: Classifier
isLeaf: Boolean

visibility: VisibilityKind
qualifiedName: String
namespace: Namespace
name: String

isDerived: Boolean
memberEnd: Property
endType: Classifier
relatedElement: Element

value: Integer

value: UnlimitedNatural

isDerived: Boolean
isDerivedUnion: Boolean
aggregation: AggregationKind
isComposite: Boolean
class: Class
opposite: Property
association: Association
isStatic: Boolean
isOrdered: Boolean
isUnique: Boolean
upper: unlimitedNatural
lower: Integer
isReadOnly: Boolean
featuringClassifier: Classifier
upperValue: LiteralSpecification
lowerValue: LiteralSpecification

isActive: Boolean
part: Property
role: Property
ownedAttribute: Property

ownedType: Classifier
nestedPackage: Package
nestingPackage: Package
packagedElement: PackageableElement

MMsnippet

<<DataType>>
String

<<DataType>>
Boolean

<<DataType>>
UnlimitedNatural

<<DataType>>
Integer

<<Enumeration>>
VisibilityKind

<<Enumeration>>
AggregationKind

Dashed frame indicates explicitly 
selected metamodel elements  
of the ‘PetStore’ data model

Figure 8: Metamodel snippet of our example

3 Prototypical Implementation: EMF Shrink

To show the feasibility of the metamodel shrinking approach, we implemented a prototype
based on EMF. To operationalize our proposed operators, we implemented them based on a
pipeline architecture. While the Select and Extract operator have been straightforwardly
implemented on the basis of EMF, the realization of the Reduce operator required more
care because potentially occurring side effects as a result of applied metamodel refactorings
needed to be handled. An example in this respect is the reintroduction of previously reduced
classes because they may have effects on the inheritance hierarchies. For that reason, we
heavily exploited EMF’s change notification mechanism to trigger precalculated relaxations
on refactorings that become obsolete as metamodel shrinking progresses. The Package
operator generates independently of the position in the pipeline valid metamodel snippets
conforming to Ecore, i.e., EMF’s meta-metamodel. This was helpful for validating and
interpreting the results of our operators. We used an automatic validation by executing



well-formedness constraints and manual validation by inspecting the generated snippets
in the graphical modeling editor for Ecore models. Implementation code for metamodel
snippets can be generated by applying EMF’s generation facility.
Customizations in a metamodel’s implementation code that also relate to a metamodel
snippet requires special consideration. In our running example, the value of the feature
ownedElement in Element is a derived value. For that reason, we additionally realized,
based on EMF’s adapter concept, generic adapter factories that allow the integration of
customized implementation code into generated implementation code of a metamodel
snippet as far as model manipulation operations are concerned. Whenever model elements
are created with a metamodel snippet, in the background corresponding model elements as
instances of the base metamodel are created. As a result, model elements adapt each other
in the sense of a delegation mechanism and are kept synchronized via change notifications.
Further details regarding our implemented prototype can be found online4.

4 Evaluation

To evaluate the applicability of our proposed approach, we performed experiments by
shrinking 12 metamodels based on given models as summarized in Fig. 9.

Metamodel# RC
1+

RC
2+

RC
1+

RC
2+

RC
1+

RC
2+ Extraction

Result
ACME1 19 26 7 4 5 5 4 4 2 2 1,36842105 0,57142857
Agate1 72 204 16 35 12 11 29 29 6 8 2,83333333 2,1875
BMM2 47 66 13 22 11 11 16 16 4 4 1,40425532 1,69230769
BPMN23 147 458 35 73 34 31 64 40 2 7 3,11564626 2,08571429
HTML4 62 112 8 16 7 7 14 14 2 2 1,80645161 2
iStar5 44 101 19 41 18 18 30 30 0 0 2,29545455 2,15789474
PNML6 42 80 14 16 10 10 16 16 2 2 1,9047619 1,14285714
Requirement4 50 53 22 23 22 20 20 20 0 8 1,06 1,04545455
SBVR4 332 361 20 18 20 20 11 11 0 0 1,0873494 0,9
SQLDDL4 20 27 13 21 13 13 20 20 0 0 1,35 1,61538462
SysML7 307 621 38 84 33 25 64 38 1 15 2,0228013 2,21052632
UML4 264 586 36 65 29 22 52 45 6 27 2,21969697 1,80555556

Results in absolute numbers

To
ta
l c
la
ss
ifi
er
s

To
ta
l f
ea
tu
re
s

Ex
tr
ac
te
d

cl
as
sif
ie
rs

Ex
tr
ac
te
d

fe
at
ur
es Pa
ck
ag
ed

cl
as
sif
ie
rs

Pa
ck
ag
ed

fe
at
ur
es

Ap
pl
ie
d

re
fa
ct
or
in
gs

Extract Package Reduce

Source of used models:
1Order Processing System
(IBM developerworks)

2JK Enterprises
(IBM developerworks)

3Hardware Retail Process 
(OMG BPMN Specification)

4PetStore use case
(PetStoreNavigability)

5Toronto Civil Workers Strike
(OpenOME Toronto)

6Vending Machine
(Workflow Petri Net Designer
WoPeD)

7Distiller
(OMG SysML)

+)RC1 ... Exact reduction 
configuration
+)RC2 ... Extensive reduction 
configuration

#)From AtlanMod
Metamodel Zoo

Figure 9: Quantitative experiment results in absolute numbers

The rationale behind our selection of Metamodels is mainly based on three criteria: (i)

4http://code.google.com/a/eclipselabs.org/p/emf-shrink



coverage of a wide range of applications domains (from business motivation and business
process management over requirements engineering to software and systems engineering),
(ii) consideration of small-sized to large-sized metamodels (from less than 50 to over 900
metamodel elements), (iii) involvement of metamodels with flat as well as deep inheritance
hierarchies (from 2 up to 10 abstraction levels). Total classifiers and Total features refer to
the size of a metamodel whereas Extracted classifiers and Extracted features represent the
result of the extraction step in the respective experiments. Results from the Package operator
w.r.t. the Reduce operator are presented for the two introduced reduction configurations. The
less classifiers and features were packaged w.r.t. their corresponding number of extracted
classifiers and features, the more metamodel elements were reduced. Finally, absolute
numbers of applied refactorings are provided as a result of the Reduce operator. Typically,
the more reductions of metamodel elements were achieved, the higher is the number of
applied refactorings.
Based on the quantitative results, we critically discuss our approach from a qualitative
perspective by investigating benefits and limitations of our approach. We consider 5
architectural metrics (cf., [BD02, MSJ04]) of packaged compared to extracted metamodel
elements: (i) number of reduced classifiers, (ii) number of reduced features, (iii) mean
features per classifier, (iv) mean inheritance hierarchy depth and (v) understandability.
As expected, benefits of metamodel shrinking take effect when large metamodels with deep
inheritance hierarchies (cf., UML or SysML experiments) are considered. Considering
Fig. 10, we could achieve to reduce in average ≈ 13% of extracted classifiers with the
exact reduction configuration, while an average value of ≈ 18% could be achieved with the
extensive one.

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0
40,0
45,0

Ac
hi
ev
ed

 c
la
ss
ifi
er
 re

du
ct
io
n 
in
 %

Exact reduction Extensive reduction

exact	12,6%
extensive	17,9%

SE2013

0

0,5

1

1,5

2

2,5

3
M
ea
n 
fe
at
ur
es
  p
er
 c
la
ss
ifi
er

Extraction result Exact reduction Extensive reduction

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50

M
ea
n 
ge
ne

ra
liz
at
io
n 
hi
er
ar
ch
y 
de

pt
h Extraction result Exact reduction Extensive reduction

0,0
5,0

10,0
15,0
20,0
25,0
30,0
35,0
40,0
45,0
50,0
55,0
60,0

Ac
hi
ev
ed

 fe
at
ur
e 
re
du

ct
io
n 
in
 %

Exact reduction Extensive reduction

exact	14,7%
extensive	20,0%

Figure 10: Achieved reductions of metamodel elements

Most classifier reductions could be achieved in the UML (≈ 39%) and SysML (≈ 34%)
experiments as these metamodels cover many abstract classifiers for reasons of genericity
or extensibility which is not necessarily required for metamodel snippets. Results of
feature reductions w.r.t. the number of extracted features are in average in the range of
≈ 15% to ≈ 20%. Reductions of features are generally easier to achieve as they lead
typically not to inconsistencies in a metamodel snippet. However, in case of classifier
reductions inconsistencies in a metamodel snippet may lead to reintroducing a previsouly
reduced feature container to avoid duplicated features. Consequently, the rates of classifier
reductions are lower than the rates of feature reductions particularly when the number of
extracted features is much higher than the number of extracted classifiers.



Considering Fig. 11, the extensive reduction of classifiers may lead to an increase of
mean features per classifier since features are pushed down from generic to more specific
classifiers (cf., Agate or UML experiments).

0,0

10,0

20,0

30,0

40,0

50,0

60,0

Ac
hi
ev
ed

 fe
at
ur
e 
re
du

ct
io
n 
in
 %

Exact reduction Extensive reduction

0,0
5,0
10,0
15,0
20,0
25,0
30,0
35,0
40,0
45,0

Ac
hi
ev
ed

 c
la
ss
ifi
er
 re

du
ct
io
n 
in
 %

Exact reduction Extensive reduction

exact	14,7%
extensive	20,0%

exact	12,6%
extensive	17,9%

SE2013

0

0,5

1

1,5

2

2,5

3

M
ea
n 
fe
at
ur
es
  p
er
 c
la
ss
ifi
er

Extraction result Exact reduction Extensive reduction

0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00
4,50

M
ea
n 
in
he

rit
an
ce
 h
ie
ra
rc
hy

 d
ep

th

Extraction result Exact reduction Extensive reduction

Figure 11: Mean features per classifier and mean inheritance hierarchy depth

Extensive reductions have generally positive effects on the mean inheritance hierarchy
depth of metamodel snippets. The less classifiers are contained by metamodel snippets, the
flatter inheritance hierarchies can be achieved while on the downside the less opportunities
are available for features to be placed in appropriate classifiers. Generally, reductions of
metamodel elements and potential refactorings lead inherently to structural differences
between metamodel snippets and their base metamodels. Still, our metamodel shrinking
approach generates metamodel snippets that are restructured in a type-safe way. Metamodel
snippets enable expressing the models that were used to produce them in the same way as
their base metamodels.
Finally, we applied the understandability metric of [BD02] to the metamodel snippets in
our experiments as shown in Fig. 12.

SE2013 ‐ Understandability

‐14,0

‐12,0

‐10,0

‐8,0

‐6,0

‐4,0

‐2,0

0,0

U
nd

er
st
an
da
bi
lit
y 
[B
D0

2,
 M

SJ
04

] o
f 

m
et
am

od
el
 s
ni
pp

et
s 

Extraction result Exact reduction Extensive reduction

0,0

10,0

20,0

30,0

40,0

50,0

60,0

Ac
hi
ev
ed

 im
pr
ov
em

en
t o

f 
un

de
rs
ta
nd

ab
ili
ty
 [B

D0
2,
 M

SJ
04

]i
n 
% Exact reduction Extensive reduction

exact	17,8%
extensive	25,7%

Understandability =  ‐ 0.2*Abstraction ‐ 0.2*Coupling ‐ 0.2*Polymorphism
‐ 0.2*Complexity ‐ 0.2*Design size 

Figure 12: Understandability of metamodel snippets

We used a slightly adapted version of the originally proposed formula to calculate the
understandability measures in two respects. First, we omitted the encapsulation property
since private features are rarely used for metamodels, and second, we also omitted the
cohesion property since our focus is on structural rather than behavioral features. As a
result, our formula consists of 5 properties with equal weights, i.e., 0.2, that add up to 1



as suggested by [BD02]: (i) Abstraction, i.e., average number of ancestors for classifiers,
(ii) Coupling, i.e., average number of features owned by a classifier that reference to other
distinct classifiers, (iii) Polymorphism, i.e., number of abstract classifiers, (iv) Complexity,
i.e., average number of features in a classifier and (v) Design size, i.e., number of classifiers.
The calculated value of the understandability metric is negative which means the lower the
value the more difficult is it to understand a metamodel.
We could improve the understandability of extracted compared to extensively reduced
metamodel snippets in average by ≈ 26%. Considering the UML experiment, the under-
standability value of the UML metamodel is ≈ −61 whereas with the Extract operator we
could improve this value to ≈ −12 when the focus is on UML’s data modeling capabilities.
With the restructuring of extracted metamodel elements, we could further improve the
understandability by ≈ 48% in the metamodel snippet.

5 Related Work

With respect to our goal of generating metamodel snippets, we identified three lines of
related research work: (i) model slicing, (ii) model refactoring and (iii) aspect mining.
Model Slicing. Inspired from the notion of program slicing [Wei81], a static slicing mecha-
nism is proposed by [KMS05] for UML class diagrams and by [BLC08] for modularizing
the UML metamodel. Both approaches present how (meta)model elements are selected by
relying on user-defined criteria (e.g., classifiers or relationships to be included) that express
the initial set of elements from which a slice is computed. This computation is in our work
supported by the Extract operator. Slicing mechanisms specific to UML class diagrams
and state machine diagrams are introduced by [LKR10, LKR11]. In this research endeavor,
class invariants and pre- and post-conditions of operations are exploited for computing
class diagram slices while data and control flow analysis techniques are applied to reduce
state machines to the elements relevant to reach a certain state. Since in our approach meta-
models are solely considered from a structural viewpoint, techniques related to behavioral
viewpoints (e.g., operational semantics) are beyond the scope of our approach. Slicing meta-
models is addressed by approaches presented in [SMBJ09] and more recently in [KMG11].
They apply a projection-based approach to obtain a strictly structure-preserving subset as
opposed to our approach that enables restructuring of metamodels. A declarative language
as a means to implement slicing mechanisms for reducing (meta)models is introduced by
[BCBB11] which could be an alternative technology to realize our Reduce operator.
Model Refactoring. Existing research work in the area of model refactoring is presented by
[FGSK03] addressing pattern-based refactorings on UML-based models, [Wac07] propos-
ing model refactorings for co-adapting models with evolved metamodels, or [MMBJ09]
applying generic model refactorings on different kind of models. Our approach focuses on
the metamodel level. We adopted commonly known refactorings originating from the area
of object-orientation [Opd92, HVW11] to achieve type-safe metamodel reductions.
Aspect Mining. Since aspect-orientation has arrived at the modeling level, several research
endeavors started addressing this topic as surveyed in [WSK+11]. Identifying aspects in
existing models is investigated by [ZGLT08], presenting approaches for mining crosscutting



concerns in a given set of models and describing them with an aspect language. Metamodel
snippets can be compared with the notion of symmetric concerns [HOT02, WSK+11] since
they subsume model elements related to certain modeling concerns.

6 Lessons Learned

We now summarize lessons learned from realizing and applying our proposed approach.
Type-safe restructuring as enabler for less complex metamodel snippets. Strictly structure-
preserving approaches are not necessarily the first choice for generating metamodel snippets
since restructuring can reduce the number of metamodel elements. Approaches that facili-
tate to compose (cf., [WS08]), combine (cf., [Val10]) or extend (cf., [LWWC12]) existing
metamodels may benefit from reduced metamodel snippets if they intend to operate on a
subset of a large metamodel.
Usage of existing metamodel implementation code for metamodel snippets. Decoupling
metamodel snippets from their base metamodel requires care if existing metamodel imple-
mentation code is available. Clearly, this depends on the metamodeling workbench. We
realized delegation mechanisms that loosely couple metamodel snippets with their base
metamodel at the implementation level to cope with this challenge.
Metamodel snippets as reusable assets for new metamodels. Since reuse allows exploiting
domain knowledge already expressed in existing metamodels [KKP+09], metamodel snip-
pets can support reuse when only some parts of an existing metamodel are required. For
instance, the language workbench challenge 20125 refers to such a reuse scenario. Clearly,
metamodel snippets are a first step in this direction and may act as stimulator to enhance
reuse in metamodeling.

References

[BCBB11] Arnaud Blouin, Benot Combemale, Benoit Baudry, and Olivier Beaudoux. Modeling
Model Slicers. In MODELS’11, pages 62–76. Springer, 2011.

[BD02] Jagdish Bansiya and Carl G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Trans. Softw. Eng., 28(1):4–17, 2002.

[BLC08] Jung Ho Bae, KwangMin Lee, and Heung Seok Chae. Modularization of the UML
Metamodel Using Model Slicing. In ITNG’08, pages 1253–1254. IEEE, 2008.

[FGSK03] R. France, S. Ghosh, E. Song, and D.K. Kim. A metamodeling approach to pattern-based
model refactoring. IEEE Softw., 20(5):52–58, 2003.

[GCD+12] Clément Guy, Benoı̂t Combemale, Steven Derrien, Jim R. H. Steel, and Jean-Marc
Jézéquel. On model subtyping. In ECMFA’12, pages 400–415. Springer, 2012.

[HOT02] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. Research Report RC22685, IBM, 2002.

5http://www.languageworkbenches.net



[HVW11] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth. An extensive
catalog of operators for the coupled evolution of metamodels and models. In SLE’11,
pages 163–182. Springer, 2011.

[KKP+09] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel. Design
Guidelines for Domain Specific Languages. In OOPSLA’09 Workshop on Domain-
Specific Modeling (DSM’09), 2009.

[KMG11] Pierre Kelsen, Qin Ma, and Christian Glodt. Models within Models: Taming Model
Complexity Using the Sub-model Lattice. In FASE’11, pages 171–185. Springer, 2011.

[KMS05] Huzefa Kagdi, Jonathan I. Maletic, and Andrew Sutton. Context-Free Slicing of UML
Class Models. In ICSM’05, pages 635–638. IEEE Computer Society, 2005.

[LKR10] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. Slicing of UML Models Using Model
Transformations. In MODELS’10, pages 228–242. Springer, 2010.

[LKR11] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. Slicing Techniques for UML Models.
JOT, 10:1–49, 2011.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF Profiles: A
Lightweight Extension Approach for EMF Models. JOT, 11(1):1–29, 2012.

[MMBJ09] Naouel Moha, Vincent Mahé, Olivier Barais, and Jean-Marc Jézéquel. Generic Model
Refactorings. In MODELS’09, pages 628–643. Springer, 2009.

[MSJ04] Haohai Ma, Weizhong Shao, Lu Zhang 0023, and Yanbing Jiang. Applying OO Metrics
to Assess UML Meta-models. In UML’04, pages 12–26. Springer, 2004.

[Opd92] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, 1992.

[SMBJ09] Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. Meta-model Pruning.
In MODELS’09, pages 32–46. Springer, 2009.

[SMM+12] Sagar Sen, Naouel Moha, Vincent Mahé, Olivier Barais, Benoit Baudry, and Jean-Marc
Jézéquel. Reusable model transformations. SoSym, 11(1):111–125, 2012.

[Val10] Antonio Vallecillo. On the Combination of Domain Specific Modeling Languages. In
ECMFA’10, pages 305–320. Springer, 2010.

[VG12] Antonio Vallecillo and Martin Gogolla. Typing Model Transformations Using Tracts.
In ICMT’12, pages 56–71. Springer, 2012.

[Wac07] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In ECOOP’07,
pages 600–624. Springer, 2007.

[Wei81] Mark Weiser. Program slicing. In ICSE’81, pages 439–449. IEEE Press, 1981.

[WS08] Ingo Weisemöller and Andy Schürr. Formal Definition of MOF 2.0 Metamodel Compo-
nents and Composition. In MODELS’08, pages 386–400. Springer, 2008.

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Retschitzegger, Wieland
Schwinger, and Elisabeth Kapsammer. A survey on UML-based aspect-oriented design
modeling. ACM Comput. Surv., 43(4):1–33, 2011.

[ZGLT08] Jing Zhang, Jeff Gray, Yuehua Lin, and Robert Tairas. Aspect mining from a modelling
perspective. Int. J. Comput. Appl. Technol., 31:74–82, 2008.


