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GDFMs - The Model Class

yNt = ŷNt +uNt

yNt ... observations

ŷNt ... latent variables, strongly dependent in the
cross-sectional dimension

uNt ... (wide sense) idiosyncratic noise, weakly dependent

Assumptions(
ŷNt
)
,
(
uNt
)
wide sense stationary with absolutely summable

covariances

E
(
ŷNt
(
uNs
)′)

= 0

E
(
ŷNt
)

= E
(
uNs
)

= 0
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Corresponding Spectral Densities

f Ny (λ ) = f Nŷ (λ ) + f Nu (λ )

Asymptotic analysis for both T → ∞ and N → ∞

Sequence of models

Nested elements of ŷN
t and uNt do not depend on N

Identi�ability is obtained only asymptotically

Manfred Deistler
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Assumptions

Assumptions

1 Strong dependence of
(
ŷNt
)
t∈Z:

The �rst q eigenvalues of f Nŷ (λ ) diverge to in�nity for all
frequencies λ , as N → ∞ and the others are zero.

2 Weak dependence of
(
uNt
)
t∈Z:

The largest eigenvalue of f Nu (λ ) is uniformly bounded for all
frequencies λ and all N

3 f Nŷ (λ ) is a rational spectral density with constant rank q < N,
and of McMillan degree 2n < N;

q and n do not depend on N.
Additional (but justi�ed) restriction

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

GDFMs - The Model Class
Factorization of the Spectral Densities of the Latent Variables

Main Early References for GDFMs

Forni, Hallin, Lippi, Reichlin, between 2000 and 2005

Representation Theory
Identi�cation and Estimation
One-sided Estimation and Forecasting
Consistency and Rates

Stock and Watson, 2002

Forecasting Using Principal Components from a Large Number
of Predictors
Macroeconomic Forecasting Using Di�usion Indexes
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Recent References

Doz, Giannone, Reichlin, JoE, 2011

A two-step estimator for large approximate dynamic factor
models based on Kalman �ltering

Forni, Hallin, Lippi, Za�aroni 2011 - One-Sided
Representations of Generalized Dynamic Factor Models
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Special References for Structure Theory

Deistler, Anderson, Filler, Zinner, Chen, European Journal of
Control, 2010

Generalized Dynamic Factor Models - An Approach via
Singular Autoregression

Anderson, Deistler 2008/2009

Properties of Zero-Free Transfer Function Matrices
Properties of Zero-Free Spectral Matrices

Deistler, Filler, Funovits, CIS, 2011

AR Systems and AR Processes: The Singular Case

Anderson, Deistler, Felsenstein, Funovits, Zadrozny, Eichler,
Chen, Zamani, CDC 2012 accepted

Identi�ability of regular and singular multivariate
autoregressive models from mixed frequency data
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Approach

In reality starting point is a set of high dimensional data{
y

(i)
t |i ∈ {1, . . . ,N} , t ∈ {1, . . . ,T}

}
We start from an idealized setting (a partial problem which is
important for the problem as a whole).
We start from the population second moments of the latent
variables ((

ŷ
(i)
t

)
t∈Z

)
i∈N

,

i.e. from
autocovariance function γNŷ (s) = E

[
ŷNt
(
ŷNt−s

)T ]
, s ∈ Z, N ∈ N or

spectral density f Nŷ (λ ) = ∑
∞

k=−∞
γNŷ (k)e−iλk , λ ∈ (−π,π]

Makes sense because latent variables are obtained through a
previous denoising step.
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Major Steps in Structure Theory 1

Factorization of f Nŷ (λ ), the rational spectral density of the
latent variables of rank q:

f Nŷ (λ )︸ ︷︷ ︸
N×N, rk=q

= wN(e−iλ )︸ ︷︷ ︸
N×q

wN(e−iλ )∗

where wN(z) is a stable miniphase factor

Realization of a �tall� spectral factor by a state space model(
F ,G ,HN

)
with state dimension n

xt = Fxt−1 +Gεt

ŷt
N = HNxt

Note that under our assumptions F , G , xt and εt do not depend on
N from a certain N0 onwards.

Minimal, stable, and miniphase
Manfred Deistler
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Major Steps in Structure Theory 2

Obtain a minimal static factor (zt) of cross-sectional
dimension r which has the same dynamics as the latent
variable ŷNt = MNzt

xt = Fxt−1 +Gεt

zt = Cxt

where C =
[(
MN

)T
MN

]−1 (
MN

)T
HN .

k(z) = C (Iz−1−F )−1G
zt = k(z)εt is the corresponding Wold decomposition

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

Genericity of Zeroless Transfer Functions
Zeroless Spectral Factors and AR Processes
Systems & Solutions
YW-Equations

Outline

1 Structure Theory for GDFMs

2 Regular and Singular Multivariate AR Systems - The Single
Frequency Case
Genericity of Zeroless Transfer Functions
Zeroless Spectral Factors and AR Processes
Regular and Singular AR Systems
The Yule-Walker Equations for Singular AR Systems

3 Regular and Singular AR Systems - The Mixed Frequency Case

4 Exact Interpolation in Singular Mixed Frequency AR Systems

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

Genericity of Zeroless Transfer Functions
Zeroless Spectral Factors and AR Processes
Systems & Solutions
YW-Equations

Outline

1 Structure Theory for GDFMs

2 Regular and Singular Multivariate AR Systems - The Single
Frequency Case
Genericity of Zeroless Transfer Functions
Zeroless Spectral Factors and AR Processes
Regular and Singular AR Systems
The Yule-Walker Equations for Singular AR Systems

3 Regular and Singular AR Systems - The Mixed Frequency Case

4 Exact Interpolation in Singular Mixed Frequency AR Systems

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

Genericity of Zeroless Transfer Functions
Zeroless Spectral Factors and AR Processes
Systems & Solutions
YW-Equations

Zeroless Transfer Function

De�nition

A transfer function w(z) has a zero at z0 if b(z) in an irreducible
left-MFD w(z) = a(z)−1b(z) has not full rank at z0.

Since ŷt = w(z)εt = Mzt = Mk(z)εtholds,

w(z) is zeroless if and only if k(z) is zeroless

Manfred Deistler
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Generic AR Result

Theorem

Consider the set of all minimal state space realizations (F ,G ,C ) for

k(z) for given n ≥ r > q.

Then, the transfer functions are zeroless for generic values of

(F ,G ,C ).

(Compare Anderson and Deistler, 2008)

E.g., consider the singular MA(1) system(
z

(1)
t

z
(2)
t

)
=

(
1−az

1−bz

)
εt .

Manfred Deistler
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Zeroless Spectral Factors and AR Processes

Theorem

The following statements are equivalent:

The stable miniphase spectral factors k(z) of the spectral

density fz of (zt)t∈Z are zeroless.

(zt)t∈Z is a solution of a stable AR-system, i.e.

zt = a1zt−1 + · · ·+apzt−p + νt

where det(I −a1z−·· ·−apz
p)︸ ︷︷ ︸

a(z)

6= 0, |z | ≤ 1 and rk (Σν ) = q,

Σν = E(νtν
′
t).

Compare Anderson and Deistler, CDC, 2008
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Regular and Singular AR Systems

Consider an AR system (in the lag-operator z)

(Ir −a1z−·· ·apzp)zt = νt = bεt ,

where

ai ∈ Rr×r , i ∈ {1, . . . ,p},
(εt)t∈Z is white noise with E(εsε ′t) = δst Iq,
Σν = bb′, b ∈ Rr×q,
rk(b) = q,
det(a(z)) 6= 0, |z | ≤ 1,

Such a system is called regular if q = r holds and singular if q < r

holds.

Manfred Deistler
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Why are Singular AR Systems Interesting?

Because they are models for latent variables in GDFMs for
r > q

Di�erence to regular AR Systems

Identi�ability problem: Coe�cients ai ∈ Rr×r , i ∈ {1, . . . ,p}
not necessarily uniquely determined, b ∈ Rr×q up to
postmultiplication with orthogonal matrices.

Coprimeness: Singular AR systems are not necessarily left
coprime.

Manfred Deistler
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Yule-Walker Equations for Singular AR Systems

Yule-Walker equations are obtained by taking expectations

E

=yt︷ ︸︸ ︷(a1, . . . ,ap)

yt−1
.
.
.

yt−p

+ νt

(y ′t−1, . . . ,y
′
t−p) = Eyt(y ′t−1, . . . ,y

′
t−p)

(a1, . . . ,ap)E


yt−1

.

.

.

yt−p

(y ′t−1, . . . ,y
′
t−p)


︸ ︷︷ ︸

=Γp

= Eyt(y ′t−1, . . . ,y
′
t−p)

Σν =E(νty
′
t) = Eyty ′t −E

(a1, . . . ,ap)

yt−1
.
.
.

yt−p

y ′t


Second moments of (yt)t∈Z known, parameters
[(a1, . . . ,ap) ,Σν ] are unknown

Manfred Deistler
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Γp might be Singular and Γp+1 is Singular for Singular
AR(p) Systems

Possible singularity of Toeplitz matrix Γp of an AR(p) process

Equivalent to saying that the components of yt−1, . . . ,yt−p are
linearly dependent.

Γp+1 is always singular for a singular AR(p) process

Manfred Deistler
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Non-Uniqueness of the Solutions of the Yule-Walker
Equations

If Γp is singular, then the Yule-Walker Equations do not give a
unique solution.
It can be shown that there is an unstable system in the solution set
of the Yule-Walker equations if the Toeplitz matrix Γp is singular.
Extra conditions to obtain uniqueness:

Prescription of appropriate column degrees for ā(z) corresponding
to a �rst basis among the rows of Γp

Theorem

The system (ā(z),b) is stable and left coprime if and only if the

solution set of the Yule-Walker equations contains a stable solution.

W. Chen, B.D.O. Anderson, M. Deistler, A. Filler, JTSA 2011

M. Deistler, A. Filler, B. Funovits, CIS 2011

Manfred Deistler
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Motivation and Problems

Many high dimensional time series only available at di�erent
sampling frequencies

E.g., quarterly GDP and monthly labour market data

Problems

1 Are the system and noise parameters of the underlying true
(high frequency) system identi�able from mixed frequency
data? Can we get consistent parameter estimators?

If yes, Kalman �lter procedures and other linear least squares
procedures can be applied for forecasting and interpolation.

2 Can we reconstruct the unobserved slow variables from the
observed mixed frequency data?

If error covariance matrix is singular, error-free interpolation
may be possible

Manfred Deistler
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Model

Stable and left coprime AR(p) system with

nf fast variables, observed for t ∈ Z, ns slow variables,
observed for t ∈ NZ

Fast underlying system

yt =

(
y ft
yst

)
=

(
a� (1) afs (1)
asf (1) ass (1)

)
︸ ︷︷ ︸

=a1

(
y ft−1
yst−1

)
+ · · ·

(
a� (p) afs (p)
asf (p) ass (p)

)
︸ ︷︷ ︸

=ap

(
y ft−p
yst−p

)
+

(
bf

bs

)
εt ,︸ ︷︷ ︸

νt

t ∈ Z,

where E(εtε
′
t) = Iq and error covariance matrix Σν =

(
Σ� Σfs

Σsf Σss

)
of rank q.

Parameter space Θ⊆ Rp·n2+nq− q(q−1)
2 for...

AR systems of order p and with innovation error covariance matrix
of rank q satisfying the stability and coprimeness condition.

Manfred Deistler
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Extended Yule Walker Equations

Following the idea of B. Chen, P. Zadrozny, Advances in
Econometrics 1998:
Postmultiplying yt by np lagged values of the fast variables(
(y ft−1)T , . . . ,(y ft−np)T

)
(n = nf +ns , and the number np is a

consequence of the Cayley-Hamilton theorem) and taking
expectations

E
[
yt

(
(y ft−1)T , . . . ,(y ft−np)T

)]
= (a1 , . . . ,ap)E



yt−1
.
.
.

yt−p

((y ft−1)T , . . . ,(y ft−np)T
)

︸ ︷︷ ︸
=Z

(1)

Observations

Only those second moments are used which can be observed in
principle.

(a1, . . . ,ap) is identi�able if the matrix Z ∈ Rn×nf ·p·n has full
row rank.

Manfred Deistler
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Z has the Form of a Controllability Matrix

Write the AR(p) system in companion form:


yt

.

.

.
yt−p+1


︸ ︷︷ ︸

=xt+1

=


a1 · · · ap−1 ap
In

. . .
In 0


︸ ︷︷ ︸

A


yt−1

.

.

.
yt−p


︸ ︷︷ ︸

=xt

+


b

0

.

.

.
0


︸ ︷︷ ︸

=B

εt .and define K = E
(
xtx

′
t
)

Inf
0

.

.

.
0

= Γp


Inf
0

.

.

.
0



Fact

It can be shown that

Z = E



yt−1
.
.
.

yt−p

((y ft−1)T , . . . ,(y ft−np)T
)= E

[
xt

(
(y ft−1)T , . . . ,(y ft−np)T

)]
=
(
K ,A K , . . . ,A np−1K

)

Manfred Deistler
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Main Theorem

Theorem (Generic Identi�ability)

1 System Parameters (a1, . . . ,ap):
The matrix Z in the extended Yule Walker equations has full

row rank n ·p on a generic subset of the parameter space Θ.

2 Noise Parameters Σν :

Σν is generically identi�able.

Rank de�ciency of Z is not su�cient for concluding that the
parameters are not identi�able.

B.D.O. Anderson, M. Deistler, E. Felsenstein, B. Funovits, P.
Zadrozny, M. Eichler, W. Chen M. Zamani, accepted for CDC 2012
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Identi�ability of Σν

For given (a1, . . . ,ap) generically Σν is obtained from a
vectorization of the equations

Γp = A ΓpA
T +G ΣG T

γ0 = H ΓpH
T

where H = (I ,0, . . . ,0) and G = H T

See B.D.O. Anderson, M. Deistler, E. Felsenstein, B. Funovits, P.
Zadrozny, M. Eichler, W. Chen M. Zamani, accepted for CDC 2012
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Second Order Asymptotics for Estimation
of Mixed Frequency AR Systems.

Assumptions

Parameters are identi�able

Regular error covariance matrix (as a starting point)

Two ways for losing e�ciency:

1 Missing data:

Compare mixed frequency data MLE to single frequency data
MLE

2 Use of algorithms:

Compare extended YW estimator and a GMM estimator used
in Chen and Zadrazny 1998 to the mixed frequency MLE.
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Discussion of the 2-dimensional AR(1) Case,
Diagonal Error Covariance Matrix (Σsf = 0)

Theorem

The system and noise parameters

(
a� afs
asf ass

)
,Σ� and Σss are not

identi�able if and only if (afs = 0)∧ (asf = 0)∧ (ass 6= 0).

Equivalence classes in non-identi�able case

Slow and fast process are orthogonal.

Slow process is an AR(1) process on t ∈ 2Z

If a2ss 6= 0, the equivalence classes of observational equivalence
consist of two point, +

√
a2ss and −

√
a2ss .

Solution set of the extended Yule Walker equations consist of
a�ne subspaces.
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Diagonal Error Covariance Matrix (Σsf = 0)
Observations

rk(Z ) = np not necessary for identi�ability

We have identi�ability if afs 6= 0 or asf 6= 0 or ass = 0.

Matrix Z is rank de�cient for ass = 0, asf = 0 even if afs 6= 0
which shows that the condition that rk(Z ) = np hold, is not
necessary for identi�ability.

Extended Yule Walker equations do not use the full
information contained in the second moments which are in
principle observed.
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An Alternative Approach for the Mixed Frequency Case
Blocking

Blocking((
y ft
y st

)
, t ∈ Z

)
fast underlying process(

y ft , t ∈ Z
)
, (y st , t ∈ 2Z) observed processes


y ft
y ft−1
y st
y st−1

 , t ∈ 2Z

 blocked fast underlying process

 y ft
y ft−1
y st

 , t ∈ 2Z

 blocked observed process
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Spectral Density of the Fast Underlying Blocked Process

fu(λ ) =


f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

 , λ ∈ [0, π

2
]

Here only f34 and f43 cannot be observed. Under the assumption
that

rk

[
f11 f12
f21 f22

]
= rk

f11 f12 f13
f21 f22 f23
f31 f32 f33


f43 can be shown to be uniquely determined from the known
elements in fu.
Here we don't restrict ourselves to the AR case.

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

Outline

1 Structure Theory for GDFMs

2 Regular and Singular Multivariate AR Systems - The Single
Frequency Case

3 Regular and Singular AR Systems - The Mixed Frequency Case

4 Exact Interpolation in Singular Mixed Frequency AR Systems

Manfred Deistler



Structure Theory for GDFMs
AR Systems - Single Frequency Case
AR Systems - Mixed Frequency Case

Exact Interpolation

Exact Interpolation in Singular Mixed Frequency AR Systems

Interesting feature of singular multifrequency AR systems is
that in some cases exact interpolation is possible.
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Singular 2-dimensional Mixed Frequency Data AR(1)
System as Example for Exact Interpolation

Singular covariance matrix Σν of rank one.

One fast variable, observed for t ∈ Z, and
one slow variable, observed for t ∈ 2Z.

Assume:

1 Parameters of the underlying system identi�able, i.e. we have
all the coe�cients in the equation

(
y ft
yst

)
=

(
a� afs
asf ass

)(
y ft−1
yst−1

)
+

(
bf

bs

)
εt , E

(
ε
2
t

)
= 1, t ∈ Z.

2 Noise εt can be recovered from fast variable

Exact interpolation of y st for t ∈ 2Z−1

y st linear combination of random variables y ft−1, y
s
t−1, and εt .
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E.J. Hannan and Manfred Deistler: The Statistical Theory
of Linear Systems

This edition includes an extensive new introduction that

outlines central ideas and features of the subject matter, as
well as
developments since the book's original publication, such as
subspace identi�cation, data-driven local coordinates, and the
results on post-model-selection estimators.
It also provides a section of errata and an updated bibliography.
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Questions?

Thank you!

Manfred Deistler


