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Abstract. Quantified Boolean formulas generalize propositional formu-
las by admitting quantifications over propositional variables. We compare
proof systems with different quantifier handling paradigms for quantified
Boolean formulas (QBFs) with respect to their ability to allow succinct
proofs. We analyze cut-free sequent systems extended by different quan-
tifier rules and show that some rules are better than some others.

Q-resolution is an elegant extension of propositional resolution to
QBFs and is applicable to formulas in prenex conjunctive normal form.
In Q-resolution, there is no explicit handling of quantifiers by specific
rules. Instead the forall reduction rule which operates on single clauses
inspects the global quantifier prefix. We show that there are classes of
formulas for which there are short cut-free tree proofs in a sequent sys-
tem, but any Q-resolution refutation of the negation of the formula is
exponential.

1 Introduction

Quantified resolution (or Q-resolution) [10] is a relatively inconspicuous calculus.
It was introduced as an elegant extension of resolution to process quantified
Boolean formulas (QBFs) in prenex conjunctive normal form. Although there
are only a few QBF solvers directly based on Q-resolution, it has gained an
enormous practical importance as a subcalculus in modern DPLL solvers with
clause learning. Moreover, an early proposal for a uniform proof format [9] is
based on resolution. Nowadays many QBF solvers produce Q-resolution proofs
and certificate generation [1] can be based on them.

Sequent calculi [7] are well explored proof systems, which are not restricted to
specific normal forms. Variants of these calculi like tableau systems are widely
used in (first-order) theorem proving for classical and non-classical logics, where
often no clausal normal form is available. Variants of sequent calculi are available
for QBFs and used for a variety of purposes [4,11]. Even some solvers not based
on prenex conjunctive normal form like qpro [6] implement proof search in a
restricted variant of a sequent calculus, and a look at a high-level description of
its main procedure indicates that it is not too far away from DPLL.
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Initially driven by the P =?NP question [5], propositional proof systems are
well studied and compared with respect to their relative efficency, i.e., their
ability to allow for succinct proofs. In this paper, we compare Q-resolution and
sequent systems for QBFs. The crucial difference between systems for SAT and
systems for quantified SAT (QSAT) is Boolean quantification in the latter, which
allows for more succinct problem representations. As we will see later, there are
different methods to handle quantifiers like the rules implementing semantics
directly, rules inspired by first-order logic, or a completely different technique to
handle quantifiers in Q-resolution. It turns out that the way how quantifiers are
handled strongly influence proof complexity.

Contributions. First we consider cut-free propositional sequent systems extended
by different quantifier rules. We show that these rules have increasing strength
by providing formula classes which can be used for exponential separations.
Second we partially solve the problem stated in [4] whether in sequent systems
with restricted cuts, the quantifier rule introducing propositional formulas can
be polynomially simulated by the one introducing variables. We show this for all
tree-like systems except the one with only propositional cuts. Third we show an
exponential separation between cut-free tree-like sequent systems and arbitrary
Q-resolution. This result is surprising because the first system is extremely weak,
whereas the second one does not have to obey the tree restriction and has an
atomic cut (the resolution rule) in addition. It turns out that the relative strength
comes from the more powerful quantifier rules of the sequent system.
Structure. In Sect. 2, we introduce necessary concepts. Section 3 presents sequent
systems and Q-resolution. Different quantifier rules are compared in Sect. 4. In
Sect. 5, we present an exponential separation between cut-free tree-like sequent
systems and arbitrary Q-resolution. We show that the latter cannot polynomially
simulate the former. Concluding remarks are presented in Sect. 6.

2 Preliminaries

We assume basic familiarity with the syntax and semantics of propositional logic.
We consider a propositional language based on a set PV of Boolean variables and
truth constants � (true) and ⊥ (false), both of which are not in PV. A variable
or a truth constant is called atomic. We use connectives from {¬,∧,∨,→} and
A ↔ B is a shorthand for (A → B) ∧ (B → A). A clause is a disjunction of
literals. Tautological clauses contain a variable and its negation and the empty
clause is denoted by �. Propositional formulas are denoted by capital Latin
letters like A,B,C possibly annotated with subscripts, superscripts or primes.

We extend the propositional language by Boolean quantifiers. Universal (∀)
and existential (∃) quantification is allowed within a QBF. QBFs are denoted by
Greek letters. Observe that we allow non-prenex formulas, i.e., quantifiers may
occur deeply in a QBF and not only in an initial quantifier prefix. An example for
a non-prenex formula is ∀p (p→ ∀q∃r (q∧r∧s)), where p, q, r and s are variables.
Moreover, free variables (like s) are allowed, i.e., there might be occurrences of
variables in the formula for which we have no quantification. Formulas without
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free variables are called closed ; otherwise they are called open. The universal
(existential) closure of ϕ is ∀x1 . . .∀xnϕ (∃x1 . . . ∃xnϕ), for which we often write
∀Xϕ (∃Xϕ) if X = {x1, . . . , xn} is the set of all free variables in ϕ. A formula in
prenex conjunctive normal form (PCNF) has the form Q1p1 . . . QnpnA, where
Q1p1 . . .Qnpn is the quantifier prefix, Qi ∈ {∀, ∃} and A is the (propositional)
matrix which is in CNF. The size of a formula ϕ, size(ϕ), is the number of
occurrences of connectives or quantifiers.

Let Σq
0 and Πq

0 both denote the set of propositional formulas. For i > 0,
Σq

i is the set of all QBFs whose prenex forms starts with ∃ and which have
i − 1 quantifier alternations. Πq

i is the dual of Σq
i and Σq

i−1 ⊆ Πq
i as well as

Πq
i−1 ⊆ Σq

i holds. We refer to [11] for more details.
The semantics of propositional logic is based on an evaluation function in-

dexed by a variable assignment I for free variables. The semantics is extended
to quantifiers by νI(Qpϕ) = νI(ϕ{p/�} ◦ ϕ{p/⊥}), where ◦ = ∨ if Q = ∃, and
◦ = ∧ if Q = ∀. We denote by ϕ{p/ψ} the replacement of all (free) occurrences
of p by ψ in ϕ.

A quantified propositional proof system is a surjective PTIME-computable
function F from the set of strings over some finite alphabet to the set of valid
QBFs. Every string α is then a proof of F (α). Let P1 and P2 be two proof
systems. Then P1 polynomially simulates (p-simulates) P2 if there is a polynomial
p such that for every natural number n and every formula ϕ, the following holds.
If there is a proof of ϕ in P2 of size n, then there is a proof of ϕ (or a suitable
translation of it) in P1 whose size is less than p(n).

3 Calculi for Quantified Boolean Formulas

We first discuss sequent calculi [7] with different alternative quantifier rules.
Later Q-resolution [10] is introduced which is applicable to QBFs in PCNF.

3.1 Sequent Calculi for Quantified Boolean Formulas

Sequent calculi do not work directly on formulas but on sequents. A sequent
S is an ordered pair of the form Γ 
 Δ, where Γ and Δ are finite sequences
of formulas. Γ is the antecedent of S, and Δ is the succedent of S. A formula
occurring in one of Γ or Δ is called a sequent formula (of S). We write “
 Δ”
or “Γ 
” whenever Γ or Δ is empty, respectively. The meaning of a sequent
Φ1, . . . , Φn 
 Ψ1, . . . , Ψm is the same as the meaning of (

∧n
i=1 Φi) → (

∨m
i=1 Ψi).

The size of S, size(S), is the sum over the size of all sequent formulas in S.
We introduce the axioms and the rules in Fig. 1. In the strong quantifier rules

∃le and ∀re , q has to satisfy the eigenvariable (EV) condition, i.e., q does not
occur as a free variable in the conclusion of these rules. In the weak quantifier
rules ∀l and ∃r , no free variable of Ψ is allowed to become bound in Φ{p/Ψ}. For
instance, this restriction forbids the introduction of x for y in the (false) QBF
∃y∀x (x↔ y). Without this restriction, the true QBF ∀x (x ↔ x) would result.

In the following, we instantiate the quantifier rules as follows. If the formula
Ψ in ∀l and ∃r is restricted to a propositional formula, we call the quantifier
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Φ � Φ Ax ⊥ � ⊥l � � �r

Γ � Δ
Φ∗, Γ � Δ

wl
Γ � Δ

Γ � Δ, Φ∗ wr

Γ1, Φ
+, Ψ+, Γ2 � Δ

Γ1, Ψ
∗, Φ∗, Γ2 � Δ

el
Γ � Δ1, Φ

+, Ψ+, Δ2

Γ � Δ1, Ψ
∗, Φ∗, Δ2

er

Γ1, Φ
+, Φ+, Γ2 � Δ

Γ1, Φ
∗, Γ2 � Δ

cl
Γ � Δ1, Φ

+, Φ+, Δ2

Γ � Δ1, Φ
∗, Δ2

cr

Γ � Δ, Φ+

(¬Φ)∗, Γ � Δ
¬l Φ+, Γ � Δ

Γ � Δ, (¬Φ)∗ ¬r

Φ+, Ψ+, Γ � Δ

(Φ ∧ Ψ)∗, Γ � Δ
∧l Γ � Δ, Φ+ Γ � Δ, Ψ+

Γ � Δ, (Φ ∧ Ψ)∗
∧r

Φ+, Γ � Δ Ψ+, Γ � Δ

(Φ ∨ Ψ)∗, Γ � Δ
∨l Γ � Δ, Φ+, Ψ+

Γ � Δ, (Φ ∨ Ψ)∗
∨r

Γ � Δ, Φ+ Ψ+, Γ � Δ

(Φ → Ψ)∗, Γ � Δ
→l

Φ+, Γ � Δ, Ψ+

Γ � Δ, (Φ → Ψ)∗
→r

Γ � Δ, Φ{p/q}+
Γ � Δ, (∀pΦ)∗ ∀re

Φ{p/q}+, Γ � Δ

(∃pΦ)∗, Γ � Δ
∃le

Φ{p/Ψ}+, Γ � Δ

(∀pΦ)∗, Γ � Δ
∀l Γ � Δ, Φ{p/Ψ}+

Γ � Δ, (∃pΦ)∗ ∃r

Fig. 1. Axioms and inference rules for sequent calculi. Principal formulas are marked
by ∗, auxiliary formulas by +, the other (unmarked) formulas are side formulas.

rules ∀lf and ∃rf . If only variables or truth constants are allowed, then the index
f is replaced by v. Finally, if Ψ is further restricted to truth constants, then the
index is s. We define three different sequent calculi Gqxe (x ∈ {s, v, f}) for QBFs
possessing the quantifier rules with index x and ∀re and ∃le . A fourth calculus,
Gqss, is defined by adopting ∀ls and ∃rs together with the following two rules.

Γ � Δ, (Φ{p/�} ∧ Φ{p/⊥})+
Γ � Δ, (∀pΦ)∗ ∀rs

(Φ{p/�} ∨ Φ{p/⊥})+, Γ � Δ

(∃pΦ)∗, Γ � Δ
∃ls

All the calculi introduced above are cut-free, i.e., the cut rule

Γ1 � Δ1, Φ
+ Φ+, Γ2 � Δ2

Γ1, Γ2 � Δ1, Δ2
cut

is not part of the calculus. For i ≥ 0 and G ∈ {Gqss,Gqse,Gqve,Gqfe}, Gi is G
extended by cut, where the cut formula Φ is restricted to be a Πq

i ∪Σq
i formula.

A sequence proof α of a sequent S (the end sequent) in G is a sequence
S1, . . . , Sm of sequents such that Sm = S and, for every Si (1 ≤ i ≤ m), Si is
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either an axiom of G, the conclusion of an application of a unary inference from
G with premise Sj , or the conclusion of an application of a binary inference from
G with premises Sj, Sk (j, k < i). Proofs in G are called G proofs. If α is a proof
of 
 Φ, then α is a proof of the formula Φ. A proof α is called tree-like or a tree
proof, if every sequent in α is used at most once as a premise. The length, l(α),
of α is the number m of sequents occurring in α and its size is

∑m
i=1 size(Si).

We denote by G∗ the version of G which permits only tree proofs. They are
assumed to be in free variable normal form (FVNF) [2,4], to which they can be
translated efficiently. A tree proof α is in FVNF, if (i) no free variable from the
end sequent is used as an EV, and (ii) every other free variable z occurring in
α is used exactly once as an EV and appears in α only in sequents above the
application of ∃le or ∀re which introduced z.

Later, we have to trace formula occurrences through a tree proof. The means
to do this is an ancestor relation between formula occurrences in a tree proof [2].
We first define immediate descendants (IDs). If Φ is an auxiliary formula of any
rule R except exchange or cut, then Φ’s ID is the principal formula of R. For the
exchange rules el and er , the ID of Φ or Ψ in the premise is Φ or Ψ , respectively,
in the conclusion. An occurrence of the cut formula does not have any ID. If Φ is
a side formula at position i in Γ, Γ1, Γ2, Δ,Δ1, Δ2 of the premise(s), then Φ’s ID
is the same formula at the same position of the same sequence in the conclusion.
Now, Φ is an immediate ancestor of Ψ iff Ψ is an ID of Φ. The ancestor relation
is the reflexive and transitive closure of the immediate ancestor relation.

G is sound and complete, i.e., a sequent S is valid iff it has a G proof. We will
consider variants of our tree calculi without exchange rules and where sequents
consists of multisets instead of sequences. Since the multiset and the sequence
version are p-equivalent, it is sufficient to consider the multiset version.

The calculus in Fig. 1 is a cut-free variant of calculi proposed by Kraj́ıček and
Pudlák (KP) (cf, e.g., [11]). In the calculi KPi, only Σ

q
i ∪Πq

i formulas can occur
in a proof. Cook and Morioka [4] modified the KP calculi by allowing arbitrary
QBFs as sequent formulas, but restricting cut formulas to Σq

i ∪ Πq
i formulas.

Moreover, ∀l and ∃r are replaced by ∀lf and ∃rf .1 They show in [4] that any
of their system Gi (i > 0) is p-equivalent to the corresponding system KPi for
proving formulas from Σq

i ∪Πq
i . Gi is complete for QBFs (in contrast to KPi).

3.2 The Q-resolution Calculus

The quantified resolution calculus, Q-res, is an extension of propositional resolu-
tion to QBFs [10]. There is no explicit handling of quantifiers by specific rules.
Instead the ∀ reduction rule which operates on single clauses inspects the global
quantifier prefix. As we will see, this processing of quantifiers results in a rela-
tively weak calculus with respect to the ability to produce succinct refutations.

The input for Q-res is a (closed) QBF in PCNF. Quantifier blocks are num-
bered from left to right in increasing order and bound variables from quantifier

1 The restriction to propositional formulas is necessary. For unrestricted QBFs, the
hierarchy of calculi would “collapse” to G1.
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C1 ∨ x ∨ C2 C3 ∨ ¬x ∨ C4

C1 ∨ C2 ∨ C3 ∨ C4
∃PR C1 ∨ � ∨ C2 ∨ � ∨ C3

C1 ∨ � ∨ C2 ∨ C3
PF

C5 ∨ k ∨ C6

C5 ∨ C6
∀R

C1 to C6 are clauses, x is an ∃ variable and � a literal. C5∨k∨C6 is non-tautological
and k is a ∀ literal with level i. Any ∃ literal in C5 ∨C6 has a level smaller than i.

Fig. 2. The rules of the Q-resolution calculus

block i have level i. Literal occurrences in the CNF inherit the level from their
variable in the quantifier prefix. Q-res consists of the propositional resolution rule
∃PR over existential literals, the factoring rule PF and the ∀ reduction rule ∀R,
all of which are shown in Fig. 2. The following is Theorem 2.1 in [10].

Theorem 1. A QBF ϕ in PCNF is false iff � can be derived from ϕ by Q-res.

A Q-res refutation can be in tree form as well as in sequence form. The length of
a Q-res refutation is the number of clauses in it. The size of a Q-res refutation
is the sum of the sizes of its clauses.

4 Comparing Different Quantifier Rules

We compare Gqss, Gqse, Gqve and Gqfe with respect to p-simulation. Let G ∈
{Gqse,Gqve,Gqfe}. We reproduce Definition 6 and Lemma 3 from [4] below.

Definition 1. Let ϕ be a quantified QBF in prenex form and let S be the sequent

 ϕ. Let α(S) be a G0 proof of S. Then any quantifier-free formula A in α(S) that
occurs as the auxiliary formula of a quantifier inference is called an α-prototype
of ϕ. Define the Herbrand α-disjunction to be the sequent 
 A1, . . . , Am, where
A1, . . . , Am, are all the α-prototypes of ϕ.

Lemma 1. Let ϕ be a quantified QBF in prenex form and let S be the sequent

 ϕ. Let α(S) be a G0 proof of S. Then the Herbrand α-disjunction is valid and
it has a purely propositional sequent proof of size polynomial in the size of α(S).

In the construction of the proof of the Herbrand α-disjunction in Lemma 1, no
(new) cut is introduced and the form of the proof is retained. Consequently, if
α(S) is cut-free and tree-like, then so is the resulting propositional proof.

Proposition 1. (1) Gqss0 cannot p-simulate Gqse∗, (2) Gqse0 cannot p-simulate
Gqve∗ and (3) Gqve0 cannot p-simulate Gqfe∗.

We show (3) in detail. Let (Fn)n>0 be a sequence of propositional formulas of
the form

∧n
i=1((¬xi) ↔ yi) and let ϕn be ∀Xn∃Y nFn with Xn = {x1, . . . , xn}

and Y n = {y1, . . . , yn}. The size of ϕn is linear in n and it has a short proof in
Gqfe∗ of length linear in n. It can be obtained by (i) introducing eigenvariable ci
for xi for all i (1 ≤ i ≤ n), (ii) introducing formula ¬ci for yi for all i (1 ≤ i ≤ n)
and (iii) proving

∧n
i=1

(
(¬ci) ↔ (¬ci)

)
with O(n) sequents.
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Next we show that any proof of ϕn in Gqve0 is exponential in n. The key
observation is that only the introduction of truth constants for yi makes sense.
Otherwise we obtain conjunctive subformulas of the form (¬ci) ↔ vi which are
unprovable. Consequently, all ∃r inferences introduce truth constants.

Let αn be an arbitrary Gqve0 proof of 
 ϕn. By Lemma 1 we get a purely
propositional Gqve0 proof βn of the valid Herbrand αn-disjunction


 Fn,1, . . . , Fn,m .

Moreover, the size of βn is polynomially related to the size of αn. We argue
in the following that this disjunction consists of m = 2n formulas. Let Sn be
the following set {Fn{x1/c1, . . . , xn/cn, y1/t1, . . . , yn/tn} | ti ∈ {⊥,�}} of all
possible substitution instances of Fn with 2n elements. We show in the following
that

∨
d∈D d is not valid if D ⊂ Sn holds. Then all elements of Sn have to occur

in the Herbrand αn-disjunction and the exponential lower bound follows.
Let C be an arbitrary instance

∧n
i=1

(
(¬ci) ↔ ti

)
of Fn which is in Sn but

not in D. Let I be any assignment that makes C true, i.e., each ci is assigned to
the dual of ti by I. Now take an arbitrary d ∈ D of the form

∧n
i=1

(
(¬ci) ↔ si

)
.

There must be an index k, 1 ≤ k ≤ n, such that sk �= tk. Then (¬ck) ↔ sk
is false under I and so is d. Since d has been chosen arbitrarily, all elements of
D are false under I and so is

∨
d∈D d. Consequently, all elements of Sn have to

occur in the Herbrand αn-disjunction and the exponential lower bound follows.
For (2), we can use a similar argumentation with (Gn)n>0 instead of Fn, where

Gn is of the form
∧n

i=1(xi ↔ yi). For (1), the family of formula is (ψn)n>1, where
ψn is of the form ∃xn∀yn . . .∃x1∀y1 (xn ∨ yn ∨ · · · ∨ x1 ∨ y1).

Looking at the structure of ϕn, one immediately realizes that the quantifiers
can be pushed into the formula (“antiprenexed”) in an equivalence-preserving
way. This antiprenexed formula F ′

n :
∧n

i=1(∀xi∃yi((¬xi) ↔ yi)) has short proofs
in Gqve∗, Gqse∗and even in Gqss∗, mainly because ∀xi∃yi((¬xi) ↔ yi) has a
proof of constant length. A similar statement holds for the other two cases.

4.1 Using Eliminable Extensions to Simulate ∃rf /∀lf by ∃rv/∀lv
We show in the following that the weak quantifier rules ∃rf and ∀lf in Gqfe∗i can
be simulated efficiently by ∃rv and ∀lv in Gqve∗i for i ≥ 1. The key idea is to use
a quantified extension ε(B) of the form ∃x (x↔ B) with B being a propositional
formula. ε(B) has a proof α(ε(B)) in Gqve∗ and Gqse∗ of constant length.

Given a tree proof βe of an end sequent Se. For any occurrence of an inference
∀lf and ∃rf introducing non-atomic propositional formula B, we perform the fol-
lowing. Take an occurrence I of an inference ∃rf (the case of ∀lf is similar) and
a globally new variable q, not occurring in βe and not introduced as a new vari-
able before. Employ the ancestor relation for I’s auxiliary formula Φ{p/B} and
get all highest sequents with occurrences of the sequent formula B originating
from I. Start from the next lower sequent of these highest positions downwards
until the conclusion of I and put F (B) = q ↔ B into the antecedent of each
sequent. If there is already a copy there, then do nothing. If there are strong
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quantifier rules, then there is no violation of the EV condition because we add
only a globally new variable; all the variables from B have been already present
in the sequent before.

Employing the ancestor relation again and starting from Φ{p/B}, we replace
any formula Ψ{p/B} by Ψ{p/q} in sequents containing F (B). This includes a
replacement ofB by q. Perform the above procedure for each of the w occurrences
of ∀lf and ∃rf . We have not increased the number of sequents yet, but there are
O(w) additional formulas in any sequent.

We are going to correct the inference tree. We check all sequents with sequent
formulas of the form F (B) whether binary rules are violated, like, e.g., in the
left inference figure below for the case of ∧r . It is replaced by the correct right
figure. (F (B1) and F (B2) are replaced by F1, F2 for space reasons).

F1, F2, Γ � Δ,Φ1{p/q} Γ � Δ,Φ2

F1, F2, Γ � Δ,Φ1{p/q} ∧ Φ2

F1, F2, Γ � Δ,Φ1{p/q}
Γ � Δ,Φ2

F1, F2, Γ � Δ,Φ2
wl∗

F1, F2, Γ � Δ,Φ1{p/q} ∧ Φ2

We have to perform two additional corrections, namely (i) to get rid of F (B)
immediately below the conclusion of I and (ii) to correct the situation when B
originating from I occurs as a principal formula in a propositional inference or
as a formula in an axiom of the original proof βe. For the former, we use

α(ε(B))
� ∃x (x ↔ B)

q ↔ B, Γ � Δ, Φ{p/q}
q ↔ B, Γ � Δ, ∃pΦ ∃rv

∃x (x ↔ B), Γ � Δ, ∃pΦ ∃le
Γ � Δ, ∃pΦ cut

with a cut on a Σq
1-formula. Let us consider (ii) where B is the principal formula

of a propositional inference. Below is one possible case for B = B1 ∨B2.

F (B), Γ � Δ, B1, B2

F (B), Γ � Δ, q
∨r

F (B), Γ � Δ, B1, B2

F (B), Γ � Δ, B
∨r α

B, q ↔ B � q

F (B), F (B), Γ � Δ, q
cut

F (B), Γ � Δ, q
cl

cl is needed if F (B) is required in the left branch. The case for the axiom is
simpler. Finally, wl inferences are introduced to remove q ↔ B.

During the proof manipulations, we have added to each sequent O(w) formu-
las. Moreover, by correcting the binary inferences, we added O(w) sequents for
any sequent in the original proof. For each occurrence of B and each of the w
occurrences of the quantifier rules, we added a deduction of length O(1) In total,
we obtain a polynomial increase in length and size.

5 Exponential Separation of Q-res and Gqve∗

We stepwisely construct a family (ϕn)n>1 of closed QBFs ϕn for which (1) there
exists short proofs in Gqve∗, but (2) any Q-resolution refutation of ¬ϕn has
length exponential in n. We use the traditional approaches, namely a refutational
approach with resolution and an affirmative approach with sequent systems.
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5.1 The Construction of ϕn

We start with a version of the well-known pigeon hole formula in disjunctive
normal form. The formula for n holes and n+ 1 pigeons is given by

( n+1∨

i=1

n∧

j=1

¬xi,j
)

∨
( n∨

j=1

∨

1≤i1<i2≤n+1

(xi1,j ∧ xi2,j)
)

.

Let DPHPXn
n denote this formula over the variables in Xn = {x1,1, . . . , xn+1,n}.

Variable xi,j is intended to denote that pigeon i is sitting in hole j. The usual

(unsatisfiable) version of the pigeon hole formula in CNF, CPHPXn
n , is given by

( n+1∧

i=1

( n∨

j=1

xi,j
)
)

∧
( n∧

j=1

∧

1≤i1<i2≤n+1

(¬xi1,j ∨ ¬xi2,j)
)

.

The number of clauses in CPHPXn
n is ln = (n+1)+n2(n+1)/2, size(CPHPXn

n ) is
O(n3), and CPHPXn

n is obtained from ¬DPHPXn
n by shifting negations inwards

using de Morgan’s laws and eliminating double negations. Intuitively, we want to
show that the refutation problem corresponding to the negation of the formula

∀Xn∃Yn
(
DPHPYn

n → DPHPXn
n

)
(1)

results only in Q-res refutations of length exponential in n. A short Gqve∗ proof
of (1) exists which mainly relies on a unification property, namely that (i) ∀re
introduces eigenvariables Cn for Xn and (ii) ∃rv introduces exactly the same
variables Cn for Yn, therefore unifying the two versions of DPHPn. As we will
see later, this instantiation property of ∃rv is important to get a short proof.

A problem occurs if we want to translate the provability problem of (1) into
a refutation problem of its negation. Clausifying the disjunctive normal form
DPHPYn

n using distributivity laws results in an exponential number of (tauto-
logical) clauses. We slightly modify the formula to be considered by introducing
new variables of the form zi1,i2,j for disjuncts in DPHPYn

n . This procedure is in
the spirit of the well-known Tseitin translation [13]. We use the “one polarity
optimization” of [12]. For the first n + 1 disjuncts of the form

∧n
j=1 ¬yi,j with

1 ≤ i ≤ n + 1, we use variables z1,0,0, . . . , zn+1,0,0. For the second part, for any
1 ≤ j ≤ n and the n(n+ 1)/2 disjuncts, we use

z1,2,j , . . . , z1,n+1,j, z2,3,j, . . . , z2,n+1,j, . . . , zn,n+1,j . (2)

The set of these variables for DPHPn is denoted by Zn. Due to this construction,
we can speak about the conjunction corresponding to the variable zi1,i2,j .

We construct the conjunctive normal form TPHPYn,Zn
n of DPHPYn,Zn

n as fol-
lows. First, we take the clause DZn

n =
∨

z∈Zn
¬z over all variables in Zn. The

formula PYn,Zn
n for the first (n+ 1) disjuncts of DPHPYn

n is of the form

n+1∧

i=1

n∧

j=1

(zi,0,0 ∨ ¬yi,j) .
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For the remaining n2(n+1)/2 disjuncts of DPHPYn
n , we have the formula QYn,Zn

n

n∧

j=1

∧

1≤i1<i2≤n+1

(
(zi1,i2,j ∨ yi1,j) ∧ (zi1,i2,j ∨ yi2,j)

)
.

Then TPHPYn,Zn
n is DZn

n ∧PYn,Zn
n ∧QYn,Zn

n and size(TPHPYn,Zn
n ) is O(n3) . The

family of formulas we consider in the following is (ϕn)n>1, where ϕn is

∀Xn∃Yn∀Zn

(
TPHPYn,Zn

n → DPHPXn
n

)
. (3)

Formula (1) is equivalent to formula (3) because DPHPXn
n is valid. We show that

DPHPYn
n ≡ ∃Zn TPHP

Yn,Zn
n (4)

holds.
=⇒: Let I be a model of DPHPYn

n , i.e., I |= DPHPYn
n holds.

Case 1: There exists an index i such that I |= ∧n
j=1 ¬yi,j holds. Therefore,

I |= ¬yi,1, . . . , I |= ¬yi,n as well as I |= ∧n
j=1 zi,0,0 ∨ ¬yi,j hold. Let us extend

I to an interpretation J such that TPHPYn,Zn
n is true under J . We set all zk,l,m

from Zn to true under J except zi,0,0 which is set to false. Then J |= DZn
n ,

J |= PYn,Zn
n and J |= QYn,Zn

n hold.

Case 2: There exist indices i1, i2 and j such that I |= yi1,j ∧ yi2,j holds. Then
I |= (zi1,i2,j ∨ yi1,j) ∧ (zi1,i2,j ∨ yi2,j) holds. Again, we extend I to J such that

J |= TPHPYn,Zn
n holds. We set all zk,l,m from Zn to true under J except zi1,i2,j

which is set to false. Then J |= DZn
n , J |= PYn,Zn

n and J |= QYn,Zn
n hold.

In both cases, there exists an extension J of I (which interprets all variables
in Zn), such that J |= TPHPYn,Zn

n . Hence, ∃ZnTPHP
Yn,Zn
n is true under I.

⇐=: Let I be an interpretation such that I |= ∃ZnTPHP
Yn,Zn
n holds. Then

there exists an extension J of I (which interprets all variables in Zn), such that
J |= TPHPYn,Zn

n . Consequently J |= DZn
n holds and at least one z variable has

to be false under J .

Case 1: There exists an index i such that J |= ¬zi,0,0 holds. Since J satisfies
∧n

j=1(zi,0,0∨¬yi,j), J and also I make
∧n

j=1 ¬yi,j true. Then I |= DPHPYn
n holds.

Case 2: There exist indices i1, i2 and j such that J |= ¬zi1,i2,j holds. Since
J |= (zi1,i2,j ∨ yi1,j)∧ (zi1,i2,j ∨ yi2,j) also holds, yi1,j ∧ yi2,j has to be true under

J and I. Then I |= DPHPYn
n holds.

We continue in the next subsection with the construction of a short proof of ϕn

in Gqve∗. Afterwards, we show in Section 5.3 that any sequence Q-res refutation
of ¬ϕn possesses a number of clauses which is exponential in n.

5.2 Short Proofs of ϕn in Gqve∗

We provide a short proof of ϕn in Gqve∗. Observe that any proof of ∀Xn DPHP
Xn
n

is exponential (see Theorem 5.3.5 in [3]).
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Proposition 2. Let (ϕn)n>1 be a family of formulas where ϕn is given in (3).
Then there exists a proof of 
 ϕn in Gqve∗ of size polynomial in n.

We first show that sequents Si1,i2,j of the form

¬zi1,i2,j , PCn,Zn
n , QCn,Zn

n 

n+1∨

i=1

n∧

j=1

¬ci,j ,
n∨

j=1

∨

1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

are derivable using O(n3) sequents.

Case 1: zi1,i2,j is of the form zi,0,0 for 1 ≤ i ≤ n+ 1. Take axioms and derive

¬ci,1, . . . ,¬ci,n 

n∧

j=1

¬ci,j

by applications of ∧r and wl using O(n2) sequents. Continue with the derived
sequent by using axioms and applications of ¬l , weakening and ∨l to generate

¬zi,0,0, zi,0,0 ∨ ¬ci,1, . . . , zi,0,0 ∨ ¬ci,n 

n∧

j=1

¬ci,j

using O(n2) sequents. By applications of ∧l to the last sequent, we obtain

¬zi,0,0,
n∧

j=1

(zi,0,0 ∨ ¬ci,j) 

n∧

j=1

¬ci,j

requiring further O(n) sequents. Continue with weakening, ∧l and ∨r to generate

¬zi,0,0, PCn,Zn
n , QCn,Zn

n 

n+1∨

i=1

n∧

j=1

¬ci,j ,
n∨

j=1

∨

1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

from the sequent above using O(n) sequents. In total, the derivation of each of
the (n + 1) sequents S1,0,0, . . . , Sn+1,0,0 requires O(n2) sequents, each of which
consists of O(n) sequent formulas.

Case 2: zi1,i2,j occurs as an element in (2). Start from axioms and derive

ci1,j, ci2,j 
 ci1,j ∧ ci2,j
by weakenings and ∧r using O(1) sequents. Take axioms and apply ¬l , weaken-
ing, ∨l and ∧l to get from the sequent above

¬zi1,i2,j , (zi1,i2,j ∨ ci1,j) ∧ (zi1,i2,j ∨ ci2,j) 
 ci1,j ∧ ci2,j
with O(1) further sequents. Using O(n3) weakenings, ∧l and ∨r , we obtain

¬zi1,i2,j , PCn,Zn
n , QCn,Zn

n 

n+1∨

i=1

n∧

j=1

¬ci,j ,
n∨

j=1

∨

1≤i1<i2≤n+1

(ci1,j ∧ ci2,j).
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In total, we have to derive n2(n + 1)/2 sequents using at most a cubic number
of sequents in each derivation. Each sequent has O(n3) sequent formulas.

This completes the case analysis. The sequent

DZn
n , PCn,Zn

n , QCn,Zn
n 


n+1∨

i=1

n∧

j=1

¬ci,j ,
n∨

j=1

∨

1≤i1<i2≤n+1

(ci1,j ∧ ci2,j)

can be derived from the O(n3) different sequents Si1,i2,j by repeated applications
of ∨l using O(n3) sequents. Then we can continue as follows.

DZn
n , PCn,Zn

n , QCn,Zn
n 
 ∨n+1

i=1

∧n
j=1 ¬ci,j ,

∨n
j=1

∨
1≤i1<i2≤n+1(ci1,j ∨ ci2,j)

DZn
n , PCn,Zn

n , QCn,Zn
n 
 DPHPCn

n

∨r

TPHPCn,Zn
n 
 DPHPCn

n

∧l ,∧l


 TPHPCn,Zn
n → DPHPCn

n

→r

∀re , ∃rv , ∀re

 ∀Xn∃Yn∀Zn

(
TPHPYn,Zn

n → DPHPXn
n

)

Hence the overall number of sequents used to derive the indicated end sequent is
O(n6). There are O(n3) sequent formulas in each sequent and each such formula
is a subformula of ϕn. Therefore, we have a polynomial size proof of ϕn in Gqve∗.

5.3 Q-resolution Refutations of ¬ϕn

We reconsider ϕn from above. Since ϕn is valid iff ¬ϕn is unsatisfiable, we use the
latter and show it by Q-resolution. As we will see, any Q-resolution refutation
of ¬ϕn is exponential in n. Take ¬ϕn and push negation inwards. Then we get

¬ϕn is unsat iff ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)
is unsat.

Proposition 3. Any Q-res refutation of ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)

has exponential size.

Since the two indicated CNFs TPHPYn,Zn
n and CPHPXn

n belong to completely
different languages, no resolution is possible where one parent clause is from the
one part and the other parent clause is from the other part. Therefore

∀Yn∃Zn

(
TPHPYn,Zn

n

)
is unsat or ∃Xn

(
CPHPXn

n

)
is unsat.

We first consider ∃Xn

(
CPHPXn

n

)
which is the existential closure of the purely

propositional pigeon hole formula CPHPXn
n in conjunctive normal form. Only

the propositional resolution rule is applicable because no ∀ variable occurs. By
Haken’s famous result [8], any resolution refutation of CPHPXn

n is exponential
in n. Consequently, the same holds for any Q-res refutation of the same formula.
Hence, ∃Xn

(
CPHPXn

n

)
is false and therefore unsatisfiable.

We next consider ∀Yn∃ZnTPHP
Yn,Zn
n . Above we proved the following equiv-

alence DPHPYn
n ≡ ∃ZnTPHP

Yn,Zn
n . Since DPHPYn

n is valid, so is ∃ZnTPHP
Yn,Zn
n
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and therefore ∀Yn∃Zn

(
TPHPYn,Zn

n

)
is true. By the soundness and completeness

of Q-resolution, no (non-tautological) clause with only universal literals can be
derived. Hence, ∀Yn∃ZnTPHP

Yn,Zn
n cannot provide any refutation.

In conclusion, any Q-res refutation of ¬ϕ is exponential in n. Consider

(
TPHPXn,Zn

n ∧ CPHPXn
n

)
(5)

which can be obtained by instantiating the quantifiers for Yn properly. Inter-
estingly, there exists a tree (Q-)resolution refutation of (the existential closure
of) formula (5) of size polynomial in n, which identifies the simple way of han-
dling quantifiers by ∀R to be the weak point in Q-res. Obviously, quantifier rules
resulting an instantiation of the matrix formula can yield more succinct proofs.

From the above complexity analysis of Q-resolution refutations of ¬ϕ, a simple
corollary can be drawn. Let us reconsider ∃Xn∀Yn∃Zn

(
TPHPYn,Zn

n ∧ CPHPXn
n

)

to which we apply the QDPLL algorithm with clause learning. The only variables
which are processed are from Xn because CPHPXn

n is unsatisfiable. Finding the
conflicts results in learned clauses, which can be used to construct a Q-res refuta-
tion of the input formula as a witness for unsatisfiability. Since any Q-resolution
refutation is exponential in n, so is the QDPLL refutation.2

6 Conclusion

We studied different techniques to handle quantification in QBFs. Integrated into
a sequent calculus for propositional logic, all discussed combinations of quanti-
fier rules yield sound and complete calculi, differing in their non-deterministic
strength, i.e., their ability to represent proofs succinctly. We have seen that Q-res
is a weaker calculus than sequent systems with reasonable quantifier rules. Al-
though this result seems to be of limited relevance for practical applications, one
should keep in mind that certificates (or solutions) are extracted from Q-res refu-
tations produced by QBF solvers [1]. Since the size of the certificate corresponds
to the size of the Q-res refutation, a more succinct proof could be beneficial.

We have identified instantiation as the feature for obtaining short proofs for
our formulas. Neither the quantifier handling in Q-res nor semantically motivated
quantifier rules possess this feature. Strong quantifier rules based on semantics
are essentially binary inferences and in general not powerful enough in a cut-free
sequent system. These rules require additional techniques like propagation of
values, formula simplification, dependency directed backtracking, etc. to com-
pensate their weakness. Such techniques can be integrated in sequent systems
via restricted versions of cut or as additional inferences, cf. [6] for examples.

Although ∀lf and ∃rf are the rules with most non-deterministic power, they
are not necessarily required for our problem formulas. They were actually proved
with weaker rules ∀lv and ∃rv allowing only the introduction of variables (and
truth constants). We provided some indication that, at least in some variants of
sequent calculi like Gqve∗i (i ≥ 1), the weaker rules are sufficient. But a closer

2 We learned this argument from F. Lonsing (private communication).
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look reveals the practical problem of the ∀lf and ∃rf inferences, the simulation
by extension and the simulation by cut (not discussed here): How does a good
formula for the quantifier, the extension step or the cut rule look like?
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11. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Encyclopedia of Mathematics and its Application, vol. 60. Cambridge University
Press (1995)

12. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2(3), 293–304 (1986)

13. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
Part II. Seminars in Mathematics, vol. 8, pp. 234–259. Steklov Mathematical In-
stitute, Leningrad (1968)


	On Sequent Systems and Resolution for QBFs
	Introduction
	Preliminaries
	Calculi for Quantified Boolean Formulas
	Sequent Calculi for Quantified Boolean Formulas
	The Q-resolution Calculus

	Comparing Different Quantifier Rules
	Using Eliminable Extensions to Simulate rf/lf by rv/lv

	Exponential Separation of Q-res and Gqve*
	The Construction of n
	Short Proofs of n in Gqve*
	Q-resolution Refutations of n

	Conclusion
	References




