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Abstract—Modern electric machines are required to have the
best possible dynamic performances. In induction machines this is
achieved by control strategies that are applied with respect to the
flux in the air gap and therefore they require precise information
on flux position. This paper proposes an observer with autotuning
capability that uses the unscented Kalman filter algorithm for
providing on-line estimation of states and parameters of the
fundamental wave model of the machine. The algorithm uses
power converter reference values of stator voltages, measured
stator currents and rotor speed as inputs. Such observer provides
accurate estimates of flux position and fundamental stator cur-
rents required for e.g. field-oriented control, taking into account
machine parameters variability. Design procedure of the observer
is presented and both simulation and experimental results are
provided.

Index Terms—Induction Machine, Parameter and State Esti-
mation, Dual Unscented Kalman Filter, Flux Position Estimation.

I. INTRODUCTION

Increasing demands for dynamic performances of electrical

drives led to the fact that field-oriented control (FOC) or direct

torque control (DTC) have been adopted as standard control

strategies in widely-spread industrial applications for last 15

years [1]. Both approaches and their derivatives are based on

a precisely determined machine flux position in order to fully

exploit their capabilities.

Fundamental wave approach is a generally accepted method

for obtaining the flux position. It assumes ideal and sinusoidal

flux distribution in the machine air gap. However, sinusoidal

flux approximation neglects saliencies, saturation and other

nonlinearities due to machine physics and geometry. This

results in an inability of the control system to precisely de-

termine the flux position, which ultimately leads to undesired

torque ripple and degradation of the system performance. An-

other feature that aggravates the determination of flux position

is variability of machine parameters due to e.g. temperature-

dependent machine characteristic.

There are several proposed improvements of the funda-

mental wave approach to alleviate these problems: a simple

parameter adaptation based on the machine data sheet [1],

indirect flux detection by online reactance measurement (IN-

FORM) [2], high-frequency signal injection for the detection

of anisotropic properties of the machine [3] etc.

In this paper we propose to use a dual unscented Kalman

filter for both state and parameter estimation of the funda-

mental wave induction machine model. It is conceived as an

add-on to the existing control system that:

• filters the phase currents measurements and extracts fun-

damental current components needed for FOC or DTC

without the introduction of additional delays,

• estimates delay-free non-measured states of the funda-

mental wave model, such as the flux position,

• adapts the control system to variations of parameters of

the fundamental wave model.

Unscented Kalman Filter (UKF) was first proposed by Julier

et al [4], and further developed by Wan and van der Merwe

[5]. It is an alternative, derivative-free approach in estimation

theory that in the case of nonlinear systems shows better

results than linearization-based Kalman filter algorithms.

This paper is organized as follows. The fundamental wave

model of a squirrel-cage induction machine is described in

Section II together with the theoretical basis for FOC strategy.

Section III presents the UKF algorithm. In section IV a design

procedure of UKF for both state and parameter estimation is

described. Section V provides MATLAB/Simulink simulation

results obtained with the proposed algorithm applied on an

ideal model of the machine. Off-line estimation procedure

is validated on the acquired real machine measurements and

results are presented in Section VI. Conclusions are drawn in

Section VII.

II. MATHEMATICAL MODEL OF AN AC MACHINE

There are several approaches in modelling an AC induction

machine [6]. One of the most common is the representation

of machine stator and rotor phases in the two-phase common

rotating (d, q) coordinate system, which is suitable for field-

oriented control application. A rotor-based field-oriented con-

trol (RFOC) implies that the common rotating (d, q) frame is

aligned with rotor flux linkage:

ψ̄r = ψrd + j0, (1)

and the complex value of ψ̄r becomes a scalar ψrd.
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Nonlinear mathematical model of an AC squirrel-cage in-

duction machine based on classical dynamic equations that

assume sinusoidal flux density distribution is [6]:

disd
dt

= θ1 (usd +∆usd − θ2isd) , (2)

disq
dt

= θ1 (usq +∆usq − θ3isq) , (3)

dimr

dt
= θ4 (isd − imr) , (4)

dρ

dt
= pωg + θ4

isq

imr

, (5)

where isd,q and usd,q are stator currents and voltages in (d, q)

frame, imr is magnetizing current, ρ is the flux electrical angle,

p is the number of machine pole pairs, ωg is rotor mechanical

speed and ∆usd,q are given with:

∆usd = (θ2 − θ3) imr +
1

θ1
ωeisq, (6)

∆usq = −θ2 − θ3

θ4
ωeimr −

1

θ1
ωeisd. (7)

Model parameters are: θ1 = 1
σLs

, θ2 = Rs+
L2

m

L2
r
Rr, θ3 = Rs,

θ4 = 1
Tr

and σ = (1 − L2
m

LsLr
). Equivalent circuit parameters

Ls, Lr, Lm, Rs, Rr are stator, rotor and mutual inductance,

stator and rotor resistance, respectively. Variable ωe is the

speed of magnetizing flux rotation and corresponds to the

frequency of supplied voltage.

For reliable estimation of isd and isq currents, the de-

pendency on flux angle ρ has to be included in relations

(2) and (3). It can be done by introducing line voltages in

(a, b, c) coordinate system and by applying Park’s and Clark’s

transform [6], which results in:

usd = 2
3 cos ρ uab +

(

1
3 cos ρ+

√
3
3 sin ρ

)

ubc,

usq = − 2
3 sin ρ uab +

(

− 1
3 sin ρ+

√
3
3 cos ρ

)

ubc.
(8)

Equations (2)-(8) represent a complete nonlinear mathe-

matical model of the squirrel-cage induction machine for

RFOC. Using parameters in form θ1,..,4 has proven to be

more favorable for parameter estimation since real equivalent-

circuit parameters are strongly masked in mutual products.

In addition, small variations of real parameters cause very

large changes of θ1,..,4, i.e. 1% change of inductances and

resistances causes about 10% change of θ and results in a

poor estimation quality (even divergence).

Described model can be generally represented as:

ẋ = F (x, u), (9)

where x = [isd isq imr ρ] is the state vector, u = [uab ubc ωg]
is the input vector and F (·) is a vector function. If the

flux position used in calculations deviates from the real flux

position, (d, q) coordinate system becomes unaligned and

relation (1) is no longer valid, which introduces error and

model discrepancy. The DTC algorithm is somewhat more

resilient to this issue but nevertheless, an accurate flux angle

is of great importance for the machine performance.

Stator currents are usually measured in electrical machines

and measurement vector is therefore chosen as y = [ia ib]
T

(ia + ib + ic = 0 is assumed), generally represented as:

y = H(x). (10)

The measurement vector is related with d, q coordinate system

through:

ia = isd cos ρ− isq sin ρ,

ib = isd

(

− 1
2 cos ρ+

√
3
2 sin ρ

)

+ isq

(

1
2 sin ρ+

√
3
2 cos ρ

)

.

(11)

Kalman filter algorithm requires a stochastic mathematical

model and therefore (9) and (10) are augmented to include

process and measurement noise v and n, respectively:

ẋ = F (x, u, v), (12)

y = H(x, n). (13)

In this application v ∈ R
4 is selected whereas each compo-

nent of v is added to the corresponding dynamical equation

(2)-(5). Measurement noise n ∈ R
2 is selected whereas each

component of n is added to the corresponding equation in

(11).

III. UNSCENTED KALMAN FILTER ALGORITHM

The UKF represents a novel approach for estimations in

nonlinear systems and provides better results than extended

Kalman filter (EKF) in terms of mean estimate and estimate

covariance [4]. The core idea of UKF lies in unscented

transformation, the way of propagating Gaussian random

variables (GRV) through a nonlinear mapping. The unscented

transformation is performed using so-called sigma points, a

minimal set of carefully chosen sample points that enables

better capturing of mean and covariance of mapped GRVs than

simple point-linearization of the mapping: posterior mean and

covariance are accurate to the second order of the Taylor series

expansion for any nonlinearity as proven in [5].

An attractive feature of UKF is that partial derivatives and

Jacobian matrix (like in EKF) are not needed and continuous-

time nonlinear dynamics equations are directly used in the

filter, without discretization or linearization. Computational

effort of UKF with carefully implemented algorithm can be

similar to that of the EKF. More information can be found in

[4] and [5] while different applications of UKF are presented

in [7]-[10]. The UKF algorithm is given in the sequel.

A. Initialization and time update

In order to compute a proper set of sigma points, the esti-

mated state vector x̂k in a discrete time-instant k is augmented

to include means of process and measurement noise v̄ and n̄:

x̂a
k = E(xa

k) =
[

x̂T
k v̄ n̄

]T
, (14)

where E(·) denotes the expectation of a random variable. State

covariance matrix Pk is also augmented accordingly:

P
a
k = E

(

(xa
k − x̂a

k)
T (xa

k − x̂a
k)
)

=





Pk 0 0

0 R
v

0

0 0 R
n



 ,

(15)
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where R
v and R

n are process and measurement noise covari-

ance matrices, respectively. Time update algorithm starts with

the unscented transformation and by forming the sigma points

matrix X a
k :

X a
k =

[

x̂a
k x̂a

k + γ
√

Pa
k x̂a

k − γ
√

Pa
k

]

. (16)

Variable
√

Pa
k is the lower-triangular Cholesky factorization

of matrix P
a
k and γ =

√
L+ λ is a scaling factor. Parameter

L is the dimension of augmented state xa
k and parameter

λ determines the spread of sigma points around the current

estimate, calculated as:

λ = α2 (L+ κ)− L. (17)

Parameter α is usually set to a small positive value e.g. 10−4 ≤
α ≤ 1 and κ is usually set to 1. There are 2L+1 sigma points

used for the transformation, which correspond to the columns

in X a
k =

[

(X x
k )

T
(X v

k )
T

(Xn
k )

T
]T

.

Time-update equations used to calculate prediction of state

x̂−
k+1 and state covariance P−

k+1 as well as prediction of output

ŷ−k+1 are:

X x
i,k+1|k = F

(

X x
i,k, uk,X v

i,k

)

, i = 0, ..., 2L, (18)

x̂−
k+1 =

2L
∑

i=0

W
(m)
i X x

i,k+1|k, (19)

P
−
k+1 =

2L
∑

i=0

W
(c)
i

(

X x
i,k+1|k − x̂−

k+1

)

×
(

X x
i,k+1|k − x̂−

k+1

)T

, (20)

Yi,k+1|k = H
(

X x
i,k+1|k,Xn

i,k

)

, i = 0, ..., 2L, (21)

ŷ−k+1 =

2L
∑

i=0

W
(m)
i Yi,k+1|k, (22)

where i is the index of columns in matrix X a
k (and also in

X x
k , X v

k , Xn
k ) starting from value zero. Weights for mean and

covariance calculations are given by:

W
(m)
0 = λ

(L+λ) ,

W
(c)
0 = λ

(L+λ) +
(

1− α2 + β
)

,

W
(m)
i = W

(c)
i = λ

2(L+λ) , i = 1, ..., 2L.

(23)

For Gaussian distributions, β = 2 is optimal.

B. Measurement update

Measurement update algorithm is performed in the similar

way as in classical Kalman filter but requires also output

covariance matrix Pỹk+1ỹk+1
and cross-covariance matrix

Px̃k+1ỹk+1
:

Pỹk+1ỹk+1
=

2L
∑

i=0

W
(c)
i

(

Yi,k+1|k − ŷ−k+1

)

×
(

Yi,k+1|k − ŷ−k+1

)T
, (24)

Px̃k+1ỹk+1
=

2L
∑

i=0

W
(c)
i

(

X x
i,k+1|k − x̂−

k+1

)

×
(

Yi,k+1|k − ŷ−k+1

)T
, (25)

followed by the correction of predicted states and covariance:

Kk+1 = Px̃k+1ỹk+1
P

−1
ỹk+1ỹk+1

, (26)

x̂k+1 = x̂−
k+1 +Kk+1

(

yk+1 − ŷ−k+1

)

, (27)

Pk+1 = P
−
k+1 −Kk+1Pỹk+1ỹk+1

K
T
k+1. (28)

where Kk is Kalman gain matrix.

At the time-instant k measurement update is executed first.

It results in current estimates which may be used for the

control algorithm, i.e. to obtain the current input uk. These

two parts are time-critical in the on-line implementation. They

are followed by time-update algorithm part which should be

finished by the next sampling instant (k + 1) when new

measurements arrive.

IV. OBSERVER DESIGN

A. State and parameter estimation

Previous sections described mathematical model of the

induction machine and theoretical basis for UKF. This sec-

tion is focused on ways of implementing the estimation

algorithm. There are two ways of implementing both state

and parameter estimation. First is by including parameters in

the state vector and forming a new augmented state vector

xp = [isd isq imr ρ θ1 θ2 θ3 θ4]
T and use it in the estimation

procedure. This approach is called joint Kalman filter. Another

approach is a dual Kalman filter, which uses separate filters

for states and parameters. This way two state vectors are

formed x = [isd isq imr ρ]T , and θ = [θ1 θ2 θ3 θ4]
T and

two estimation algorithms are executed sequentially at each

sampling instant. Both state and parameter Kalman filters share

the same measurement noise description (Rn
x = R

n
θ ) whereas

the process noise in both is four-dimensional (matrices R
v
x,

R
v
θ). The dual Kalman filter is often referred to as a ’braided’

Kalman filter in the electrical drives community.

Dual Kalman filter requires less computational effort (two

covariance matrices with dimensions 4×4 instead of one with

dimensions 8 × 8) and it proved to be more stable in this

particular application. States are estimated with newest avail-

able parameter information (θ̂k−1), and parameter estimation

is used with the newest available state information (x̂k−1) as

shown in Fig. 1.

State estimation is performed exactly the same as described

in previous section with relations (14)-(28). Process and mea-

surement noise means v̄ and n̄ are zero values. A Runge-Kutta

numerical integration algorithm is applied to (18) for obtaining

state values at the next time step.

Parameter estimation is executed in the same manner as

estimation of states with following differences:

• relation (18) is simply θ̂−k+1 = θ̂k,

• there are no parameters included in (13) so x̂k is put

into (12) along with parameter prediction θ̂−k+1. This
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Fig. 1. Dual unscented Kalman filter scheme.
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Fig. 2. Field-oriented control loop with dual unscented Kalman filter
(’UKF’). Block ’C’ represents the controller, block ’IM’ is the induction
machine. Variables denoted with uppercase star ’∗’ are referent values.

way a parameter-dependent state estimation x̂−
k+1(θ) is

obtained, which is then used for output prediction in (21).

Whole control system block scheme is shown in Fig. 2.

B. Observability

The observability of linear systems is often presented as a

rank of the observability matrix. It is a measure of how well

internal states of a system can be inferred by knowledge of

its external outputs [11]. For the case of nonlinear systems,

the observability is analyzed by following the linear system

approach and by using Lie derivative [11]. The Lie derivative

of H from (10) with respect to F from (9) is expressed as:

LF (H) = ∇H · F =

[

∂H

∂x1
, · · · , ∂H

∂xn

]

·







f1(x)
...

fn(x)






. (29)

Higher order of Lie derivatives are calculated from:

Li
F (H) =

∂

∂x

[

Li−1
F (H)

]

· F, i = 1, ..., n− 1, (30)

and finally, a Lie derivative matrix is formed:

L =







L0
F (h1) · · · L0

F (hm)
...

. . .
...

Ln−1
F (h1) · · · Ln−1

F (hm)






, (31)

where m is the dimension of H .

From L, a gradient matrix dL that consists of all gradients

of Lie derivatives with respect to F is derived. If the matrix

dL is a full rank matrix, the system is locally observable

and internal states can be inferred by external outputs. For

described machine model from Section II F and H are (9)

and (10). Matrices L and dL are very large and are therefore

not given in the paper due to limitation of space, in the sequel

we focus more on results.

For the case of machine model with constant parameters:

n = 4, m = 2, f1, .., f4 are (2)-(5), h1 and h2 are (11).

Matrix dL has full rank for every case except when machine

speed equals zero, rank(dL)|ωg=0 = 2. The information that

model is unobservable at speeds near zero is a well-known fact

about Kalman filter approaches used in i.e. speed estimation

and sensorless control of induction machines.

For the case of machine model with variable parameters

n = 8, m = 2. State and measurement functions f1, .., f4
and h1, h2 are the same as in previous case while f5, .., f8
are zero functions. Following the same procedure, the matrix

dL has also a full rank for every case except when machine

speed equals zero, rank(dL)|ωg=0 = 7. Parameter estimation

will also provide better results at speeds that are further from

zero.

C. Initialization of Kalman filter algorithms

For both state and parameter estimation there are lots of

degrees of freedom (8 estimates are extracted out of 4 non-

linear differential equations and 2 measurements) and finding

precise parameters of UKF algorithm is of a great importance.

In the sequel we give some recommendations how to achieve

better performance and results of UKF algorithm.

Covariance matrix elements of the parameter process noise

are chosen small enough to ensure slow continuous conver-

gence rate of parameters. Covariance matrix elements of the

state process noise are roughly approximated considering the

scenario in which parameters have maximum deviations from

their original values and then tuned. Measurement noise is

chosen as a deviation of ±10mA in current measurements.

By applying the described procedure, following state and

parameter process and measurement noise covariance matrices

are obtained:

R
v
x = diag

(

[0.044, 2 · 10−3, 5 · 10−7, 10−7]
)

,

R
v
θ = diag

(

[10−5, 10−9, 7 · 10−10, 2 · 10−9]
)

,

R
n
x = R

n
θ =

[

4 · 10−5 0
0 4 · 10−5

]

.

State estimation starts with turning the device on and initial

values of state estimation are chosen as:

x̂0 = E (x̂0) = [0 0 0 0]T ,

Px0 = E

[

(

x̂0 − E (x̂0)
)(

x̂0 − E (x̂0)
)T

]

= 10−7
I
4×4

.

Initial values of parameters are chosen as a best guess and

parameter estimation covariance matrix Pθ0 initial values are

chosen same as parameter process noise covariance matrix R
v
θ .
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V. SIMULATION RESULTS

Simulation results are obtained using MATLAB/Simulink

environment and are performed on the ideal four-pole machine

model (p = 2). Machine rated values are: stator voltage Un =
187 V, stator current In = 15.18 A, power and torque Pn =
5.5 kW, Tgn = 37.3541 Nm, frequency fn = 50 Hz. True

values of parameters are: θ1 = 96.8335, θ2 = 1.4277, θ3 =
0.7182, θ4 = 4.4444. Starting parameter values are chosen:

θ1 = 106.8335, θ2 = 1.3277, θ3 = 0.6182, θ4 = 3.4444.

Sample time is Ts = 2 · 10−4 s. Results are presented and

discussed in the sequel.

Figure 3 and 4 show state and parameter estimation of the

machine fundamental wave model, for the case of the machine

run-up, compared with the states and parameters of the ideal

model for the same initial conditions and input sequence. State

� � � � � �� �� �� �� �� ��
�

��	




��������

�
��
�

�

���

Fig. 3. Comparison of states estimation and ideal model.
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Fig. 4. Simulation results for parameter estimation. True values are denoted
with red dash-dot line.

estimations are pretty accurate even with incorrect parameters.

Inaccurate parameters are reflected only through magnetizing

current. Most significant result is a very accurate and robust

estimate of the flux position obtained using the proposed al-

gorithm. Parameter estimates converge to values that are close

to true ones but not exactly the same. This is due to scarce

indirect influence of measurement correction on parameter

UKF. Moreover, large changes in θ1,...,4 reflect only as small

changes in inductances and resistances of the equivalent circuit

and still provide pretty accurate state estimation results.

VI. EXPERIMENTAL RESULTS

This section provides experimental results for the case of

real machine with the same parameters as in the previous

section. Results are also compared with the ones obtained with

the joint EKF (see [12]). Estimation is performed off-line on

acquired measurements and both EKF and UKF have equal

initial conditions and are given same voltages and speed as

inputs. Experimental measurements are obtained for the case

of machine run-up no-load scenario.

A lot of information is sought from only two measurements

and the estimator design procedure requires an intense param-

eter tuning of Kalman filter covariance matrices. It may be

observed that all the variations in machine inductances are re-

flected in parameter θ1, while θ2 is additionally influenced by

all resistances. Thus, every parameter change in the machine

influences θ1 and θ2 and a standing assumption is that fixing θ3
and θ4 in the dual Kalman filter will still enable the estimator

correct operation in terms of providing quality state estimates

and model parameters for correct FOC operation. In order to

obtain robust and convergent state and parameters estimates,

θ3 and θ4 are fixed in processing the experimental data.

Figure 5 shows state estimation obtained by EKF and

UKF. Flux position estimation is compared to the one used

in industrial field-oriented controller for calculating reference

phase voltages that are further on passed to the inverter control.

Stator currents in (dq) frame denoted as ’real’ are obtained

from phase stator currents measurements and the flux angle

used in industrial field-oriented controller.

Internal states required for FOC are more accurately deter-

mined with UKF approach. This is due to more credible math-

ematical model and more accurate nonlinear mapping used in

UKF. Figure 6 evidences that – it shows difference between

measurements x and estimates x̂ denoted as estimation error

x̃ = x̂ − x. The UKF shows better performance, especially

for the case of flux position and quadrature current where the

error is twice as small with UKF approach compared to the

EKF one.

Values θ3 and θ4 are fixed on starting values mentioned

in Section V, and are thus different from their rated ones.

Figure 7 presents the estimation with two-parameter approach

that provides accurate estimation of machine variables shown

in figures 5 and 6. It may be observed that θ1 and θ2 converge

to the values that are near the rated ones but do not exactly

match them. This is partly due to compensation of model

deviation in parameters θ3 and θ4, and possibly due to the
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Fig. 5. Comparison of variables estimation with EKF and UKF.

difference between machine actual and rated parameter values.

Therefore, it is justified to observe only these two parameters

as a trade-off for increasing robustness of the combined state

and parameter estimation algorithm.

VII. CONCLUSIONS

In this paper we use Kalman filtering for simultaneous esti-

mation of variables and parameters of the induction machine

fundamental wave model. Due to hard nonlinearities present in

that model we apply unscented Kalman filter in the dual esti-

mation configuration. The estimates are used in field-oriented

control and validation of estimation and control performance

is done via simulations and experiments. Comparison with

conventional extended Kalman filter is also examined. Results

show that accurate and robust machine flux position is obtained

with the presented algorithm. The described procedure is

straightforwardly adaptable to sensorless control techniques or

similar problems.
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