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ABSTRACT
Models  of  health  care  utilisation  help  to  identify 
influencing factors and to study the possible impact of 
different  strategies.  In  addition  to  static  analyses, 
dynamic  models  can  be  used  to  perform  simulation 
experiments,  which  yield  insights  into  the  dynamical 
behaviour  of  the  system.  Various  methods  exist  to 
establish  a  dynamic  model.  Two  widely  used,  but 
substantially differing approaches are system dynamics 
and  agent-based  modelling.  Their  benefits  and 
drawbacks for the application in this field are outlined 
and  compared.  To  demonstrate  their  differences  and 
analogies  under  practical  application,  a  simplified 
model of health care utilisation is  established and the 
implementation as agent-based and as system dynamics 
model is described. Then, the results of simulation runs 
are  presented  and  discussed  with  regards  to  both  the 
comparison  of  the  two  methods  and  their  possible 
meaning. 

Keywords: system dynamics, agent-based modelling, 
method comparison, health care utilisation

1. INTRODUCTION
Models describing the utilisation of health care services 
by patients are an important tool to understand and to 
test  the  impacts  of  different  strategies  concerning  for 
example provider payment or insurance coverage. How 
to establish such  a model  and  what factors  are to  be 
included  depends  mainly  on  the  problem  under 
investigation.  

For  the  comparison  of  different  reimbursement 
systems for  instance,  models based on game-theoretic 
considerations  can  be  employed  (Ma  and  McGuire 
1997).  The  consequences  of  price  shifts  on  the other 
hand  can  be  studied  with  the  help  of  economical 
models.  Thereby,  the  system is  described in  terms of 
demand  and  supply  of  the  idealised  good  “health”, 
influenced by the interests and preferences of patients 
and providers  respectively (Thode et  al.  2004).  These 
models are also used to define, explain and analyse the 
notion of physician induced demand (Kern 2002). 

 Behavioural  models  of  the  social  sciences 
represent  another  approach  to  explain  the  process  of 
health  care  utilisation.  They focus on the factors  that 

influence  why,  when and how often  medical  services 
are used. Various different variants exist. One example 
is Andersen’s Behavioral Model of Health Services Use 
(Andersen  1995),  which  has  proven  its  worth  as 
reference model many times (Thode et al. 2004). 

All  of  these  models  offer  a  description  of  the 
system that  can  be  used  for  static  analyses  based  on 
statistical data. Thereby, the impacts of different factors 
can  be  studied  and  new  trends  can  be  identified. 
However, since the utilisation of health care services is 
a  dynamic  process,  also the  investigation of  dynamic 
phenomena present in the system is of interest. For this 
purpose a dynamic model is needed and an appropriate 
modelling method has to be chosen.

Agent  based  modelling  (ABM)  and  system 
dynamics  (SD)  are  both  powerful  and  widely  used 
methods to model complex dynamic systems.  The aim 
of  this  study  is  to  examine  their  advantages  and 
disadvantages  for  modelling  health  care  utilisation. 
Therefore,  a  demonstration  model  is  established  and 
implemented  in  both  methods.  After  a  theoretical 
comparison of the two techniques, this model is briefly 
introduced and simulation results are presented. 

2. MODELLING METHODS
In  agent  based  modelling  the  constituent  units  of  a 
system  are  identified  and  modelled  as  autonomous, 
decision-making  entities  called  agents  (Bonabeau 
2002).  The  global  behaviour  of  the  system  is  not 
determined a priori, but it results from the (often local) 
interaction  of  the  agents  during  simulation,  which  is 
why ABM is  called a bottom-up approach.  In system 
dynamics on the contrary, the system is described from 
top  down,  which  means  that  the  global  relations  and 
feedback mechanisms between the system components 
are modelled.  Figure 1 shows the concept of a typical 
agent, cf. Macal and North (2010). Each agent normally 
has  a  set  of  attributes,  which  can  be  static,  as  for 
example its name, or dynamic, e.g. memory or age. Its 
behaviour results from methods, which specify how it 
acts, reacts and interacts. The main structure of an SD 
model according to J. W. Forrester, who developed this 
technique, is depicted in Fig.  2. In an SD model,  the 
system is represented as a stock and flow diagram. The 
different  stocks (or levels)  correspond to the states of 
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the  system.  Their  change  over  time  is  given  by  the 
difference of the in- and the outflow, the size of which 
depends on the  information about the other  stocks as 
well as the strategies and decisions considered. 

Basically,  health  care  utilisation  corresponds  to 
interactions  between  patients,  who  decide  to  use  a 
health care service,  and medical  providers.  Hence the 
acting  entities  of  the  system  are  individuals,  which 
makes their representation as agents obvious. Thode et 
al.  (2004)  identified  age,  sex,  regional  aspects, 
subjective perception of  health  state and morbidity  as 
the main influences on health care utilisation on the part 
of the patients. In an AB model, these individual factors 
can be included in  a  natural  way as  attributes  of  the 
agents.  The regional  aspects—or spatial  arrangements 
in general—can be realised by defining an environment 
in which the agents live. For that reason, ABM is also 
suitable for analyses regarding the regional provision of 
medical services (Romstorfer et al. 2011). 

SD models are based on the idea that all dynamics 
occur  due  to  the  accumulation  of  flows  in  stocks 
(Radzicki and Taylor 1997). Each stock thereby consists 
of homogeneous elements, thus distinctions within the 
elements,  i.e.  heterogeneities  of  any kind,  have  to  be 
modelled  by  adding  new  stocks,  representing  the 
wanted characteristics. First of all this highly increases 
the complexity of the model and second this also affects 
the global model structure. Thus, SD does not provide 
the appropriate means to depict individual differences, 
such as varying patient preferences or variable levels of 
disease risk depending, for instance, on a patient's life 
style  or  his  genetic  disposition.  Also,  refinements  are 
difficult  to  incorporate  into  an  existing  model 
subsequently,  since  they  alter  its  structure.  In  an  AB 
model  on  the  contrary,  extending  the  properties  or 
methods of one type of agent or even adding a new type 
causes  only  local  changes,  i.e.  the  current  model 
structure is preserved.

Moreover, dynamics caused by network effects are 
hard to capture by the means of system dynamics. These 
are deviations from the predicted aggregate behaviour 
caused by heterogeneous interaction patterns. Network 
effects  may  occur,  whenever  interactions  between the 
modelled  objects  have  an  impact  on  the  state  of  the 
system.  This  is  for  instance  the  case  with  infectious 
diseases.  In  SD  the  change  of  a  stock  over  time  is 
represented  by  an  average,  aggregated  flow.  As  the 
elements  within  the  stock  are  indistinguishable,  this 
flow  is  based  on  the  assumption  that  interactions 
between them as well as the distribution of information 

among them is  homogeneous.  Thus,  effects  due  to  a 
heterogeneous  mixing are  ignored.  In  the agent-based 
approach, relations between the agents, representing for 
example  a  social  environment  or  a  spatial  proximity, 
can  be  easily  established  to  specify  the  mode  of 
interaction (Boneabeau 2002).  

This clearly shows that ABM is advantageous over 
SD in modelling dynamics due to heterogeneities both 
in the population itself and in the way interactions take 
place.

One of the benefits of SD compared to ABM is that 
it offers a more standardised practice of modelling. An 
SD  model  can  be  developed  from  a  few  standard 
elements  and  the  resulting  stock  and  flow  diagram 
automatically provides a graphical representation of the 
system.  Furthermore,  the  implementation  of  such  a 
model  requires  no,  or  at  most  little,  programming 
knowledge, as different software tools are available that 
offer  graphical  modelling  environments  for  this 
purpose. 

Similar  toolkits,  which  provide  pre-implemented 
structures to simplify the implementation, are available 
for  ABM as well.  However,  there are neither specific 
guidelines  nor  a  fixed  set  of  standard  elements  for 
establishing an AB model. For this reason no software 
tool  is  able  to  cover  the  broad  range  of  possibilities 
regarding  the  actual  realisation.  Hence  the 
implementation still requires programming knowledge. 
The lack of standardised ways of proceeding makes it 
moreover difficult for the modeller to decide on his own 
strategy, especially, since effects at a system-level can 
usually not  be determined prior to simulation.  SD, in 
contrast,  approaches  a  system by  first  identifying  the 
cause  and  effect  relationships  between  the  system 
variables  and  the  thereby  occurring  feedback  loops. 
Hence the process of modelling itself can already yield 
insights into the qualitative properties.

The computational power needed for simulation as 
well  as  the  data  requirements  represent  another 
difference  between  the  two  methods.  In  general,  SD 
simulation needs less computation time, as an SD model 
mathematically corresponds to a system of differential 

Figure 1: A Typical Agent.

Figure 2: The Main Structure of an SD Model (taken 
from Forrester, 1961). 
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equations,  which  can  be  solved  numerically  in  an 
efficient  way.  Simulating  an  AB  model  means 
simulating  each  agent,  its  interactions,  reactions  and 
actions at each discrete time step and/or event, which is 
computationally  intensive.  Especially  if  sensitivity 
analyses  and/or  variations  of  a  number  of  parameters 
are needed, this constitutes a disadvantage in terms of 
the time required. 

Regarding the data needed for parametrisation, the 
requirements  of  SD are  possibly  easier  to  meet.  It  is 
based on aggregated data and overall tendencies. These 
can often be obtained from national institutes. The type 
of data needed for the parametrisation of an AB model 
depends on first, what the agents represent and second, 
the wanted level of detail regarding their attributes and 
individualities. For instance, when modelling a disease, 
it can either be assumed that its course is the same for 
each  individual  or  that  variations  concerning  its 
duration  or  severity  occur,  as  is  usually  the  case  in 
reality.  Both  options  can  be  realised  easily  in  an  AB 
model. However, whereas averaged data can be used for 
the  first  one,  the  implementation  of  the  second  one 
requires disaggregated, individual data, which is often 
not  available  and,  especially  in  the  health  sector, 
privacy  protection  can  be  an  issue.  Thus,  since  the 
capacity to take heterogeneities into account is one of 
the biggest advantages of ABM, data can be a limiting 
factor in using it to its full potential. 

Even  though  the  two  methods  show  substantial 
differences,  not  least  because  in  SD  a  system  is 
modelled  continuously  whereas  an  AB  model  is  in 
general discrete (although continuous elements may be 
included as well), their field of application overlaps and 
in  some  cases,  the  same  system  behaviour  can  be 
obtained  with  both  methods.  Borshchev  and  Filippov 
(2004)  described   a  way  to  translate  an  existing  SD 
model into a corresponding agent-based one. Figure 2 
depicts  the  main  idea  of  their  strategy.  First,  the 
elements  within  a  stock  are  taken  as  agents  and  the 
different  stocks  as  their  possible  states,  which  are 
represented in a state chart. Thus, the current size of a 
stock corresponds to the number of agents in the same 
state  (see  Fig.  2 b)  Then,  the  transitions between the 
states  are  specified,  using  the  same  conditions  that 
determine the size of the flows. For a simple example of 
bass  diffusion,  Borshchev  and  Filippov  demonstrated 
that the thereby obtained results indeed coincide. 

3. DEMONSTRATION MODEL
Our model aims to describe the dynamics of health care 
utilisation  in  a  simplified  system,  which  consists  of 
patients,  who  use,  and  providers,  who  offer  medical 
services.  All  providers  are  assumed to  have the same 
specialisation  and  only  one  type  of  disease  with  two 
different  severity  levels  is  considered.  The  patients 
consult a provider for regular check-ups as well as in 
case  of  disease.  A comparable  equivalent  in  real  life 
would be for example the utilisation of dental services, 
where a check-up every 6 months is recommended. For 

female patients, a similar situation occurs with regards 
to gynaecological examinations. 

Both, medical providers and patients, are supposed 
to  have  different  goals,  which they  try  to  attain.  The 
goal of the patients is to maintain a high quality of life, 
i.e. they are aiming for a fast recovery. For the goal of 
the providers, a mix between profit and patient's benefit 
was chosen. 

A  provider  can  offer  two  different  levels  of 
services, whereby one (treatment B) is considered to be 
an  extension  of  the  other  one  (treatment  A)  and 
therefore works on both severity levels, but takes longer 
and also costs more. Moreover he is  able to diagnose 
the  patient's  severity  level  with  a  certain  error  rate. 
Providers  are  assumed  to  care  about  profit,  which 
depends on the reimbursement system, and the patient's 
benefit  from treatment,  which is  normalised to 1 if  it 
was  effective  and  0  otherwise.  In  order  to  maximize 
their performance, they periodically adjust a diagnosis 
related  threshold  above  which  they  prescribe  the 
extended treatment to a patient.

To  make  the  two  models  comparable,  the  same 
parameters  and  variables  are  used  whenever  possible 
and  diagnosis,  treatment  decision  as  well  as  the 
optimisation  process  are  realised by the same means. 
Both  models  are  implemented  in  the  multi-method 
simulation  modelling  tool  AnyLogic  (6.5.1)  by  XJ 
Technologies.

3.1. Implementation as AB Model
Patients and providers are modelled by different classes 
of  agents,  connected  by  a  dynamic  network,  which 
establishes a link between each patient and his chosen 
provider.  In  addition,  a  static  social  network  between 
the patients is set up, which enables them to exchange 
information about their providers. 

The  health  state  of  a  patient  as  well  as  his 
satisfaction with the provider  are represented by state 
charts.  Furthermore each  patient  has a quality of life, 
which decreases from the moment he falls  ill until  he 
recovers  and  thereby  affects  his  satisfaction. 
Additionally,  the patient's  satisfaction level  is  reduced 
when  the  waiting time for  an  appointment  exceeds  a 

Figure 2: Translation of a Stock and Flow Diagram Into 
a Corresponding Agent-Based Representation.
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certain time span. Thus, this level reflects how a patient 
perceives the actions of his provider and if, in his point 
of view, these impede or support his attempts to keep a 
high quality of life. In case he becomes dissatisfied, he 
may  change  provider.  To  assure  that  this  change 
improves  his  current  situation,  it  is  based  on  the 
recommendations of other agents in his social network. 
Only if all suggested choices, starting from the first one 
received,  reject  the  patient  due  to  full  capacity 
utilisation, the new provider is chosen randomly. If the 
patient is fully satisfied for a longer period, he in turn 
makes a recommendation. 

Each  medical  provider  has  the  same  number  of 
working units per day to see patients, who come either 
for a regular check-up or because of illness. In the latter 
case,  the  provider  has  to  decide  which  treatment  to 
prescribe.  For  that  purpose,  he  first  diagnoses  the 
patient's condition, i.e. he determines a number between 
0 and 1, which is triangularly distributed with the mode 
depending on the patient's severity level. If the value is 
greater than 0.5, this indicates a higher probability for 
the more severe case of the disease, whereas for values 
less than 0.5, the opposite applies. Comparing this value 
to  an individual  threshold,  above which the extended 
treatment  is  prescribed,  then  yields  the  treatment 
decision. Each medical provider aims at maximising his 
performance with respect to the patient's benefit on the 
one hand and his profit on the other hand by adjusting 
this threshold. The objective function is realised as the 
weighted sum of normalised income and benefit, times 
the utilisation ratio of the provider. A similar approach 
is used by Ellis (1998).

There  are  twofold  interactions  between  medical 
providers  and  patients.  First,  the  treatment  chosen by 
the provider  influences  the  health  state  of  the patient 

and consequently his quality of life. Second, the choice 
of provider by the patient influences the performance of 
the  provider.  In  the  first  place,  the  patient  randomly 
chooses  a  medical  provider.  Later  on,  as  soon  as 
information  based  on  past  experience  becomes 
available, this choice is influenced by recommendations 
of the social network, waiting times for appointments in 
the past and satisfaction with the treatment. 

3.2. Implementation as SD Model
In the SD model, the stocks describe the current amount 
of healthy and ill patients. The flows between the stocks 
are determined on the one hand by natural disease rates 
and treatment durations and on the other  hand by the 
available supply of medical services and a factor, which 
represents the averaged (individual) treatment decisions 
of  all  providers,  who  are  themselves  modelled 
homogeneously. 

The  above  described  analogy  (Borshchev  and 
Filippov 2004) is used to assure the comparability of the 
two models  regarding  the way patients  become ill  as 
well  as  their  recovery,  see  Fig.  4.  Thus  first,  the 
transitions  between  healthy  and  sick,  used  in  the  AB 
model,  should correspond to the rate-dependent flows 
between the level of healthy patients  and the level of 
sick patients in the SD model. This correspondence is 
ensured by modelling the change of state from healthy 
to  sick  in  the  AB  model  by  a  transition,  which  is 
triggered after an exponentially distributed time span. If 
the parameter of the exponential distribution is set to the 
same value as the rate determining the size of the flow 
in the SD model, their behaviour is equivalent. Second, 
the transitions from the three treatment states to healthy, 
should  correspond  to  the  flows  between  the  three 
treatment  stocks  to  the  stock  “healthyPatients”.  It  is 
assumed that the time needed for recovery is the same 
for  every  patient  but  dependent  on  the  prescribed 
treatment. This can be realised by a so called “pipeline 
material delay” in SD and a time-out triggered transition 
in the AB model. 

 In contrast to the AB model where each agent tries 
to attain his goal individually, the goals of patients and 
providers are first averaged and then combined in one 
objective  function,  which  is  maximized  during 
simulation.  The  providers'  objective  was  again 
implemented as the weighted sum of normalised profit 
and  patient's  benefit.  The  goal  of  the  patients  is 
represented  by  the  minimal  level  of  quality  of  life, 
which is on average reached during the course of the 
disease.

The  optimisation  is  realised  by  a  discrete  event, 
which  might  be  an  unusual  approach  because  of  the 
continuous nature of SD. But as mentioned before, this 
is due to the intended analogy between the models.

4. SIMULATION
The  default  parametrisation  for  the  simulation  uses 
5000 patients and 150 medical  providers.  The disease 
rates are set to 0.03 and 0.01 for the less and for the 
more  severe  form  of  the  disease  respectively.  These 

Figure 4: Correspondence Between the Stock and Flow 
Diagram  Used  in  the  SD Model  (top)  and  the  State 
Chart Used in the AB Model (bottom)
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values assume a very high density of medical providers, 
as they are all assumed to have the same specialisation. 
Moreover a person becomes ill on average about once a 
month.  This  setting  may  not  be  entirely  realistic. 
However,  the  above  values  were  chosen  for  practical 
reasons.  The  simulation  of  an  AB  model  is 
computationally intensive and therefore too big samples 
are not convenient. Then again, if the number of agents 
is too small, the results show too much noise due to the 
stochastic elements included in the behavioural rules of 
the agents. Therefore, less patients, but more providers 
as  well  as  a  higher  disease  rate  were  taken  as 
compromise. If one patient is assumed to represent 80 
patients with the same behaviour patterns, the provider 
density is realistic (Habl and Bachner 2010).

The reimbursement of treatment B is supposed to 
yield 50% more profit than that of treatment A, and the 
durations of the treatments are set to 3 and 7 days for A 
and  B  respectively.  How  often  a  patient  consults  a 
medical provider is specified as, on average, once every 
two months for check-ups and two days after the first 
symptoms have occurred.

Simulation  runs  with  the  default  parametrisation 
yield very similar results for both models. The derived 
average behaviour of the providers in the AB model and 
the assumed one in the SD model seem to correspond.

Figure  5  shows  the  number  of  healthy  and  sick 
patients (divided into two groups according to the level 
of severity) over time for both the AB and the SD model 
with the default parametrisation. The quantitative values 
look alike for both methods with the difference that the 
results  obtained  from the  agent-based  approach  show 
fluctuations  caused  by  the  individual,  stochastic 
behaviour of the agents. In contrast, with the SD model 
a steady state is reached after the optimisation process is 
finished. 

The behaviour of the providers is  represented by 
their  treatment  decision.  Thus,  it  can  be  studied  by 
looking at the number of prescribed treatments of the 
two different types. Figure 6 shows the total amount  of 
health care services used per month over a simulation 
period of 20 years. During the first half of this period, 
the parameters are kept at their default values. After an 

initial adaptation time, the optimal behaviour is found 
and hence the system stabilises.  Like before,  a steady 
state  is  reached  in  the  SD  simulation,  whereas  the 
values computed with the AB model show an oscillating 
behaviour, yet within a certain range. 

After ten years, the reimbursement for treatment B 
is risen such that it brings 4 times the profit of treatment 
A.  The   reaction  of  the  system looks  alike.  In  both 
cases, the increased financial incentive for prescribing 
treatment B influences the treatment decision. However 
profit is not the only concern of the medical provider 
and also quality of life of the patients has an impact on 
their behaviour.  In the SD model the influence of the 
patients  is  realised  directly,  as  the  objectives  of 
providers and patients are maximised simultaneously. In 
the AB model, the quality of life of a patients affects his 
choice  of  a  provider  and  thus  induces  a  competition 
between the  providers  (see Fig.  7),  which  then  again 
influences their behaviour. Because of these additional 

Figure 5: Number of Healthy and Sick Patients in the 
AB Model  (top)  and  the  SD Model  (bottom)  over  a 
Simulation Period of 1000 Days.

Figure 6: Total Number of Health Care Services Used 
per Month over a Simulation Period of 20 Years With a 
Raise of the Reimbursement for Treatment B after 10 
Years, Marked by the White Vertical Line (AB Model 
Top, SD Model Bottom).  The Horizontal Lines in the 
Top Panel Indicate the Corresponding Values of the SD 
Simulation, when Steady State is Reached.

Figure 7: Competition of the Medical Providers in the 
AB Model
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influences  on  the  treatment  decision,  treatment  B  is 
indeed  prescribed  more  often,  but  again  the  amount 
stabilises  at  a  certain  level,  which  represents  the 
optimum  for  both  patients  and  medical  providers. 
Furthermore,  as  the  increase  is  moderate,  the  plus  in 
prescriptions of treatment B concerns only cases where 
the diagnosis is uncertain, i.e. the number obtained by 
the provider is close to 0.5, which might also happen in 
reality. 

Regarding the quantitative outcome, the obtained 
results for regular check-ups almost coincide, whereas 
those  for  treatment  A  as  well  as  for  the  extended 
treatment show deviations. This could be explained by 
the differences in the way the patient-provider contact is 
modelled. In the SD model, the current supply of total 
health care services is distributed among the different 
stocks  of  patients  according  to  their  demand.  This 
process is more complex in the AB model, as the time 
until  a  patient  has  an  appointment  with  his  provider 
depends not only on the total available supply but also 
on the chosen provider. Hence, the average time until a 
patient sees a provider and consequently the total illness 
duration  is  higher.  Therefore,  even  though  in  both 
models  the  same  amount  of  patients  is  sick,  less 
treatments are prescribed in the AB model.

5. CONCLUSION
SD and ABM both have their benefits and drawbacks 
for  modelling  health  care utilisation.  But  if  these  are 
compared,  it  is  apparent  that  the  strengths  of  the 
methods  concern  the  description  of  totally  different 
aspects of the system. With the agent-based approach, 
individual characteristics and behaviour patterns can be 
considered, which are impossible to include in an SD 
model.  However,  if  the  focus  lies  on  the  the  global 
relations in the system, SD certainly is the better choice.

The  demonstration  model  was  implemented  in  a 
rather intuitive way and the used variables and relations 
are  all  interpretable  in  both  methods.  The  simulation 
results  show  that  the  models  describe  the  same 
qualitative  behaviour.  However,  deviations  in  the 
quantitative outcome exist. Parts of them are caused by 
the stochastic elements used in the AB model and are 
thus inherent in the approach. The rest is due to effects 
emerging  from  the  heterogeneous  distribution  of 
patients among the providers, i.e. network effects, in the 
AB model, which are ignored in the system dynamical 
implementation. Thus, even though the specified system 
is kept  as simple as possible,  the differences  between 
the methods already carry weight.
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